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CHAPTER-1

Introduction and methods







1.1 Introduction

Proteins are vital biological macromolecules present for specific functions such as
enzymes, hormones, defense, storage, transport, receptor, contractile and source of energy
(Lodish et al., 2001). Proteins are synthesized in living cells using the genetic material DNA as
template by two sequential steps, transcription and translation. The correct folding of a protein
into its three-dimension (3-D) structure is required for its function, while protein misfolding,

mutations and deficiency can often lead to some diseases (Scheper et al., 2007).

Kinases are described as enzymes that phosphorylate a substrate, be it a protein, DNA,
carbohydrate or lipid; by the transfer of negatively charged terminal y-phosphate group from an
energy rich molecule, adenosine triphosphate (ATP). Protein kinases represent one of the
important family of enzymes in eukaryotes (Manning et al., 2002). It is estimated that 30-50% of
protein kinases are phosphorylated in any given cell (Pinna & Ruzzene, 1996). Protein kinases
function by both transphosphorylation of substrate and autophosphorylation of itself. Protein
phosphorylation is considered as a post-translational modification that leads to a change in the
conformation of the protein 3-D structure that is required for regulating cellular biological
pathways. Protein kinases play a vital role in regulating cell division, differentiation, growth,
survival, signal transduction, cytoskeletal rearrangement, immune response, nervous system
function, transcription, learning and memory, metabolism and etc (Zhou et al., 2012; Roskoski,
2014; Hunter, 2000). Protein phosphorylation occurs on the side-chains of hydroxyl amino acid
residues; serine, threonine (Ser/Thr Kkinases), tyrosine (Tyr kinases), and deprotonated, tele-
nitrogen on the side-chain imidazole of histidine (histidine kinases) (Cohen, 2002). The extent of
serine phosphorylation is high among the hydroxyl amino acids, some protein kinases function as
dual-specificity kinases to phosphorylate both Ser/Thr and Tyr residues (Besant et al., 2003).
Statistical studies based on high-throughput phosphoproteomics reported an estimated 13,000
phosphoproteins in the human proteome and 156,000 phosphorylation sites where one of the

amino acids is a serine, threonine, or tyrosine (Vlastaridis, 2017).

Kinases are one of the large protein families and represent ~2% of the human proteome. There

are more than 600 protein kinases present in the human genome. These kinases display high
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similarity in the amino acid sequences and infer evolutionary relationships by means of having a
common ancestral protein (Brinkworth et al., 2002). Protein kinases are classified into groups
that consist of families and divided into multiple subfamilies. In the human genome, these
enzymes are classified into eight groups to represent conventional protein kinases; AGC group
represent protein kinase A, G, C families which are termed as (PKA, PKB and PKC); CAMK
group which represent calcium/calmodulin-dependent protein kinase; CK1 group is casein
kinase 1; CMGC group which contains CDK, MAPK, GSK3 and CLK family; receptor
guanylate cyclases; STE group represent homologs of yeast Sterile 7, Sterile 11 and Sterile 20
kinases; Tyrosine kinase group; tyrosine kinase-like group. Other kinase group and the atypical
kinase-like protein are a mixed collection of kinases that cannot be classified into the above
groups and form a separate group of protein kinases (Andrade et al., 2011; Duong-Ly &
Peterson, 2013). Each of these groups are further divided into certain families and subfamilies in
kinase classification (Manning et al., 2002). Protein kinases are often a part of large multi-
domain proteins. For example, Src family proteins comprise a unique, SH2, SH3 and kinase
domains from N-terminus towards the C-terminus with spacer regions of variable lengths
connecting the conserved domains (Boggon & Eck, 2004; Martin et al., 2010). The protein
phosphoinositide3-kinase (PI3K) is made up of two subunits, p110 and P85, and the kinase
domain is present towards the C-terminus of the p110 alpha subunit (Cantley, 2002). Abl protein
has SH3, SH2 and tyrosine kinase domains (Colicelli, 2010), PDK1 has Ser/Thr kinase and a PH
domain (Belham et al., 1999). Akt/PKB protein has a PH domain followed by a Ser/Thr kinase.

A typical kinase domain consists of ~250 to 280 amino acid residues. Several research groups
have solved the three-dimensional crystal structures of protein kinases in the apo form and when
bound to the cofactor ATP or ligands and inhibitors, and the 3-D coordinates are deposited in the
protein data bank (PDB) (Berman et al., 2007). The 3-D structure of a protein kinase domain
consists of two lobes, a smaller N-terminal lobe rich in B-sheets and a larger C-terminal lobe
comprising mainly a-helices. The N- and C-terminal lobes are linked by a flexible hinge region
and the amino acid residues located at the interface along with the hinge region forms the
cofactor ATP binding pocket (Schindler et al., 2000). Several structural features are common to

all kinases and are important for the activity and conformational alterations.
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The N-terminal lobe contains a five-stranded PB-sheet (B1-B5) and one catalytic a-helix (aC-
helix). The glycine-rich loop connecting strands Bl and B2 in this lobe comprises a sequence
motif "GxGxxG" and stabilizes the phosphate groups of the cofactor ATP (therefore also called
P-loop) during catalysis. A conserved sequence motif, HRD occurs in the catalytic loop of the
protein. A ~25 amino acid activation loop connecting the conserved sequence motifs DFG (Van
Linden et al., 2014; Gardner et al., 2007) (sometimes replaced with DLG or DWG) and APE
(Steichen et al., 2010) (sometimes replaced with XPE, where ‘X’ is any amino acid residue) in
the C-terminal lobe is highly flexible. This loop is important for the formation of substrate
binding cleft in the active form of kinases and undergoes a huge conformational change between
active, inactive and intermediate states. The plasticity of these structural motifs is essential for
regulating the activity of a kinase. In the on/active state, the activation loop is fully extended
with the Asp of DFG motif facing the ATP binding pocket and the Phe of DFG side-chain
occupying a hydrophobic pocket adjacent to the aC-helix, this conformation is referred to as the
‘DFG-in state’ (Nagar et al., 2002). The active state is characterized by an inward movement of
the aC-helix and a salt bridge interaction between a conserved Lys residue in the B3 strand (close
to Gly-rich loop) and a Glu residue in the aC-helix (Vijayan et al., 2015). It is interesting to
study that depending on the phosphorylation state of the kinase, cofactor/ligand/inhibitor
binding, the kinases undergo significant conformational changes in these regions. Kinases switch
their conformation between ‘on/active’ and multiple ‘off/inactive’ states. Specific residue
phosphorylation by auto-phosphorylation or trans-phosphorylation in the activation loop results
in an extended conformation exposing a surface cleft which facilitates binding of substrates.
Despite the difference in the primary sequences, all kinases adopt a strikingly similar structural
similarity. This similarity is greater when a kinase is in the active form. In the inactive form of
kinases allosteric binding sites are also presented (Gilburt et al., 2017). These structural features

of a protein kinase are shown in Figure 1.1.

The dysregulation of a protein kinase in the cellular events leads to several disease conditions,
this enzyme is therefore an important target system in the pharmaceutical industry for
intervention in oncology, immunology, cardiology, neurology, and infectious diseases (Ardito et
al., 2017).
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Figurel.1:The 3-D structure of Polo-like Kinase-2 (PDB ID: 4I5P). Various structural motifs are
indicated. Helices (red), strands (blue), loops (pink). The side-chains of the first and last amino acid
residues, Asp, Phe from DFG motif. His, Arg from HRD motif are represented in stick (carbons- yellow,
nitrogen- blue, oxygen-red).

1.1.1 Cancer

Cancer is a massive group of diseases that is manifested as uncontrolled growth of cells.
Some types of cancer invade other tissues and destroy organs due to metastasis. The symptoms
of cancer are difficult to be noticed, but various diagnostic tests can confirm the presence of
disease. Several factors are responsible for causing cancer such as lifestyle, pollution, alcohol
consumption, malnutrition, physical factors such as exposure to harmful radiation, chemical
exposure of toxins (Ames et al., 1995), hormones, bacterial infections such as Helicobacter
pylori (Peter & Beglinger, 2007), and viral infections such as hepatitis B and C, human
papilloma virus, Rous sarcoma virus and Epstein—Barr virus (de Oliveira, 2007). Some cancers
are also caused by genetic factors that are inherited from parents (Ponder, 2001). Cancer is
considered as the second leading cause of death. Among various forms of cancer, the most
common among men and women are lung cancer and colorectal cancer; prevalent among men

are stomach, liver and prostate; and prevalent among women are cervical, thyroid and breast

12


https://en.wikipedia.org/wiki/Human_papillomavirus_infection
https://en.wikipedia.org/wiki/Human_papillomavirus_infection
https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus

cancer (de Martel et al., 2020). Approximately 9.6 million deaths were reported in the year in
2018 out of 17 million populations diagnosed as cancer cases, it is projected that increase in

burden of cancer by 2040 to be 27.5 million (https://www.who.int/).

Cancerous cells differ from the normal cells due to their uncontrolled cell division. Several
proteins play important roles in the biochemical events leading to cancer progression. These
proteins may be targeted for cancer treatment by the employment of chemical inhibitors. Among
such proteins, kinases represent as excellent targets due to their genetic alterations including
mutations, overexpression, translocations, and dysregulation (Croce, 2008). Kinases have been
targeted as cancer causing agent for first time in 1970 and the first 3-D crystal structure of cyclic
adenosine monophosphate-dependent protein kinase comprising phosphorylated Ser and Thr was
reported in 1991 (PDB ID: 2CPK) (Knighton et al., 1991).

1.1.2 Protein kinase and inhibitor types

Protein kinases share high sequence and structural similarity. Kinases are classified into
receptor and non-receptor categories based upon their cellular location. Receptor kinases are
present on the cell surface and possess one more transmembrane spanning regions and the
enzymatic catalytic kinase domain is on the cytoplasmic side of the receptor (examples: EGFR,
FGFR, PDGFR). Some of the non-receptor kinasesare cytosolic intracellular protein Kinases
(examples: ABL, ACK, CSK, FAK, FES, FRK, JAK, SRC, TEC and SYK) (Manning &
Cantley, 2007). Both receptor and non-receptor kinases regulate the biological events inside the
cell by switching the kinase into on and off states to control cellular processes such as
proliferation, cell growth, differentiation, adhesion, migration, and apoptosis (Neet & Hunter,
2001). Kinases are also important elements in the regulation of immune systems. Despite the
high similarity in the kinase domains, they achieve high selectivity as evidenced by a variety of
crucial biological roles orchestrated by these enzymes and binding to certain inhibitors

specifically with high affinity and selectivity.

Already some of the inhibitors to protein kinases are approved by food and drug administration
(FDA) and are used as therapeutics in certain disease conditions. Several lead molecules are in

the advanced stages of clinical trials. However, given the importance of the protein kinases in
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disease conditions, studies related to the design of new potent molecules and the understanding
of their mechanism of inhibition still remains a fertile area to conduct research (Roskoski, 2016).
Kinase inhibitors are classified into six groups; the first group (type I) inhibitors bind at the
cofactor ATP binding site, the DFG motif is available as DFG-in state, the inhibitor binds into
front and gate region till the DFG motif. Most of the kinase inhibitors reported so far belong to
type 1, and bind at the site in between N-terminal and C-terminal regions divided into clefts of
front pocket, gate and back pockets. The type Il inhibitors are designed to bind with DFG-out
conformation of the kinase at the ATP binding pocket and occupy the back pockets (Van Linden
et al.,, 2014). The type Il andtype IV are called the allosteric inhibitors, type Ill occupies a
pocket near to ATP binding site and type IV occupies a region away from the ATP binding site.
Type V inhibitors called as bivalent inhibitors span the two binding sites. The type VI inhibitor is
called covalent inhibitors as it forms a covalent bond with the protein and is considered as
irreversible inhibitor (Martinez et al., 2020; Zhao & Bourne, 2020). Tablel.1 provides a list of
the FDA approved kinase inhibitors for cancer treatment along with their inhibitor type, year of

FDA approval and the drug company for invention.

Table 1.1: FDA approved kinase inhibitors used for cancer treatment.

Drug Target kinase Inhibitor  Cancer type Pharmaceutical  Year
type Company
Imatinib Bcr-Abl, c- I Philadelphia chromosome—  Novartis 2001
KIT, PDGFR positive chronic myeloid

leukemia, acute
lymphoblastic leukemia,
chronic eosinophilic
leukemias,
hypereosinophilic
syndrome, Gastrointestinal

stromal tumor,

myelodysplastic/myeloprol

iferative

disease
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Gefitinib EGFR, | Non-small cell lung cancer AstraZeneca 2003

PDGFR

Erlotinib EGFR | Non-small cell lung cancer, Roche, OSI 2004

pancreatic cancers

Sorafenib B-Raf, CDKS, I Hepatocellular carcinoma,  Bayer 2005
Kit, FIt3, RET, Renal cell carcinom,
VEGFR1/2/3, thyroid cancer
PDGFR

Sunitinib PDGFRa/B, I Renal cell carcinoma, Pfizer 2006
VEGFR1/2/3, Gastrointestinal stromal
Kit, FIt3, CSF- tumor, pancreatic
1R, RET neuroendocrine tumors

Dasatinib BCR-ADI, Src, | Philadelphia chromosome—  GlaxoSmith- 2006
Lck, Lyn, Yes, positive chronic myeloid Kline
Fyn, Kit, leukemia, philadelphia
EphA2, chromosome—positive
PDGFRJ acute lymphoblastic

leukemia

Nilotinib BCR-ADI, I Philadelphia chromosome—  Novartis 2007
PDGFR, positive chronic myeloid
DDR1 leukemia

Lapatinib EGFR, I human epidermal growth GlaxoSmith- 2007
ErbB2/H factor receptor 2 positive Kline
ER? breast cancers

Pazopanib VEGFR1/2/3, I Renal cell carcinoma, soft ~ GlaxoSmith- 2009
PDGFRw/, tissue sarcoma Kline
FGFR1/3, Kit,
Lck, Fms, Itk

Crizotinib ALK, c-Met I Anaplastic lymphoma Pfizer 2011
(HGFR), kinase or C-ros oncogene 1
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Ruxolitinib

Vandetanib

Vemurafenib

Axitinib

Bosutinib

Cabozantinib

Ponatinib

Regorafenib

ROSL,
MSTI1R

JAK1/2/3,
Tyk

EGFR,
VEGFR, RET,
Tie2, Brk,
EphR

A/B/C-Raf and
B-Raf
(\V600E)

VEGFR1/2/3,
PDGFRB, Kit

BCR-ADI, Src,
Lyn, Hck

C_
MET/VEGFR
2, AXL and
RET

BCR-ADI,
BCR-AbI
T315I,
VEGFR,
PDGFR,
FGFR, EphR,
Src family
kinases, Kit,
RET, Tie2,
FIt3

