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Abstract

The formalism of Thermofield dynamics (TFD) is a powerful tool for exact studies of
quantum physics problems at finite temperature. We apply it to the physical phenomenon
of quantum entanglement(QE) which plays a fundamental role in quantum communication
between parties separated by macroscopic distances. We study QE in two systems: the
first one is the coupled waveguides in quantum optics. We solve the master equation for
the coupled lossy waveguides by using the TFD formalism which allows the use of the
underlying symmetry algebras SU(2) and SU(1, 1), associated with the Hamiltonian of the
system. We compute entanglement and decoherence as a function of time for various input
states such as NOON states and thermal states of the system with and without damping. In
the second application, the coupled two site, two species Bose-Hubbard model (in condensed
matter physics) is studied. We calculate the entanglement properties and decoherence for the
system considering, the interaction of bosons in system with non-linear damping by solving
the master equation using the TFD. We compare the role of the repulsive on-site interaction
parameter and the hopping parameter on these features. We note the significance to optical
models with ultracold atoms and show how we can tune the system for optimum quantum
information processing. In yet another application of TFD to multiparticle production, we
study the salient features of multiplicity distributions and correlations of pions which emerge
in the collision of particles using quantum optical and statistical techniques. We introduce
new distributions which incorporate finite temperature effects using TFD and study the
resulting correlation functions. These results may be useful as tool to study the properties
of the quark-gluon-plasma (QGP) believed to be produced in the collision of heavy ions at
Relativistic heavy ion collider (RHIC) and Large Hadron Collider (LHC) (in future).
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Chapter 1

Introduction

Understanding the properties of many-body quantum systems is one of the most challeng-

ing problems in physics. Over the years many methods have been proposed in quantum

mechanics to provide a precise description of the properties of these many body quantum

systems. The aim of many-body physics theories is to compute the emergent thermody-

namic, spectroscopic and response properties of a system of interacting particles. Although

conventional quantum mechanics can be generalised to solve a few body problems, it is in-

sufficient to deal with systems containing a large number of constituents and hence a new

theory is called for. Important progress has been made through the development of quantum

field theory(QFT)[1, 2, 3]. QFT, in its usual formulation, is a combination of classical field

theory, quantum mechanics and special theory of relativity and does not involve temperature.

Thus it is a zero temperature relativistic quantum field theory. When one goes to relativistic

regime one encounters the possibility of creation of new particles from energy and annihila-

tion of the intermediate particles, which can be handled only in QFT, by incorporating these

quanta or particles as its essential feature allowing meaningful calculations of experimentally

verifiable results. Although, initially, QFT was developed for dealing with the physics of ele-

mentary particles, it was adapted to the study of many-body problems in condensed matter,

by the introduction of the fock representation, which could give a description of quantum

systems whose state could be classified by a number series.

However, we need a much more extended and developed QFT for studying the properties

of many-body quantum systems, in which, there is an entanglement and correlations among

the particles of the quantum systems with thermal environments. For such systems it was

necessary to reformulate QFT to take into account thermal effects. For that, there are two

1
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exciting fields of studies very popular in current research of quantum physics, which are:

thermo-field dynamics(TFD)[4, 5, 6, 7, 8, 9] and quantum entanglement(QE) dynamics[10,

11, 12, 13].

1.1 Thermo-field dynamics

TFD is an important formalism belonging to thermal quantum field theory(TQFT) (also

called ’finite temperature field theory’ (FTFT)), which is used for studying quantum physics

problems at finite temperature. In TQFT, there are two finite temperature formalisms,

those are: imaginary-time formalism (ITF) and real-time formalism (RTF). The Imaginary

time formalism applicable for quantum systems at thermal equilibrium which is also called

‘Matsubara formalism’. The most popular ITFs are: the path integral method and the

operator method. Real time formalism is more applicable to quantum systems at non-thermal

equilibrium and is used to study time dependent thermal systems. It is more complicated

and it has not been as widely used as ITF. Not many things are standardly known about it.

But this is a most suitable formalism,for, how a finite temperature system changes in time.

The most popular RTFs are: the “closed time path formalism” and the “thermo-field

dynamics”.

Thermo-field dynamics is a real time finite temperature formalism which is a very use-

ful and powerful method of TQFT. It was developed as an extension of zero temperature

formalism to finite temperature problem in which the thermal average of an operator in

a statistical ensemble is replaced by an expectation value w.r.t. “temperature depen-

dent vacuum state”. It was introduced by Takahashi & Umezawa[4, 5] in 1975. They

constructed a representation by considering a doubling of Hilbert space, the “thermal

vacuum state” is defined so that, the statistical average of an observable ’A’ is given by

“< A >= Z−1(β)Tr[Ae−βH ]” is the expectation value of the operator A over a doubled

Hilbert space spanned by |n, n >, where, the partition function Z(β) = Tr[Ae−βH ]. It has

been used to study the superconductors[14], the thermal oscillators[15], in magnetic systems

[16], in quantum optics [17, 18, 19], in transport phenomena[20] and to study the properties

of hadron source (quark gluon plasma(QGP))[21].

In this thesis, special attention is given towards applying the TFD formalism to study open

quantum systems interacting with a thermal reservoir. “< A >= Tr(ρA) = Z−1(β)Tr(Ae−βH)”,

is corresponds to Wick rotation “β → −iτ”, can solve problems using, for example, pertur-

bation and diagrammatic techniques. An alternative way is that the operator average < A >
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would be performed in a Hilbert space, with “temperature dependent state” “|0(β) >”, such

that “< A >=< 0(β)|A|0(β) > ”. The details about TFD formalism are given in chapter

2: its construction, thermal vacuum state using density matrix method by considering the

doubling of Hilbert space. Application of the formalism to bosonic and fermionic systems is

given and TFD is used to convert the Liouville von Neumann equation of the evolution of the

density operator into a Schrödinger type equation for the density matrix. This simplification

allows us to study decoherence in open quantum systems. We also define various thermal

states useful to study thermal correlations and multiplicity distributions in multiparticle

production.

1.2 Quantum entanglement dynamics

The physical property responsible for the non-classical correlations between distinct quantum

systems is called ’quantum entanglement’(QE)[22]. That is, the entanglement is a physical

phenomenon corresponding to interacting pairs of particles such that the quantum state

of each particle of the group is not independent of the state of the others, even at large

separations. The theory to study the QE of systems is called ’quantum entanglement(QE)

dynamics’, which seeks to understand the dynamics of quantum systems in various branches

of physics. “It was Einstein, Podolsky and Rosen(EPR) and Schrödinger first recognized

this ’spooky’ feature of quantum machinery which lie down at center of interest of physics

of 21st century”[10, 12]. “This feature implies the existence of global states of composite

system which cannot be written as a product of the states of individual subsystems. This

phenomenon, known as Entanglement, was originally called by Schrödinger ‘Verschränkung’,

which underlines an intrinsic order of statistical relations between subsystems of compound

quantum system”[11].

For a long time, QE was a topic discussed mostly in quantum optics[17, 23], but, in the

last decades, it has seen a revival with input from very different areas. Quantum information

relies on quantum entanglement.[24, 25] and communication, quantum computing [26, 27],

quantum teleportation[28], quantum dense coding[22], and quantum cryptography[29]. En-

tanglement dynamics has been used to study information loss in the theory of black holes,

the numerical investigation of many body quantum systems, the characterization of topolog-

ical quantum states and quantum phase transitions(QPT). The study of many-body systems

has been greatly aided by the study of exactly solvable spin systems. In fact, some of the

experimental studies are carried out on systems which are well modeled by spin systems such
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as the transverse Ising model that undergoes a QPT. The quantitative theory of entangle-

ment may gives a powerful unifying framework for the understanding of complex quantum

systems exhibiting QPT. I have given great details of QE and its measures in chapter-3.

Combinedly, these two areas of research of quantum physics are now being studied in

various fields ranging from condensed matter to quantum gravity. Most studies of quantum

entanglement are for ideal systems at zero temperature. However interactions of many-

body systems can cause systems to decohere and must be taken into account when carrying

out experiments on quantum entanglement. Open quantum systems play a crucial role in

quantum information. Decoherence is caused by systems-environment interactions. Using

proper methods we can quantify the decoherence in open quantum systems by using master

equation. The application of dynamics of the open quantum systems ranges from quantum

cosmology to quantum optics and to quantum information. The control of entanglement

against the dissipative effects of the environment is an important issue. TFD helps us in

solving the master equation in a simple fashion and the decoherence effects can easily be

calculated in a number of systems. We attempt to study the dynamics of entanglement and

its evolution in open quantum systems, given their importance in quantum computation and

quantum information.

In this thesis we focus on the techniques of TFD and its relation to the ”Liouville-von

Neumann equation” to study the quantum entanglement properties of a few many-body

systems with thermal environments. These are generic many-body quantum systems in

three different areas of physics, quantum optics, condensed matter physics and particle

physics. We have studied the coupled lossy waveguides system in quantum optics, where

we have shown how the damping effect is mimicked by the thermal effects in the system.

In condensed matter physics, we studied the Bose-Hubbard model, where we compare the

effect of three parameters (repulsive on-site interaction parameter, hopping parameter and

damping parameter) on entanglement dynamics and the decoherence in the system. Again we

show that the damping effects can be attributed to the system having thermal states. These

features can be shown to tune the system for optimum quantum information processing.

In particle physics we show how TFD can be used to define correlations and multiplicities

of particles produced in thermal environments such as the quark gluon plasma in a heavy

ion collision. We define different thermal states and calculate multiplicity distributions

and correlations at finite temperature which gives the extension of BEC (Bose-Einstein

Correlations) phenomenology, that gives new inputs in the experimental study of BEC.

This thesis is organised as follows. In this first chapter, I have introduced the basis and

motivation towards my work in the area of quantum physics: the finite temperature field the-
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ory, thermo-field dynamics, quantum entanglement and more concepts and results discussed

in further chapters. In chapter two, we describe the formalism of thermo-field dynamics by

considering a few exemplary thermal systems. In chapter three, we describe the quantum

entanglement, density operator formalism and various measures of entanglement & an ex-

emplary quantum system. In chapter four,we compute the entanglement and decoherence of

the coupled waveguides system with and without damping by using TFD. The decoherence

of various input states “NOON states” and “Thermal states” as function of time is studying.

In chapter five, we compute the entanglement and decoherence for “the coupled two site,

two species Bose-Hubbard model in the presence of a non-linear damping” with coupling

strength, J and interaction term, U by using TFD. In chapter six, multiplicity distributions

and correlations arise for different pion states and also derive and discuss how thermal effects

can be incorporated in multiplicity distributions and correlations of pions by using the TFD.

In the final chapter, we summarize and conclude with scope for future work.



Chapter 2

Thermo-field Dynamics formalism

“Thermo-field dynamics”(TFD) is a real time finite temperature formalism, which was de-

veloped initially by Umezawa and Takahashi to define finite temperature operators in the

theory of superconductivity [4, 5]. Since then it has become a powerful finite temperature

field theory to deal with non-equilibrium and real time evolution of thermal systems in many

branches in physics[7, 8]. The central premise of the theory is to replace the “thermal average

of a statistical ensemble” by an expectation value with respect to “temperature dependent

vacuum”, by enlarging the Hilbert space. It basically consists of applying a general technique

of enlarging the Hilbert Space of the theory, allowingthermal averages of quantities by a sim-

ple pure state vacuum expectation value of a local operator. In particular, density operator

is represented as a vector in this “extended Hilbert space”. The von-Neumann-Liouville

problem involves solving the master equation and is equivalent to solving a Schrödinger

type equation. This is a powerful tool to study entanglement and decoherence effects in

many body systems in a thermal environment. In this chapter we give the salient features

of TFD relevant to the problems solved in the thesis. We give examples of the use of this

formalism to describe thermal bosonic and fermionic systems and define thermal coherent

and squeezed states and then used to study the entanglement and decoherence in a few

many-body quantum systems in chapters -4, 5 and 6.

6
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2.1 Construction of Thermal state -Doubling of Hilbert

space

An essential quantity of a statistical system is, the ensemble average of an operator ’A’ in

thermal equilibrium at temperature ’T ’ is [7, 8, 30, 31],

< A >=
Tr(ρA)

Tr(ρ)
=

1

Z(β)
Tr(e−βHA) (2.1)

where, density operator “ρ = e−βH”; H is the Hamiltonian and partition function is Z(β) =

Tr(ρ) (similar to the vacuum to vacuum transition amplitude of QFT, but does not coincide

with it).

Consider the set of eigenstates |n > of H, has discrete eigenvalues and they form a complete

set of orthonormal states of a Hilbert space H. Thus,

H|n >= En|n >;
∑
n

|n >< n| = 1, < m|n >= δmn, (2.2)

and the density operator is written in terms of these states as

ρ =
∑

ρmn|m >< n|, (2.3)

then,

“ < A >=
1

Z(β)

∑
n

e−βEn < n|A|n > ” (2.4)

If we can define a new state, “|0(β) >” such that, we can write

< A >=< 0(β)|A|0(β) >=
1

Z(β)

∑
n

e−βEn < n|A|n > (2.5)

where, |0(β) > is the “temperature dependent vacuum state” in a new Hilbert space,

which we will describe below.

Let us assume that the “thermal vacuum state”, |0(β) > as a linear superposition of the

states, |n >, of Hilbert space, H as

|0(β) >=
∑
n

|n >< n|0(β) >=
∑
n

fn(β)|n > (2.6)

Then, we obtain (from eqns. 2.5, 2.6)
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< 0(β)|A|0(β) >=
∑
mn

f ∗m(β)fn(β) < m|A|n >=

∑
e−βEn < n|A|n >∑

e−βEn
. (2.7)

which can be satisfied only if

f ∗m(β)fn(β) = Z−1(β)e−βEnδmn, (2.8)

then the δmn shows that fn(β) cannot be complex numbers. fn(β) are behave like orthogonal

vector, so |0(β) > can not be an element of the original Hilbert space, but is a vector in a

space spanned by state vectors, |n > and fn(β). To realize this representation we introduced

a “doubling of the Hilbert space”.

Now we introduce a non-physical set of fields called the “tilde fields”. This new system

needs to have vectors in a new space similar to H, which has a unique states |ñ > corre-

sponding to every state |n > in H. Hence, the |ñ > are eigenstates of a Hamiltonian H̃,

which form a complete set of orthonormal vectors in the new space H̃. Thus,

H̃|ñ >= En|ñ >;
∑
n

|ñ >< ñ| = 1, < m̃|ñ >= δmn (2.9)

The direct product H ⊗ H̃ is a new Hilbert space, whose elements are |m >< n| which we

denote as |m, ñ >). These form a complete set of orthonormal vectors and any operator is

a vector in that new Hilbert space.

The average of any operator ’A’ is,

< m, m̃|A|n, ñ >=< m|⊗ < m̃|A|n > ⊗|ñ >=< m|A|n >< m̃|ñ >= Amnδmn and that

corresponding to ’Ã’ is, < m, m̃|Ã|n, ñ >=< m̃|Ã|ñ >< m|n >= Ãm̃ñδmn.

So, we have written < m̃|ñ >= δmn, without reference to the tilde in the δmn. Now, we

take
|fn(β) >= Z−1/2(β)e−βEn/2|ñ >, (2.10)

which satisfies the properties of Hilbert space(may verify eq.[2.7]) as,

f ∗m(β)fn(β) = z−1(β)e−βEm/2 < m̃|ñ > e−βEn/2 and then, f ∗n(β)fn(β) = z−1(β)e−βEn .

Thus, the thermal vacuum state can be constructed as,

|0(β) > = Z−1/2(β)
∑
n

e−βEn/2|n, ñ >

= [Trρ]−1/2
∑
n

e−βEn/2|n, ñ > (2.11)
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An operator A acting on H, we have

< 0(β)|A|0(β) > = [Trρ]−1
∑∑

e−β(Em+En)/2 < m|A|n >< m̃|ñ >

= [Trρ]−1
∑∑

e−β(Em+En)/2Amnδmn

= [Trρ]−1Tr[ρA] =< A > . (2.12)

2.2 Liouville space method: Construction of Density

matrix

Another way we can show the doubling of the Hilbert space of a thermal system is the

Liouville space concept. It is based on the observation that the operators acting on “the

vector space H” themselves form a “vector space H̃”. Any operator, A which acts on H
having the form

|A >=
∑
m

∑
n

Amn|m >< n| =
∑
m

∑
n

Amn|m, ñ >, (2.13)

can be treated as a vector |A > in the space spanned by the basis |m >< n|. A scalar

product of two such vectors |A > and |B > in this space is defined as

< A|B >= TrA†B =
∑
n

< n|A†B|n > . (2.14)

A density operator is a state in Liouville space is given by

ρ =
∑

e−βEn|n >< n|, (2.15)

the scalar product of states |A > and |ρ > is

< ρ|A >= TrρA =< A > (2.16)

Thus, the scalar product in the Liouville space is suitably defined in order that the thermal

averages be represented as a scalar product. The orthonormality of the basis states |m >< n|
of the Liouville space follows from the definition of the scalar product. When the states

|m >< n| belonging to a new space are identified with the states |m, ñ > of the doubled

Hilbert space of TFD, then two approaches-Liouville space formalism and TFD are essentially

the same.
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If we choose |n > to be the eigenstates of the number operators, then

|A >=
∑
m

∑
n

Amn|m, ñ >=
∑
m

∑
n

Amn
(a†)m(ã†)n√

m!n!
|0, 0̃ > . (2.17)

with [a, a†] = 1, [ã, ã†] = 1 and [a, ã] = [a, ã†] = 0 and other commutators will also be zero.