VEGFR1/2/3,
BCR-AbI, B-

postive Non-small cell

lung cancer

Myelofibrosis,

polycythemia vera

Medullary thyroid cancer

Melanoma with BRAF
V600E mutations

Renal cell carcinoma

chronic myeloid leukemia

Medullary thyroid cancer

Philadelphia chromosome—

positive chronic myeloid
leukemia, philadelphia
chromosome—positive
acute lymphaoblastic

leukemia

Colorectal cancer,

Gastrointestinal stromal

Incyte

AstraZeneca

Roche,

Plexxicon

Pfizer

Wyeth

Exelixis

Ariad

Bayer

2011

2011

2011

2012

2012

2012

2012

2012
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Afatinib

Dabrafenib

Ibrutinib

Trametinib

Ceritinib

Idelalisib

Raf, B-Raf
(V600E), Kit,
PDGFRa/B,
RET,
FGFR1/2,
Tie2, and
Eph2A

EGFR, Vi
ErbB2/4

B-Raf I

BTK VI

MEK1/2 Il

ALK, IGF-1R, I
InsR, ROS1

PI3K-8 I

tumor

Non-small cell lung cancer

B-RAF V600E/K
melanomas, BRAFV600E

Non-small cell lung cancer,

BRAF V600E anaplastic
thyroid

cancers

Mantle cell lymphoma,
Chronic lymphocytic
leukemia, Waldenstrom's

macroglobulinemia

B-RAF V600E/K
melanomas, B-RAF
V600E

Non-small cell lung cancer

Anaplastic lymphoma

kinase, Non-small cell lung

cancer after crizotinib

resistance

Chronic lymphocytic
leukemia/small
lymphocytic lymphoma,

follicular lymphoma

Boehringer-

Ingelheim

GlaxoSmith-
Kline

Janssen,

Pharmacyclics

GlaxoSmith-
Kline

Novartis

Gilead Sciences

2013

2013

2013

2013

2014

2014
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Nintedanib

Alectinib

Cobimetinib

Palbociclib

Lenvatinib

Osimertinib

Abemaciclib

Acalabrutinib

FGFR1/2/3, 1
FIt3, Lck,

PDGFRu/p,
VEGFR1/2/3

ALK, I
RET

MEK1/2 Il

CDKa4/6 I

VEGFR1/2/3, \Y
FGFR1/2/3/4,

PDGFRa, Kit,
RET

EGFR I

CDKa4/6 I

BTK I

Idiopathic pulmonary
fibrosis, Non-small cell

lung cancer

Anaplastic lymphoma
kinasepositive Non-small

cell lung cancer

B-RAF V600E/K

melanomas in combination

with vemurafenib

Estrogen and human
epidermal growth factor

receptor 2 breast

cancer

advanced Renal cell
carcinoma
differentiated thyroid

cancer

Non-small cell lung cancer

Combination therapy with
an (i)

aromatase inhibitor or with
(i)

fulvestrant or as a

monotherapy for breast

cancers

Mantle cell lymphomas,
Chronic lymphocytic
leukemia/small

lymphocytic lymphoma

Boehringer-

Ingelheim

Hoffmann-La
Roche

Exelixis, Roche

Park Davis

Eisai

AstraZeneca

Eli Lilly

Acerta Pharma

2014

2015

2015

2015

2015

2015

2017

2017
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Brigatinib

Midostaurin

Neratinib

Ribociclib

Copanlisib

Binimetinib

Dacomitinib

Encorafenib

Gilteritinib

Larotrectinib

Lorlatinib

ALK I

FIt3 I

ErbB2/H I
ER2

CDK4/6 I

PI3K- I
aand PI3K-

MEK1/2 Il

EGFR I

B-Raf I

FIt3 I

TRKA/B/ unknown

C

ALK I

Anaplastic lymphoma
kinasepositive Non-small

cell lung cancer

Acute myeloid leukemia,
mastocytosis, mast cell

leukemias

human epidermal growth
factor receptor 2 positive

breast cancers

Combination therapy with
an aromatase inhibitor for

breast cancers

Follicular lymphoma

Combination therapy with

encorafenib

for B-RAF V600E/K

melanomas

EGFR-mutant Non-small

cell lung cancer
Combination therapy with
binimetinib for

BRAFV600E/K

melanomas
Acute myeloid leukemia

Solid tumors with
neurotrophic tyrosine
receptor kinase fusion

proteins

Anaplastic lymphoma

ARIAD

Pharmaceuticals

Novartis

Wyeth; Pfizer

Novartis and Ast
ex

Pharmaceuticals

Bayer

Array

Biopharma

Pfizer

Novartis, Array

BioPharma

Astellas Pharma

Array
BioPharma, Loxo

Oncology

Pfizer

2017

2017

2017

2017

2017

2018

2018

2018

2018

2018

2018
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Entrectinib

Erdafitinib

Fedratinib

Alpelisib

Zanubrutinib

Pexidartinib

Avapritinib

pralsetinib

Selumetinib
Pemigatinib
Capmatinib
Tucatinib

Selpercatinib

Ripretinib

TRKA/BI/C,
ROS1

FGFR1/2/3/4

JAK2

PI3Ka

BTK

CSF1R

KIT, PDGFR

RET

MEK1/2
FGFR1/2/3
MET
HER?2

RET

KIT, PDGFR

unknown

unknown

kinase positive Non-small

cell lung cancer

Solid tumors with
neurotrophic tyrosine
receptor kinase fusion
proteins, C-ros oncogene 1
positive Non-small cell

lung cancer

Urothelial bladder cancers

Myelofibrosis

Breast cancer

Mantle cell lymphoma
blood cancer

Tenosynovial giant cell

tumor

Gastrointestinal stromal

tumor

Non-small cell lung cancer

Neurofibromatosis type 1
Biliary cancer

Non-small cell lung cancer
Breast cancer

Non-small cell lung cancer,

thyroid cancer

Gastrointestinal stromal

tumor

Genentech/Roche

Janssen

Pharmaceuticals

Tragara

Pharmaceuticals
Novartis

BeiGene

Plexxikon Inc.

Blueprint
Medicines

Blueprint
Medicines

AstraZeneca
Incyte

Novartis

Seattle Genetics

Eli Lilly

Deciphera

Pharmaceuticals

2019

2019

2019

2019

2019

2019

2020

2020

2020

2020

2020

2020

2020

2020
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1.1.3 Cell cycle regulation and protein Kinases

The process of cell division and its replicationis described as cell cycle (Howard, 1953;
Nurse, 1990), these are coordinated events controlled by a sequence of biochemical steps. The
outcome of cell cycle is to produce from the parent cell two similar daughter cells. Cell cycle is
required for the development and growth of all organisms.

In addition to the normal physiological role of cell cycle, perturbation in the cell cycle regulation
plays an important role in causing disease. One of the major factors that cause cancer are the
perturbations in the cell cycle regulation, therefore the control of cell cycle is of major
importance to human health because. Mammalian cell cycle process is tightly controlled by a
group of conserved biological events with precise mechanism and transfer of genomic content
into daughter cells without alteration (Cho et al., 2001). The cells pass through two main stages,
the first stage is represented by non-proliferation gap (G) stage, GO, and the second stage is
divided into four different phases during each cell division. The four phases (G1, S, G2 and
mitotic) represent proliferation. The duplication of the nucleotide content of genome occurs
during the synthesis (S) phase. The complete sets of chromosomes are segregated to each of the
daughter cells in mitotic (M) phase. The cell cycle contains gap phases; the G1 phase connects
the completion of mitotic phase to initiation of S phase in the next cycle (Harper et al., 1993).
The G2 phase separates the S and mitotic phases. Depending on the extrinsic environmental and
intrinsic evolving signals, the cells in G1 may temporarily or permanently leave the cell cycle
and enter a dormant or arrested phase known as GO. The cells that have undergone DNA damage
from internal and external factors are activated by some processes that lead to the recovery and
repair of genomic material, while in some cases, cells enter into apoptosis (Nigg, 1995). Proteins
control the cell cycle events and induce cells to enter from GO into G1 phase which is a pre-
synthesis stage of DNA (Hunter & Pines, 1994, Pagano et al., 1992). In the non-proliferative GO
state, the viable cells leave the cell cycle and continue to remain in rest state for long time
periods. The cells in GO phase after the exit from their last mitosis carry out specialized functions
and no longer divide. They are actively engaged in protein synthesis and secretion, and perform
all the primary functions of the cell. The cells in GO phase re-enter the cell cycle in response to
specific stimuli. Cell cycle re-entry into G1 phase involves changes in gene expression and
protein stability (Malumbres & Barbacid, 2009).
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The G1 phase is the pause time between the accomplishment of one round of cell cycle and the
commencement of the next cycle. The time required for this phase is variable, depends on the
cell type and the extrinsic influences such as the accessibility of growth factors and nutrients.
The optimal growth in mass and size is generally obligatory before the cell enters into the S
phase. The actions required in the progression of cell cycle are suppressed in this phase such that
the cell cannot induce another round of propagation. This control of cell cycle is termed the
restriction point. Defects in restriction point control are observed in cancer cells, therefore
cancerous cells often continue to grow and try to divide even when the appropriate
environmental signals are absent. The instructions for cell size are closely related to ribosome
biosynthesis and nutrient availability and uptake mechanisms, also the proteins in the pathways
of phosphoinositide 3-kinase (P13K) and mammalian target of rapamycin (mTOR) play a critical
role (Fingar et al., 2002). In the absence of MYC transcription factor, the cells slow their growth
and do not enter the S phase (Gao et al., 2004). In the S phase, DNA replication takes place. The
duplicated DNA molecules termed as sister chromatids, with the aid of a protein complex,
cohesion, are linked to each other (Nasmyth et al., 2000). Several CDKSs are involved in the
replication of DNA (Tanaka et al., 2007).

The G2 phase which is a comparatively short-term period will trigger the entry into mitosis by
the activation of the enzymatic activities of crucial enzymes (Pines, 1999) which are
progressively accumulated and converted to their active forms. The cell enters the mitosis when
the enzymatic functions reach an optimum level. When any DNA damage during the G2 phase is
detected, the DNA damage response checkpoint is activated and entry of the cell into mitosis is
delayed (Hartwell & Weinert, 1989; Gowan & Russell, 2004; Costanzo et al. 2003).

During the mitotic phase, the cytoplasm and chromosomes are separated into both the daughter
cells. Mitosis is generally separated into five distinct phases. 1. Prophaseis essentially the final
part of G2 phase and it is the commencement of chromosome condensation. The duplicated
centrosomes detach and form two poles of the mitotic spindle. 2. In higher eukaryotes
prometaphase is said to begin with the break-down of nuclear envelope and the when the
chromosomes begin to attach randomly to microtubules stemming from the two poles of the
mitotic spindle in formation. 3. When all the chromosomes are appropriately arranged, the cell

enters the metaphase. 4. In the anaphase the two sister chromatids move away from one another
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and migrate towards opposite poles of the cell, and the exit from mitosis begins. 5. During
telophase, to separate the nuclear DNA from cytoplasm, a nuclear membrane is formed, and the
separation of the two daughter cells from one another is called cytokinesis (Furuno et al., 1999;
Geley et al., 2001).

Besides CDK family members, other kinases also play crucial roles in the cell cycle events such
as PLK family, Weel and Aurora A/B, which play role during G1 till Mitotic phase. The kinases
important in cell cycle regulation are shown in Figure 1.2. As can be seen from the figure, some
kinases participate in the cell cycle regulation during only one phase and some kinases such as
PLK-1, Aurora A/B participate in multiple of cell cycle phases as Aurora A and Aurora B (Nigg,
2001).

BubR1
Mpsi

PLK-1
Aurora A/B CDK2/4/6
CDKA1

PLK-4
NEK PLK-2
Bub1i -

PLK-1
PLK-3
Aurora A/B
Wee1

NEK

Mastl

Figure 1.2: Protein kinases in various phases of cell cycle. (G1-Growth in gapl, S- DNA synthesis, G2-
Additional growth in gap2, M-Mitosis).

Protein kinases in cell cycle regulation are good drug targets for cancer therapy and some of the
FDA approved drugs are already available. Some probable drugs are in advanced stages of
clinical trials. However, new and highly specific drugs are required for each of the kinase drug
targets in cell cycle regulation. Since the protein kinases share high sequence and structural
similarity, the inhibitors tend to bind the desired ‘on’ target as well as the undesired ‘off” target
leading to non-specific binding and therefore display side-effects of drugs. Therefore, the first
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step is the sequence analyses of protein kinases from sequence databases available at NCBI
(http://www.ncbi.nim.nih.gov), UNIPROT (http://wwwi,uniprot.org/) using sequence comparison
methods such as multiple sequence alignments. It is important to understand the detailed
structures of protein kinases at the atomic level from their crystal structures available at PDB and
to construct good quality homology models in the absence of experimental structures. Since the
desire is to design specific inhibitors to a kinase, pharmacophore based approaches, de novo
design methods, virtual screening and fragment based approaches to screen databases can be
employed. The docking of these molecules in the active site of a kinase will reveal the mode of
binding and the intermolecular non-bonding interactions in the protein-ligand complex by
employing computational techniques. In order to understand the conformational changes due to
the functional activation of protein or upon ligand binding, molecular dynamics (MD) studies
can be employed. The extent of binding in a protein-ligand complex can be quantified from the
binding free energy calculations that also reveals the nature of contribution from each amino acid

to their binding.
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1.2 Methods

1.2.1 Databases:

The aim of creating a variety of databases is to segregate the knowledge information, to
organize it and annotate by value addition. Such databases are made available in a useful way to

the scientific community freely or for a subscription fee.
1.2.1.1 Protein sequence database

A protein sequence determines its biological structure and function. From the protein
sequences, and nucleotide sequences obtained from the gene coding regions in the complete
genome nucleotide sequencing projects, the translated amino acid sequences of proteins are
obtained (Xu & Xu, 2004). Such protein sequences are stored in the publicly accessible sequence

databases.

The National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov) hosts
proteins sequence information, the NCBI Reference Sequence (NCBI RefSeq) database is a
curated non-redundant collection of sequences representing genomes, transcripts and proteins.
These entries include a stable reference for genome annotation, gene identification and
characterization, mutation and polymorphism analysis (O'Leary et al., 2016). To address a
growing issue with redundancy in the Prokaryotic RefSeq protein dataset that is significantly
increased in size due to the bacterial genome submissions from individual isolates and closely
related bacterial strains, another type of RefSeq protein database that represents non-redundant
protein sequences has been created. The Universal Protein Resource (UniProt) is a complete
resource for protein sequence and its annotation data available at http://www.uniprot.org/. Both

NCBI and UniProt are the most frequently consulted protein databases by researchers.
1.2.1.2 Protein structure database

The 3-D structures of proteins, nucleotides, their heteromeric complexes and complexes
with inhibitors/cofactors/substrates are determined using nuclear magnetic resonance, X-ray
diffraction and cryo-electron microscopy. These methodologies provide high resolution

structures of biological macromolecules. The organization Worldwide Protein Data Bank
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(wwPDB), maintains the publicly available database of biomolecular structures in order to
maintain a single PDB archive that is freely available to the research community (Berman et al.,
2003). The Research Collaboratory for Structural Bioinformatics Protein Database (RCSB PDB)
available at (https://www.rcsb.org/) is one among the four organization members (PDBe,
PDBj, RCSB and BMRB) (Velankar et al., 2010; Kinjo et al., 2012; Markley et al., 2008) for the

retrieval of protein structures.
1.2.1.3 Chemical libraries of small molecule databases

Small molecule databases provide the repository of organic molecules and their physical
properties. Some databases also provide information on the biological activity of the molecules
(Bento et al., 2014), drug targets supported by literature citation. While some of these databases
are publicly available and downloadable in various file formats, some of the databases are
proprietary and hence need to be purchased from the vendors. The availability of the in silico
libraries of small molecule databases aid in the screening, design and discovery of small
molecule inhibitors for a protein target. Chemical libraries can host upto billions of compounds
providing a researcher the possibility of finding a hit molecule from virtual screening of
databases using computational methods. Some of the commonly used databases and the number
of molecules in the database are, BindingDB (977,487, Gilson et al., 2015), Chemicals from
European Molecular Biology Laboratory ChEMBL (2,086,898, Gaulton et al., 2012),
ChemSpider (103,000,000, Pence & Williams, 2010), Cambridge Structural database (CSD,
1,000,000, Groom et al., 2016), DrugBank (14460, Wishart et al., 2018), MCULE (45,788,060,
Kiss et al., 2012), PubChem (109,908,766, Kim et al., 2016), SciFinder (182,000,000, Wagner,
2006), ZINC (736,001,654, Irwin & Shoichet, 2005), MolPort (20,000,000,
https://www.molport.com), Asinex (522,430, http://www.asinex.com/), ChemBridge (1,300,000,
https://www.chembridge.com/), Chemical Diversity ChemDiv (1,600,000,
https://www.chembridge.com/), AsisChem (2,109,738, http://www.asischem.com/), Enamine
(2,790,127, Shivanyuk et al., 2007), SPECS (350,000, http://www.specs.net), and etc.