For bosonic system we introduce the operators a, ã, a†, and ã† as follows:

a|n, m̃ >= a|n >< m| =
√
n|n− 1 >< m| =

√
n|n− 1, m̃ >, (2.18a)

ã|n, m̃ >= ã|n >< m| =
√
m|n >< m− 1| =

√
m|n, m̃− 1 >, (2.18b)

a†|n, m̃ >= a†|n >< m| =
√
n+ 1|n+ 1 >< m| =

√
n+ 1|n+ 1, m̃ >, (2.18c)

ã†|n, m̃ >= ã†|n >< m| =
√
m+ 1|n >< m+ 1| =

√
m+ 1|n, m̃+ 1 > . (2.18d)

Because of the tilde operators commute with non-tilde operators, we can easily see that

the operators ã† and ã respectively replicate the action of a† and a on |n >< m| from the

right. i.e.,
|n >< m|a† =

√
m|n >< m− 1| =

√
m|n, m̃− 1 >, (2.19a)

|n >< m|a =
√
m+ 1|n >< m+ 1| =

√
m+ 1|n, m̃+ 1 > . (2.19b)

The identity state, |I > in terms of the number states

|I >=
∑
|n, ñ >, (2.20)

it gives,
a|I >= ã†|I > and a†|I >= ã|I >, (2.21)

which are called “tilde conjugation rules”.

From (2.11) |0(β) > in terms of |ρ > is

|0(β) >=
∑
n

e−βEn/2|n, ñ >= ρ1/2|I >, (2.22)

for a normalized density operator. Here, ρ is a diagonal matrix with elements e−βEn repre-

senting the density operator in the basis of the eigenstates of H. The state |I >=
∑
|n, ñ >

is to be noted that it does not have a finite norm. But this vector proves to be useful in

defining most of the states |ρ >. It has the property that it is independent of basis vectors.

Here it is possible to generalize the definition of the thermal state from eq.2.22 to
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|ρα >=
∑
n

e−βEnα|n, ñ >= ρα|I > (2.23)

where, 1/2 ≤ α ≤ 1 correspondingly, we have

< ρ1−α| =
∑
n

< n, ñ|e−βEn(1−α) =< I|ρ1−α, (2.24)

so that, the thermal expectation value is

< A >=< ρ1−α|A|ρα > . (2.25)

This generalization of the thermal state is easily justified by using the cyclic property of

trace operation, since
< A >= Tr(ρA) = Trρ1−αAρα. (2.26)

In the α = 1
2

representation, the state |ρα > is called the thermal ground state[5]. Because

of its symmetrical nature, ensemble averages seems like pure state averages. Although, the

only representation available for non-equilibrium phenomena is α = 1.

The Liouville von Neumann equation is

∂

∂t
ρα(t) =

−i
~

[H, ρα], (2.27)

and by applying |I > on RHS of above equation, obtains Schrödinger type equation.

∂

∂t
|ρα(t) >= −iĤ|ρα >, (2.28)

where,
− iĤ = i(H − H̃). (2.29)

Now the solution is,

|ρα(t) >= exp[−iHt]⊗ exp[−iH̃t])|ρα(0) > (2.30)

here, |ρα(0) > is an intial state in H⊗ H̃. We use this density operator to study the entan-

glement properties of various systems in my research work.

For dissipative systems, the density operator evolves as (for α = 1) is,

∂

∂t
ρ(t) =

−i
~

(Hρ− ρH) + Lρ, (2.31)
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here, L be the Liouville term. In similar way, we apply |I > on RHS of the above equation,

one obtains the Schrödinger-type equation for this system is

∂

∂t
|ρ(t) >= −iĤ|ρ >, (2.32)

where,
− iĤ = i(H − H̃) + L. (2.33)

Then, similar way like in general case (eq.2.30), we can construct a density operator of the

system as the solution of the eqn.(2.32) and study its entanglement properties.

2.3 The construction of density operator for various

thermal systems using TFD

2.3.1 For Bosonic oscillator

Now we construct the density matrix |ρ > for the bosonic oscillator using the rule in eq.2.23.

Consider an ensemble of free bosons[7, 8] with frequency ’ω’ described by the Hamiltonian

H = ωa†a; (~ = 1) (2.34)

with H|n >= nω|n >, here, n = 0, 1, 2, 3, ...∞ (2.35)

here, |n > be the fock states and a, a† are annihilation and creation operators, which satisfy

the commutation relations: [a, a†] = 1; [a, a] = [a†, a†] = 0.

The finite temperature of the Hamiltonian of the system is

Ĥ = H − H̃, (2.36)

here, we introducing the tilde field as, H̃ = ωã†ã with tilde creation and annihilation op-

erators also satisfy the commutation relations. The product space is spanned by the set

of orthonormal basis states, {|0, 0̃ >, a†|0, 0̃ >, ...., 1√
n!

(a†)n|0, 0̃ > ....} where “|0, 0̃ >” is

the “thermal vacuum state”. Thus, the thermal vacuum state for bosonic oscillator can be
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written as,

|0(β) > =
1√
Z(β)

∑
n

e−nβω/2|n, ñ >

=
1√
Z(β)

∑
n

e−nβω/2
(a†)n(ã†)n

n!
|0, 0̃ >

=
√

(1− e−βω)exp(e−βω/2a†ã†)|0, 0̃ >, (2.37)

since, by the normalization, we have Z(β) = 1
1−e−βω .

In general, the normalized canonical density operator for a bosonic oscillator is

ρ = (1− e−βω)exp(−βωa†a), (2.38)

with β = 1
kT

. The expectation value of the “number operator” is

n̄ =< a†a >= Trρa†a =
e−βω

1− e−βω
=

f

1− f
, (2.39)

which is called the boson distribution function in thermal equilibrium. Here, f = e−βω

by inverting it, we have f = n̄
1+n̄

, and we get

ρ = (1− f)exp(−βωa†a). (2.40)

In TFD, the state |ρα > is given by

|ρα >= ρα|I > = (1− f)αexp(−βωαa†a)|I >

= (1− f)α
∑
n

e−βωnα|n, ñ >

= (1− f)α
∑
n

e−βωnα
(a†)n(ã†)n

n!
|0, 0̃ >

= (1− f)αexp(fαa†ã†)|0, 0̃ > (2.41)

which can be written as

|ρα >=
(1− f)α

(1− f 2α)1/2
exp(−iGB)|0, 0̃ >, (2.42)

with GB = −iθ(β)(aã− a†ã†) & tanh θ = e−βω = f. (2.43)
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Thus the unitary operator transforming “|0, 0̃ >” into “|0(β) >”, is given by “UB(β) =

e−iGB” which is called a Bogoliubov transformation.

The equivalent of 2.41 and 2.42 can be shown using the “disentangling theorem” for SU(1,1)

and its realization in terms of a, a†, ã and ã† is given as [[32, 33]]

K+ = a†ã†, K− = aã, & K3 =
1

2
(a†a+ ã†ã+ 1), (2.44)

satisfies “commutation relations of SU(1,1) algebra”,

[K−, K+] = 2K3; [K3, K±] = ±K± (2.45)

with “K0 = (a†a− ã†ã)” is the “Casimir operator”.

The disentangling theorem enables operators like exp(γ+K+ +γ3K3 +γ−K−) to be written

as products of exponentials as

“ exp(γ+K+ + γ3K3 + γ−K−) = exp(Γ+K+) exp(ln Γ3K3) exp(Γ−K−)” (2.46)

where,

Γ± =
2γ± sinhφ

2φ coshφ− γ3 sinhφ
& Γ3 =

(
2φ

2φ coshφ− γ3 sinhφ

)2

(2.47)

with

φ2 =
γ2

3

4
− γ+γ−, (2.48)

Only in the α = 1
2

representation are |0, 0̃ > and |ρ 1
2 > related by a unitary transforma-

tion(from eqns.2.37 & 2.42); for which,

|0(β) >= |ρ1/2 >= exp(−iGB)|0, 0̃ >, (2.49)

The Bogoliubov-Valatin(BV) transformation used for defining thermal counterparts of non-

thermal operators.

a(β) = exp[−iGB)]aexp[iGB] = (coshθ)a− (sinhθ)ã†. (2.50)

We can show that

a(β)|ρ1/2 >= 0, (2.51)
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where |ρ1/2 > is the “thermal vacuum” in the α = 1
2

representation. This is called the

“thermal-state condition”.

Thermal operators for Bosonic system

The “temperature dependent operators” are defined in terms of the zero temperature

annihilation (a, ã) and creation (a†, ã†) operators. as follows,

a(β) = u(β)a− v(β)ã†; a†(β) = u(β)a† − v(β)ã; (2.52a)

ã(β) = u(β)ã− v(β)a†; ã†(β) = u(β)ã† − v(β)a, (2.52b)

and they can be represented in matrix form as,[
a(β)
ã†(β)

]
= Ū(θ)

[
a
ã†

]
=

[
coshθ(β) −sinhθ(β)
−sinhθ(β) coshθ(β)

] [
a
ã†

]
(2.53)

.

2.3.2 For Fermionic oscillator

In similar way, we construct the density operator |ρ > for the fermionic oscillator[7, 8]

with the hamiltonian, H = ωa†a where, the annihilation and creation operators obey anti-

commutation relations {a, a†} = 1, and {a, a} = 0 = {a†, a†} = 0. Here this system has two

dimensional Hilbert space with the states given by |0 > and |1 >= a†|0 >.

Considering TFD, we define H̃ = ωã†ã; here, ã† and ã operators also follows the anti-

commutation relations. The product space of states for two systems, becomes four dimen-

sional with the basis states, {|0, 0̃ >, ã†|0, 0̃ > (= |0, 1̃ >), a†|0, 0̃ > (= |1, 0̃ >), a†ã†|0, 0̃ >
(= |1, 1̃ >)}.

Then the “thermal vacuum state” for fermionic oscillator can be written as,
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|0(β) >=
1√
Z(β)

∑
n

e−βEn/2|n, ñ > =
1√
Z(β)

(|0, 0̃ > +e−βε1/2|1, 1̃ >

=
1√
Z(β)

(1 + e(−βω/2)a†ã†)|0, 0̃ >

=
1√

(1 + e−βω)
(1 + e(−βω/2)a†ã†)|0, 0̃ >, (2.54)

since, by the normalization, we have “Z(β) = 1 + e−βω”.

In general, the normalized canonical density operator for a fermionic oscillator is

ρ = (1 + e−βω)−1

1∑
n=0

e−βωa
†a|n >< n| (2.55)

The “number operator” is

n̄ =< a†a >= Trρa†a =
1

1 + eβω
=

f

1 + f
, (2.56)

which is called the fermionic distribution function in thermal equilibrium. Here, f = e−βω

by inverting it, we have f = n̄
1−n̄ , and we get

ρ = (1 + f)−1exp(−βωa†a)|n, ñ > . (2.57)

In TFD, the general state |ρα > is given by

|ρα >= ρα|I > = (1 + f)−α
∑
n

e−βωnα
a†

n
ã†

n

n!
|0, 0̃ >

= (1 + f)αexp(fαa†ã†)|0, 0̃ > (2.58)

We can write above expression in the form

|ρα >=
(1 + f 2α)1/2

(1 + f)α
exp(−iGF )|0, 0̃ > (2.59)

with
GF = iθ(β)(a†ã† + aã) & tan θ = e−βω = f. (2.60)

In terms of fermionic operators we have the realization of SU(1,1) in terms of a, a†, ã and
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ã† is given as

K+ = a†ã†, K− = aã, & K3 =
1

2
(a†a+ ã†ã+ 1), (2.61)

satisfies “commutation relations of SU(1,1) algebra”,

[K−, K+] = 2K3; [K3, K±] = ±K± (2.62)

with “K0 = (a†a+ ã†ã)” as the “Casimir operator”.

The disentangling theorem enables operators like exp(γ+K+ +γ3K3 +γ−K−) to be written

as products of exponetials as

“ exp(γ+K+ + γ3K3 + γ−K−) = exp(Γ+K+) exp(ln Γ3K3) exp(Γ−K−)” (2.63)

where,

Γ± =
2γ± sinhφ

2φ coshφ− γ3 sinhφ
& Γ3 =

(
2φ

2φ coshφ− γ3 sinhφ

)2

(2.64)

with
φ2 =

γ2
3

4
− γ+γ−, (2.65)

Only in the α = 1
2

representation are |0, 0̃ > and |ρ 1
2 > related by a unitary transformation

(from eqns.2.54 & 2.59); for which,

|0(β) >= |ρ1/2 >= exp(−iGF )|0, 0̃ >, (2.66)

This is a Bogoliubov-Valatin(BV) transformation. Now

a(β) = exp[−iGF )]aexp[iGF ] = (cosθ)a− (sinθ)ã†. (2.67)

It can be easily verified that

a(β)|ρ1/2 >= 0, (2.68)

where |ρ1/2 > is the thermal vacuum in the α = 1
2

representation. This is the thermal-state

condition.
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Thermal operators for fermionic system

The “temperature dependent operators” are defined in terms of non-thermal operators

as follows, (by using the identity, A(θ) = U(θ)AU †(θ))

a(β) = u(β)a− v(β)ã†; a†(β) = u(β)a† − v(β)ã (2.69a)

ã(β) = u(β)ã+ v(β)a†; ã†(β) = u(β)ã† + v(β)a (2.69b)

The thermal operators can be represented in matrix form as,[
a(β)
ã†(β)

]
= Ū(θ)

[
a
ã†

]
=

[
cosθ(β) −sinθ(β)
sinθ(β) cosθ(β)

] [
a
ã†

]
(2.70)

.

2.4 Construction of various thermal states using TFD

Since we have seen earlier that temperature effects can be incorporated by doubling the

Hilbert space(|0 > ⊗|0̃ >). We can define special thermal states which will be useful for our

applications. A general thermal state can be defined as as,

|α, r, β >= S(r)D(α)|0(β) > (2.71)

where, S(r) = Exp[1
2
(ra2 − ra†2)], D(α) = Exp[αa† − αa] and |0(β) > given in eq.(2.11);

G(θ) = Exp[θ(aã − a†ã†)] are the squeezing, coherence and thermal operators respectively

which re defined for complex r, α and real θ as,[34]. Here (a, a†) and (ã, ã†) from commuting

sets of boson operators. The parameter θ related to temperature T through the expressions

f(β) = [exp(βω)− 1]−1; f 1/2(β) = sinh(θ) and β = ~ω/kBT .

2.4.1 Thermal coherent state

A “thermal coherent state” (TCS) defined as,

|TCS >= e−iG|CS >= eαa
†−α∗aeφã

†−φ∗ã|0, 0̃ >= D(α)|0(β) > (2.72)

The density operator for TCS can be defined as,
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|ρTCS >= |TCS >< TCS| = NρTCS |I > (2.73)

where, NρTCS = D†(α)e−βωa
†aD(α)

2.4.2 Thermal squeezed coherent state

A “thermal squeezed coherent state” (TSCS) defined as,

|TSCS >= e−iG|SCS > (2.74)

. In TFD, the density operator for this state written as,

|ρTSCS >= |TSCS >< TSCS| = NρTSCS |I > (2.75)

where, NρTSCS = D†(α)S†(r)e−βωa
†aS(r)D(α) and |I >=

∑
|n, ñ >.

In this chapter we have given a description of Thermofield dynamics, a finite temperature

formalism which allows statistical averages of thermal operators to be written and quantum

mechanical expectation values on a doubled Hilbert space. We have defined the thermal

vacuum and shown how to find thermal counterparts of fermionic and bosonic systems.

We have also introduced the thermal coherent state and the thermal squeezed state. This

formalism will be applied to solve the master equation of a variety of many bodies in physics

in the later chapters.



Chapter 3

Quantum entanglement and its

measures

Quantum entanglement(QE) occurs when a group of interacting quantum particles are pro-

duced such that the quantum state of each particle of the group is not independent of the

other states, even for large spatial separation. Quantum entanglement is a purely quantum

feature associated with composite quantum system and used extensively as a powerful com-

putational resource. There exist different criterion to quantify entanglement. To study the

entanglement properties, we use the density matrix formalism. In this chapter we define

the various measures of quantum entanglement for a bipartite system: entropy, logarithmic

negativity and decoherence. The influence of the environment can cause open systems to

lose their key quantum features like decoherence and entanglement. Since in this thesis we

are using thermo-field dynamics to study systems interacting with thermal baths and with

noise, we must give a description of the master equation. In standard quantum treatments,

the dynamics of the reduced quantum states is given by a master equation(ME) after tracing

out the environmental degrees of freedom. This will be explained in detail in this chapter.

3.1 Density matrix formalism- Master Equation

For an interacting quantum system, the density matrix formalism is used to study its in-

teraction with the environment. The evolution of density matrix is given by its associated

master equation. The density operator ρ(t) evolves according to a (first-order) differential

20
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equation in time t, then that means the ρ(t+ dt) is completely determined by ρ(t). This can

fail in an open system because dissipation leads to information loss to the reservoir, which

can flow back causing non-Markovian fluctuations of the system.

In quantum mechanics, in general, we define a density operator of a quantum system with

the complete set of orthonormal states |ψi > in a Hilbert space H as

ρ =
∑
i

pi|ψi >< ψi|. (3.1)

The statistical distribution of these states is governed by the probability, pi: 0 ≤ pi ≤ 1.

< ψi|ρ|ψi >= pi and
∑

i < ψi|ρ|ψi >=
∑

i pi = 1.

The density operator in the number basis is

ρ =
∑
i

pi|ψi >< ψi| =
∑
i

pi
∑
nm

cnic
∗
mi|n >< m|. (3.2)

The matrix elements of ρ in this representation are < n|ρ|m >=
∑

i picnic
∗
mi with the

diagonal matrix elements, < n|ρ|n >=
∑

i pi|cni|2 and the density matrix is the Hermitian.

For two level systems described by a single wavefunction, the density matrix is given by

ρ =
∑
nm

cnic
∗
mi|n >< m|, (3.3)

here, < n|ρ|m >= cnic
∗
mi and < n|ρ|n >= |cni|2.

The trace of the density matrix is equal to unity, because

Tr(ρ) =
∑

ni pi < ψi|n >< n|ψi >=
∑

i pi < ψi|ψi >= 1; and is independent of the basis

used for the representation.

The equation of motion of the density matrix follows normally from the definition of ρ and

the time-dependent Schrödinger equation. Using

∂

∂t
|ψ(t) >= − i

~
H|ψ(t) >;

∂

∂t
< ψ(t)| = i

~
< ψ(t)|H. (3.4)

∂ρ(t)

∂t
=

∂

∂t
[|ψ >< ψ|] = [

∂

∂t
|ψ(t) >] < ψ(t)|+ |ψ(t) > [

∂

∂t
< ψ(t)|]

= − i
~
H|ψ(t) >< ψ(t)|+ i

~
|ψ(t) >< ψ(t)|H
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= − i
~

[H, ρ(t)], (3.5)

here, H is the “Hamiltonian of system-environment interaction”. The above equation is

called the ’Liouville von-Neumann equation’.

The Lindblad or quantum Liouvillian equation [35] is a general Markovian master equation

which describes the non-unitary evolution of the density operator, ρ and is given by

∂ρ(t)

∂t
= − i

~
[H, ρ(t)] + γ

∑
j

[LjρL
†
j −

1

2
{L†jLj, ρ}]. (3.6)

here, Lj are the Lindbladian operators. The first term on the RHS is the Liouville von

Neumann equation. The second term is the Lindbladian and is non-unitary and it is used

for dissipation and decoherence to the quantum measurement process.

In subsequent chapters we will construct the density matrix for some open quantum sys-

tems, we use it to quantify their entanglement properties.

3.2 Quantum entanglement measures in bipartite sys-

tem

We present tools to quantify quantum entanglement. We define the pure and mixed states

as:

Pure states

For a quantum system the density operator is said to be in a pure state if ρ = |ψi >< ψi|,
which is obtained by fixing pi = 1 in eq.3.1. For a pure state one has

Tr(ρ2) = Tr(ρ) = 1. (3.7)
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Mixed states

The density operator of a mixed state is,

ρ =
∑
i

pi|ψi >< ψi|, (3.8)

with pi ≥ 0 and
∑

i pi = 1. In this case, Tr(ρ) = 1 still holds but, Tr(ρ2) < 1. In general,

for bipartite system the density operator of a mixed state can be written as

ρ =
∑
i

pi|ψA >< ψA| ⊗ |ψB >< ψB| =
∑
i

piρA ⊗ ρB (3.9)

.

Let us take A, B are two quantum systems in Hilbert spaces HA, HB respectively. Then

the composite quantum system of A and B in Hilbert space HA ⊗ HB. Suppose |e > is a

basis in HA and |f > is a basis in HB, then |ei > ⊗|fj > be the basis in HA ⊗HB.

A general state |ψ > in HA ⊗HB can be written in the Schmidt form as

|ψij >=
∑
i,j

pij|ei > ⊗|fj >, (3.10)

here, the number of non-zero elements in pij’s is called the ’Schmidt rank’. If the Schmidt

rank is equal to 1, |ψ > is a separable or product state and if it is greater than 1, |ψ > is a

non-separable or entangled state.

Another way of checking, whether the state |ψ > in HA ⊗ HB is entangled through the

reduced density matrix. Given the density matrix,

ρ = |ψ >< ψ|, (3.11)

and tracing over the subsystem B

ρA = TrB(ρ) (3.12)

gives the “reduced density matrix” of ρ on subsystem A. If ρA is such that ρ2
A = ρA, then

the state |ψ > is a “separable state”, otherwise |ψ > is an “entangled state”.
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3.2.1 Entropy of entanglement

Entanglement for a pure state bipartite system is defined as[36] “the von-Neumann entropy

of the reduced density matrix traced with respect to one of the systems” (either of its two

parts when considered separately). Thus, the entanglement of a state with density operator

ρ is
S(ρ) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB) = −

N∑
i=0

λi log λi, (3.13)

here, S(ρ) is called ’the entropy of entanglement’ or ’the von-Neumann entropy of the system

with density operator ρ; ρA = TrB(ρ) and ρB = TrA(ρ) are the reduced density operators

for A and B systems respectively defined in eq.3.12 and the {λi} are the eigenvalues of

the reduced density operator. S(ρ) varies from ’0’ to ’1’ ( ’0’ for product states & ’1’ for

maximally entangled states). For the rest of the thesis we will call S(ρ), simply S.

While for closed systems, in accordance with the second law of thermodynamics, entropy

is always positive, for a damped system in interaction with, say, a heat bath system, we

can see the negative entropy of entanglement when the damping effect is increasing. The

significance of negative entropy in a many-body quantum system is that it describes classi-

cal correlations from quantum entanglement. Beacause quantum systems are non-seperable

quantum entropies can be negative is called von-Neumann entropy. This is because of vir-

tual information carry by entangle particles.[37]. Therefore quantum mechanical extension

of classical information theory can take into an account entanglement by negative condi-

tional entropies. This provides an insite into the information flow problem in quantum

communication processes.

3.2.2 Logarithmic negativity

Another useful entanglement measure is the “logarithmic negativity”[38]. For a bipartite

system with density matrix, ρ the log-negativity is,

EN(T ) = log2 ‖ρT‖, here, ‖ρT‖ = (2N(ρ) + 1) (3.14)

where “ρT is the partial transpose of ρ”, the symbol ‖‖ denotes the trace norm and “N(ρ)

is the absolute value of the sum of all the negative eigenvalues of ρT”. Entanglement is

implied by a non-zero value of EN .
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Logarithmic negativity using Covariance matrix(CM) method:

For a bipartite system with a local thermal environment which can be described by the Lind-

blad master equation (in eq.3.6) for the density operator |ρ(t) > in the Schrödinger represen-

tation and with the initial state, |ρ(0) > and the Hamiltonian of this open system in phase

space is H(x, y, px, py). In phase space one can define the “Covariance matrix”(CM)

[39, 40](which is a real, symmetric and positive 4x4 matrix) as

σ =


σxx(t) σxpx(t) σxy(t) σxpy(t)
σxpx(t) σpxpx(t) σypx(t) σpxpy(t)
σxy(t) σypx(t) σyy(t) σypy(t)
σxpy(t) σpxpy(t) σypy(t) σpypy(t)

 (3.15)

here the matrix elements are defined as:

σij = Tr[(ξiξj + ξjξi)ρ]− Tr(ξiρ)Tr(ξjρ), (3.16)

where ξ = (x, px, y, py).

The matrix σ is a bonafide “covariance matrix” iff it satisfies the uncertainty relation[41]

det(σ +
i

2
Ω) ≥ 0; here, Ω =

2⊕
i=1

J ; with J =

(
0 1
−1 0

)
(3.17)

The evolution of the initial two-mode 4x4 CM σ(0) of the system(in general Gaussian

channel) is

σ(t) = (X1(t)⊕X2(t))σ(0)(X1(t)⊕X2(t))T + (Y1(t)⊕ Y2(t)), (3.18)

where, X1,2(t) and Y1,2(t) are the system-environment interaction functions. The CM has a

block form

σ(t) =

(
A C
CT B

)
=


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

 (3.19)

where, the symmetric covariance matrices corresponding to reduced one-mode states are

A and B and C is the cross-correlation matrix.

Then the CM satisfies the separability condition (”Simon’s criterion”)[41] for any two
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mode state is

Det(A)Det(B) + (
1

4
− |Det(C)|)2 − tr(AJCJBJCTJ) ≥ 1

4
(Det(A) +Det(B)) (3.20)

If the condition is satisfied, the state |ρ(t) > is entangled.

For the two mode Gaussian state the amallest symplectic eigenvalues of the partial trans-

posed CM are , v± =
√
ab± c Then the log-negativity is,

EN(t) = max[0,− ln 2v<(t)]; (3.21)

here, v<(t) = min[v+, v−] smallest symplectic eigenvalue.

For EN > 0, the state is entangled, otherwise seperable. This form of logarithmic-

negativity (using covariance matrix method) will use for complex systems, we will use this

method in the next chapter.

3.2.3 Decoherence

Entanglement of pure states is easy to quantify, however, for mixed states, quantum cor-

relations are weakened, hence entanglement is hard to quantify for the composite quantum

system. So, we need to define a new entanglement measure for mixed states. Here is a

entanglement measure to quantify the mixed state entanglement, which is mainly because

of the inevitable interactions of the system with the environment is called ’decoherence’.

For a single environmental degree of freedom ρ(t) is the density operator that describes the

quantum state of the system on the Hilbert space H, for which decoherence is defined as

D(ρ) = Tr(ρ2). (3.22)

For open systems the study of decoherence, describes the effects of environment on entan-

glement evolution[42]. It help us to study frictional and thermalization effects. Likewise, the

predictions of decoherence theory in a number of experiments observed the gradual emergence

of classical properties in a quantum system. The loss of coherence is due to environmental

interaction, and is jointly due to both the environmental state and the interaction. The

quantum behaviour loss due to the interaction with environmental degree of freedom that

cause decoherence.



Chapter 4

Application of TFD to Coupled

waveguides system in Quantum optics

Coupled waveguides have become useful tool for studying entanglement[43, 44]. Recently

coherent phenomenon have been analysed by specially designed photonic waveguides[44].

These have shown promise of application to quantum computation and quantum metrology.

In particular, superposition states of N-photons known as NOON-states have been generated

directly on chip by Politi et. al.[45] and been shown to exhibit quantum interference. NOON

states are special because they represent two orthogonal states in maximum superposition

making them candidates for use in quantum information processing[46]. For using waveg-

uides to generate entanglement we must take care of decoherence effects as they can destroy

entanglement and decrease the efficiency[47]. Rai et. al.[48] have shown that entanglement

between waveguide modes can be affected by losses by using the “quantum Liouville equa-

tion”. Here, we use thermo-field dynamics to calculate the effects of noise and decoherence

in the coupled two mode waveguide system. By using different types of input states, we

show the efficiency of the states for quantum information theory.

4.1 Coupled waveguides system

Coupled waveguides are used as a transmission medium in quantum communication. To

transfer power between two waveguides and to study their entanglement properties the model

of Rai and Agarwal[48] is used.

27



Ch-4: Application of TFD to Coupled waveguides system in Quantum optics 28

Figure 4.1: A two coupled
waveguide system

The Hamiltonian described by,

H = ~ω(a†a+ b†b) + ~J(a†b+ b†a) (4.1)

where modes a and b corresponds to the first and second

waveguides respectively as shown in Figure(4.1), these modes

obey bosonic commutation relations. The evanescent cou-

pling in terms of distance between the two waveguides is given

by ’J ’. The density operator has a time evolution given by

∂

∂t
ρ = − i

~
[H, ρ] (4.2)

The Liouville equation in the presence of damping is given by

∂

∂t
ρ = − i

~
[H, ρ] + Lρ, (4.3)

where,
Lρ = −γ(a†aρ− aρa† + a†ρa+ ρa†a+ b†bρ− bρb† + b†ρb+ ρb†b) (4.4)

where γ is dissipation in the material of the waveguide.

In absence of loss, the Heisenberg equations for the field operators give their evolution as,

a(t) = a(0) cos(Jt) + ib(0) sin(Jt); (a← b)

We solve the master equations(4.2, 4.3) exactly using TFD. This allows us to study the

response to the coupling of different input states such as number, NOON and thermal states,

in the coupled waveguide system. We show that in the absence of damping, an input vacuum

state evolves into a two mode SU(2) coherent state. In the presence of damping, the vacuum

state evolves into a two mode squeezed state and a thermal state into a thermal squeezed

state.

4.2 Two coupled waveguides without damping(γ = 0)

Without damping, the master equation is determined by,

ρ̇ = −iω(a†aρ+ b†bρ− ρa†a− ρb†b)− iJ(a†bρ+ b†aρ− ρa†b− ρb†a) (4.5)
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Applying the TFD-formalism to the master equation, we get the Schrodinger type wave

equation |ρ̇ >= −iĤ|ρ > (4.6)

here, the Hamiltonian Ĥ is given by

Ĥ = ω(a†a+ b†b− ã†ã− b̃†b̃) + J(a†b+ b†a− ã†b̃− b̃†ã) (4.7)

which can be written as non-tilden and tilden parts: Ĥ = H − H̃,

where,
H = ω(a†a+ b†b) + J(a†b+ b†a) (4.8)

H̃ = ω(ã†ã+ b̃†b̃) + J(ã†b̃+ b̃†ã) (4.9)

Then the solution of eq.(4.6) is given by

|ρ(t) >= exp[−iHt]⊗ exp[−iH̃t])|ρ(0) > (4.10)

where, |ρ(0) > is an initial state in H⊗H̃. The two Hamiltonians H and H̃ are independent.

Therefore, we work with one of the Hamiltonians which describes physical states by tracing

over the tilde states.

The underlying symmetries associated with the Hamiltonians(eqns(5.41, 5.42)) are used

to solve for the density matrix.

To see this symmetry explicitly we define the following operators.

L+ = a†b, L− = b†a & L3 =
1

2
(a†a− b†b) (4.11)

which satisfy the SU(2) algebra,

[L3, L±] = ±L± & [L+, L−] = 2L3 (4.12)

with number operator, N = a†a+ b†b.

The Hamiltonian from eq(5.41) in terms of the SU(2) generators is,

H = ωN + J(L+ + L−) (4.13)

Hence, the underlying symmetry of the Schrodinger like eq(4.6) is SU(2) ⊗ SU(2) and

|ρ(t) > is given by
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|ρ(t) >= eα(t)L+−α∗(t)L− |ρ(0) >; here, α(t) = iJt, . (4.14)

Using the disentanglement formula[49, 50], and taking the initial state |ρ(0) > as the

vacuum state, the solution(5.47) reduces to,

|ρ(t) >= eξL+elog(1+|ξ|2)L3e−ξ
∗L−|ρ(0) > (4.15)

here, ξ = ξ(α(t)) = α(t) tan(|α(t)|)
|α(t)|

The density matrix in the number state basis (for na 6= nb) is given by

|ρ(t) > =
N∑

na,nb=0

Cna,naC
∗
nb,nb
|na, N − na >< nb, N − nb|

where,

Cna,na =
ξna

(1 + |ξ|2)N/2

(
N
na

) 1
2

; Cnb,nb =
ξnb

(1 + |ξ|2)N/2

(
N
nb

) 1
2

; &N = na + nb. (4.16)

The entanglement properties are calculated by taking the partial transpose of ρ and cal-

culating the eigenvalues of the resulting matrix(ρPT ) [51] is,

|ρ(t)PT >=
N∑

na,nb=0

Cna,naC
∗
nb,nb
|na, N − nb >< nb, N − na| (4.17)

Let us start with the following set of two Hermitian conjugate terms for na 6= nb in above

equation :

Cna,naC
∗
nb,nb
|na, N − nb >< nb, N − na|+ Cnb,nbC

∗
na,na|nb, N − na >< na, N − nb|. (4.18)

The eigenvalues are

λna,na =
N !

(N − na)!na!
sin2na(Jt) cos2N−2na(Jt); (for, na = nb) (4.19)

λna,nb = ± N !√
(N − na)!(N − nb)!na!nb!

sinna+nb(Jt) cos2N−na−nb(Jt); (for, na 6= nb). (4.20)



Ch-4: Application of TFD to Coupled waveguides system in Quantum optics 31

4.2.1 Entanglement properties of the system

For a bipartite system, the entropy as defined in the eq.(3.13) (for the general number state,

with the eigenvalues eqns(4.19, 4.20)) is given by

S = −
N∑
i=0

λi log λi = −
N∑
n=0

[
N !

(N − n)!n!
sin2n(Jt) cos2N−2n(Jt)]

× {log[
N !

(N − n)!n!
] + (2n) log[sin(Jt)] + (2N − 2n) log[cos(Jt)]} (4.21)

We can also quantify the entanglement of the system by studying the logarithmic negativity[38],

Recall from chapter 3 that the log negativity is

EN(T ) = log2 ‖ρT‖, here, ‖ρT‖ = (2N(ρ) + 1) (4.22)

where ρT is the partial transpose of ρ and the symbol ‖‖ denotes the trace norm. Also N(ρ)

is the absolute value of the sum of all the negative eigenvalues of the partial transpose of ρ.