1.2.2 Basic local alignment search tool protein

Basic local alignment search tool protein (BLASTp) is a heuristic algorithm for

comparing or searching a protein sequence of interest (query) with all the entries in a protein
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sequence database. It identifies the proteins from the database sequences that resemble the query
protein above a certain threshold. Short matches between two sequences are initially made and
the alignments are extended from these ‘hot spots’. It also provides statistical information about
an alignment for example the ‘expect’ value, length of the protein sequence from database
(Altschul et al. 2005), percentage identity, query coverage and matching score in addition to
performing pairwise sequence alignments. Several variants of BLAST work by comparing all
combinations of nucleotide or protein queries with nucleotide or protein databases (Schéaffer et
al., 2001). BlastP is used to search NCBI non-redundant protein sequences using BLOSUMG62
matrix (Eddy, 2004) as default settings to find all protein sequences in this database that are
similar to the protein of interest. Also, the BlastP searches can be made on the proteins structures
of protein data bank to identify the protein homologues with known structure that could be
subsequently used for protein structure modeling.

1.2.3 Multiple sequence alignment

The arrangement of the amino acid sequences of three or more proteins in order to
identify the regions of similarity is referred to as sequence alignment. The regions of similarity
could be a consequence of structural, functional and evolutionary relationships between the
sequences (Edgar & Batzoglou, 2006). The alignments obtained could be used to identify the
mutations, regions of insertions or deletions between the sequences of interest (Needleman &
Wunsch, 1970; Smith & Waterman, 1981; Lipman et al., 1989). The output format can be used
to generate phylogenetic trees to quantify the evolutionary distance between the sequences and
examine for functional domains (Sievers & Higgins, 2014). Both global and local multiple
sequence alignments can be generated. The global algorithms create an alignment that covers
completely both sequences and by adding the necessary gaps, whereas the local algorithms align
only the most similar regions. The aim of both methods would be to align longer sequence
regions with greater matching among the proteins of study. Some of the common software tools
used for general sequence alignment include Clustal Omega (Sievers & Higgins, 2014) and T-
coffee (Notredame et al., 2000). Clustal omega generates multiple sequence alignments of

sequences by selecting seeded guide trees and HMM profile-profile techniques (Soding, 2005).
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1.2.4 Phylogenetic tree

The guide tree obtained from the Clustal Omega can be transported to generate a phylogenetic
tree (Sievers & Higgins, 2014). The visual representation of the relationship between proteins
from different sources, depicting the path through evolutionary time from a common predecessor
to different descendants is described as phylogenetic tree. The visualization of the tree is the best
representation to describe evolution as a branching process, wherein populations are altered over
time and can diverge into separate branches by hybridization or termination by extinction. The
root of a phylogenetic tree is the highest ancestor of hierarchy between proteins, every leaf node
denotes a protein, and the nodes correspond to the events of divergence between proteins, each
edge signifies a relationship between two adjacent species and the length of an edge represents
the evolutionary distance between them. Some of the most frequently used methodologies to
understand phylogenies and compare or cluster species include UPGMA (Gronau & Moran,
2007), maximum parsimony, Neighbor Joining, maximum likelihood and Monte Carlo or
MCMC-based Bayesian inference techniques (Tamura et al., 2011). A popular web based tool
for the display, manipulation and annotation of phylogenetic trees, the Interactive Tree of Life
(iITOL) (Letunic & Bork, 2019) is available.

1.2.5 Structural motif

The 3-D structure of a protein can be compared with the structures of all known proteins
by using servers such as DALI (Holm & Laakso, 2016). Such searches on protein model
structures aid in identifying proteins that share a similar fold, active site and
ligand/cofactor/inhibitor binding that further aid in drug design studies and to identify protein
functions. The binding sites of proteins found to be similar from Dali searches (based on high Z
score) can have related functions based on the side-chains that form the three-dimensional active
site space required for its function. Some online webservers such as IMAAAGINE (Nadzirin et
al., 2013) and GSP4PDB (Angles et al., 2020) are designed for this purpose to search for similar
3-D motifs which is also called structural patterns by building a hypothetical model based on the

distances between amino acid side-chains and gap between residues.
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1.2.6 Bioinformatics

Bioinformatics is the evolving science that came into light as a result of the enormous
demand for computational analyses and understanding of biological data (Luscombe et al.,
2001). It is an interdisciplinary field comprising of physics, biology, mathematics and computer
science that deals with the application of computational tools and analyses to interpret the
biological data using principles in Physics and Chemistry (Searls, 2010). Biological information
such as genomic, nucleotide and protein sequences are the core of bioinformatics studies for
analyzing, comparing the evolutionary aspects of life forms. Thus it is essential for the
management of data in modern biology and medicine (Baxevanis et al., 2020). Bioinformatics is
a source of performing important tasks such as prediction and recognition of genetic regulatory
networks, analyses of gene variation and expression, analysis and prediction of gene and protein
structure and function, modelling of protein regulatory dynamics and networks, simulation of
environments similar to live cells, and analyses of molecular pathways in order to understand

interactions in disease.
1.2.7 Chemobioinformatics

Chemobioinformatics is a multidisciplinary branch of chemistry, biology, mathematics
and physics that deals with the use of computer modeling and simulation including empirical or
ab initio approaches in order to study the structure and properties of molecules and materials
(Martinez-Mayorga et al., 2020). This is one of the rapidly growing areas in Chemistry for
applications in computer aided drug design (CADD) (Yu & MacKerell, 2017), due to the
availability of high speed computers with high storage capability. It utilizes methods
in theoretical chemistry that are incorporated into resourceful computer programs, useful to
calculate the structure and property of a molecule. Computational chemistry methodologies
usually range from very approximate (for large molecules) to highly accurate (for small systems
only) molecular types. The ab initio methods are based on quantum mechanics. Additional
empirical parameters are employed in empirical or semi-empirical methods (MacKerell Jr et al.,
1998). Computational chemistry finds use in modeling a molecule prior to its synthesis in the
laboratory and hence proves to be beneficial to rule out unsuitable molecules. Also some
properties of a molecule can be obtained computationally more easily than by experimental

methods.
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1.2.8 Molecular graphics and visualization

The visualization of molecular objects in virtual reality can be done using a variety of
interactive systems that have been developed to display molecules in chemistry and biology on a
virtual on screen in interactive mode that inturn enables the use of a variety of symbolic
molecular representations (Martinez et al., 2019). To develop such technology for molecular
visualization requires knowledge of both chemistry and computer sciences. Some examples of
molecular graphics visualization software used for 3-D molecular visualization are Jmol
(Hanson, 2010), Pymol (Schrodinger, 2010) (DeLano, 2002), UCSF Chimera (Pettersen et al.,
2004), DeepView (Guex et al., 2009), Discovery Studio (DS) visualizer. These graphics
visualisers are used to examine 3-D models of proteins and small molecules, to examine,

manipulate structures, and analyze molecular properties.

Visual molecular dynamics (VMD) is a free of charge molecular visualization 3-D graphics
program for display, animate large biomolecular systems. VMD can be used to view 3-D
structures of molecule, and to animate and analyze the large trajectory data files obtained from
classical MD simulations (Humphrey et al., 1996).

1.2.9 Artificial intelligence in drug discovery

Artificial intelligence is a kind of simulation and processing of the human intelligence by
computers. The process includes various steps such as acquiring information, developing rules
for using the obtained information, drawing appropriate conclusions and self-correction
(McCarthy, 1987; Nilsson & Nilsson, 2014). Artificial intelligence uses complex algorithms and
machine learning to obtain meaningful information from a large dataset (Batool et al., 2019). For
example, it helps to identify compounds that could bind to ‘undruggable targets’, i.e., proteins
whose structures are not known. Through iterative simulations of interactions of various
compounds with small parts of a protein, one can identify a predictive set of compounds in a
relatively small amount of time (Hessler & Baringhaus, 2018). The main opportunities for
artificial intelligence in drug discovery lie in drug repurposing using large data sets available
from high-throughput experiments with gene expression profiles. Machine learning and deep
learning are a subfield of artificial intelligence used with drug design during the last decade with

automated software provided via webservers for studies in quantitative structure activity
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relationship (QSAR), phamacophore generation, prediction of protein folding, virtual screening,
protein-ligand and protein-protein interactions, de novo drug design, drug repurposing,
evaluation of absorption, distribution, metabolism, excretion and toxicology (ADMET)
properties (Zhong et al., 2018). Employing artificial intelligence in various steps of drug
discovery project will reduce the time and cost of the project and push the drug design to become

more efficient.
1.2.10 Homology modeling
1.2.10.1 Homology modeling of protein structure

The structure of a protein is classified at four levels, as primary, secondary, tertiary and
quaternary structures. The 3-D structure of a protein is based on the spatial arrangement all
atoms from its main-chain and side-chains (Luthy et al., 1992). Protein structures determined
using the experimental methods are deposited in PDB (Berman et al., 2007). Insights into the 3-
D structures of proteins provides valuable knowledge on the molecular basis of their
functions. Employing experimental methods for determining protein structures is time
consuming and might not give a useful solution with proteins that tend to aggregate in buffer and
remain insoluble. Lack of the knowledge of protein 3-D structures has stalled efforts to
understand the binding specificity of a ligand in the binding site of protein. Under such
situations, construction of the model structure of a protein based the available 3-D structure of a
homologous protein is one of the reliable methods to obtain the structural information of a
protein of interest (Cavasotto & Phatak, 2009). The 3-D structures of some proteins of interest
can be modeled using homology modeling, fold prediction, hybrid and ab initio methods (Hardin
et al., 2002). Among these homology or knowledge based modeling methods are most accurate
when compared with the crystal structures. Homology modeling, also known as knowledge
based comparative modeling (Kopp & Schwede, 2004), is based on the observation that when
two protein primary sequences share high similarity, their corresponding structures are also
similar. The protein of interest with unknown structure is called the query sequence, the
homologous structure on the basis of which the homology model is constructed can be obtained
from BlastP searches against PDB (Altschul et al., 2005). The structures with highest matching
and least insertions and deletions, high resolution, no or fewer missing residues are retrieved and

are called as the template structures. The knowledge based modeling method requires the
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comparison between the template and query protein sequences as pair-wise or multiple sequence
alignments based on single or multiple template structures, respectively (Holm & Laakso, 2016).
Homology modeling predicts the 3D structure of a query protein through the sequence alignment
of template proteins. MODELLER (Sali & Blundell, 1993) is one the most popular methods in
knowledge based protein structure modelling methods and is based on satisfaction of spatial
restraints. This software can be downloaded and installed on local computers for building protein
models. The process of homology modeling involves four steps: target identification, sequence
alignment, model building and model refinement. Some of the software and web servers
available for protein 3-D structure modeling are, PRIMO (Hatherley et al., 2016), Phyre2 (Kelley
et al., 2015), I-TASSER (Zhang, 2008), SWISS-MODEL (Schwede et al., 2003) are some of the
recent and reliable methods for modeling.

1.2.10.2 Model validation methods

The 3-D structure of a protein which is predicted based on modeling methods should be
verified for its proper stereochemistry and correct protein folding. This structure evaluation
process to assess the accuracy of model is a crucial step in computational studies, as this model
structure will be subsequently used for structure comparison, molecular docking to design
molecules and study their conformational transitions using molecular dynamics. Analysis of
protein structures based on Ramachandran plot (Ramachandran et al., 1963) is performed to
validate the stereochemical parameters of a protein structure based on the dihedral angles, the
amino acid residues are distributed into three regions, most preferred regions, allowed regions
and disallowed regions and outlier regions. The webservers such as PROCHECK (Laskowski et
al., 1993), SAVES server (https://saves.mbi.ucla.edu) also provide additional information such as
main-chain, side-chain, bond length, bond angle, bonded and non-bonded interactions, planarity
of rings and disulfide bonds. The structure with most residues in the allowed regions and least
residues in the disallowed regions is considered as a better model. The VERIFY 3D server is
used to study compatibility of generated model 3-D structure by comparing its location and
environment with known structures (Lithy et al., 1992) and evaluates its secondary structure,
area of buried residues and side-chains which is covered by polar atoms. The model with high

score is considered as the best model. ERRAT is also used to study the non-bonded interactions
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in a protein structure, and high scoring model confirms the validity of backbone conformations
in the structure (Colovos & Yeates, 1993).

1.2.11 Computer aided drug design

CADD is a technique that combines cheminformatics and bioinformatics methodologies
(Zheng et al., 2013). CADD methods also helps to produce an atomic level structure-activity
relationship (SAR) to facilitate the drug design process hence minimizing time and costs (Van
De Waterbeemd, 2003). In drug discovery, the main role of CADD is to screen large libraries of
compounds into smaller groups to correlate small molecules based on their activity, thus
enabling discovery and optimization of hit molecules by improving upon the biological activity
(such as ADMET and binding affinity) (Hassan Baig et al., 2016). CADD is divided into
structure-based and ligand-based drug design approaches, that transforms features into model
based on pharmacophore studies and QSAR (Mercader et al., 2016). Structure-based CADD
utilizes the prior information of the target protein structure to determine the extent of interactions
of all compounds being examined in the study. Ligand-based CADD depends on the chemical
similarity criterion and predictive QSAR models that were created from the molecules to
determine the known active and inactive molecules. Through QSAR modeling one can
understand the effect of structure factors on biological activity and learn to build molecules with
improvised and better biological profiles (Yu & MacKerell, 2017). Pharmacophore and QSAR
models are used to search for new molecules from commercial and non-commercial chemical
libraries using virtual screening in order to shortlist fewer number of molecules that show greater
number of interactions and binding score that fit the protein target. Thus CADD approach
provides an important role in the process of searching and optimizing of the potential hit
molecules and therefore has wide applications during different stages in drug discovery process
such as drug target identification, its validation, design and discovery of molecules, and the

interactions of hit/lead/drug molecules with targets of interest.
1.2.11.1 Structure-based drug design

This method employs knowledge of the target 3-D structure as a complex with a hit
molecule and further optimizing the bound hit molecule or a succession of derivative molecules.