The log negativity is a non-negative quantity and a non-zero value of EN would mean that

the state is entangled. Now we consider various cases of optical input states,

Case-1: For two photon system as an input(i.e., N = 2):

The entropy of entanglement of the two photon input state is

S = −4 cos4(Jt) log[cos(Jt)]− 2 sin2(Jt) cos2(Jt) log[2 sin2(Jt) cos2(Jt)]

− 4 sin4(Jt) log[sin(Jt)] (4.23)

from the dot dashed curve of figure(6.1(d)) we see that, if we begain with separable input

state at time t = 0, the entanglement entropy increases to the maximum value of 1.5 at

Jt = 0.785212 and then decreases to become zero at Jt = 1.57061. This shows a periodic

behaviour due to the coupling J which makes a system gets entangled and disentangled

periodically.

The logarithmic negativity is now considered as this is different for various two photon

states, unlike the entropy.

Case-1(a.) If we take the input state as |ψin >= |1, 1 >, the possible output state will

be |ψout >= α1|0, 2 > +α2|1, 1 > +α3|2, 0 >;

where, α1 = −i sin(2Jt)/
√

2, α2 = cos(2Jt), α3 = −i sin(2Jt)/
√

2. Then we can write the

log-negativity entanglement of this state is
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EN = log2[1 + 2(−i
√

2 sin(2Jt) cos(2Jt)− sin2(2Jt)/2)] (4.24)

from the thick curve of figure(6.1(a)) we see that, if we begain with separable input state

at time t = 0, the log negativity is zero. EN increases to a maximum value of 1.32875 for

Jt = 0.42879, this is the maximally entangled state. Two-photon interference effects, such

as the “Hong-Ou-Mandel” effect, can be used to characterize to what extent two photons

are identical. In this case for Jt = 0.785212 we get the dips at EN = 1 (If the identical input

photons overlap perfectly in time, then the coincidence rate of the output modes of the beam

splitter will drop to zero), due to Hong-Ou-Mandel interference[52] and for Jt = 1.57061, EN

vanishes. After, we see a periodic behavior, attributed to the inter-waveguide coupling(J).

Case-1(b.) Now we take |ψin >= |2, 0 >, the possible output state will be

|ψout >= β1|0, 2 > +β2|1, 1 > +β3|2, 0 >; here, β1 = − sin2(Jt), β2 = −i sin(2Jt)/
√

2, β3 =

cos2(Jt). The log-negativity of this state is,

EN = log2[1 + 2(−i
√

2 sin(Jt) cos3(Jt) + i
√

2 sin3(Jt) cos(Jt)− sin2(Jt) cos2(Jt))] (4.25)

from the dotted curve of figure(6.1(a)) we see that, EN increases with time and attains a

maximum value of 1.32193 at Jt = 0.785212, then decreases and eventually becomes equal

to zero at Jt = 1.57061. Thus the state becomes disentangled at this point of time. After we

see periodic behavior and the system gets entangled and disentangled periodically. Unlike

the earlier case (1(a)), here, we do not see any interference effects. Clearly the entanglement

dynamics of the states |1, 1 > and |2, 0 > are different. The first has “Hong-Ou-Mandel

effect” and the second does not, this means that the probability of detecting two photons

in the same cavity differs from having them detected in two separate cavities , and the log

negativity can be the two different two photon cases.

NOON states: A NOON state is a non-classical state of many-body system, which is a

superposition of of N particles in one mode, with no particles in another mode, and vice

versa and can be written as

|NOON >a,b=
1√
2

(|N >a |0 >b +|0 >a |N >b) (4.26)

NOON states are special because they can be used to obtain high-precision phase measure-

ments, more efficient as the number of photons grows. NOON states are mostly produced

optically, thus we consider the effect of the coupled cavities on input NOON states of various

photon numbers.
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Case-1(c.) For two photon input NOON state: |ψin >= (|2, 0 > +|0, 2 >)/
√

2,

the output state will be, |ψout >= a1|0, 2 > +a2|1, 1 > +a3|2, 0 >;

where, a1 = cos(2Jt)/
√

2, a2 = −i sin(2Jt), a3 = cos(2Jt)/
√

2.

Then the logarithmic negativity of this state is

EN = log2[1 + i
√

2 sin(4Jt) + cos2(2Jt)], (4.27)

from thick curve of figure(6.1(c)) we see that, for a |2002 > state as input there are periodic

dips due to the Hong-Ou-Mandel interference, which is characteristic of NOON states, and

the photons are identical. EN increases with time and attains a maximum value of 1.32875

for Jt = 0.356988, which is a point of maximal entanglement. Further, at Jt = 0.785212, EN

vanishes. After, we see a periodic behavior, attributed to the inter-waveguide coupling(J).

Increase the number of photons in the NOON state does not make the entanglement vanish.

Thus for applications to quantum computing NOON states are highly beneficial as their

entanglement survives over long periods.

Case-2: For four photon system as an input (i.e., N = 4), the entanglement

entropy(S) from the dotted curve of the figure(6.1(d)), we see that, if we begin with a

separable input state at t = 0, the S is zero. After which the value of ’S’ increases and

attains a maximum value of 2.03064 at Jt = 0.785212, it then decreases and eventually

becomes equal to zero at Jt = 1.57061. Thus the state becomes disentangled at this point of

time. At later times we see periodic behavior, so the system gets entangled and disentangled

periodically.

Now we can deduce the logarithmic negativity for each of the four photon states

{ψin} = {|2, 2 >, |3, 1 >, |1, 3 >, |4, 0 >, |0, 4 >, and (|4, 0 > +|0, 4 >)/
√

2 (N00N state)}

Case-2(a.) For the input state, |ψin >= |2, 2 >, the log-negativity(EN) shown in the

thick curve of figure(6.1(b)). Because of the involvement of four photons, we can see the

double the interference effect of the two photon system.

Case-2(b.) For the input state, |ψin >= |3, 1 >, the log-negativity is shown in the dotted

curve of figure(6.1(b)). Here, we can see the small difference in interference pattern with

the |2, 2 > state. The “Hong-Ou-Mandel effect” and the maximally entangled state occur at

lower values.

Case-2(c.) Now we take |ψin >= |4, 0 >, the log-negativity is shown in the thin curve of

figure(6.1(b)).
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Figure 4.2: Shows the time evolution of entanglement of logarithmic negativity[EN(t)] and
time evolution of entropy entanglement[S(t)]: for various input photon number states with
J = 0.5.
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Case-2(d.) For four photon input NOON states, the log-negativity is shown in the dot

dashed curve of the figure(6.1(c)). In this case, unlike for the two photon NOON state, the

entanglement never goes to zero. This means that increasing the number of photons in a

NOON state gives a more robust entanglement which is sustained at large times.

To show this we calculate the entanglement entropy(S) and logarithmic negativity(EN)

for a three photon and a five photon NOON states. The S shown in fig.(6.1(d)), the thin

curve for three photon and thick curve for five photon states and EN shown in fig.(6.1(c)),

the dotted curve for three photon and thin curve for five photon states.

We see that as the photon number increases the NOON state gets more and more ro-

bust and shows that “high-NOON states” can be used for more precision measurements.

These results are relevant in light of the recent experimental detection of entangled 5-photon

“NOON states”[53].

4.2.2 Entanglement for input thermal states

Now we consider the initial state |ρ(0) > to be the two mode thermal state. This introduces

a thermal bath in the system with which the photons interact. Then, in the TFD formalism,

one can define the time evolved state ρ(t) as

|ρ(t) > = e−iG(θ)e−iHt ⊗ e−iH̃t|ρ(0) >

=
N∑

na=0

n̄naa
(n̄a + 1)na+1

N∑
nb=0

n̄nbb
(n̄b + 1)nb+1

e−iHt|na, nb >< na, nb|eiHt (4.28)

=
N∑

na=0

Cna,na
n̄naa

(n̄a + 1)na+1

N∑
nb=0

Cnb,nb
n̄nbb

(n̄b + 1)nb+1
|na, N − na >< nb, N − nb| (4.29)

where, G(θ) = −iθ(ãa− ã†a†+ b̃b− b̃†b†), and n̄a and n̄b are thermal distribution functions

. Cna,na = ξna

(1+|ξ|2)N/2

(
N
na

) 1
2

; Cnb,nb = ξnb

(1+|ξ|2)N/2

(
N
nb

) 1
2

; & N = na + nb.

The entanglement properties are calculated by taking the partial transpose of ρ and finding

its eigenvalues

λna,na =
(n̄a)

2na

(n̄a + 1)2(na+1)
{ N !

(N − na)!na!
sin2na(Jt) cos2N−2na(Jt)}; (for, na = nb) (4.30)
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Figure 4.3: Shows the time evolution of entropy of entanglement[S(t)] in thermal distribution
function(n̄): for input 2-, 4-photon systems.
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λna,nb = ±[
n̄naa

(n̄a + 1)na+1

n̄nbb
(n̄b + 1)nb+1

{ N !√
(N − na)!(N − nb)!na!nb!

sinna+nb(Jt) cos2N−na−nb(Jt)}]; (na 6= nb)

(4.31)

The von Neumann entropy of the reduced density matrix in terms of {λi} the eigenvalues of the

reduced density operator (as eq.3.13 is:

S = −
N∑
i=0

λi log λi = −
N∑
i=0

λi log λi = −
N∑

na=0

(n̄a)
2na

(n̄a + 1)2(na+1)
[

N !

(N − na)!na!
sin2na(Jt) cos2N−2na(Jt)]

× {log[
(n̄a)

2na

(n̄a + 1)2(na+1)
[

N !

(N − na)!na!
sin2na(Jt) cos2N−2na(Jt)]]} (4.32)

Case-3(a.) For two photon input state (i.e., N = 2), the entanglement entropy is

S =− 1

(n̄+ 1)2
cos4(Jt) log[

1

(n̄+ 1)2
cos4(Jt)]− 2n̄2

(n̄+ 1)4
sin2(Jt) cos2(Jt) log[

2n̄2

(n̄+ 1)4
sin2(Jt) cos2(Jt)]

− 1

(n̄+ 1)2
sin4(Jt) log[

1

(n̄+ 1)2
sin4(Jt)] (4.33)

which is shown in figures(4.3(a,b,c)).

Case-3(b.) For four photon system as an input (i.e., N = 4): For the four photon

system the entropy of entanglement see in the figures(4.3(d,e,f)). We see that the system sustains

entanglement for the lower values of n̄a & n̄b, but as the system gets more thermalized, it decoheres

and the entanglement entopy tends to zero.

For thermal states, its seen that decoherence is introduced by a thermal bath and eventually the

entanglement vanishes. Therefore in the practical use of cavity coupled entangled states this effect

has to be factored in. This understanding of thermal effects can help us making the system more

effecient.

4.3 Two coupled waveguides with damping (γ 6= 0)

For coupled waveguides losses, due to “system-reservoir interaction” are quantified by ’γ’, which is

“the rate of loss due to the material of the waveguide”. To calculate the decoherence we solve the

master equation
|ρ̇ >= −iĤ ′|ρ > (4.34)

with,
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Ĥ ′ =ω(a†a+ b†b− ã†ã− b̃†b̃) + J(a†b+ b†a− ã†b̃− b̃†ã)

− iγ(a†a− aã+ a†ã† + ã†ã+ b†b− bb̃+ b†b̃† + b̃†b̃) (4.35)

the following transformations,

a =
A+B√

2
, a† =

A† +B†√
2

, ã =
Ã+ B̃√

2
, ã† =

Ã† + B̃†√
2

(4.36)

b =
−A+B√

2
, b† =

−A† +B†√
2

, b̃ =
−Ã+ B̃√

2
, b̃† =

−Ã† + B̃†√
2

, (4.37)

gives

Ĥ ′′ =ω(A†A+B†B − Ã†Ã− B̃†B̃) + J(−A†A+B†B + Ã†Ã− B̃†B̃)

− iγ(A†A+B†B + Ã†Ã+ B̃†B̃ −AÃ−BB̃ +A†Ã† +B†B̃†) (4.38)

This Hamiltonian is diagonalized by using the squeezing (Bogolubov) transformation which mixes

the tilde and tilde fields.

D = µ1A+ ν∗1Ã
†, D† = µ∗1A

† + ν1Ã, D̃ = µ1Ã+ ν∗1A
† & D̃† = µ∗1Ã

† + ν1A (4.39)

E = µ2B + ν∗2B̃
†, E† = µ∗2B

† + ν2B̃, Ẽ = µ2B̃ + ν∗2B
† & Ẽ† = µ∗2B̃

† + ν2B, (4.40)

where,

µ1 = coshr1 =

√
|(ω − J − iγ|2

| − iγ −
√
γ2 + (ω − J)2|2

, ν1 = sinhr1 =

√
−|iγ|2

| − iγ +
√
γ2 + (ω − J)2|2

(4.41)

µ2 = coshr2 =

√
|(ω + J − iγ|2

| − iγ −
√
γ2 + (ω + J)2|2

, ν2 = sinhr2 =

√
−|iγ|2

| − iγ +
√
γ2 + (ω + J)2|2

(4.42)

and r1 and r2 are the squeezing parameters and |µ1|2 − |ν1|2 = 1 and |µ2|2 − |ν2|2 = 1.

The final Hamiltonian is

Ĥf = S−1(r1)HAS(r1) + S−1(r2)HBS(r2)

= Ω2
1(D†D) + Ω2

2(D̃†D̃) + Ω2
3((E†E) + Ω2

4(Ẽ†Ẽ). (4.43)
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where,
S(r1) = exp[r1KA+ − r∗1KA− ] = Exp[r1A

†Ã† − r∗1AÃ]; (4.44)

S(r2) = exp[r2KB+ − r∗2KB− ] = Exp[r2B
†B̃† − r∗2BB̃]; (4.45)

and Ω1 = −
√
γ2+(ω−J)2

2 − iγ
2 , Ω2 =

√
γ2+(ω−J)2

2 − iγ
2 , Ω3 = −

√
γ2+(ω+J)2

2 − iγ
2 , Ω4 =

√
γ2+(ω+J)2

2 −
iγ
2 ; The generators of the SU(1,1) algebra in terms of the modes A and B are given by

KA− = AÃ, KA+ = A†Ã†, KA3 =
A†A+ Ã†Ã+ 1

2
(4.46)

KB− = BB̃, KB+ = B†B̃†, KB3 =
B†B + B̃†B̃ + 1

2
, (4.47)

and satisfy the commutation relations

[KA−,KA+] = 2KA3, [KA3,KA±] = ±KA±; [KB−,KB+] = 2KB3, [KB3,KB±] = ±KB±.

(4.48)

The “Casimir operators” are “KAo = (A†A− Ã†Ã)”, “KBo = (B†B − B̃†B̃)”. Then the solution

of eq.(4.34) becomes

|ρ(t) >= K(t)e[ηA3KA3+ηA−KA−+ηA+KA++ηB3KB3+ηB−KB−+ηB+KB+]|ρ(0) > (4.49)

where,

K(t) = e−iωt(KA0+KB0)+2iJt(NA+ÑB−1), ηA− = γt = ηB−,

ηA3 = −2(γ + iJ)t = ηB3, ηA+ = −γt = ηB+. (4.50)

By using the SU(1, 1) “disentanglement formula”[49], one can write eq.(4.49) as,

|ρ(t) >={K(t)exp[ΓA+KA+]exp[ln(ΓA3)KA3]exp[ΓA−KA−]

⊗ e[ΓB+KB+]exp[ln(ΓB3KB3)]exp[ΓB−KB−]}|ρ(0) > (4.51)

here,

Γi± =
2ηi± sinhφi

2φi coshφi − ηi3 sinhφi
& Γi3 =

(
2φi

2φi coshφi − ηi3 sinhφi

)2

(4.52)

with

φ2
i =

η2
i3

4
− ηi+ηi−, (4.53)
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subscript i labels A, B.

Now we consider an initial state |ρ(0) >=
∑N

m,n ρm,n(0)|m, m̃, n, ñ >, in TFD notation. This

gives us an exact solution of the density matrix :

ρm,n(t) =C(t)

min(m′,n′)∑
q′=0

∞∑
p′=0

[

 m′ + p′ − q′

p′

 n′ + p′ − q′

p′

 m′

q′

 n′

q′

]
1
2

×
min(m,n)∑

q=0

∞∑
p=0

[

 m+ p− q

p

 n+ p− q

p

 m

q

 n

q

]
1
2

× [ΓA+]p
′
[ΓA3]

(m′+n′−2q′+1)
2 [ΓA−]q

′
[ΓB+]p[ΓB3]

(m+n−2q+1)
2 [ΓB−]q

× ρm+p−q,m′+p′−q′,n+p−q,n′+p′−q′(0) (4.54)

where C(t)is an overall phase factor due to K(t) = e−iωt(KA0+KB0)+2iJt(NA+ÑB−1).

4.3.1 Entanglement properties of the system with damping

Taking a trace of ρ(t) over the tilde space and the “partial transpose of ρ”, we calculate the

eigenvalues of the resulting matrix to enable as to calculate the entropy of entanglement.

λma,ma =
N !

(N −ma)!ma!
sinh2ma(θ) cosh2N−2ma(θ); (for,ma = mb) and θ =

(√
2γ + iJ

)
t.