It necessitates the knowledge of receptor-ligand interactions present in the complex. The
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structural information can be obtained either from the experimental structures or homology
models (Lounnas et al., 2013; Leach, 1994). This is a computational method for identifying
potential hit molecules that are capable of binding to a disease related drug target. In this method
large libraries of chemical compounds are searched at rapid speed, this is followed by molecular
docking of the hit molecules into a target protein (receptor) binding site which could be an active
site or allosteric binding site. In order to quantify the binding of these molecules, a scoring
function is applied to estimate the possibility of the binding affinity of hit molecule with the
receptor target. One of the methods in Structure-based drug design involves the design of
molecules based on the active site of protein by virtual screening of chemical libraries
incorporated into docking protocol or pharmacophore model which is designed based on the key
residues that are similar to template proteins and occupy same regions (Yang, 2010). Second
category is de novo design of a molecule from fragments inside active site and join them into a
full molecule (Scott et al., 2012). In the third category, it is possible to optimize a molecule by
chemical modification such that the new analogs become more potent molecules and can bind
the receptor target with higher binding affinity (Pennington et al., 2020). The most significant
gain of this screening is that it augments the rate of discovery of hit molecules by substantially
lowering the number of hit molecules that are assessed experimentally for their biological
activity experimentally and hence promises in the success rate of thein vitroand in vivo

experiments that would be conducted.
1.2.11.2 Ligand-based drug design

Ligand-based drug design is a useful methodology when the receptor 3-D structural
information is unknown and this methodology depends on the experimental data of molecules
that are known to bind to the biological target of study. In the ligand-based drug design based
studies, 3-D QSAR and pharmacophore modeling are the most important tools (Dixon et al.,
2006; Lin, 2000). The information on the active and inactive molecules which are assessed based
on in vitro studies are represented as data and become as source of information in
pharmacophore and QSAR studies. This study leads to build a model which uses virtual
screening to search for new hits and also one molecule can be used in virtual screening as in
SwisSimilarity server (Zoete et al., 2016). These studies can provide extrapolative models

suitable for the lead molecule identification and their optimization. This is a useful method to
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enable the progressand improvement of pharmacologically active molecules by studying
compounds that bind with the drug target of importance in a disease. Alternatively, in a QSAR
methodology, a relationship between the estimated biological properties of hit molecules and
their experimentally measured biological activity would be derived. Often the observations and
results drawn from the QSAR relationships are further used to predict the activity of new

structural analogue molecules designed that are further validated experimentally.
1.2.12 Pharmacophore modeling

A pharmacophore is a collection of steric and electronic landscapes that are required to
ensure the molecular interactions of a ligand with the structure of an explicit biological target
important in disease. These interactions are supposed to induce its biological response.
Pharmacophore modeling is a technique in CADD for qualitative and quantitative analysis of
molecules and identify important features required for activity and recognition by a
macromolecule (Wolber & Langer, 2005). A pharmacophore model generation is based on a set
of active and inactive molecules and based on receptor-ligand interactions. Pharmacophore
features are hydrophobic centroids, aromatic rings, hydrogen bond acceptors or donors, cations,
anions, metal interactions and aromatic stacking or charge transfer interactions. An optimal
pharmacophore model should have not more than seven features that are desired properties and
this is based on 3-D features arranged for series of molecules and most of these features make
non-covalent interactions with receptor. Pharmacophore models can be built physically, and can
also be created in a computerized manner starting from the structures of known active molecules;
i.e. ligand-based approach, or that can be derived from the 3-D structure of the target receptor;
i.e. structure-based (Leach et al., 2010). Among the applications of pharmacophore models, a
frequently used application is their use as a query to screen the large compound librariesin a
virtual mode for rapid screening of molecules (Seidel et al., 2010). The eventual goal here is the
discovery of novel hit molecules which display a set of required pharmacophore features that are
considered critical for their biological activity towards a specific target of interest in disease. The
pharmacophore screening regularly identifies the hit molecules with a high structural variation.
As an additional advantage, the ease of the representation of the pharmacophore features enables
a speedy in silico screening of even large chemical databases containing millions to billions of

probable hit compounds. Based on the selectivity of the required pharmacophore features,
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request for specific matching constraints and size of the database of small molecules, tens to
thousands or more of hit molecules can be typically obtained by a regular pharmacophore
screening. There are some dedicated webservers to assign the preferred pharmacophore features
and perform virtual screening such as Pharmit (Sunseri & Koes, 2016) and some are

incorporated into commercial software such as (Discovery studio and Schrodinger).
1.2.13 De novo drug design

The most challenging task in drug discovery process is the hit molecule identification,
specifically the identification of small organic molecules with sufficient inhibitory activity on a
specific drug target that could then be used as ainitial point for subsequent functional group
optimization steps. Hit molecule design and identification can be realized by employing
knowledge-based approaches that utilize the already available knowledge that is derived from
natural substrates, ligands, patents, scientific literature review and also the structural information
of the biomolecule (Bleicher et al., 2003). The interest of a researcher however is to identify
small molecule inhibitors with new scaffolds altogether because these molecules can be patented
with greater ease. A substitute for this is to use automated computational methods and data-
driven machine learning approaches to aid in the hit molecule design and identification. The
application of the methodologies such as library screening is to identify hit molecules from
virtual libraries containing large numbers of molecules, usually by molecular docking or
structural similarity-based searches. Another method in the rational de novo drug design of new
molecules with high potency is to combine two or more fragments to form a large molecule or
extension of scaffold which represent core molecule by a series of linkers (Bemis & Murcko,
1996). Libraries of chemical feature searches can be obtained from pharmacophore model
generation of fragments and virtual screening of databases, and joining the fragments using
potent linkers of suitable length from libraries and FDA approved drugs. Some webservers-based
software are designed to this purpose PhDD, LUDI, LigBuilder, BREED, ACFIS, e-LEA3D,
PADFrag, (Huang et al., 2010; Bohm, 1992; Wang et al., 2000; Pierce et al., 2004; Hao et al.,
2016; Douguet, 2010; Yang et al., 2018). Artificial intelligence based generative models have
been widely used for the de novo design of hit molecules (Olivecrona et al., 2017), the

compound optimization and lead molecule identification.
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1.2.14 Molecular docking

Molecular docking is a vital tool in CADD and is considered as one of the in silico
structure based rational drug design methods. The purpose of protein-ligand molecular docking
is to predict the principal binding mode of a ligand in the binding site of a protein of known 3-D
structure (Pinzi & Rastelli, 2019). Docking refers to the computational plotting of chemical
space; the probable space occupied by all possible hit molecules that would eventually be
optimized. In a molecular docking exercise, one tries to achieve optimal conformation and
orientation of aligand inside active site of protein (Morris & Lim-Wilby, 2008). There are two
components that docking protocols depend upon to achieve high rate of success of the
computational algorithm; the docking orientation and scoring function. Molecular docking is a
flexible process and there is an ability to change ligand or protein conformation during the
docking process (Leach, 1994). The molecular docking methodologies can be classified into
three groups based on the flexibility of the target receptor and the hit molecule. The flexibility or
rigidity involving either the target or hit molecule (ligand) is based upon the purpose of
molecular docking. These features include; flexible ligand docking by keeping the target
conformation as a rigid molecule, rigid body docking by keeping both the target and ligand as
rigid molecules, and flexible docking that maintains both the interacting molecules as flexible.
Flexible molecular docking is computationally most intensive but can provide more accurate
results. In most of the docking protocols, the small molecule is considered as flexible and the
protein is considered as rigid like Flex X, AutoDock, CDOCKER and AutoDock Vina (Kramer
et al., 1999; Morris et al., 2009; Wu et al., 2003; Trott & Olson, 2010). Some methodologies
such as, DOCK, GOLD, Glide, LeDOCK (Lang et al., 2009; Verdonk et al., 2003; Friesner et al.,
2004; Zhao & Caflisch, 2013) also consider both the ligand and protein active site as flexible
conformations during docking such that the protein-ligand fit to each other in a complementary
manner. Methods such as RDOCK and ZDOCK (Li et al., 2003; Chen et al., 2003) keep both
receptor and ligand rigid during the molecular docking. The attractive forces such as hydrogen
bonding, van der Waals, electrostatic and hydrophobic interactions mediate the intermolecular
interactions between ligand and receptor. Crystal structure complex is considered as a reference
to compare the result of molecular docking and to expect suitable pose of molecules inside the
protein active site (Chen et al., 2006). In the absence of a crystal structure for reference, one can

select the best molecule with highest number of interactions and rank the molecules based on
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free energy of binding or binding scores. For proteins of unknown 3-D structures, homology
models can be constructed for the docking purpose (Sali & Blundell, 1993). In the absence of the
active site information of a protein, protein binding site prediction can be made using programs
such as sitemap (Halgren, 2009), CASTp, Q-SiteFinder (Tian et al., 2018; Laurie & Jackson,
2005). Further, molecular docking can be achieved on a single ligand or millions of ligands from
a chemical library of molecules, molecular docking can be performed in the binding cavity of a
protein for guided docking or the entire protein for blind molecular docking (Hetényi & van der
Spoel, 2006).

Successful docking methods search all binding cavities effectively and use the scoring
functions that correctly ranks the docked molecules (Kitchen et al.,2004). Molecular docking
can be used to perform virtual screening on large libraries of compounds, rank the docked
poses, analyse the docked poses binding to receptor mediated via non-bonding interactions,
propose structural hypotheses of how the hit molecules inhibit the target, which is an
invaluable information in lead molecule optimization. Some molecular docking tools such as
DOCK, GOLD, FlexX and ICM (Verdonk et al., 2003; Neves et al., 2012) are frequently used
for high throughput docking studies. The stability of the hit molecule binding to the target

receptor can be verified from MD simulations.

Ligand scoring is used to assess the binding of small molecules to the binding site of protein. The
scores are based on mathematical functions which is used to approximate and calculate the
binding affinity. Each docking protocol has its scoring function and leads to rank conformations
based on their stability. Some of the scoring functions include piecewise linear potential 1 and 2
(PLP1, PLP2) functions (Gehlhaar et al., 1995; Gelhaar et al., 1999), the functional form of
PLP1 is characterized with a grid-based approach and PLP2 is characterized as an angular
dependence on hydrogen bonding interactions. The potential of mean force (PMF, PMFO04)
(Muegge & Martin, 1999; Muegge, 2006) scoring functions score complexes by summating of

the pairwise interaction terms over all interatomic pairs of the receptor - hit molecule complexes.
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1.2.15 Drug repurposing

Drug repurposing technique is also called repositioning, reprofiling, re-tasking of a FDA
approved drug for use inother disease conditions, i.e.beyond the scope of the original medical
indication. Classical drug discovery pipeline is time-consuming and the cost is heavy on the
resources. The time and expenditure for development of new drugs have limited several research
groups to restrict their pursuit for discovery of therapeutics to those compounds that have already
been approved for human usein a disease condition (Ashburn & Thor, 2004). Some of the drugs
have been repurposed, examples are, derivatives of thalidomide (Sampaio et al., 1991),
antibiotics (Konreddy et al.,2019), and antivirals (Mercorelli et al., 2018). These drugs have
made a therapeutic success in the treatment of diseases much beyond their primary approved use.
The approaches in drug repurposing are often categorized into drug-based or disease-based. The
drug-based approaches are most popular and are preferred when the drug data such as chemical,
physical and biological properties are available. The development of high-throughput molecular,
clinical, and structural biology methods, compounded with the availability of large-scale
computational capacity in terms of space and costs, has created a new and perfect prospect for
the rationale repurposing of the existing drugs using computational methodologies instead of
serendipity for chance findings. After the initial computational findings of drug repurposing, the
results are further validated using molecular screening in vitro, structure-based (biophysical) and
clinical methods. These drugs are further validated in various phases of clinical trials in the
patient populations. Some online servers such as Drug ReposER are available which facilitate to
search existing PDB and their 3-D amino acid patterns and binding interfaces of drug molecules
(Ab Ghani et al., 2019).

1.2.16 Absorption, distribution, metabolism, excretion and toxicology

ADMET are the properties a drug molecule should adhere to in order to maintain
optimum pharmacokinetic properties with desired pharmacological properties (Lipinski et al.,
1997). The experimental in vitro and in vivo ADMET studies suggest a profound understanding
of pharmacokinetic properties of the selected drug candidates. To assess the likely potential of
the drug candidate in the primary drug development phases, in terms of its efficacy and safety
profile is essential and this is a mandatory study prior to the first phase of clinical studies. The

evaluation of ADMET pharmacokinetics properties is a crucial step for various stages such as
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discovery, preclinical, and clinical phases in drug development. Online servers are available for
measuring the physicochemical properties, drug-likeness and estimation of synthetic accessibility
of molecules (Tian et al., 2015; Ertl & Schuffenhauer, 2009; Daina et al., 2017). These
computer-generated parameters based on chemical structures will reduce the time and costs and

accelerate the design of lead molecules which will become a drug with a higher rate of success.
1.2.17 Molecular dynamics simulations

The first characterization of protein 3-D structure by X-ray crystallography (Gutte, 1975)
was more than 60 years ago, and the first MD simulations for protein was in 1970 at the time of
developing of computers (Levitt & Lifson, 1969; McCammon et al., 1977). During this time,
studies on protein structure engineering, their sequence to structure and function relationships
were limited. The crystal structures of proteins deposited in PDB are considered as static
structure as they provide a snapshot conformation of the protein. It is known that protein
structures are not static, but there are wiggling and giggling of bonds that leads to conformational
alterations and sometimes function. MD simulations are often used to discover the
conformational space occupied by the molecules, and it is the most preferred method especially
for biological macromolecules such as proteins. The MD simulations is one of the techniques to
simulate their motion based on classical MD simulations of protein structures from experiment
and also the computational models built based homology modeling and de novo designed
proteins (John & Sali, 2003; Dahiyat & Mayo, 1997). MD simulations approach investigates the
atom location in 3-D space. In this approach, a single-point model is swapped by a dynamic
model in which the nuclear system is forced into motion. The simulation of the motion is
realized by the numerical solution of the classical Newtonian dynamic equations (Pace et al.,
1996). The MD simulations method is based on Newton’s second law or the equation of
motion, F=ma, where ‘F’ is the force exerted on the particle, ‘m’is its mass and ‘a’is its
acceleration. From the knowledge of the force on each atom, it is possible to determine the
acceleration of each atom in the system. Integration of the equations of motion then yields a
trajectory that describes the positions, velocities and accelerations of the particles as they vary
with time. From this trajectory, the average values of properties can be determined. The method
is deterministic; once the positions and velocities of each atom are known, the state of the system

can be predicted at any time in the future or the past. The contribution arising from forces due to
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interactions between bonded and non-bonded atoms are considered, non-bonded forces arise due
to van der Waals interactions, modeled using the Lennard-Jones potential, and charged
(electrostatic) interactions modeled using Coulomb's law (Childers & Daggett, 2017; Geng et al.,
2019).

MD simulations can be time consuming and computationally expensive (Shaw et al., 2008). The
MD simulations of solvated proteins can be performed using several program packages to
simulate protein flexibility. AMBER (Case et al., 2005), CHARMM (Jo et al., 2008),
CHARMM, DL_POLY (Smith et al., 2002), GROMACS (Lindahl et al., 2001), GROMOS (van
Gunsteren & Berendsen, 1987), NAMD (Nelson et al., 1996), LAMMPS (Grindon et al., 2004)

are some of the popular software capable of carrying out MD simulations.

1.2.17.1 Force fields

The term force field denotes the combination of a mathematical formula and associated
parameters that are used to describe the energy of the protein as a function of its atomic
coordinates. A force field is a mathematical expression describing the dependence of the energy
of a system on the 3-D coordinates of its particles. Forcefield is used to describe a system and is
divided into two terms, one describing the bonded interactions which represent atoms with
covalent bond and their equation deals with bond length, bond angle and dihedral. In the second
term, the equation represents non-bonded interactions from van der Waals and electrostatic

forces, and computed by Lennard-Jones potential and Coulomb's law respectively.

It is represented in an analytical form to denote the interatomic potential energy, and a set of

parameters entering into the form.
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The force field parameters are classically attained either from ab initio or semi-empirical
guantum mechanical calculations or by fitting to the experimental data such as X-ray and

electron diffraction, NMR, infrared, Raman and neutron spectroscopy, etc (Weiner & Kollman,
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1981; Chen & Yip, 2017). The structures of molecules are purely defined as a set of atoms that
are held together by simple elastic (harmonic) forces and the force field replaces the true
potential with a simplified model valid in the region being that is being simulated. Preferably it
must be simple enough to be evaluated quickly, but should be sufficiently in detail to be able to
reproduce the properties of the systems under study. Several types of force fields are available in
the literature, to describe molecules with different degrees of complexity, and oriented to treat
different kinds of systems. Force fields such as Dreiding and Universal (UFF) force fields
(Rappé et al., 1992), that contain parameters for all the atoms in the periodic table are widely
applicable. Other very popular force fields are CHARMM (Brooks et al., 1983), AMBER,
GROMOS, OPLS (Jorgensen et al., 1996), and COMPASS (Sun et al., 1998). Many of these
force fields are continuously evolving and different versions are available (e.g. CHARMM19,
CHARMMZ22, CHARMM27; GROMOS96, GROMOS45A3, GROMOS53A5, GROMOS53A6;
AMBER91, AMBER94, AMBER96, AMBER99, AMBERO?2 ; etc.) (Matolepsza et al., 2010).
The forcefield applied must be compatible with both protein and the small molecule under

studies.
1.2.17.2 Trajectory data analyses and post MD simulations

MD simulations trajectory is used to analyse how the biological and chemical structures
change with time at an atomic level. Crystal structure is considered as a snapshot since it does
not give information about dynamical structure of the protein that can only be achieved by MD
simulations to generate an ensemble of structures. This has significant contribution in the drug
development as it also reveals the alternative conformations of the protein thus revealing the

allosteric binding sites in the protein structure.
1.2.17.2.1 Root mean square deviation

Root mean square deviation (RMSD) is one of the most commonly used quantitative
measures of the similarity between two superimposed 3-D atomic coordinates (Van Der Spoel et
al., 2005). RMSD values are presented in A and are calculated for any type and subset of atoms;
for example, Ca atoms of the entire protein, all atoms in the protein or Co atoms of all residues

in a specific subset, or all atoms in a protein complexed with ligand. It has been observed that a
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stable system will show lower RMSD and folded regions are stable and loops more flexible and

therefore contribute to increase in RMSD of the systems.

RMSD can be calculated using the following equation.

(1.2)
ri term represents position of atomic system at time i and ro is the reference position.
1.2.17.2.2 Root mean square fluctuation

When adynamical molecular system fluctuates about some well-defined average
positions, the RMSD from the average over time can be referred to as the root mean square
fluctuation (RMSF) (Van Der Spoel et al., 2005). RMSF provides information on the local
structural flexibility, thermal stability, and heterogeneity of macromolecules. The RMSF is a

measure of the deviation between the position of particle i and some reference position.

| N
RMSF = ||%Z(r\—{r)):
v (1.3)

Where riis the position at time i and <r> represent average value.

1.2.17.2.3 Hydrogen bonds

Biological systems are stabilized by weak intramolecular and sometimes intermolecular
non-bonding interactions such as hydrogen bonds, ionic interactions, van der Waals and
hydrophobic interactions. A hydrogen bond is an attractive force in which a hydrogen atom that
is covalently bonded to an electronegative atom (donor, D) is attracted to lone pair of electrons
on another electronegative atom (acceptor, A) in the same molecule (intramolecular hydrogen
bond) or another molecule (intermolecular hydrogen bond). A typical hydrogen bond has about
5-10% covalent bond character. In the context of protein structure and CADD, hydrogen bonds

are responsible for stabilizing protein-ligand complexes. Hydrogen bonds provide the directional
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interactions that underpin protein structure and specificity to molecular recognition via
intermolecular interactions. The accepted geometry for a hydrogen bondis a distance of less than
3.5 A between hydrogen D and A and an D-H-A angle of 180" + 30". In Gromacs, hydrogen
bonds can be computed using the command “gmx hbond” (Van Der Spoel et al., 2005) to
compute and analyze number of hydrogen bonds and can calculate distance between acceptor
and donor atoms of the two groups in protein complex. Number of intramolecular hydrogen
bonds between specific atoms can be indexed so that the extent of hydrogen bonds in the
available in the docked pose and those that are retained during MD simulations can be analysed.

1.2.17.3 Normal mode Analysis

Normal mode analysis (NMA) is a fast and simple technique to estimate vibrational
modes and protein flexibility (Bahar et al., 2010). In NMA, sometimes restrained to Ca atoms
only, the atoms are modeled as point masses connected by springs, which represent the
interatomic force fields. NMA have been developed to reveal the dynamic features of proteins
(Velazquez-Muriel et al., 2009; Bakan et al., 2011). The NMA is used to study the slow dynamic
and large scale motion of biomolecules and it has application in structural analyses. The elastic
network model is one particular type of NMA. In this model, the springs connecting each node to
all other neighboring nodes are of equal strength, and only the atom pairs within a cutoff distance

are considered.
1.2.17.4 Binding free energy

There are several methods at different levels of intricacy which have been used for
calculating binding free energies in biological macromolecular systems such as proteins.
Screening of large molecular databases of small molecules to identify a hit molecule that has the
potential to eventually become a lead and drug molecule relies on simplified scoring schemes to
attain the required competence (Parenti & Rastelli, 2012). The binding free energy can be
predicted on the basis of a continuum solvent approximation assuming quadratic fluctuations
around a unique configuration (Kollman et al., 2000). The Molecular Mechanics Poisson—
Boltzmann and Surface Area (MMPB-SA) methodology is a prevalent method that is based on a
mixed scheme combining configurations sampled (Srinivasan et al., 1998; Hou et al., 2011) from

MD simulations with explicit solvent, together with free energy estimators based on an implicit
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continuum solvent model. MM-PBSA method is used to compute the various types of free
energies, polar, non-polar and binding free energy of biomolecules (Gilson & Honig, 1988;
Sitkoff et al., 1994). g_mmpbsa is a command to calculate binding free energy to protein ligand
complex (Kumari et al., 2014) from a GROMACS trajectory output and this tool contains
different non-polar solvation models that includes models based on the solvent accessible surface
area (SASA), solvent accessible volume (SAV) and a model which covers repulsive (SASA-
SAV) and also estimates the energy influence from residues to the binding energy.

The g_mmpbsa (Kumari et al., 2014) is a tool compatible with GROMACS output MD

trajectories. The binding free energy is estimated based on the following equations.

The binding free energy of the protein complexed with inhibitor in a solvent such as water is

expressed as

AGping = Gcomplex - Gfree-protein — Gree-inhibitor (1.4)

where, Geomplex IS the total free energy of the protein-inhibitor complex and Ggree-protein and
Grree-inhibitor are total free energies of the isolated protein and inhibitor in the solvent, respectively.
The free energy of each individual entity "G" indicated above is represented by

G =Emm — TS + Gsolvation (1.5

TS refers to the entropic involvement towards the free energy in vacuum where T and S denote
the temperature and entropy, respectively. The term Gsowation IS the free energy of solvation,
which is the energy required to transfer a solute from vacuum into the solvent. This is expressed
as the summation of Gpolar and Gnon-polar, the electrostatic and non-electrostatic contributions,

respectively to the solvation free energy.
Gsolvation= Gpolar"‘ Gnon—polar (1.6)

Ewmw is the average molecular mechanics potential energy in vacuum, that includes the energy of
both bonded as well as non-bonded interactions and calculated based on the molecular

mechanics (MM) force field parameters.

Emm= Ebonded+ Enon-bonded= Ebonded+ (EvdW+ Eelec) (1-7)
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where Enonded 1S bonded interactions consisting of the bond, angle, dihedral and improper
interactions. The Enon-bonded 1S the non-bonded interactions that include both electrostatic and van
der Waals interactions and is modeled using Coulomb and Lennard-Jones (LJ) potential

functions, respectively.
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Computational basis for the design of PLK-2 inhibitors
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2.1 Introduction

Cancer is a major health hazard caused by the deterioration of lifestyle with increase in
pollution, chemical and radiation exposure, food quality, bacterial and viral attack, genetic
modification and heredity (Anand et al., 2008; Islami et al., 2018). Cancer is the second leading
cause of death worldwide and the numbers of cancer deaths are increasing steadily causing a
great financial burden on every nation (Wang et al., 2016). Various forms of cancer are
responsible for accounting to nearly 10 million deaths in 2020 (Ferlay et al., 2020). Targeted
therapies for cancer include hormone therapy, signal transduction inhibitors, angiogenic
inhibitors, apoptosis inducers and immunotherapy (Sawyers, 2004; Noble et al., 2004). Protein
kinases have been demonstrated as cancer drug targets that function in signal transduction,
angiogenesis and apoptosis (Noble et al., 2004). These enzymes can be classified as Ser/Thr
kinases or Tyr kinases depending on the site of phosphorylation, their inhibitors are designed as
ATP (cofactor) competitive molecules and allosteric inhibitors (Zhang et al., 2010). More than
500 protein kinases are present in the human genome that play various physiological roles in cell
cycle regulation, cell proliferation and differentiation, cell survival and apoptosis (Manning et
al., 2002). Cell cycle proteins include some kinases required for the maintenance of the cell cycle
regulation. These events can be divided into three stages, interphase, mitotic and cytokinesis
(Bamum & O’Connell, 2014). Each stage is divided into different phases and when required, the
cell cycle checkpoints halt the cell growth and allow the time for DNA repair. These checkpoints
are regulated by CDKSs, PLKs, and Aurora kinases, and most of the proteins in these stages if
unregulated become cancer causing proteins (Malumbres & Barbacid, 2009). PLKs are cell cycle
proteins of Ser/Thr kinases family and consist of five members, PLK-1 to PLK-5 (Barr et al.,
2004). PLKs have a conserved domain towards their C-terminus called the PLK polo box
domain (PLK PBD). The length of the PBD is ~70 amino acid residues, there are two PBDs
located in PLK-1, PLK-2 and PLK-3, while PLK-4 and PLK-5 possess only one PBD. PLKs-1
to 4 share high sequence identity in their kinase domain located in the N-terminus and play
crucial roles in cell cycle events. PLK-5 has a truncated kinase domain (Holtrich et al., 1994;
Barr et al., 2004) and is therefore enzymatically inactive.
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PLK-2 is homologous and highly similar to PLK-1 and its function in cell cycle is
phosphorylation of the centrosome-associated substrates (Cizmecioglu et al., 2012; Hu et al.,
2016). PLK-2 in mice model is also shown as a good target compared to PLK-1 due to its less
toxicity (Zhan et al., 2018). PLK-2 is the major enzyme responsible for the phosphorylation of a-
synuclein at Ser129 (Inglis et al., 2009), and inhibition of PLK-2 has been shown to significantly
decrease the phosphorylation of a-synuclein indicating that PLK-2 is also an important drug

target for Parkinson’s disease (Aubele et al., 2013).

PLK-1 plays a crucial role in the cell cycle progression including entry into mitosis, centrosome
maturation and separation till a bipolar mitotic spindle is formed, metaphase to anaphase
transition, mitotic exit and cytokinesis which leads to result in the formation of two new daughter
cells. PLK-1 is regarded as an important protein in mitotic phase and shows high over-
expression, hence PLK-1 is an approved drug target in oncogenic field to reduce tumors
(Holtrich et al., 1994). Molecules such as BI-2536, NMS-1286937 and BI-6727 were designed
towards PLK-1 inhibition at nanomolar concentrations, and are being studied in phase Il and 11
clinical trials (Weiss et al., 2018; Awad et al., 2017; Maertens et al., 2012).

PLK-2 kinase is referred as centrosomal kinase and contributes in centriole duplication.
PLK-2 which is called as serum-inducible kinase (Snk) was first reported in 1991 (Llamazares et
al., 1991) and its biological function is studied due its role in G1 to S phase along with PLK-4
(Syed et al., 2006). PLK-2 can regulate centrosome duplication based Aurora A/SIRT1/PLK-2
pathway (Ling et al., 2018). PLK-2 inhibition is observed to be potential tumor suppressor and
plays significant role in epithelial-derived cancers. Recurrent focal deletion has been observed
with abundant solid cancers and lower expression of PLK-2 is related to some cancers such as
NSCLC, breast cancer, neck and head osteosarcoma and carcinoma associated with poor
prognosis and further lower expression of PLK-2 leads to ovarian cancer and B-cell lymphoma,
and down expression in glioblastoma, glioblastoma multiforme, multiple myeloma (Villegas et
al., 2014; Beroukhim et al., 2010; Xie et al., 2018; Syed el al., 2011; Matthew et al., 2018). PLK-
2 is observed to have effect on apoptosis by targeting Foxw7/Cyclin E pathway in colorectal
cancer (Ou et al., 2016) suggesting that PLK-2 is a crucial therapeutic target. PLK-3 plays a role
to effect DNA damage during G2—M transition due to increase in its activity. PLK-4 is important

in proper centriole duplication and its activity during S and G2 phase. PLKs PBD is a regulation
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unit and plays role in protein - protein interactions and is considered as an indirect target to
inhibit PLK proteins. Since PLKSs represent critical targets in cell cycle function and as
oncogenic targets due to high over-expression (Schmit & Ahmad, 2007), research is in progress
to find PLK kinase domain inhibitors (Steegmaier et al., 2007; Rudolph et al., 2009; Gumireddy
et al., 2005; Gilmartin et al., 2009; Sampson et al., 2015; Beria et al., 2011; Hikichi et al., 2012).
Some of the PLK inhibitors which are now in clinical trials are shown in the Table 2.1.

Table 2.1: PLKs and Weel inhibitors in clinical trials.

DRUG Clinical Trials Phase Target

B1-2536 I PLK-1, PLK-2, PLK-3, c-Myc, BRD4
Volasertib i PLK-1

Rigosertib i PLK-1

GSK461364 | PLK-1

CF1-400945 I PLK-4, TrkA, TrkB, Tie-2, Aurora A, Aurora B
Onvansertib I PLK-1

Adavosertib I Weel

TAK-960 | PLK-1

The inhibitors targeted to PLK-2 are pteridine derivatives which are analogs of PLK-1 inhibitor
B1-2536 and have nanomolar inhibition, the pyrido-pyrimidinone derivatives have micromolar
inhibition for PLK-2 (Reddy et al., 2016). Derivatives of pyrido-pyrimidinone and
tetrahydropteridine were studied from computational perspective based on 3D-QSAR
methodologies (Balupuri et al., 2017; Bhujbal et al., 2019). Due to the pivotal function of PLK-2
and its significance in cancer intervention, | have employed computational perspective to design
more potent molecules based on the chemical environment of the active site of PLK-2 from its 3-
D structure.

The availability of the 3-D structures of a large number of proteins has promoted the
rational drug design and discovery (Lounnas et al., 2013) and CADD has a huge potential in the

discovery of new drugs. Among these methods, virtual screening is one of the fast and reliable
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techniques to discover new ligands on the basis of biological structures. It uses high throughput
screening methods such that within short period of time and low budget, virtual libraries
comprising of millions of molecules can be searched (Walters et al., 1998). There are two
generally accepted approaches for virtual screening: ligand-based and structure-based methods.
Ligand-based virtual screening uses two dimensional (2-D) or 3-D similarity searches between
large databases of molecules and known active molecules. The structure-based virtual screening
applies diverse modeling techniques to mimic the binding interaction of a ligand to a
biomolecular target (Merz et al., 2010). Virtual screening includes QSAR, docking, de novo
design and pharmacophore modeling, to search for new molecules that include some important
features which reflect the bio-activity of the designed molecules (Cherkasov et al., 2014).

The SBDD proceeds via several steps that include drug target identification, 3-D
structure elucidation of the target, small molecule compound library preparation, virtual
screening of libraries, molecular docking studies, post-processing and ranking of the results by a
pre-defined scoring function. These methods resolve the mechanism of binding, reveal the SAR
and guide the selection of best molecules compared to the previously reported molecules (Irwin,
2008; Rella et al., 2006).

Chemical libraries of small molecules comprise millions of entries and the objective is to
select few molecules that would possess highest predicted inhibitory activity. In this context,
pharmacophore-based method for virtual screening of chemical libraries employs the highly
potent inhibitors for building a pharmacophore model. A pharmacophore is a collection of steric
and electronic features that are required to ensure non-bonding interactions and binding with a
specific biological target in order to activate or inhibit its biological response (Wermuth et al.,
1998).