(4.55)

λma,mb = ± N !√
(N −ma)!(N −mb)!ma!mb!

sinhma+mb(θ) cosh2N−ma−mb(θ); (for,ma 6= mb) (4.56)

The entropy of entanglement of the the system is

S = −
N∑
i=0

λi log λi = −
N∑

ma=0

[
N !

(N −ma)!ma!
sinh2ma(θ) cosh2N−2ma(θ)]

× {log[
N !

(N −ma)!ma!
] + 2ma log[sinh θ] + (2N − 2ma) log[cosh θ]} (4.57)

Thus, the entropy of entanglement of the system for two photon input state is

S = −4 cosh4(θ) log[cosh(θ)]− 2 sinh2(θ) cosh2(θ) log[2 cosh2(θ) sinh2(θ)]− 4 sinh4(θ) log[sinh(θ)]

(4.58)

from thin curves of figure(4.4) we see.

For four photon states the entropy of entanglement is shown in thick curves of figure(4.4). In
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Figure 4.4: The time evolution of entropy(S) for 2-photons(thick curve) and 4-photons(thin
curve) with J = 0.5.
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the limit γ goes to zero, the undamped case in figure(6.1(d)) is obtain. Increasing the damping

effect by adjusting the value of γ = 0.01, 0.03&0.05, there is more damping for four photon system

than the two photon system. This means that increase of input photons, increases the decoherence

parameter. For the increase of γ = 0.03, 0.05, we can see the negative entropy, it is more for four

photons than two photons.

Logarithmic negativity entanglement of the damping system:

Since the state is Gaussian, we can use the “covariance matrix method” to calculate the log-

negativity(entanglement) of the system by using “Simon’s criterion”[41] as mentioned in section-

3.2.2. The density matrix can be written as ρ′(t) = S†(r)R†(φ)ρ(t)R(φ)S(r), where S(r) is the

squeezing matrix and R(φ) is the rotation matrix mixing real and tilde fields. In our case, θ = 45o

(see in eqs(4.36, 4.37)) and ’r’ is squeezing parameter(see in eqs(5.21, 5.22)), and ρ(0) is the initial

state of a two mode system. One can clearly see that this is a product of two mode squeezed states

of the four mode Hilbert space. Now we take the initial state ρ(0) to be the two mode vacuum

state, |ρ(0) >= |0, 0, 0̃, 0̃ >. To calculate the entanglement of the time evolved state ρ′(t) we go

over to phase space description by following transformations,

A =
1√
2

(x+ ipx), A† =
1√
2

(x− ipx), Ã =
1√
2

(x̃+ ip̃x), Ã† =
1√
2

(x̃− ip̃x)

B =
1√
2

(y + ipy), B† =
1√
2

(y − ipy), B̃ =
1√
2

(ỹ + ip̃y), B̃† =
1√
2

(ỹ − ip̃y) (4.59)

Then, the covariance matrix is:

V (r1, r2) =



p 0 0 0 0 0 s 0

0 q 0 0 0 0 0 t

0 0 p∗ 0 s 0 0 0

0 0 0 q∗ 0 t 0 0

0 0 s 0 p 0 0 0

0 0 0 t 0 q 0 0

s 0 0 0 0 0 p∗ 0

0 t 0 0 0 0 0 q∗



(4.60)

where, p = e2iJte−2γtcosh2r1, q = e2iJte−2γtcosh2r2, s = e−2γtsinh2r1, t = e−2γtsinh2r2.
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Figure 4.5: Shows the time evolution of entanglement[EN(t)] for different values of γ with
r = 0.25, J = 0.5.

Since the tilden fields are fictitious, we trace over them to get the covariance matrix for the

physical modes,

V (r1, r2) =


p+ q 0 −(s+ t) 0

0 p∗ + q∗ 0 s+ t

−(s+ t) 0 p+ q 0

0 s+ t 0 p∗ + q∗

 (4.61)

The canonical form of covariance matrix is given by,

V =

 α γ

γ† β

 (4.62)

where,

α =

 p+ q 0

0 p∗ + q∗

 = β, and γ =

 −(s+ t) 0

0 (s+ t)

 (4.63)

Then the separability condition[41] for any two mode state is

DetαDetβ + (
1

4
− |Detγ|)2 − tr(αJγJβJγTJ) ≥ 1

4
(Detα+Detβ) (4.64)

The symplectic eigenvalues are defined as,

ν± =

√
1

2
{∆̃±

√
∆̃2 − 4

µ2
} (4.65)
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Figure 4.6: Shows the time evolution of Decoherence for different values of γ.

where, ∆̃ = Detα+Detβ − 2Detγ = 2(p+ q)(p∗ + q∗) + 2(s+ t)2

and µ = [DetV ]−
1
2 = [(p+ q)2(p∗ + q∗)2 + (p+ q)2(s+ t)2 − (p∗ + q∗)2(s+ t)2 − (s+ t)4]−

1
2 The

entanglement of the system is

EN = max{0,−logν−}. (4.66)

For r1 = r2 = r, the entanglement for two mode vacuum states without damping(i.e., γ = 0) is

shown in figure(4.6(a)) and with damping(i.e., γ 6= 0) is shown in figure(4.6(b)). We see that the

entanglement decreases as damping increases, but, for low damping, the system seems to sustain

entanglement to a large extent, so that it is quite robust for applications.

In order to quantify the decoherence effects, we compute ρ2 as

Tr[ρ2(t)] = Tr[
∑
m,n

< m,n|ρ2(t)|m,n >]

= Exp

[
− 4γt sinh(

√
2γ + iJ)t

(
√

2γ + iJ)t cosh(
√

2γ + iJ)t+ (γ + iJt) sinh(
√

2γ + iJ)t

]
(4.67)

The behaviour of decoherence is plotted in figure(5.3). We have considered two cases: fig-

ure(5.3(a)), shows the variation of decoherence with time for strong coupling for various values of

γ and figure(5.3(b)), shows the evolution of decoherence with weak coupling. For strong coupling,

the system decoheres in an oscillatory manner and saturates to a non-zero value, while for weak

coupling, one that for even short times, as the value of damping coefficient increases the system

decoheres, to a very low value, and very fast.
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4.3.2 Entanglement for two mode thermal state with damping

Taking the initial state ρ(0) to be the two mode thermal vacuum state, the covariance matrix is given

by,

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

n

E
N r= 2.5

r=1.0

r= 0.5

r= 0.2

Figure 4.7: Shows entanglement(EN) vs.
thermal distribution fn.(n̄) for different val-
ues of r

V (r1, r2) =


c+ d 0 e+ f 0

0 c∗ + d∗ 0 −(e+ f)

e+ f 0 c+ d 0

0 −(e+ f) 0 c∗ + d∗


(4.68)

where,

c = e2iJte−2γt(n1cosh
2r1 + n2sinh

2r1),

d = e2iJte−2γt(n1sinh
2r2 + n2cosh

2r2),

e = n1+n2
2 e−2γtsinh2r1 & f = n1+n2

2 e−2γtsinh2r2.

Applying “Simon’s criterion” eq.(5.33) we see that the system is entangled iff

(n1 + n2)4e−4γt[cosh2 2r − sinh2 2r)2 +
1

16
≥ (n1 + n2)2

2
e−2γt[cosh2 2r + sinh2 2r) (4.69)

For r1 = r2 = r, and n1 = n2 = n , this condition is satisfied for the values of r given in the

figure(4.7), in which we plot the logarithmic negativity as a function of n̄, for different values of

r. We see that the system not only gets less entangled for high values of γ (quantified by r), but

also for large n(external heat bath). So that in the presence of a heat bath the effect of damping

increases and both have to be considered when generating entanglement in the lab by using coupled

cavities.

4.4 Conclusion

In this chapter, we have used TFD to solve the master equation associated with the symmetries,

SU(2) & SU(1,1) for coupled lossy waveguides with and without damping. Special attention has

been given to the time evolution of the NOON states as inputs and because their entanglement

increases with photon number, and survives with time, they are extremely suitable for quantum
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information. Our work extends the ref.[48] given, as it gives the exact solution for the master

equation, and, in addition, shows how the entanglement behaves for input thermal states. Our

results have also shown that the entanglement of the system can withstand a certain amount of

damping, suggesting that it can be used for applications such as quantum computation, even if

the waveguides are lossy. Furthermore we have shown the effect of an external heat bath on the

system, by applying our methods to thermal input states.



Chapter 5

Application of TFD to the

entanglement properties of a Coupled

two site, two species Bose-Hubbard

model

As we have mentioned in earlier chapters, open many-body quantum systems have attracted re-

sumed interest in the subject of quantum information science. In this context, the Bose Hubbard

model plays a crucial role because of its link with ultracold atomic gases experiments on optical

lattices. It provides the prime ingradient that allows ultracold atomic setups to mimic well-known

many-body problems. In particular, it makes those systems needed for modelling quantum simu-

lators and quantum computers. The two site Bose Hubbard model(BHM) that we study in this

chapter may be considered the condensed matter analogue of the quantum optical two cavity system

we discussed in chapter 4.

In this chapter, we will use the BHM to model bosons trapped on an optical lattice. The

Hamiltonian is given by

H =

∫
d3xψ†(x)[− ~2

2m
∇2 + V0(x) + VT (x)]ψ(x) +

1

2

4πas~2

m

∫
d3xψ†(x)ψ†(x)ψ(x)ψ(x) (5.1)

with ψ(x) is a bosonic field for atoms in a given internal atomic state, V0(x) is the optical lattice

potential, and VT (x) is an additional (slowly varying) external trapping potential, as is the s-wave

47
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scattering length and m is the mass of the atoms[55].

When we quantize this model, the atoms are described by harmonic oscillators in individual

wells, and the BHM can study the dynamics of these atoms on this optical lattice.

5.1 The Bose-Hubbard model

The Hamiltonian in eq.(5.1) reduces to the Bose Hubbard Hamiltonian(BHH) when we expand the

boson field in the Wannier basis(the equivalent of othonormalized functions on a lattice) and we

get,
H = −J

∑
<i,j>

b†ibj +
U

2

∑
i

ni(ni − 1) +
∑
i

εini, (5.2)

where, the bosonic annihilation and creation operators at lattice site i are bi and b†i and ni = b†ibi

is the corresponding number of bosonic atoms. The on-site repulsion is parameterised by U =

4πas~2
∫
d3x|w(x)|4/m, and the hopping matrix at adjacent sites i and j is, J =

∫
d3xw∗(x −

xi)[− ~2
2m∇

2 + V0(x)]w(x − xj) and εi =
∫
d3xVT (x)|w(x − xi)|2 ≈ VT (xi) is energy offset of each

lattice site.

Figure 5.1: A schematic diagram
of bosons trapped on an optical
lattice.

This is the one species BHM, which has been extensively

studied in the ref.[55]. We can study the dynamics of the

system by considering the ratio U/J , which allows us to have

control over the full set of parameters of the system. For high

J and low U , this corresponds to the superfluid state and

high U and low J , it corresponds to Mott-insulator state.

In this chapter, we generalize to the case of boson-boson

mixture loaded onto optical lattices, which results in a two

species BHM with on-site boson-boson interaction.

The Hamiltonian is given by,

H =ω
∑
k

(nak + nbk)− J
∑
<k,l>

(a†kbl + b†kal) +
Uaa
2

∑
k

a†
2
ka

2
k

+
Ubb
2

∑
k

b†
2
kb

2
k +

Uab
2

∑
<k,l>

naknbl (5.3)

here, nai = a†iai and nbi = b†ibi are number operators of the

two species of bosons ai and bi respectively; Uaa, Ubb mea-

sures the interaction strengths of on-site interacting atoms;

Uab measures the interaction strength of nearest neighbour
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atoms and J describes the induced hopping between adjacent cells k and l.

To show the difference of entanglement in the two phases, we do not take the whole system;

we will restrict ourselves to Bose-Hubbard dimers. Both microscopic tunnelings with a tunable

interaction J as well as scattering interaction U of the between the bosons can be studied. The

particular realization of the dimer we use is two species a, and b trapped in a two well optical

lattice. The Hamiltonian becomes

Ĥ = ω(a†a+ b†b) + J(a†b+ b†a)− Uaa
2

(a†2a2)− Ubb
2

(b†2b2)− Uab
2

(a†b†ab). (5.4)

Chaitanya et. al. [56] have studied this model for entanglement and decoherence in the case

J = Uaa = Ubb = 0 and Uab = U , i.e., for the localized states (BEC(Bose-Einstein condenced)

states) only. This case does not account for the competition between the parameters J and U . the

whole idea is to exploit the two phases of this model. Therefore we are motivated to study the more

general case J 6= 0 and U 6= 0 in the presence of non-linear damping and its one of the limiting

case J 6= 0 and U = 0 (Mott-insulator states), so that we can see how entanglement varies across a

phase transition. This is an essential extension as it will enable us to compare the entanglement in

both the superfluid-like state and the Mott-insulator type state and gives a holistic picture across

the phase diagram.

5.2 The master equation for the two species Bose-Hubbard

model

The master equation corresponding to two site-two species BHM is given by

∂ρ

∂t
=− iω(a†aρ− ρa†a+ b†bρ− ρb†b)− iJ(a†bρ− ρa†b+ b†aρ− ρb†a) +

iUaa
2

(a†2a2ρ− ρa†2a2)

+
iUbb

2
(b†2b2ρ− ρb†2b2) +

iUab
2

(a†b†abρ− ρa†b†ab) +
κ

2
(2abρa†b† − a†b†abρ− ρa†b†ab) (5.5)

To use the thermofield dynamics(TFD) formalism, the Hilbert space is doubled to H ⊗ H̃ and

the Hamiltonian is Ĥ = H + H̃; where H̃ is H with operators ã, b̃ replaces a, b. The time evolution

of the density operator equation is ∂

∂t
|ρ >= −iĤ|ρ > (5.6)

with, the BHH
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Ĥ =ω(a†a− ãã† + b†b− b̃b̃†) + J(a†b− ãb̃† + b†a− b̃ã†)− Uaa
2

(a†2a2 − ã2ã†2)

− Ubb
2

(b†2b2 − b̃2b̃†2)− Uab
2

(a†b†ab− ãb̃ã†b̃†) +
iκ

2
(2abãb̃− a†b†ab− ãb̃ã†b̃†) (5.7)

To retain all the necessary features yet simplify calculations we apply the self-consistent Hartree-

Fock approximation[56, 31] as follows,

2abãb̃ = ab < ãb̃ > + < ab > ãb̃; with < α̂, β̂ >= ∆(t) and we get,

Ĥ = ω(a†a+ b†b− ãã† − b̃b̃†)− ∆(t)

4
[Uaa(aa+ a†a† − ãã− ã†ã†) + Ubb(bb+ b†b† − b̃b̃− b̃†b̃†)]

+ J(a†b+ b†a− ãb̃† − b̃ã†)− ∆(t)

4
[Uab(ab+ a†b† − ãb̃− ã†b̃†)− iκ(ab− a†b† + ãb̃− ã†b̃†)]

(5.8)

Now we consider, Uaa = Ubb = 0, and Uab = U , then, the BHH becomes

Ĥ =ω(a†a+ b†b− ãã† − b̃b̃†) + J(a†b+ b†a− ãb̃† − b̃ã†)

− ∆(t)

4
[U(ab+ a†b† − ãb̃− ã†b̃†)− iκ(ab− a†b† + ãb̃− ã†b̃†)] (5.9)

5.3 Calculation of Entanglement of the system for two-

mode state: for non-zero values of J, U & κ

Now we consider a system with damping coefficient κ, the interaction strength of nearest neighbour

atoms U and hopping parameter J , then we can consider the Hamiltonian in Eq.(5.9) for this system

and now the following transformations made on the Hamiltonian,

a =
A+B√

2
, a† =

A† +B†√
2

, b =
−A+B√

2
, and b† =

−A† +B†√
2

(5.10)

similarly, we consider the tilde transformations also. Then the BHH will be,

Ĥ =ω(A†A+B†B − ÃÃ† − B̃B̃†) + J(−A†A+B†B + ÃÃ† − B̃B̃†)

− ∆(t)

8
[U(−AA+BB −A†A† +B†B† + ÃÃ− B̃B̃ + Ã†Ã† − B̃†B̃†)

− iκ(−AA+BB +A†A† −B†B† − ÃÃ+ B̃B̃ + Ã†Ã† − B̃†B̃†)] (5.11)

This Hamiltonian is decoupling into tilden and non-tilden parts, Ĥ = H1 +H2.
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where,

H1 = (ω−J)A†A+(ω+J)B†B+
(U − iκ)∆(t)

8
(AA−BB)+

(U + iκ)∆(t)

8
(A†A†−B†B†), (5.12)

H2 = (J −ω)ÃÃ†− (ω+J)B̃B̃†− (U + iκ)∆(t)

8
(ÃÃ− B̃B̃)− (U − iκ)∆(t)

8
(Ã†Ã†− B̃†B̃†) (5.13)

Then the solution of Eq.(5.6) is given by

|ρ(t) >= {exp[−iH1t]⊗ exp[iH2t]}|ρ(0) >, (5.14)

here, H1 and H2 are independent. The Hamiltonian has SU(1,1) symmetry spectrum generating

algebras in terms of the modes A and B are given by,

L− =
AA

2
, L+ =

A†A†

2
, & L3 =

1

2
(A†A+

1

2
), (5.15)

M− =
BB

2
, M+ =

B†B†

2
, & M3 =

1

2
(B†B +

1

2
), (5.16)

which satisfy the commutation relations,

[L−, L+] = 2L3, [L3, L±] = ±L±; & [M−,M+] = 2M3, [M3,M±] = ±M±; (5.17)

and also NA = A†A,NB = B†B,N = NA +NB.