Pharmacophore modeling is also divided into two types; structure-based pharmacophore model,
where key active site residues that play important role based on the protein-ligand interactions is
generated. In the ligand-based phamacophore model, a pharmacophore model is generated based
on a series of molecules that have structure-activity relationship with a varying range of
inhibitory activities (Kandakatla & Ramakrishnan, 2014). The constructed pharmacophore
models using ligand-based and structure-based methods are considered as queries and can be
used to search for new hit molecules that possess the required pharmacophore features, using

virtual screening protocol. The identified hit molecules from virtual screening are subjected to
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molecular docking for further validation as probable inhibitors against a particular receptor target
(Yang, 2010). Currently, machine learning tools integrated with virtual screening protocols are
used to search the big data and identify new hit molecules (Lavecchia, 2015). These methods are
highly impressive as millions of compounds can be searched within short period of time.

BI1-2536 shows nanomolar inhibition of PLK-1 and PLK-2, and its crystal structure is
available in complex with both the proteins. In this work, based on the structure of BI-2536 and
its interactions with PLK-2, | have built a structure-based pharmacophore model, and the best
pharmacophore was used for virtual screening of ZINC database (Irwin et al., 2012). A series of
screening procedures were employed to select the best molecules that bind to PLK-2. Further,
some molecules that were screened-out in the initial steps of virtual screening were processed by
molecular pruning, such that all molecules efficiently bind to the PLK-2 active site by molecular
docking. The binding efficiency of the PLK-2 - hit molecule complexes were studied using MD
simulations. The stabilities and binding free energies of the complexes and the contribution from

each active site residue to the binding is also calculated.
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2.2 Methods

2.2.1 Pharmacophore model generation and virtual screening

The aim of pharmacophore-based virtual screening is to identify hit molecules with
certain electronic and steric features at specific geometrical positions that are responsible for the
biological activity, from in silico databases of small molecules. In the present study, to build a
pharmacophore model for PLK-2 inhibitors, structure-based approach for the inhibitor BI-2536
complexed with PLK-2 (PDB ID: 415M) was used since BI-2536 is a nanomolar affinity
inhibitor for PLK-1 (0.83 nM), PLK-2 (3.5 nM) and PLK-3 (9 nM) kinases. The missing
residues in the activation loop were constructed based on the structure (PDB ID: 416H) (Aubele
et al., 2013) using MODELLER (Sali & Blundell, 1993) incorporated into DS 2.5. The amino
acid mutations Ser83/Cys83, Thr87/Val87, Serl119/Alall9, Ser216/Cys216, Ala259/Cys259,
Ser291/Cys291, Thr335/Leu335 in the (PDB ID: 415M) were reversed to match the wild-type
PLK-2 sequence. The Pharmit server (Sunseri & Koes, 2016) was used to generate
pharmacophore for BI-2536, the essential features were selected based on the functional groups

involved in making non-bonding interactions with the protein.

ZINC database (Irwin et al., 2012) comprising of 12,996,897 molecules was used for virtual
screening. In the first step of virtual screening, the selected Pharmit pharmacophore features
were used for screening of ZINC database and the molecules retrieved were considered as the
first set. The second step of screening included the receptor site interactions along with
pharmacophore features for virtual screening and the selected molecules are considered as the
second set. The molecules that did not qualify when the criteria of receptor site interactions were

included (first set - second set), were considered as the third set of molecules.

The third set of molecules were saved in .pdb format and docked into PLK-2 active site using
LibDock (Rao et al., 2007). During molecular docking, 20 conformers were generated for each
molecule, and these conformers were screened by Pharmit server using pharmacophore features
that included receptor site interactions. The molecules that fit into the PLK-2 active site were
screened-in by the Pharmit server and were considered as the fourth set of molecules. The second
and fourth sets of molecules that passed into active site of PLK-2 were combined and this virtual
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data of small molecules obtained from pharmacophore screening were proceeded to library

screening.
2.2.2 Library Screening

The resulting molecules from the above step were imported to “Screen Library” protocol
(Kabsch, 1976) of DS 2.5. The pharmacophore from Pharmit was imported into DS 2.5 and was
then used to screen the combined database of molecules (second and fourth sets) to retrieve the
molecules that possess the desired pharmacophore features and to rank them accordingly based

on their fit value.

In the Screen Library protocol, 255 conformers were generated for each molecule, a
minimum of 2 and a maximum of 6 pharmacophore features were selected with a rigid fitting
method of the small molecule. The molecules were selected based on their fit value with the
pharmacophore.

2.2.3 Molecular pruning

Molecular pruning is one of the methods to optimize the size of small molecule ligands,
where the unwanted fragments are removed and preferably substituted with more desired
functional groups (Bathula et al., 2015). Here, the molecules obtained from database screening
were refined through molecular pruning. Some of the linker regions prevent the superimposition
of molecules on the pharmacophore due to steric clashes with active site chemical environment.
In this study, the third set of molecules which were not screened-in by Pharmit server were

proceeded for molecular pruning.

2.2.4 Molecular docking

The PLK-2 bound to BI-2536 (PDB ID: 415M) (Aubele et al., 2013) was used to dock the
molecules obtained from virtual screening. Prior to docking, the protein was prepared using
“Minimize protein” protocol of DS 2.5. All the crystal waters were removed, hydrogen atoms
were added and CHARMm force field was applied using “Receptor-Ligand Interactions tool” in
DS 2.5 and the protein structure was energy minimized (Brooks et al., 1983). CDOCKER (Wu et
al., 2003), a molecular docking tool available in DS 2.5 was used to dock the molecules obtained
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from virtual screening and molecular pruning. The protein active site was defined based on the
binding location of BI-2536 and extended to residues that reside within its 5 A cut-off distance

and the number of docking poses was set to 100.

The reference molecule BI-2536 was initially used for molecular docking into the active site of
PLK-2 kinase to assess the reliability of CDOCKER docking protocol. PMF04 ligand scoring
method was used to analyze the docking results (Muegge, 2006). The selected molecules after

docking were further analyzed through MD simulations.

2.2.5 Molecular dynamics simulations

Conformational flexibility is an inherent feature in the protein 3-D structures. The
docking pose of one frame of the protein bound to ligand is insufficient to understand the binding
pose of the designed molecules, their ability to remain bound to the active site and the
mechanism of its functional regulation. Hence, PLK-2 kinase bound to hit and reference
molecules were subjected to MD simulations using GROMACS 5.1.2 (Hess et al., 2008; Van
Der Spoel et al., 2005). Amber ff99SB force field was applied to the protein and small molecules
(Hornak et al., 2006) using antechamber with ACPYPE scripts (Da Silva & Vranken, 2012) and
the charge was controlled using AM1-BCC (Wang et al., 2006). The unit cell was set to cubic
box with 1.0 nm dimensions and each complex was solvated with SPC waters, Cl" and Na* ions
were added to neutralize the system (Berendsen et al., 1981). Long-range electrostatic
interactions were treated using particle mesh Ewald (PME) method (Darden et al., 1993;
Essmann et al., 1995). LINCS algorithm was applied to constrain the hydrogen bonds (Hess et
al., 1997).

MD simulations proceed through three principal stages, the first stage is energy minimization of
the system, where 50,000 steps were run till the system reached a maximum force less than 1,000
kJ/mol/nm? and the purpose of this step is to remove the steric stress and let the system to
become relaxed. The next equilibration stage is further divided into two steps. The system is set
to constant number of molecules, volume and temperature (NVT), equilibrated and minimized
until 300 K temperature for 100 ps to allow the solvent and ions to equilibrate around the protein.
In the next step, the equilibration was set to constant number of molecules, pressure and
temperature (NPT) (1 atm pressure and 300 K) for 1 ns until the system reaches proper density.

The temperature and pressure couplings are V-rescale and Parrinello-Rahman methods,
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respectively (Bussi et al., 2007; Parrinello & Rahman, 1981). The final step of MD simulations
was performed for 50 ns on apo PLK-2 and hit molecule complexes. The generated trajectories
were used for further analysis. The RMSD, RMSF plots of apo and protein-hit molecule
complexes revealed the conformational changes and stability of the complexes.

2.2.6 Normal mode analysis
NMA of the MD trajectories was studied using NMWiz of ProDy (Bakan et al., 2011)
available as a plugin with VMD (Humphrey et al., 1996) to analyze local and global regions, size

of motion and fluctuating flexible regions in PLK-2.

2.2.7 Binding free energy calculations and contribution of residues to the hit molecule
binding

Estimating protein-ligand interaction energies is a challenging task for the current
simulation protocols. The molecular mechanics energies combined with the MM-PBSA and
MM-GBSA methods are popular approaches to estimate the free energy of binding of small
ligands to biological macromolecules. MM-PBSA method (Homeyer & Gohlke, 2012) is used to
calculate the binding free energy and residue-wise energy decomposition of active site amino
acids. The g_mmpbsa tools (Kumari et al., 2014) designed to work with GROMACS output
trajectories was used to calculate binding free energy for all complexes. The energy terms
obtained from this calculation are van der Waals, electrostatic, polar and apolar solvation

energies.
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2.3 Results

2.3.1 Pharmacophore model generation and virtual screening

The crystal structure of human PLK-2 (PDB ID: 415M) bound to BI-2536 was used for
the computational studies. The missing residues in the activation loop (203-213) were
constructed using DS 2.5 based on 416H, the crystal structure of PLK-2 bound to a high affinity
inhibitor (Aubele et al., 2013). The amino acid mutations are located away from the active site of
the protein and were reversed to match the wild-type PLK-2. The active site of PLK-2 is formed
by Lys86, Val87, Leu88, Gly89, Lys90, Gly91, Cys96, Glu98, Alal09, Lys111, His134, Vall143,
Leul59, Glul60, Tyrl6l, Cysl62, Serl63, Argl64, Argl65, Phe212, Gly222 and Asp223. The
crystal structures of PLK-1 (2RKU) (Kothe et al., 2007) and PLK-2 (415M), both bound to BI-
2536 were compared by structure superposition. The protein structures are highly similar and
superimpose with low RMSD (0.64 A). The binding site residues of BI-2536 are identical in both
proteins (PLK-1/PLK-2) with the exception of (Arg57/Lys86, Phe58/Val87, Gly81/Alall0,
Leul32/Tyrl61, Argl34/Serl63). This high sequence similarity is also reflected by the almost
similar inhibition of PLK-1 and PLK-2 by BI-2536 with ICsq values of 0.83 nM and 3.5 nM,
respectively (Steegmaier et al., 2007).

Structure-based pharmacophore generation method Pharmit was used to construct a
model based on the pharmacophoric features of high potent inhibitor BI-2536, which has
multiple hydrogen bond acceptors, hydrogen bond donors, two aromatic rings, hydrophobic and
hydrophilic features. To minimize the number of features and enhance the selectivity, the
pharmacophore features responsible for the biological activity which are located in the PLK-2
active site were selected. The methylpiperidine and the cyclopentane ring of BI-2536 are solvent
exposed and hence were not considered for pharmacophore generation.

The best pharmacophore model comprises of six features containing three hydrogen bond
acceptors, one hydrophobic feature (on the substituted pyrazinone ring) and two aromatic rings.
A hydrogen donor which forms hydrogen bond with Leu88 on the 1 strand is not included in
the pharmacophore model, since inclusion of this feature resulted in fewer hits (less than 50
molecules) and high RMSD (> 0.45 A). The best pharmacophore model selected based on the

above features is shown in Figure 2.1, and this pharmacophore model was used to perform
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virtual screening against ZINC database (Irwin et al., 2012). Virtual screening using Pharmit
server (Sunseri and Koes, 2016) was used for ZINC database that has 123,073,955
conformations for 12,996,897 molecules. In this step a total of 4,881 molecules (first set) were
selected with RMSD (< 0.4 A) having the six desired pharmacophore features, and one
conformation was selected for each of these molecules. In the next stage of virtual screening, in
the same pharmacophore model, the complementary features of the receptor PLK-2 (415M) were
included as an exclusive shape with zero tolerance and were used to perform virtual screening on
the 4,881 molecules dataset. At this stage, upon inclusion of the receptor information, the
number of hit molecules was reduced to 1,394 (second set) and these molecules fulfilled the
criteria of PLK-2 active site or the receptor environment. The remaining molecules which have
not passed into the active site environment were termed as the third set (3,487 molecules) and
were moved to ligand conformation generation step in the presence of receptor using molecular

docking protocols.

Virtual Screening (VS)

/ \ 4,881

First set

3,487

—— Third set
\ Docking into PLK-2
(LibDock)

Molecular docking
and ligand scoring

MD
simulations

e

Second set

4 molecules

9 molecules

Screen library

Figure 2.1: Flowchart for virtual screening of ZINC database using BI-2536 based pharmacophore.

These third set molecules were docked into PLK-2 active site using LibDock protocol (Rao et
al., 2007). For 3,487 molecules, LibDock generated 67,523 conformers as docking poses when

docked into PLK-2 active site. These conformers were imported and screened by Pharmit server
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to perform virtual screening using the best pharmacophore that included the receptor
interactions. As a result, 177 molecules (fourth set) passed into the active site of PLK-2. This
exercise of increasing the initial conformations by molecular docking improved the identification
of hit molecules in numbers. Thus, preparing the molecules for docking in the active site of PLK-
2, resulted in the refinement and improvement of hit identification by 5%. The molecules
screened-in using receptor environment of PLK-2 were combined (second and fourth sets) and

finally, a total 1,571 molecules were used to perform the final library screening.
2.3.2 Library screening

The number of hit molecules from virtual screening which accurately fit in to PLK-2
active site are 1,571. To further screen and identify best molecules from this list, the “Screen
library” protocol available in DS 2.5 was used by keeping the same pharmacophore features of
BI-2536 generated by Pharmit.

In this protocol, the scoring function is a fit value which expresses the quality of mapping, a
higher fit value indicates the greater number of features mapped on to the pharmacophore. Out of
1,571 molecules, 9 molecules were selected based on the fitness value. The identified molecules
along with their ZINC ID and fit values are shown in Table 2.2. To assess the ability of these
molecules to fit into the active site of PLK-2, a detailed molecular docking and binding site

analysis was performed.

2.3.3 Molecular pruning

The molecules (3,310) which have not passed into the active site of PLK-2 by Pharmit screening
(third set — fourth set) after including the receptor site interactions were also considered in the
last step of library screening. These molecules have a high fit value and new chemical scaffolds;
however, they carry some bulky groups that block them from binding to the key residues in
PLK-2 active site caused by steric hindrance during molecular docking. For example, in the
molecule (ZINC21777040), the pyrimidine nitrogen is capable of forming hydrogen bond with
the hinge region Cys162 NH group, but the adjacent methyl group blocks its
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Table 2.2: Fit values, docking scores and structures of reference, and hit molecules identified
from ZINC database based on pharmacophore screening.
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entry into the active site of PLK-2. The deletion of methyl group permits the docking of this
molecule with a high docking score. Similarly, the molecule ZINC19698620 was pruned to
delete the methyl group such that the pyrimidine nitrogen is capable of forming hydrogen bond
with the hinge region Cys162 NH. The pruned molecules along with their ZINC IDs, fit value
and structures are shown in Table 2.2. The molecules thus selected from pharmacophore model
features of BI-2536 that included PLK-2 receptor environment and the refined molecules after

pruning were proceeded to the molecular docking studies.
2.3.4 Molecular docking and ligand scoring

The identified hit molecules obtained from virtual screening were further evaluated by
CDOCKER docking program to confirm their binding conformation and affinity to PLK-2
(415M). The best scored molecules were visualized on graphics for non-bonding interactions
such as hydrogen bonds and pi-stacking. The results of molecular docking are provided in Table
2.2. The binding efficiency of protein-hit molecule complexes and the reference inhibitors is
quantified by PMFO04 scores. For reference molecules from PDB IDs (415M, 416H and 416B), the
values lie between -56.61 and -33.94, while the scores of the newly identified hit molecules was
found to be in the range of -56.09 to -27.32. The highest docking score was obtained for
ZINC19698620 (-56.09).

Since BI-2536 is an ATP competitive inhibitor, the newly identified hit molecules also bind at
the same location at the inter-subunit interface and form hydrogen bonds with hinge region
residue Cys162. In addition, hydrogen bonds are also formed with Lys86, Argl65 and Asp223
which are a part of B1-strand, hinge region and activation loop, respectively. The pi-pi stacking
interactions with Phe212 at 3¢ -Strand, pi-cation interaction with Lys111 and Argl65, and sigma-
pi interaction with Leu88 and Arg165 are also observed as shown in Figure 2.2A-D. To compare
the binding ability of the identified hit molecules relative to reference inhibitors, the stability of

PLK-2 complexed with reference and hit molecules was further studied using MD simulations.
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Figure 2.2: (A-D) 2-D interaction plots of hit molecules with active site residues of PLK-2. Hydrogen
bonding interactions are indicated as green dashed links.

2.3.5 Molecular dynamics simulations

The PLK-2 complexed with six hit and three reference molecules were subjected to 50 ns
of MD simulations using GROMACS. The trajectories of MD simulations were used for RMSD,
RMSF and hydrogen bonding distance measurements. The average structure of MD simulations
(0-50 ns) and the input structures were compared by structure superimposition. The RMSD plot
of the apo-protein is shown in Figure 2.3A that displays an RMSD less than 2 A, which is
indicative of the inherent stability in the protein. From the RMSD plots of the complexes shown
in Figure 2.4A-1, it was observed that in all the complexes RMSD of the protein Ca atom was
less than 3 A and the RMSD of the ligand was found to be less than 1 A. The exception is the hit
molecule ZINC19698620, the RMSD jumped up to 2.2 A (between 16-32 ns) due to fluctuations

in the side chains but the main scaffold remained within its location. This observation is also
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apparent from the hydrogen bonding distance that remained unchanged during the of MD

simulations.
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Figure 2.4: (A-1) RMSD plots of PLK-2 complexed with reference inhibitors and new hit molecules
identified from ZINC database. Protein (red) and ligand (black).
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RMSF (A)

The identified hit molecules were also as stable as the reference inhibitors during the MD
simulations. The RMSF plots indicated the regions of fluctuations in PLK-2. As shown in Figure
2.5, there are a total of seven flexible regions in the protein; the glycine-rich loop (90-93), the
loop (117-122) connecting B3 strand and aC-helix, the loop (151-154) connecting Bs-Ps strands, a
loop (214-217) joining Pe-P7 Strands, the activation loop (232-242) and the loops before (254-
258) and after (281-290) residues, respectively display fluctuations in the structure of PLK-2.
The RMSF plot of apo PLK-2 (Figure 2.3B), indicated fluctuations in the regions similar to the
PLK-2 - hit molecule complexes. The new hit molecules and the reference inhibitors show
fluctuations in the same regions in the PLK-2 structure. The structural superimposition of
protein-ligand complexes before and after MD simulations showed good agreement and low

RMSD for hit molecules as well as with references molecules as shown in Figure 2.6A-1.
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Figure 2.5: RMSF plots (A) reference inhibitors complexed with PLK-2 (B) Identified hit molecules
complexed with PLK-2 (C) Location of fluctuating regions (multi-colours) in the PLK-2 are shown in
cartoon representation (gray).
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BI2536 bound PDB_id: 415M Molecule bound PDB_id: 416H Molecule bound PDB_id:416B

ZINC20634160

Figure 2.6: (A-1) Superimposition of the docked pose (pink) with the average structure (blue) of the
reference inhibitors and new hit molecules after MD simulations.

These analyses of molecular docking and MD simulations revealed that the docking pose is
accurate, and it is quite similar to the refined pose after MD simulations. The intermolecular
interactions of the scaffold with the hinge region retained stability in all molecules during all
frames from MD simulations. The hydrogen bond distances with each new hit molecule are
shown in Figure 2.7. The identified hit molecules showed three different patterns of binding
towards the hinge region residues (main-chain atoms of Glu160 and Cys162) with three, two and

one hydrogen bonds (Figure 2.7A-F).

ZINC21777040 formed hydrogen bonds with Cys162 main-chain NH and C=0, and with
Glul60 main-chain C=0 (Figure 2.7A) ZINC800347 also similarly formed three hydrogen
bonds, two with Cys162 and one with Glul60 amino acid residues. Both ZINC67263813 and
ZINC20634160 formed two hydrogen bonds with Cys162 NH and C=0 group of main-chain.
Both ZINC584661221 and ZINC19698620 formed one hydrogen bond with Cys162 main-chain

NH during 50 ns of MD simulations. Both the protein and hit molecules initially had some

68



fluctuations but eventually stabilized during the course of MD simulations as can be seen from
the RMSD plots. Hence, 20 ns of MD simulations data (30-50 ns) containing 2,000 frames was
considered to be sufficient to represent the conformational flexibilities and dynamics of protein-
hit molecule complexes and these were considered for the calculation of binding free energies so

as to verify their suitability and to rank them relative to the reference molecules.
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Figure 2.7: (A-F) Intermolecular hydrogen bonding distance between Glul60 and Cys162 main-chain
NH, C=0 of PLK-2 with reference and identified hit molecules.

2.3.6 Normal mode analysis

It is important to consider the normal mode analysis to understand the mobility in the
protein and the structural changes which are a collection of micro-ensemble states fluctuating
about the thermodynamically stable state. From the RMSF studies of the apo PLK-2 and when
complexed with various hit molecules it was found that a total of seven regions are flexible. To
confirm this, normal mode analysis using NMWiz of ProDy (Bakan et al., 2011) available as a
plugin with VMD (Humphrey et al., 1996) was performed. The results are shown in Figure 2.3C-

D and Figure 2.8A-D for the apo and PLK-2 complexes respectively, which confirm the regions
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of fluctuations from the RMSF plots. Based on ten normal modes, three modes were taken,
which generated the same fluctuating regions in the apo as well as complexed PLK-2, however
with different magnitude of fluctuations. For example, in the apo PLK-2, the region (280-290)
shows high fluctuation and in the presence of hit molecules, the extent of fluctuations decreased.
In the presence of hit molecule, the activation loop (232-249) shows high fluctuations which is
quite stable in the apo PLK-2. This indicates the involvement of activation loop in binding the hit
molecules and their stabilization. To analyze the local motion by principal component analysis
5,000 frames of PLK-2 from MD simulations were used. A vector represents the orientation of
motion and expresses about the size of motions, the colors indicate that the same parts of
proteins fluctuate at the same time when two different motions are available, the backbone of
protein shows same color and some regions are different, expressing the global and local
motions. The regions corresponding to the glycine-rich loop, aC-helix, activation loop and the

loop after aF-helix showed high local motion and fluctuations.

0.8 e ————

0.6 o

04} -

Fluctuations

1 L | . |
100 200 300

1.5k -1 Residue

o
I
|

T
|

Fluctuations 4

100 200 300
Residue

0.15F -1

7]
c
<)
b=
©
=
2
5}
2
w

100 200 300
Residue

Figure 2.8: (A-B) Normal mode analysis of PLK-2 and local fluctuating regions.
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2.3.7 Binding free energy calculations

The docking scores of hit molecules show converging values related to the reference

molecules. Further, the binding free energies of the hit compounds towards PLK-2 were also
determined in order to assess their binding capacity upon complex formation. The last 20 ns of
MD simulations trajectories were used in this analysis of each complex which consists of 2,000
frames and the binding free energy was calculated using MM_PBSA method.
The binding free energy, van der Waals, electrostatic, polar and apolar solvation energies were
calculated and compared them with references molecules in order to classify the new hit
molecules as high or low potent inhibitors. The binding free energies of all the complexes are
shown in Table 2.3.

Table 2.3: Contributions from various energies (kJ/mol) for reference inhibitors and identified hit
molecule complexes.

Compound ID vdwW Electrostatic ~ Polar solvation = SASA energy Binding free
energy energy

BI-2536(415M)  -265.996+0.281  -33.443+0.160 147.795+0.323  -23.824+0.020  -175.480+0.306
1C8 (416H) -221.648+0.258  -30.541+0.164 129.749+0.349  -19.144+0.019  -141.592+0.310
11G (416B) -158.497+0.209  -9.195+0.082  77.301+0.181 -14.376+£0.015  -104.765+0.243
ZINC20634160 -200.385+0.281  -37.881+0.209 140.241+0.380  -19.352+0.018  -117.368+0.300
ZINC800347 -166.211+0.250  -42.932+0.177 101.136+0.274  -15.332+0.018  -123.345+0.230
ZINC584661221 -219.576+0.241  -8.414+0.148  127.237+0.223  -17.621+0.016  -118.389+0.294
ZINC67263813  -212.201+0.247  -44.179+0.250 187.450+0.339  -19.946+0.017  -88.877+0.304
ZINC21777040 -211.384+0.281  -41.500+0.194 130.948+0.242  -18.814+0.019  -140.738+0.324
ZINC19698620 -224.563+ 0.411 -83.566+0.342 190.967+0.531 -21.270+0.031  -138.398+0.340

From the data given in Table 2.3 it was observed that the reference molecule BI1-2536 showed
binding free energy of -175 kJ/mol, while the inhibitor bound to (416H) shows the binding free
energy of -142 kJ/mol. For the pteridine scaffold bound to (416B) the binding free energy is
found to be -104 kJ/mol. The identified hit molecule (ZINC21777040) from virtual screening has
lowest binding free energy (-140 kJ/mol) which also has a pteridine scaffold and this indicates
that pteridine has high selectivity towards PLK enzymes. The second identified molecule
ZINC19698620 has binding free energy of -138 kJ/mol. ZINC21777040 and ZINC19698620 are
pruned molecules and show low binding free energies compared to other hit molecules. This
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indicates that pruning of libraries of molecules to the desirable size will lead to the identification
of more potent hit molecules.

The third molecule (ZINC800347) is small in size and shows three stable hydrogen bonds with
PLK-2 and has a binding free energy of -123 kJ/mol. The hit molecule (ZINC20634160) shows
binding free energy (-117 kJ/mol), ZINC67263813 has a binding free energy (-88.877 kJ/mol)
and ZINC584661221 has a binding free energy of -118 kJ/mol when bound to PLK-2. As shown
in the Table 2.3, these low binding free energies are comparable to the reference molecules that
is indicative of good binding ability and hence stable complex formation.

2.3.8 Contribution of PLK-2 active site residues to the binding of hit and reference

molecules

The active site residues in PLK-2 for the binding of BI-2536 were examined. The
contribution based on energy decomposition studies of highly participating residues in PLK-2 to
the binding of hit molecules are Glul160, Tyr161, Cys162, Serl63, Argl65, Phe212 and Asp223.
The energy contributions of the reference and hit molecules are shown in Table 2.4. BI-2536
shows high contribution to the binding site residues than all the other molecules, it also shows
that some residues (\Val87, Leu88 and Gly89) on B strand participate in inhibitor binding which
is close to the piperazine ring. Due to the rotational bond between piperazine and benzene ring,
this terminal part is able to form contacts with these residues. The molecule bound to 416H
shows high contribution towards Asp223 than BI-2536. The molecules identified by
pharmacophore-based virtual screening show nearly the same and high contribution similar to
reference molecules as shown in Table 2.4. From these observations, it was also seen that the
residues involved in the binding of hinge region (160-164), pi-pi and pi-sigma stacking with
Phe212 and Argl65 show the highest contribution compared to the other residues. Figure 2.9
represents the contribution of all residues to the binding in all the complexes.
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Table 2.4: Residue-wise energy (kJ/mol) contribution to the binding of reference inhibitors and identified

hit molecules in the PLK-2 active site.

Compound ID Glul60 Cys162 Serl63 Argl65 Phe212 Asp223
BI1-2536 (415M) -3.541 -13.492 -8.160 -70.868 -49.628 -1.274
1C8 (416H) -4.489 -10.377 -1.108 -17.826 -40.827 -15.465
11G (416B) -1.094 -6.216 -0.609 -5.743 -40.741 -4.455
ZINC20634160 -1.954 -8.347 -11.826 -56.277 -45.104 -16.733
ZINC800347 -7.711 -9.469 -3.029 -47.732 -34.333 -3.942
ZINC584661221 -0.439 -5.349 -0.987 -12.482 -47.489 -19.515
ZINC67263813 1.753 -15.061 -10.902 -53.059 -39.144 -31.182
ZINC21777040 -7.911 -9.743 -3.317 -51.652 -44.900 -7.417
ZINC19698620 -5.073 -8.192 -4.96 -52.454 -53.217 -4.780
415M 416H 4168 ZINC20634160 ZINC800347
ZINC584661221 ZINC67263813 ZINC21777040——ZINC19698620
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Figure 2.9: Contribution from active site amino acid residues in the PLK-2 kinase to the binding of
reference inhibitors and the new hits molecules. The residues with higher contribution to binding free
energies are indicated.
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2.4 Discussion

Virtual screening uses computer-based methods to discover new molecules on the basis
of the structure of biologically active molecule. The basic goal of virtual screening is the
appropriate selection of molecules from enormous chemical space of millions of small organic
molecules, by screening against a specific protein target in order to identify a manageable
number of compounds that bind the target with highest chance of becoming a lead molecule to a
drug candidate (Reymond & Awale, 2012). In the recent years, due to the availability of fast
computers, virtual screening is accelerated to overcome the time barrier in order to find new
molecules in drug discovery (Sunseri & Koes, 2016). There are some intermediate steps linked to
virtual screening which need accurate preparation such as QSAR or pharmacophore model
generation, which have some constraints such as number of features that should not exceed seven
(Yang, 2010). Another issue is target binding site consideration, for this purpose some protocols
are already available in software suites such as DS and Ligand Scout (Wolber & Langer, 2005)
to build the model based on the binding site residues. The flexibility of protein-inhibitor complex
leads to changes in the local environmental features, hence some studies are based on the MD
trajectories clustering before the virtual screening (Wieder et al., 2017). In the present study, the
best generated pharmacophore model and the receptor environment was included for virtual
screening of ZINC database. 71.44% of the molecules match the pharmacophore but sterically
hindered due to clash with the receptor active site environment and hence do not bind the PLK-2
kinase domain. These molecules that did not pass into the active site were prepared by the
generation of conformers by docking into the protein active site. This enrichment of conformers
allowed higher selection of molecules from virtual screening. 5% improvement in the virtual
screening results by docking the molecules into the active site of protein was observed. Hence
preparing all the molecules based on receptor active site will improve the scope of search for the
molecules. This aspect can be further exploited by generation of kinase oriented conformations
of small molecule databases. Since the kinases share high structural homology, generation of
small molecule conformations in the protein environment will enhance the success of virtual

screening.
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2.4.1 Hinge region scaffold and pruning of molecules

ATP is an essential cofactor of kinases and is classified as moderate binder with sub-
millimolar (Km) binding. In the ATP binding site, adenine moiety binds at the hinge region and
pyrimidine ring forms hydrogen bonds with the protein backbone. Most of the designed
inhibitors inactivate the typical function of kinase and are therefore classified as competitive
with ATP (cofactor). Some chemical scaffolds have been designed to form hydrogen bonds with
the main-chain residues at the hinge region such that one, two or three hydrogen bonds can be
formed at this location (Xing et al., 2015). As shown in Figure 2.7A-F, molecules identified in
this work, make three hydrogen bonds (ZINC800347 and ZINC21777040), two hydrogen bonds
(ZINC20634160 and ZINC67263813) and other molecules that form a single hydrogen bond
with hinge region of PLK-2 kinase domain.