The Hamiltonian from Eq.(5.12) in terms of the SU(1,1) generators is,

H1 =
(ω − J)

2
+

(U − iκ)∆(t)

4
L− + 2(ω − J)L3 +

(U + iκ)∆(t)

4
L+

(ω + J)

2
− (U − iκ)∆(t)

4
M− + 2(ω + J)M3 −

(U + iκ)∆(t)

4
M+ (5.18)

The Hamiltonian is diagonalized with the help of the underline SU(1,1) symmetry by a series of

transformations given by

D = µ1A+ ν∗1A
†, D† = µ∗1A

† + ν1A, E = µ2B + ν∗2B
†, E† = µ∗2B

† + ν2B. (5.19)

with µ1 = eiφµ1 |µ1|, ν1 = eiφν1 |ν1|, µ2 = eiφµ2 |µ2| and ν2 = eiφν2 |ν2|; (φµ1 , φν1 , φµ2&φν2εR), and

we should consider the condition that, t = 0.

Similarly by diagonalizing H2, we get the final diagonalized Hamiltonian H1f ;
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H1f = S−1(r1)H ′1AS(r1) + S−1(r2)H ′1BS(r2) = Ω2
1(D† +

1

2
) + Ω2

2(E† +
1

2
), (5.20)

here,

S(r1) = exp(r1L+ − r1L−) & S(r2) = exp(r2M+ − r2M−)

and Ω2
1 = 64(ω − J)2 − (U2 + κ2)∆2(0) and r1 is related to µ1, ν1; &

Ω2
2 = 64(ω + J)2 − (U2 + κ2)∆2(0) and r2 is related to µ2, ν2, in Eq.(5.19) via the following

Bogolybov coeffecients :

µ1 = coshr1 =
(ω − J)√

(ω − J)2 − (U2+κ2)∆2(0)
64

, ν1 = sinhr1 =

√
U2 + κ2∆(0)

8

√
(ω − J)2 − (U2+κ2)∆2(0)

64

(5.21)

µ2 = coshr2 =
(ω + J)√

(ω + J)2 − (U2+κ2)∆2(0)
64

, ν2 = sinhr2 =

√
U2 + κ2∆(0)

8

√
(ω + J)2 − (U2+κ2)∆2(0)

64

(5.22)

here, r1 and r2 are the squeezing parameters, |µ1|2 − |ν1|2 = 1 and |µ2|2 − |ν2|2 = 1.

Hence the solution of the master Eq.(5.6) from Eq.(5.14) will becomes

|ρ(t) > = exp[−iĤt]|ρ(0) >

= C(t){exp(ζa−L− + ζa3L3 + ζa+L+)⊗ exp(ζa′−L̃− + ζa′3L̃3 + ζa′+L̃+)

× exp(ζb−M− + ζb3M3 + ζb+M+)⊗ exp(ζb′−M̃− + ζb′3M̃3 + +ζb′+M̃+)}|ρ(0) > (5.23)

here, C(t) = exp[{i(ω − J)(NA − ÑA) + i(ω + J)(NB − ÑB)}t];

ζa− = − (iU+κ)∆(t)t
8 , ζa3 = −i(ω − J)t, ζa+ = − (iU−κ)∆(t)t

8 ;

ζa′− = (iU−κ)∆(t)t
8 , ζa′3 = i(ω − J)t, ζa′+ = (iU+κ)∆(t)t

8 ;

ζb− = (iU+κ)∆(t)t
8 , ζb3 = −i(ω + J)t, ζb+ = (iU−κ)∆(t)t

8 ;

ζb′− = − (iU−κ)∆(t)t
8 , ζb′3 = i(ω + J)t, ζb′+ = − (iU+κ)∆(t)t

8 ;

|ρ(t) > = C(t){exp(Γa+L+)exp(ln (Γa3)L3)exp(Γa−L−)⊗ exp(Γa′+L̃+)exp(ln (Γa′3)L̃3)exp(Γa′−L̃−)

× exp(Γb+M+)exp(ln (Γb3)M3)exp(Γb−M−)⊗ exp(Γb′+M̃+)exp(ln (Γb′3)M̃3)exp(Γb′−M̃−)}|ρ(0) >

(5.24)

here,
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Γi± =
2ζi± sinhφi

2φi coshφi − ζi3 sinhφi
& Γi3 =

(
2φi

2φi coshφi − ζi3 sinhφi

)2

(5.25)

with
φ2
i =

ζ2
i3

4
− ζi+ζi−, (5.26)

here, ’i’ stands for a, b, a′ and b′ and one can calculate, φi = (∆(0)
√
κ2+U2+4i(ω−J))t

8 (for i = a) and

φ∗i is it’s conjugate.

By considering an initial state |ρ(0) >=
∑N

m,n ρm,n(0)|m, m̃, n, ñ >, we get the density matrix :

ρm,n(t) =K(t)

min(m′,n′)∑
q′=0

∞∑
p′=0

[

 m′ + p′ − q′

p′

 n′ + p′ − q′

p′

 m′

q′

 n′

q′

]
1
2

×
min(m,n)∑

q=0

∞∑
p=0

[

 m+ p− q

p

 n+ p− q

p

 m

q

 n

q

]
1
2

× [ΓA+]p
′
[ΓA3]

(m′+n′−2q′+1)
2 [ΓA−]q

′
[ΓB+]p[ΓB3]

(m+n−2q+1)
2 [ΓB−]q

× ρm+p−q,m′+p′−q′,n+p−q,n′+p′−q′(0) (5.27)

here, K(t) is an overall phase factor due to C(t) = exp[{i(ω− J)(NA − ÑA) + i(ω+ J)(NB − ÑB)}t].

5.3.1 Entropy of entanglement of the system

The entropy of entanglement of system with damping is

S = −
N∑
i=0

λi log λi = −
N∑
n=0

[
N !

(N − n)!n!
sin2n(φ) cosh2N−2n(φ)]

× {log[
N !

(N − n)!n!
] + (2n) log[sinh(φ)] + (2N − 2n) log[cosh(φ)]} (5.28)

where, φ = (∆(0)
√
κ2+U2+4i(ω−J))t

8 and φ∗ is it’s conjugate.

Case-1 For two boson system as an input(i.e., N = 2): For the input two boson state the entan-

glement entropy is

S = −4 cosh4(φ) log[cosh(φ)]− 2 sinh2(φ) cosh2(φ)

x log[cosh(φ) sinh(φ)]− 4 sinh4(φ) log[sinh(φ)] (5.29)
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Figure 5.2: Shows the time evolution of entropy of entanglement[S(t)] for various input boson
systems: N = 2(dotted line), N = 4(thin line), N = 6(dashed line), N = 8(thick line) with,
J = 0.5.

which is shown as dotted line in Fig.5.2, for J = 0.5. Here we have considered both cases, in Fig.5.2a, shows

the system with no damping, and in Fig.5.2b & 5.2c, shows the system with damping. Increasing the value

of κ, causes more damping in the system.

In the similar way, in further cases, the entropy of entanglement for 4-, 6-, 8- boson input states is

shown in Fig.5.2 for J = 0.5, as thin line (for 4-boson), dashed line (for 6-boson), and thick line (for 8-boson)

respactively. Here also the same, we have considered both cases, in Fig.5.2a.

5.3.2 Logarithmic negativity of the system:

We can calculate the log-negativity of the system by using the covariance matrix method and ”Simon’s

criterion”[41] as mentioned in section-3.2.2. The density matrix can be written as ρ′(t) = S†(r)R†(φ)ρ(t)R(φ)S(r),

where the squeezing matrix is S(r) and R(φ) is the rotation matrix mixing real and tilde fields. The initial
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Figure 5.3: Show the time evolution of entanglement(EN) for different values of κ(=
0.2, 0.5, 0.7 and 1) correspondingly for ∆(0) = 0.25, ω = 0.25 and U = 0.2.

state of two mode system is the two mode vacuum state(|ρ(0) >= |0, 0, 0̃, 0̃ >).

Using the covariance matrix method to calculate the log-negativity of the time evolved state ρ′(t), the

reduced covariance matrix is,

V (r1, r2) =


p+ q 0 −(s+ t) 0

0 p∗ + q∗ 0 s+ t

−(s+ t) 0 p+ q 0

0 s+ t 0 p∗ + q∗

 (5.30)

where, p = e2iJtcosh2r1, q = e2iJtcosh2r2, s = sinh2r1, t = sinh2r2.

The covariance matrix in canonical form is given by,
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V =

 α γ

γ† β

 (5.31)

where,

α =

 p+ q 0

0 p∗ + q∗

 = β, and γ =

 −(s+ t) 0

0 (s+ t)

 (5.32)

Then the “separablility condition”[41] for any two mode state is

DetαDetβ + (
1

4
− |Detγ|)2 − tr(αJγJβJγTJ) ≥ 1

4
(Detα+Detβ) (5.33)

The symplectic eigenvalues are defined as,

ν± =

√
1

2
{∆̃±

√
∆̃2 − 4

µ2
} (5.34)

where, ∆̃ = Detα+Detβ − 2Detγ = 2(p+ q)(p∗ + q∗) + 2(s+ t)2

and µ = [DetV ]−
1
2 = [(p+ q)2(p∗ + q∗)2 + (p+ q)2(s+ t)2 − (p∗ + q∗)2(s+ t)2 − (s+ t)4]−

1
2

The log-negativity entanglement of the system is

EN = max{0,−logν−}. (5.35)

For r1 = r2 = r = −∆(0)
2 (1 + (ω−J)2t2

4 )
√

(U2 + κ2)t, which is shown in the Fig. ??(a,b,c,d).

5.3.3 Decoherence of the system

To quantify the decoherence effects for damping system, we compute ρ2 and then,

Tr[ρ2(t)] = Tr[
∑
m,n

< m,n|ρ2(t)|m,n >] = Exp

[
2ζi± sinhφi

2φi coshφi − ζi3 sinhφi

]
(5.36)

where, ζi± = −(iU±κ)∆(t)t
8 , ζi3 = −i(ω − J)t, and φi = (∆(0)

√
κ2+U2+4i(ω−J))t

8 and φ∗i is it’s conjugate.

The decoherence of the system is shown in Figs.5.4. For weak coupling Fig.5.4a, shows the time evolution

of decoherence for various values of κ and Fig.5.4b, shows the same for strong coupling.

For weak coupling, see that for even short times, as the value of damping coefficient increases the system

decoheres, to a too low value, very fast, while for strong coupling, the system decoheres in an oscillatory

manner and saturates to a non-zero value.



Ch-5: Application of TFD to the entanglement properties of coupled two site, two species Bose-Hubbard model57

0 10 20 30 40 50 60 70

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

t

Ρ
2

Κ =1.0

Κ =0.6

Κ =0.3

Κ =0.1

(a) with hopping parameter, J = 0.5

0 2 4 6 8 10 12

0.96

0.98

1.00

1.02

1.04

1.06

t

Ρ
2

(b) with J = 2.0

Figure 5.4: Shows the time evolution of Decoherence for different values of κ(= 0.1, 0.3, 0.6
and 1.0) with ∆(0) = 0.25, ω = 0.25 and U = 0.
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Figure 5.5: Plot of Entanglement(EN) vs. thermal distribution function(n̄) for different
values of κ(= 0.1, 1, 3 and 5) correspondingly for ∆(0) = 0.25, ω = 0.25.
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5.3.4 Entanglement for two-mode thermal state

Taking the initial state ρ(0) to be the two mode thermal vacuum state, the covariance matrix is given by,

V (r1, r2) =


c+ d 0 e+ f 0

0 c∗ + d∗ 0 −(e+ f)

e+ f 0 c+ d 0

0 −(e+ f) 0 c∗ + d∗

 (5.37)

where,

c = e2iJt(n1cosh
2r1 + n2sinh

2r1), d = e2iJt(n1sinh
2r2 + n2cosh

2r2), e = n1+n2

2 sinh2r1 and f =

n1+n2

2 sinh2r2.

Applying ”Simon’s criterion” Eq.(5.33) we see that the system is entangled iff

(n1 + n2)4[cosh2 2r − sinh2 2r)2 +
1

16
≥ (n1 + n2)2

2
[cosh2 2r + sinh2 2r) (5.38)

For r1 = r2 = r, and n1 = n2 = n , the logarithmic negativity entanglement is

EN (r) = −1

2
[log2(e−4r/n)]. (5.39)

which is shown in the Fig. 5.5(a,b,c,d).

We observed that as the system not only gets less entangled for high values of κ (quantified by r), but

also for large n(the external heat bath) and entanglement increase for higher values of J .

5.4 Calculation of entanglement of the system for two

mode state: for J 6= 0

This is one of the limiting case of the most general case in above section, here the Hamiltonian Ĥ from the

Eq.(5.9) with hopping parameter J 6= 0, the interaction strength of nearest neighbour atoms U = 0 and

damping coefficient κ = 0 is given by

Ĥ = ω(a†a+ b†b− ãã† − b̃b̃†) + J(a†b+ b†a− ãb̃† − b̃ã†) (5.40)

and can be decoupled into tilden and non-tilden parts: Ĥ = H + H̃.

where,
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H = ω(a†a+ b†b) + J(a†b+ b†a) (5.41)

H̃ = −ω(ãã† + b̃b̃†)− J(ãb̃† + b̃ã†) (5.42)

Then the solution of Eq.(5.6) is given by

|ρ(t) >= exp[−iHt]⊗ exp[iH̃t]|ρ(0) > (5.43)

where, |ρ(0) > is an initial state in H⊗ H̃.

To solve the master equation and calculate the entanglement properties of the system, we use the under-

lying symmetries of the Hamiltonians(Eqs.(5.41), (5.42)), by defining the following operators.

L+ = a†b, L− = b†a & L3 =
1

2
(a†a− b†b) (5.44)

which satisfy the SU(2) algebra,

[L3, L±] = ±L± & [L+, L−] = 2L3 (5.45)

with number operator, N = a†a+ b†b.

The Hamiltonian from Eq.(5.41) in terms of the SU(2) generators is,

H = ωN + J(L+ + L−) (5.46)

Hence, the underlying symmetry of the Schrodinger like Eq.(5.6) is SU(2) ⊗ SU(2) and |ρ(t) > is given

by
|ρ(t) >= eα(t)L+−α∗(t)L− |ρ(0) >; here, α(t) = iJt. (5.47)

The SU(2) disentanglement formula gives,

|ρ(t) >= eξL+elog(1+|ξ|2)L3e−ξ
∗L− |ρ(0) > (5.48)

here, ξ = ξ(α(t)) = α(t) tan(|α(t)|)
|α(t)|

The density matrix in the number state basis (for na 6= nb) is given by

|ρ(t) > =

N∑
na,nb=0

Cna,naC
∗
nb,nb

|na, N − na >< nb, N − nb|

where,

Cna,na =
ξna

(1 + |ξ|2)N/2

 N

na

 1
2

; Cnb,nb =
ξnb

(1 + |ξ|2)N/2

 N

nb

 1
2

; &N = na + nb. (5.49)
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Figure 5.6: Shows the time evolution of entropy entanglement[S(t)] for various input boson
number states (N = 2(dotted line), 4(thin line), 6(dashed line), 8(thick line)).

Using the results of the previous chapters, we cna get the eigenvalues of the “partial transpose of ρ” and

calculate the entanglement entropy in the next section.

5.4.1 Entropy of entanglement of the system

Now, the entropy for this system will be (as shown in the eq.(3.13),

S = −
N∑
i=0

λi log λi = −
N∑
n=0

[
N !

(N − n)!n!
sin2n(Jt) cos2N−2n(Jt)]

× {log[
N !

(N − n)!n!
] + (2n) log[sin(Jt)] + (2N − 2n) log[cos(Jt)]} (5.50)

Now we consider different cases of optical input states,

Case-1 For the input two boson system (i.e., N = 2), the entropy of entanglement (from eq(5.50))

is shown as dotted line in Fig.5.6a, for J = 0.5. Starting with a separable state at t = 0, S increases from

zero to a maximum value of 1.5 at Jt = 1.55. This is a maximally entangled value, after which it eventually

becomes zero at Jt = 3.144. Thus at this point, the state becomes disentangled. We see a periodic behavior

no interference effects. And also, for J = 1.0 dotted line in Fig.5.6b, shows quite similar results of J = 0.5

case but, repeated twice within the period of a cycle.

In similar way, in further cases, we have calculated entropy of entanglement for 4-boson, 6-boson and

8-boson systems and shown in thin line(4-boson), dashed line(6-boson) and thick line(8-boson) in Fig.(5.6a)

for J = 0.5 and in Fig.5.6b) for J = 1.0 respectively. This is similar to the case-1, with increasing ampli-

tude values as increasing boson number and also see the periodic behavior that, the system got entangled,

disentangled periodically and there are no interference effects.
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Figure 5.7: Shows the time evolution of log negativity[EN(t)] for various input boson number
states: N = 2(dotted line) for |1, 1 > state, N = 4(thin line) for |2, 2 > state, N = 6(thick
line) for |3, 3 > state, N = 8(dashed line) for |4, 4 > state.

5.4.2 Logarithmic negativity of the system

We can also measure the logarithmic negativity of the system as defined in eq.(4.22) as follows: Now we

consider different cases of optical input states,

Case-1 For the input two boson system (i.e., N = 2):, the log-negativity of the input two boson

NOON-state |ψin >= |1, 1 >, is shown as dotted line in Fig.5.7a, for J = 0.5. Starting with a separable

state at t = 0, (EN ) increases from zero to a maximum value of 1.33 at Jt = 0.8514. This is a maximally

entangled state. Then EN decreases and attains a value of 1.001 at Jt = 1.571, this is entangled state. Again

EN increases to a maximum of 1.33 at Jt = 2.281 and finally it decreases and eventually becomes equal

to zero at Jt = 3.14. Thus at this piont, the state becomes disentangled. We see a periodic behavior and

continue the interference effects. And also, for J = 1.0, dotted line in Fig.5.7b, shows quite similar results

of J = 0.5 case, with decreasing to half of the bandwidth.

In similar way, in further cases(N = 4, 6, 8), we have calculated the log-negativity entanglement

for 4-boson, 6-boson and 8-boson systems and shown in thin line(4-boson), thick line(6-boson) and dashed

line(8-boson) in Fig.(5.6a) for J = 0.5 and in Fig.5.6b) for J = 1.0 respectively. These are quite different

to the case-1, in raising dips with time laps as increasing boson number and also see the periodic behavior

that, the system got entangled and disentangled periodically and continue the interference effects.
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5.5 Conclusion

In this chapter, we extended the work of Chaitanya et al[56] in the presence of non-linear damping with

coupling strength. This is of interest because ultracold atoms are a natural resource for quantum information

process. Using TFD, we have exactly solved the master equation associated with SU(1,1) symmetries for two

site Bose-Hubbard model. The different entanglement properties and decoherence of the system for coupling

strength(J) and with damping(κ 6= 0) and without damping(κ = 0) have been shown. Our results have also

shown that the entanglement of the system can withstand a certain amount of damping, suggesting that it

can use for applications such as in quantum computation. We compare the role of the hopping parameter(J)

and the repulsive on-site interaction parameter(U) on these features and shown how we can tune the system

for optimum quantum information processing.



Chapter 6

Application of TFD to study thermal

sources through pion correlations and

multiplicities in high energy collisons

In the previous chapters we have applied the operator formalism of Thermo-field dynamics to many-body

quantum systems those are used for quantum communications and shown how TFD helps us to understand,

and hence control, their decoherence. The quantum correlations in such systems are easy to quantify.

However the full armour of Thermal field theory reveals itself in particle physics, since the theoretical

framework of particle physics is quantum field theory[2] and particles are excitations of the quantum field

theoretic vacuum. The dynamics of their interaction is given by the underlying field theory. Protons,

neutrons, pions, and many other hadrons (strongly interacting particles) discovered in the last 80-years are

now understood to be rather complicated systems which must be explained in terms of their fundamental

point like constituents: quarks (and anti-quarks) bound together through strong interactions mediated by

gluons. The field theory that describe these strong nuclear interactions is called QCD. It has led to the

prediction that at high temperature and high densities, quarks and gluons form a state of matter called

quark gluon plasma(QGP)[57]. QCD vacuum states produce quark-antiquark pairs and gluons, unlike the

photons, the gluons interact with one another. In QCD, coupling increases at large separations and decreases

at small separations. This existence of direct coupling of the gluons has dramatic implications causing QCD to

have the following unusual properties: Asymptotic freedom[58] and Confinement[59]. Asymptotic freedom

is dominant in high-energy scales but, as energy decreases, confinement becomes dominant. The exact

nature of the phase transition from confinement to asymptotic freedom is still under investigation, although

results from Lattice gauge theory[60] show promising results. Experiments at the Relativistic heavy ion

63
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Figure 6.1: Relativistic heavy-ion collisions: quark gluon plasma(QGP)

collider(RHIC) in April 2005, tentatively confirmed the existence of a state where quarks and gluons are

deconfined and form the QGP[61]. In such experiments, because of the phenomenon of confinement, the QGP

cannot be directly detected. Since this plasma survives for a short time, we cannot use traditional methods

to study its properties. Its detection is based on the properties of the particles detected in detectors. Pions,

photons, muons and electrons are the main particles that survive to be detected. Thus, both theoretical and

experimental tools must be developed as certain whether a region of high temperature (called a ”fireball”) has

been formed in the collision. Among the experimental measurables are the correlations and distributions of

pions and photons that emerge from the short lived formation region[62]. The pion multiplicity distributions

and two pion correlations are examples of indirect signals which carry information about the initial stages of

the collision and can give some information whether a hot thermal state was formed in the initial stages of

the collision. Our aim is to study how such quantities are modified by high temperature effects

using various statistical and quantum optical techniques. High-energy heavy ion collision processes

(quark-gluon plasma) is a crucial test for the double-time TFD. With the formalism developed so far, we

attempt to give a possible way of looking at the phenomenon.

6.1 Determining multiplicity distributions and corre-

lations for non-thermal states using quantum sta-

tistical methods

Measurement of the source size in high energy interactions gives an idea of the corresponding energy density

reached in the event and gives information about a possible QGP phase transition. We calculate the different
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multiplicity distributions for different sources and the degree of second order correlation function (which

is related to the second order moments of the distribution), by using quantum statistical methods. An

importnat measurable is the the chaoticity parameter, which characterizes the amount of non-coherent

thermal excitations in the source is given by λ = g(2) − 1 and has been found in various experiments by

fitting experimental data, this gives a direct measurement of the thermal nature of the source and we would

like to quantify its temperature dependence by using Thermo-field Dynamics. For a coherent source, g(2) is

always one and hence λ = 0. Now we calculate λ for some mixed state distributions with the help of density

matrices and discuss the different probability distributions and second order correlations.

All these moments and the multiplicity distribution can be obtained by the differentiation of an analytic

generating function, G(z) defined by the formula:

G(z) =

∞∑
n=0

Pnz
n. (6.1)

The probability distribution function is,

Pn =
1

n!

dnG(z)

dzn
|z=0. (6.2)

The average multiplicity is,

< n >=

∞∑
n=0

nPn. (6.3)

Then, the second order correlation is given by

g2(0) = {∂
2G(z)

∂z2
}/{(∂G(z)

∂z
)2}|z=1 (6.4)

We will use these techniques to calculate the second order correlation for the various states that we consider

in this chapter.

The two-particle correlation function in momentum space can be written as

C(k, k′) =
P (k, k′)

P (k)P (k′)
(6.5)

where P (k, k′) is the two particle probability density, subject to Bose Einstein symmetrization and P (k),P (k′)

are the single-particle probability distribution for the particles with four momentum k and k′ respectively.

Thus the value of C at concurrent momenta can characterize the distribution source. Now we generalize

from two point sources x(corresponding to momentum k) and and x’(corresponding to momentum k’) to

the distribution of pion production points described by f(x). If G[f(x)] =
∫
f(x)e−(k−k′)xdx is the fourier
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transform of f(x), then the momentum space correlation function is,

C(k, k′) = 1 + |G[f(x)]|2 (6.6)

. The momentum correlation function of pion pairs can give the distribution function of the points of origin

of the pions. The above discussion is for classical pions. Since pions are by nature quantum mechanical and

we would like to use the well established tools of quantum optics, therefore, we require the knowledge of the

quantum mechanical correlation function. For a quantum systems characterized by ρ (the density operator)

and a† and a (the particle creation and annihilation operators). If we do the mode expansion in rapidities

y and y′, then the two particle correlation function is given by,

C(y, y′) =< a†(y)a(y) >< a†(y′)a(y′) > +| < a†(y)a(y′) > |2 + | < a(y)a(y′) > |2. (6.7)

Therefore, the normalized correlation function viz. degree of second order coherence is,

g(2) =
< a†aa†a > − < a†a >

< a†a >2

=
< a†2a2 >

< a†a >2
(6.8)

Using the density matrix formalism, the chaoticity parameter(λ) has a natural interpretation in terms of

second order correlation, g2(0) and can give information about the nature of the pion emission other than

chaotic, coherent or partially coherent. In fact situations such as g2(0) > 2 or g2(0) < 1 can be constitute

within certain states giving information about inherently quantum mechanical processes such as squeezing

and anti-bunching which can be encountered in many pion emission processes.

In this chapter, we shown how incorporation of temperature is particularly simple in the

thermofield dynamical approach to study quantum systems and apply it to multiplicity distri-

butions and correlations of hadrons by adopting quantum optical phenomenon and statistical

methods approach to high density QCD.

One can also use the density matrix formalism in statistical quantum mechanics to calculate the probability

distribution. The density matrix for a statistical quantum ensemble and the probability distribution Pn are

related by the formula

ρ =
∑

Pn|n >< n|, (6.9)

where, sum is with respect to a complete set of states having a closure property,
∑
n |n >< n| = 1. The

average value of an operator A[63] can be written as,

< A >= Tr(ρA) =
∑
n

< n|ρA|n >=
∑
n

∑
m

< n|A|m >< m|n > (6.10)
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As we have seen in the introduction from eq.(6.7), for the stationary condition of equal rapidities, the degree

of second order coherence is given in the density operator formalism by,

g(2) =
Tr(ρa†

2

a2)

[Tr(ρa†a)]2
=
< a†aa†a > − < a†a >

< a†a >2
=
< a†2a2 >

< a†a >2
(6.11)

which is the same as the second order correlation function given by equation(6.4). Thus, using the quantum

statistical formalism, the degree of second order coherence for different distributions in Fourier space can be

calculated. This gives us the value of two particle correlation g(2)(0) to compare with the experiment.

6.1.1 The generalized Glauber Lachs Distribution

If the source is completely coherent then the two particle correlation function is one(as in Poissonian), where

as if the source is completely chaotic(noisy) g(2) = 2 (as in Bose Einstein distribution). But in reality, the

source is a mixture of these extremes (i.e., usually the coherent and the chaotic sources are superimposed).

Such sources are described through the Glauber-Lachs distribution is considered. The generalized Glauber

Lachs distribution is,

Pk(n) =
(pn/k)

n

(1 + pn/k)
n+k

exp[− γpn

1 + pn/k
]L(k−1)
n (− γpn

1 + pn/k
) (6.12)

where γ = |ζ|2/A ( “the ratio of the ratio of the average value of the coherent hadrons to that of the chaotic

hadrons”), The chaoticity parameter p = 1/(1 + γ) and it is defined as ’p’ is defined by

p =
n− |α|2

n
=
nch
n

(6.13)

and here, n = nc + nch and nc = |α|2 where, nc, nch are the mean numbers of coherent and chaotic quanta

respectively and n is the total mean number and L
(k−1)
n stands for the Associated Laguerre polynomials

respectively. This distributions shown in fig.(6.2)

The density operator for this distribution is

ρ =
(pn/k)n

(1 + pn/k)(n+k)
e
−γpn

1+pn/kLnk−1(
−γk

1 + pn/k
)|n >< n| (6.14)

The second order correlation is given by

g(2) =

∑
n n(n− 1) (pn/k)n

(1+pn/k)(n+k) e
−γpn

1+pn/kLnk−1( γk
1+pn/k )

(
∑
n n

(pn/k)k

(1+pn/k)n+k e
−γpn

1+pn/kLnk−1( −γk
1+pn/k ))2

(6.15)
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Figure 6.2: Generalized Glauber Lachs Distribution as a function of ’n’
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Figure 6.3: Glauber Lach Distribution as a function of ’n’

By using some algebra we get,

g(2) =
k(k + 1)− γk(k + 3) + γ2k2

k2 − 2γk2 + γ2k2
(6.16)

Therefore, the second order correlation and chaoticity for this distribution are:

1 < g(2) < 2→ 0 < λ < 1, so, this Perina-Mc Gill(GGL) distribution describes a partially chaotic source.

We consider three cases:
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Case-1: Glauber Lachs Distribution

For a single source(k = 1) GGLD gives the Glauber Lachs distribution which is expressed as,

P (n) =
(pn)

n

(1 + pn)(n+1)
e(
−|α|2
1+pn )Ln(

−|α|2

1 + pn
) (6.17)

where, Ln is the Laguerre polynomial. It was shown in fig(6.3)

The density operator for this distribution is,

ρ =
nn

(1 + n)(n+1)
e(
−|α|2
1+n )Ln(

−|α|2

n(1 + n
) (6.18)

Similarly as in GGLD, we can get the second order correlation as

g(2) =
2− 4|α|2

n + |α|4
n2

1− 2|α|2
n + |α|4

n2

(6.19)

∗ When |α| → 0, the value of g(2) = 2 it turns out to be Geometric distribution.

∗ When |α| → ∞, the value is g(2) = 1 it turns out to be Poisson distribution.

Therefore, the degree of second order coherence is 1 < g(2) < 2, so, this distribution describes a partially

coherent source.

Case-2: Poisson distribution(PD)

When γ =∞ and k = 1 (or) γ = 0 and k=∞, then g(2) = 1. So, GGLD turns out to be Poisson distribution.

Case-3: Negative binomial distribution(NBD)

When (γ = 0), 1 < g(2) < 2, so, GGLD turns out to be NBD. The distribution most used in describing

particles in collision experiments is the phenomenological NBD. This distribution has been successfully used

for fits of main features of experimental data in particle physics. In birth and death processes the generalized

basic Markovian equation [64] is, dPn(t)
dt = an+1Pn+1 + cn−1Pn−1(an + cn)Pn. here, an is the birth-emission

coefficient (creation of particle) and cn is the death (annihilation of particle) coefficient.

Now we take an = αn and cn = βn+γ(i.e., both the birth and the death processes) then the above equation

turns out to be, dPndt = α(n+1)Pn+1− (βn+γ)Pn+(βn−β+γ)Pn−1−αnPn. For solving this equation with

the condition, dPn/dt = 0 and define q = β/α; k = γ/β we get the two solutions (n+ 1)Pn+1 = (n+ k)qPn,
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Figure 6.4: Negative Binomial Distribution as a function of ’n’

(n+ k − 1)qPn−1 = nPn and the joint solution is,

Pk(n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)
pkqn (6.20)

where p = 1 − q. This is the Negative Binomial distribution or also called as a generalized Bose-

Einstein distribution. If n = qk
1−q = γ

α−β which gives, q = n/k
1+nk and p = 1

1+nk and we get

Pk(n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)

(n/k)
n

(1 + n/k)
n+k

(6.21)

where n and k are the average multiplicity and the intrinsic parameter respectively. With these parameters

the NBD has many possible applications in different areas(like, biology, optics, etc.) also.

In the case of gluon emission and absorption in a cascade, this distribution has the following interpretation.

Now suppose initially we have ’k’ gluons, these are participate in a interaction and gives ’n’ gluons, then a

similar birth-death equation can be written and gives a NBD and shown in fig(6.4).

The second order correlation is

g(2) = (n/k)k
k + 1

k
(
1− z
z

)k =
k + 1

k
. (6.22)

∗ When k = 1, g(2) = 2, ie it turns out to be Geometric distribution.

∗ When k =∞, g(2) = 1 ie it turns out to be Poisson distribution.

Therefore, the second order correlation and chaoticity for this distribution are:

1 < g(2) < 2 ⇒ 0 < λ < 1, so, this NBD describes a partially chaotic source. However in no way can we
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determine the temperature or fluctuations of the thermal chaotic part of the source, an attempt was made

to separate the chaotic (thermal) component from the coherent component by using the Glauber Lachs

Distribution found in quantum optics.

6.1.2 KNO-scaling limit of GGLD and NBD
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Figure 6.5: KNO-scaling of NBD(z)
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Figure 6.6: KNO-scaling of GGLD(z,k)
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Figure 6.7: KNO-scaling of GGLD(z,p)

As we known the GGLD is defined as in eq.(??), in the

KNO-scaling limit (n and < n > are large, but the ratio z

= n
<n> is finite), for the quantity

< n >P(n, < n >) the following gamma distribution is

derived from the refered GGLD equation as[65, 66],

ψk(z, p) = (
k

p
)k[

z√
z(k/p)2(1− p)

]k−1 exp [−k
p

(1− p+ z)]

Ik−1(2
√
z(k/p)2(1− p)) (6.23)

where, Ik−1 is the modified Bessel function. If γ = 0 this

becomes the gamma distribution. The KNO-scaling limit of

GGLD plotted in the fig.s(6.6,6.7)

And also, we known the NBD is defined as in eq.(6.21), in

the KNO-scaling limit, for the quantity < n >P(n, < n >)

the following gamma distribution is derived from the refered

NBD equation as[66]

Ψk(z) =
kk

Γ(k)
zk−1 exp(−kz) (6.24)

The KNO-scaling limit of NBD plotted in the fig.(6.5).

The above inferences show that at certain conditions cer-

tain distributions are used and which all are worked at ab-

solute zero temperature only.
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Figure 6.8: Multiplicity distribution for TCS with different values of ′β′

6.2 Calculating multiplicity distributions and correla-

tions of thermal states using TFD

Although the distributions considered above give an idea that the source can be characterized as chaotic(thermal)

or coherent by looking at the distribution and correlation there is no direct thermal dependence in the distri-

butions and correlations, so a direct thermal link cannot be established. A thermal link can be provided by

using the TFD formalism and various types of thermal states such as thermal coherent states and thermal

squeezed coherent states to calculate multiplicity distributions and correlations.

Here, we have given a certain proportion to the above GGLD and NBD to few thermal multiplicities and

correlations described by taking chaotic parameter(γ) has on temperature dependance (depends on thermal

distribution function, f(β)).

6.2.1 Thermal Coherent State(TCS)

Here, we will give the multiplicity distribution of a thermal coherent state and show that, not only can

temperauture depence be manifest, but that in various limits the distributions reduce to the NBD and

Glauber lachs distributions. The probability distribution for TCS is derived as (in appendix-B) given

by,
PTCS(n) =

2

1 + f(β)
(

f(β)

1 + f(β)
)nExp(− |α|2

1 + f(β)
)Ln(− |α|2

1 + f(β)
) (6.25)
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Figure 6.9: Second order correlation for TCS
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Figure 6.10: Chaoticity of TCS

This distribution shown in the fig.(6.8). Notice that in the limit β → ∞; T = 0 we retrieve the zero

temperature result. Comparing this expression with the Glauber Lachs distribution, we find that finite

temperature effects.

The second order correlation for TCS can be written as (with the help of appendix-B),

g
(2)
TCS(0) =

< â†2â2 >

(< â†â >)2
=
{|α|4 + 4(A+ 1

2 )|α|2 + 2(A+ 1
2 )2}

{|α|2 + (A+ 1
2 )}2

=
{|α|4 + 4((1 + 2f(β))sinh2r + f(β) + 1

2 )|α|2 + 2((1 + 2f(β))sinh2r + f(β) + 1
2 )2}

{|α|2 + (1 + 2f(β))sinh2r + f(β) + 1
2}2

(6.26)

This correlation shown in fig.(6.9)

Then the chaoticity for TCS is

λTCS =
{A+ 1

2}
2 + 2(A+ 1

2 )|α|2

{(A+ 1
2 )|α|2}2

=
{(1 + 2f(β))sinh2r + f(β) + 1

2}
2 + 2{(1 + 2f(β))sinh2r + f(β) + 1

2}|α|
2

{((1 + 2f(β))sinh2r + f(β) + 1
2 )|α|2}2

(6.27)

This is shown in fig.(6.10). Here, we observe that as increasing the temperature, chaoticity is increases up

to one for any value of α. But, for lower values of ’α’ chaoticity is high. We observe that on incorporation of

temperature, g2(0) even exceeds the chaotic limit showing the over bunching effect. Bose-Einstein correlations

can be an important tool to distinguish between pions emitted from cold and hot sources. This may be of

use in the studies of the QGP.
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6.2.2 Thermal Squeezed Coherent State(TSCS)

The characteristic function of TSCS (in eq.2.74) and its density matrix (in eq.2.75) are presented to quantify

quantum and thermal fluctuations and connects squeezing and temperature effects. The Characteristic

function for TSCS ref.[67] is,

C(β, s) = Exp[−(A+
1

2
[1− s])|β|2 − E

2
(β2 + β∗2)]{Exp(βα∗ − β∗α)} (6.28)

where,
A = f(β) + (1 + 2f(β)) sinh2 r;E = (1 + 2f(β)) sinh r cosh r; and f(β) =

1

eβω − 1
(6.29)

where s takes the values 1,0 and -1 correspondingly to normally, symmetrically and anti-normally ordered

characteristic functions respectively. The probability distribution function for TSCS is derived as (in

appendix-A) given by

P (n) =
1

[(A+ 1
2 )2 − E2]1/2

n∑
m=0

(1− ν−)m(1− ν+)n−mL(−1/2)
m (−X−)L

(−1/2)
n−m (−X+)×

Exp[− (A+ 1)|α|2 + E(α2
1 − α2

2)

(A+ 1)2 − E2
], (6.30)

where,
ν± = [A+ 1± E]−1; Y± = [(A± E)(A± E + 1)]−1 (6.31)

X+ = α2
2[(A+ E)(A+ E + 1)]−1; and X− = α2

1[(A− E)(A− E + 1)]−1, (6.32)

here, A and E are functions of squeezing(r) and thermal(β) parameters shown in eq.(6.29). This distribution

shown in fig.s(6.11, 6.12).

The second order correlation for TSCS can be written as,

g
(2)
TSCS(0) =

< â†2â2 >

(< â†â >)2
=
|α|4 + 4(A+ 1

2 )|α|2 − E(α2 + α∗2) + 2(A+ 1
2 )2 + E2

{|α|2 + (A+ 1
2 )}2

=
{|α|4 + 4((1 + 2f(β))sinh2r + f(β) + 1

2 )|α|2 − {(1 + 2f(β)) sinh r cosh r}(α2 + α∗2)}
{|α|2 + (1 + 2f(β))sinh2r + f(β) + 1

2}2

+
{2((1 + 2f(β))sinh2r + f(β) + 1

2 )2 + {(1 + 2f(β)) sinh r cosh r}2}
{|α|2 + (1 + 2f(β))sinh2r + f(β) + 1

2}2
(6.33)

This correlation shown in fig.(6.13)

Then the chaoticity for TSCS is
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Figure 6.13: Second order correlation for TSCS

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

fHΒL

C
h
a
o
ti
c
it
y
'Λ
'

Chaoticity for TSCS state with different values of 'r'

r=2.5

r=2.0

r=1.5

r=1.0

Figure 6.14: Chaoticity of TSCS

λTSCS =
2(A+ 1

2 )|α|2 − E(α2 + α∗2) + {A+ 1
2}

2 + E2

{(A+ 1
2 )|α|2}2

=
{2((1 + 2f(β))sinh2r + f(β) + 1

2 )|α|2 − {(1 + 2f(β)) sinh r cosh r}(α2 + α∗2)}
{|α|2 + (1 + 2f(β))sinh2r + f(β) + 1

2}2

+
{((1 + 2f(β))sinh2r + f(β) + 1

2 )2 + {(1 + 2f(β)) sinh r cosh r}2}
{|α|2 + (1 + 2f(β))sinh2r + f(β) + 1

2}2
(6.34)

This is shown in fig.(6.14). Here, we observe that as increasing the temperature, chaoticity is increases

up to two for any value of r and also for increasing the values of ’r’ the chaoticity is increases. So, chaoticity

is the function of temperature. Even small amount of squeezing the corresponding source is more chaotic.

This can be explain how much thermalization occur in fire ball region.

6.3 Conclusion

In this chapter, we have derived and plotted the probability distributions and correlations of Thermal

Coherent State(TCS) and Thermal Squeezed Coherent State(TSCS) by using thermal-field theory, then

compared with Generalized Glauber-Lachs(GGL) formula and identified the similarities. In future plan, we

will compare the both with experimental heavy ion collisons data.
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6.4 Appendix: A mathematical approach to obtain the

thermal probability distributions and correlations

A: For Thermal squeezed coherent state(TSCS)

We statrt with constructing the wigner function from the characteristic function of a TSCS. From the

Wigner function the probability distribution is in step wize. The Wigner function can be defined as a

Fourier transform of the characteristic function. So which can be defined as below,

W (γ, 0) =
1

π2

∫
d2βExp[−(A+

1

2
)|β|2 − E

2
(β2 + β∗2) + β(α∗ − γ∗)− β∗(α− γ)] (6.35)

If we take β = x1 + ix2 in above function it can be written as,

W (γ, 0) =
1

π2

∫
dx1dx2Exp[−(A+

1

2
+ E)x1x1 − (A+

1

2
− E)x2x2

+ {(α∗ − γ∗)− (α− γ)}x1 + i{(α∗ − γ∗) + (α− γ)}x2] (6.36)

For solving this double integral, we can use a matrix method described in the appendix 1 to get the Wigner

W-function from eq.(??) is,

W (γ, 0) =
1

π[(A+ 1
2 )2 − E2]1/2

Exp[−
(A+ 1

2 )|γ − α|2 + 1
2E[(γ − α)2 + (γ∗ − α∗)2]

(A+ 1
2 )2 − E2

] (6.37)

From the Wigner function we get the probability distribution function as [67],

P (n) = 2(−1)n
∫
d2γW (γ, 0)Ln(4|γ|2)Exp[−(2|γ|2)] (6.38)

which can be formally written as,

P (n) = 2(−1)nLn(− ∂

∂λ
)I(λ) |λ=1; (6.39)

Here,

I(λ) =

∫
d2γW (γ, 0)Exp[−(4λ|γ|2)]

the integral is,

I(λ) =
1

π[(A+ 1
2 )2 − E2]1/2

Exp[−
(A+ 1

2 )|α|2 + E
2 (α2 + α∗2)

(A+ 1
2 )2 − E2

]
π

(Det[A])
1
2

Exp[
1

4
B†.A−1.B]

Now substituting I(λ) in equation(6.39).
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Finally, The probability distribution function for TSCS is,

P (n) =
1

[(A+ 1
2 )2 − E2]1/2

n∑
m=0

(1− ν−)m(1− ν+)n−mL(−1/2)
m (−X−)L

(−1/2)
n−m (−X+)×

Exp[− (A+ 1)|α|2 + E(α2
1 − α2

2)

(A+ 1)2 − E2
], (6.40)

where,
ν± = [A+ 1± E]−1; Y± = [(A± E)(A± E + 1)]−1 (6.41)

X+ = α2
2[(A+ E)(A+ E + 1)]−1; and X− = α2

1[(A− E)(A− E + 1)]−1, (6.42)

The expectation value of product of the l-ordered creation and annihilation operators can be defined as,

< â†lâl >=
∂2lC(β, s)

∂βl∂(−β∗)l
|β,β∗=0 (6.43)

The average number density for TSCS can be derived as,

< n >=< â†â > =
∂

∂β

∂C(β, s = 0)

∂(−β∗)
|β,β∗=0

= |α|2 +A+
1

2

= {|α|2 + (1 + 2f(β))sinh2r + f(β) +
1

2
} (6.44)

and

< â†2â2 > =
∂2

∂β2

∂2C(β, s = 0)

∂(−β∗)2
|β,β∗=0

= {|α|4 + 4(A+
1

2
)|α|2 − E(α2 + α∗2) + 2(A+

1

2
)2 + E2} (6.45)

The variance is one of the moments of a distribution and a measure of how far a set of numbers is spread

out, describing how far the numbers lie from the mean (expected value). It forms part of a systematic

approach to distinguishing between probability distributions. For this TSCS variance is

µ =< n2 > − < n >2=< â†2â2 > −(< â†â >)2

= 2(A+
1

2
)|α|2 − E(α2 + α∗2) + (A+

1

2
)2 + E2 (6.46)

B: For Thermal coherent state(TCS)

For producing the multiplicity distributions for thermal coherent state(TCS), we can take squeezing param-

eter r = 0 in eq.(6.40) and by using associated Laguerre polynomials and its identities,
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L(k)
n (x) =

n∑
m=0

Γ(n+ k + 1)(−x)m

(n−m)!Γ(m+ k + 1)m!
;

n∑
m=0

Lk1m (x)Lk2n−m(y) = Lk1+k2+1
n (x+ y), (6.47)

The probability distribution for TCS is

PTCS(n) =
2

1 + f(β)
(

f(β)

1 + f(β)
)nExp(− |α|2

1 + f(β)
)Ln(− |α|2

1 + f(β)
) (6.48)

The average number density for TCS can be derived as,

< n >=< â†â >=
∂

∂β

∂C(β, s = 0)

∂(−β∗)
|β,β∗=0 = {|α|2 + f(β) +

1

2
} (6.49)

and
< â†2â2 >=

∂2

∂β2

∂2C(β, s = 0)

∂(−β∗)2
|β,β∗=0 = {|α|4 + 4(A+

1

2
)|α|2 + 2(A+

1

2
)2} (6.50)

Therefore, the variance for TCS is

µ =< n2 > − < n >2=< â†2â2 > −(< â†â >)2 = {(A+
1

2
)2 + 2(A+

1

2
)|α|2} (6.51)

.



Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, I have used the thermo-field dynamics formalism to study quantum entanglement, decoherence

and quantum correlations in a few generic many-body thermal quantum systems in various branches of

physics. The aim is to show the simple yet powerful use of the method for solving the master equation,

studying thermal decoherence effects and thermal effects on correlations in various systems. The systems

discussed elaborately belong to three different branches of physics, illustrating the universality of formalism.

The first one is quantum entanglement in coupled waveguides system in quantum optics, the second one,

quantum entanglement in coupled two site, two species Bose-Hubbard model in condensed matter physics

and the last one is, multiplicity distributions and correlations of hadrons in particle physics.

A brief summary of the thesis is as follows: In the introductory chapters 1, 2 & 3: I have introduced

the basic formalisms of thermal quantum field theory and given an explanation of how the TFD formalism

is a very powerful tool to study the thermal systems in equilibrium as well as out of equilibrium. A brief

description of quantum entanglement and how TFD helps in solving the master equation of the density

matrix, to calculate entanglement properties and decoherence is given in the introduction. The second

chapter introduces the reader to the TFD formalism in detail: its construction within the doubling of

Hilbert space, thermo-algebra for various thermal systems and defined various thermal states. The third

chapter discusses various measures of quantum entanglement for a bipartite system and their relationship

with each other.

In the fourth chapter, the TFD formalism is used to solve the master equation of coupled waveguide

systems. In case of coupled waveguides without damping, the evolution of quantum many body NOON

80
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states is shown for N = 2, 3, 4, 5, etc. This is important because for a NOON state the decoherence of a

damped state is relatively more. The entanglement of the NOON states survives with time upon increasing

photon number, making them extremely suitable for quantum information. It is inevitable that the quantum

state interacts with the environment which will cause the decoherence of the state, thus in quantum super

sensitive measurements, decoherence should be included. We have investigated the performance degradation

of the entanglement of various optical states by solving the master equation with the presence of damping

using SU(2) and SU(1,1) algebras. Extending upon the work of Rai et. al[48], we have an exact solution for

the master equation, and, we can also show how the entanglement behaves for input thermal states. Our

results have also shown that the entanglement of the system can withstand a certain amount of damping,

suggesting that, even if the waveguides are lossy, it can be used for applications such as quantum computation.

Furthermore we have shown the effect of an external heat bath on the system, by applying our methods to

thermal input states. Our method shows the usefulness of TFD in quantum entanglement problems, quite

orthogonal to the approach given in ref.[?], and allows us to handle damping in entanglement generation

properties. We propose to apply this formalism to coupled light-atom systems, to shed further light on the

effect of damping on the generation of entanglement.

In fifth chapter, We studied the Bose-Hubbard model by using TFD to extend the work of K.V.S.S.

Chaitanya et. al[56] in the presence of non-linear damping with coupling strength. This is of interest

because ultracold atoms are a natural resource for quantum information processes. Indeed, we have exactly

solved the master equation associated with SU(1,1) symmetries for two-site Bose-Hubbard model using the

disentanglement formula. The different entanglement properties and decoherence of the system for coupling

strength(J) and with damping(κ 6= 0) and without damping(κ = 0) are illustrated. We compare the role of

the hopping parameter(J) and the repulsive on-site interaction parameter(U) on these features and shown

how we can tune the system for optimum quantum information processing.

In the sixth chapter, which represents a departure from earlier studies, we show a unique application of

TFD to study a truly many particle system of pions produced from a thermal source in a heavy ion collision.

Since the thermal source is considered to be the origin of the much sought after quark gluon plasma in the

lab, its thermal properties are of interest. Direct measurement of these properties is impossible as it lives

only for a fraction of a nano second. Whether a thermal source, hot enough to produce the QGP is formed

or not must be deduced from any thermal effects on the features of multiplicity distributions and correlations

of pions that are emitted in the epoch of fireball formation. In particular Bose-Einstein correlations(BEC)

among pions tell us if a source is chaotic (thermal) or coherent. These properties can be examined using

quantum optical techniques such as Hanbury Brown Twiss interferometry. Our work presents thermal effects

on BEC phenomenology using TFD. One of the main parameters is the temperature of the particle(emitting)

source under the random external forces(fields) influence[68]. We have seen clearly the dependence of the

chaoticity parameter on the number of thermal particles. These may be useful as tools to study the properties
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of the QGP believed to be produced in the collision of heavy ions at RHIC and LHC (in the future).

7.2 Conclusions

Studying the many-body quantum systems within a thermal environment is an active area of physics. A

large amount of experimental progress has been made to realize many-body quantum systems that evolve

under their quantum dynamics. Optical cavity systems and ultracold atoms[55] in optical lattices(BEC)

have tunability and long coherence times. Therefore one can probe quantum entanglement dynamics in

these systems for purposes of quantum computing. These systems can decohere due to interaction with

thermal environments and damping effects, therefore solving the master equation of a system in thermal

environment using TFD and give us useful information about their sustainability. Most research has been

done so far in quantum information theory, quantum cryptography, quantum teleportation, quantum dense

coding and quantum computing and so on are done without considering thermal effects, i.e., at absolute zero

temperature. The work done in this thesis is a start to more work in this direction. So far only photonic and

bosonic fields have been studied. We hope to extend our work to quantum entanglement in atom-photon

fields and its evolution and decoherence effects. We also intend to go beyond the two site Bose Hubbard

model and look at the entanglement properties in systems which have phase transitions. On the particle

physics side, the thermal multiplicity distributions still have to be compared with actual data from heavy

ion experiments to show how the temperature of the emitting source can be extracted. This will be a future

avenue of our work.
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