However, the presence of some bulky substitutions on the ring prevents the formation of hinge
region hydrogen bonds essential for the kinase binding. Therefore, the molecules identified from
the pharmacophore including the receptor features, when are not of suitable size are prevented
from binding to the active site due to steric bulk and need to be modified by removing or pruning
the side chains. This will allow the optimal orientation of the hit molecules in the receptor
binding site and allow the non-bonding interactions required for inter-molecular recognition.
Studies on the truncation of molecules and generation of a series of analogs for morphine
(Archer et al., 1996) are reported for the Mu-type opioid receptor (Archer et al., 1994).

This vision was extended to those molecules that match with pharmacophore model alone to get
more diversified molecules and thus two molecules were truncated. From this exercise, the
identified molecules (ZINC21777040 and ZINC19698620) showed low binding free energies
that are comparable to the reference molecule. As shown in the Table 2.3, the second type of
molecules resulted from virtual screening were large in size and possess more than four rings and
several rotatable bonds, it is nearly impossible to accommodate them in the active site of PLK-2.
It is observed that these molecules from virtual screening and molecular pruning can be exploited

to retrieve active hit molecules for PLK-2 inhibition.

For the reference molecules bound to (415M, 416H, 416B) reported inhibition activities are 8.8
nM, 5 nM, 1170 uM, respectively (Aubele et al., 2013) and by MM_PBSA calculations it was
observed that 415M (-175.480) kJ/mol showed low binding energy than 416H (-141.592) kJ/mol.
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It has been reported that large molecules show low binding free energy than small molecules due
to the conformational flexibility and bulky size (Araki et al., 2016). Finally, the designed
molecules show concurrence in binding conformations and energies with the reference
molecules, and this confirms the validity of the pharmacophore model as a robust model to find

new hit molecules to bind a target protein.

76



2.5 Conclusions

The available crystal structure of BI-2536 bound to PLK-2 was used to generate a
structure-based pharmacophore that had six pharmacophore features. The molecules identified
from pharmacophore-based virtual screening of ZINC database were further improved by in situ
conformation generation in the PLK-2 active site and molecular pruning to trim the size of
molecules such that they appropriately bind the enzyme active site. These protocols showed
improvement in obtaining new hit molecules using virtual screening that were comparable to the
reference inhibitor BI-2536. The molecules bound to the hinge region residues forming hydrogen
bonds with Glul160 and Cys162, B6 strand, and activation loop residues. Further studies based on
molecular docking, MD simulations, and binding free energy calculations of new hit molecules
revealed that they form stable complexes and fit well into PLK-2 active site similar to reference

molecules and are therefore proposed as new hit molecules to bind PLK-2.
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CHAPTER-3

Identification of 3-D motifs based on sequences and
structures for binding to CFI1-400945, and deep screening
based design of new lead molecules for PLK-4
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3.1 Introduction

Protein kinases represent one of the important family of proteins in all life forms;
eukaryotes, bacteria, archaea and viruses (Manning et al., 2002; Forterre, 2010; Esser et al.,
2016; Jacob et al., 2011). A typical protein kinase functions by catalysing the transfer of a
phosphate group from ATP, a nucleoside triphosphate to an amino acid residue of a protein
substrate. Depending on the specific amino acid to be phosphorylated, protein kinases are
classified into Ser/Thr kinases or Tyr kinases, and sometimes dual-specificity kinases. Protein
kinases function by both autophosphorylation of itself and transphosphorylation of other
proteins. Phosphorylation is considered as a post-translational modification of a protein that
results in the conformational change of its structure and therefore functional activation thus
regulating its enzymatic activity, cellular location, and association with other proteins
(Beenstock et al., 2016).

Kinases represent one of the large family of proteins and comprise about 2% of the
human proteome (Manning et al., 2002), about 30% of the human proteome is phosphorylated by
the action of protein kinases. A typical kinase domain consists of 250-300 amino acid residues
along the linear sequence. A kinase 3-D structure comprises of an N-terminal lobe mainly
comprising B-sheets and a C-terminal lobe rich in a-helices. The N- and C-terminal lobes are
connected by a linker region, the amino acid residues from this hinge region, and the residues in
the vicinity from both the domains form the active site of the protein that is occupied by the
cofactor ATP (Hanks & Hunter, 1995).

During the process of cell division, a mother cell divides to produce two daughter cells
with faithful transfer of the hereditary genetic information from one generation to the next
generation cells. These mechanisms of cell division are conserved throughout the evolution, the
cell cycle events are controlled and regulated by the protein kinases (Wang & Levin, 2009). The
coordinated progression during cell division from GO to GO/G1 phase is orchestrated by protein
phosphorylation due to the action of several Ser/Thr kinases. The families of kinases that play an
essential role during cell division are CDKs, PLKSs, Aurora kinases A, B and C, NIMA (never in
mitosis gene A)-related kinases (NEKSs), mitotic checkpoint regulators (Bubl, BubR1, and
Mps1) and Mastl (Malumbres, 2011).
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PLKs belong to the family of Ser/Thr kinase proteins that consist of five members (PLK-1 to
PLK-5). The N-terminal region of the PLKs comprises the kinase domain and the C-terminal
region comprises a highly conserved, non-catalytic PBD that plays a pivotal role in the function
of these enzymes. The PLK-1, PLK-2, PLK-3 and PLK-4 are differentially expressed during the
cell cycle and in different tissues (Takai et al., 2005). PLK-5 plays a role in cell cycle
progression and neuronal differentiation. This protein has a truncated kinase domain with the
loss of the main activatory autophosphorylation site and the conserved key residues involved in
phospho-substrate recognition, hence PLK-5 is a catalytically inactive kinase. In the eukaryotic
cell division, PLK-1 to PLK-4 play a variety of roles such as centrosome maturation, checkpoint
recovery, spindle assembly, cytokinesis, and apoptosis. PLK-4 regulates centriole duplication
during the cell cycle (Nigg & Raff, 2009) and is therefore approved as oncogenic target in the
treatment of multiple cancers such as breast cancer, lung cancer, paediatric cancers,
medulloblastomas and neuroblastoma of central nervous system and atypical teratoid tumours of
brain (Sredni et al., 2017A; Sredni et al., 2017B; Bailey et al., 2018; Suri et al., 2019). These
disease conditions are involved in the overexpression of PLK-4 resulting in centriole
uncontrolled growth and genomic disorder leading to tumorigenesis (Holland et al., 2010). PLK-
4 is therefore a good drug target as it plays a crucial role in cell cycle and controls the centriole
formation events (Moyer & Holland, 2019) and its deregulation is implicated in multiple

tumours.

Recently some PLK-4 inhibitors such as YLZ-F5 and YLT-11 are shown to inhibit
human ovarian cancer cell growth by inducing apoptosis and mitotic defects, and to inhibit
human breast cancer growth via inducing maladjusted centriole duplication and mitotic defects,
respectively (Zhu et al., 2020; Lei et al., 2018). Indolin-2-one derivatives are reported as PLK-4
inhibitors based on quantitative structure activity relationship, with comparative molecular field
analysis and comparative molecular similarity indices analysis (Shiri et al., 2016). CFI-400945 is
a potent and selective PLK-4 (Sampson et al., 2015A) inhibitor that is under phase Il clinical
trials for breast cancer (NCT04176848, NCT03624543) and phase | clinical trials for advanced
cancer (NCT01954316) and acute myeloid leukemia/myelodysplastic syndromes/relapsed
cancer/refractory cancer (NCT03187288). Cancer cells treated with CFI1-400945 exhibit affects
that are consistent with PLK-4 kinase inhibition, including dysregulated centriole duplication,
mitotic defects, and cell death (Mason et al., 2014). CFI-400945 is a potent, orally active
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inhibitor with 1Csg value of 2.8 + 1.4 nM for inhibition of PLK-4 in the treatment of solid tumors,
pancreatic, lung and breast cancers (Sampson et al., 2015B; Lohse et al., 2017). CFI-400945 also
inhibits the activity of other kinases such as, TrkA (6 nM), TrkB (9 nM), Tie-2 (22 nM), Aurora
B (98 nM) at low concentrations. Interestingly, CFI-400945 does not inhibit PLK-1, PLK-2 and
PLK-3 even at a concentration of 50 uM (Sampson et al., 2015B) this is proposed to be due to
the most divergent structure of PLK-4 compared to other PLKs (Yu et al., 2015). However,
computational studies at atomistic level to reveal the molecular mechanisms of binding between
PLK-4 and CF1-400945 are not reported so far.

CADD is a comprehensive and progressively developing research area and plays a crucial
role in new drug discovery during the initial stages. It incorporates the information on protein
sequence and structure similarities, homology modeling, virtual screening, molecular docking,
scoring of lead molecules, MD simulations and estimation of binding free energy calculations. In
this work | have studied the protein kinases which are in vitro tested and scanned for inhibition
by CFI-400945 (Sampson et al., 2015B). The primary sequences and 3-D structures of these
proteins were analysed in order to understand how PLK-4 shares a common inhibitor, CFI-
400945 with TrkA, TrkB, Tie-2, Aurora A, Aurora B and other proteins, based on multiple
sequence alignments, structure-based sequence alignments and phylogenetic trees, repurposing,
and by the examination of the 3-D motif in PLK-4 that shares similarity with other protein
kinases and drug-drug similarity. Due to the growth in the field of computational chemistry and
recent developments in deep learning, these methods were applied to identify new molecules to
bind PLK-4 by virtual screening of molecules obtained from pharmacophore-based searches.
These hit molecules were validated by molecular docking and MD simulations of the best
docked complexes, followed by binding free energy calculations to compare their stability with
reference to CFI-400945. These studies provide an effective method in the design of novel hit
molecules and identify key residues for intermolecular interactions in PLK-4 which would be
beneficial for further drug discovery studies.
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3.2 Methods

3.2.1 Data collection and homology modeling

The primary sequences of PLK-4 and other protein kinases that were tested for inhibition
by CFI-400945 (Sampson et al., 2015B) were collected in the FASTA format from the human
kinome database (www.kinase.com). The structures of these proteins where available were
collected from PBD (Berman et al., 2000). Amino acid mutations were recovered to wild-type
protein sequences, missing amino acids in the PDB structures were added using Chimera
(Pettersen et al., 2004). In the crystal structures of PLK-4, the activation loop is not defined from
X-ray structures. Therefore, the PLK-4 model structure was built using multiple template protein
homology modelling method in MODELLER (Sali & Blundell, 1993) using the crystal structures
of PLK-4 (PDB ID: 3COK, unpublished results, 4YUR (Wong et al., 2015), and PLK-3 (4B6L,
unpublished results). The best model was selected based on the ERRAT score (Colovos &
Yeates, 1993), Ramachandran plot (Ramachandran et al., 1963) and ProSA Z-Score (Wiederstein
& Sippl, 2007). In a protein structure, ERRAT assess the non-bonded atom-atom interactions,
Ramachandran plot validates the stereochemical quality and ProSA indicates the overall model
quality and measures the deviation of the total energy of the structure with respect to an energy
distribution derived from random conformations. The validated model structure of PLK-4 was
used for the purpose of molecular docking and MD simulations studies.

3.2.2 Sequence alignment and phylogenetic trees

Amino acid sequence alignment is a technique for comparison of a pair or multiple
protein sequences. The collected protein kinase sequences from primary and tertiary structures

were aligned using multiple sequence alignment method Clustal Omega (Madeira et al., 2019).

Based on the 3-D structures of proteins, the amino acid sequences were separated into the
outer residues and buried residues by applying the solvent accessibility criteria available in the
DS 3.5. The number of grid points per atom was set to 240 with a probe radius 1.4 A, residues
are considered as exposed if the solvent accessible surface area is greater than 25% and as buried

if the solvent accessible surface area is less than 10%. The amino acid sequence motifs thus
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retrieved were analysed using the multiple sequence alignment methods. The Nexus output
format for the multiple sequence alignment (Maddison et al., 1997) was used to generate a
circular phylogenetic tree using interactive tree of life (iTOL) server (Letunic & Bork, 2019) and
the interactions network was generated based on Cytoscape software (Shannon et al., 2003).

3.2.3 Repurposing

Repurposing is a technique that leads to search for similar binding sites and side-chain
arrangements of residues in the ligand binding site of proteins. The identification of interface
residues in PLK-4 protein 3-D structure permits to decipher the common binding sites in proteins
that are reported to bind CFI-400945 with high affinity using in vitro studies. To enhance the
utility of the inhibitor CFI-400945, the Drug ReposER server (Ab Ghani et al., 2019) was used to

retrieve the proteins that share similar binding site with PLK-4 and their interface residues.

3.2.4 3-D structural motif

The 3-D structures of proteins are more conserved than their homology based
conservation of primary structures at the amino acid sequence level. Therefore, similarity in 3-D
structures can be exploited to identify the function of an unknown protein, and off-targets that
are susceptible to bind the same inhibitor so as to design selective ligands that could bind to a
similar 3-D motif. The 3-D motif which is also called as a structural motif is a space consisting
of the side-chains of amino acids that arise from different secondary structural regions of a
protein and come close together in 3-D space. In the absence of high sequence similarity in the
primary structure of proteins, a search for the 3-D motifs in PLK-4 inhibitor binding site cannot
be achieved by the use of conventional sequence alignment methods. The GSP4PDB webserver
(Angles et al., 2020) was used which works based on the distances and gaps between residues,

the similarity search for structural motifs was limited to four amino acid residues.

3.2.5 Drug-drug similarity

The protein kinase inhibitors from Protein Kinase Inhibitor Database (PKIDB) (Carles et
al., 2018) that comprises 255 inhibitors were retrieved. The molecule CFI-400945 was added to

this database in order to study its similarity to other inhibitors. The structure coordinates of CFI-
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400945 were converted to .sdf file format and was submitted to ChemBioServer 2.0 server
(Karatzas et al., 2020) using structural similarity network and similarity metrics parameter set to
“Hamming” with edge threshold set to 0.2. The obtained results were submitted to Gephi
(Bastian et al., 2009) to represent the results in a network.

3.2.6 Drug design based on deep learning model

In the recent times, application of deep learning is growing in the field of drug design,
where there is an availability of a large number of molecules which are active and inactive to a
specific receptor. Deep learning based drug design methodology was used to generate a model
from bioactivity data, and the model generated was used in virtual screening of databases. The
DeepScreening webserver (Liu et al., 2019) which uses the bioactivity of CHEMBL24 database
(Gaulton et al., 2017) was used and specified the model type to “Classification” in order to build
inhibitor model for PLK-4. The generated model with high accuracy was used in virtual
screening of the library of compounds that were built using Pharmit webserver (Sunseri & Koes,
2016) based on the non-bonding interactions between PLK-4 and CFI-400945 complex.

The pharmacophore model covered important pockets with structural motifs in PLK-4
that were included as receptor and this target focused library of molecules generated was used in
virtual screening towards deep learning model to search for the best molecules that bind to PLK-

4. The molecules with high score were transferred to molecular docking studies.
3.2.7 Molecular docking

Molecular docking is a technique employed to combine and fit a molecule within the
binding site of a protein, to study the orientation of a molecule inside the receptor binding site
that is stabilised by the formation of non-bonding interactions. The LibDock (Diller & Merz Jr,
2001) incorporated into DS3.5 was used to dock CFI-400945 and the hit molecules selected from
virtual screening into PLK-4 active site. The PLP force field (Gehlhaar et al., 1995) were

selected for scoring the docking poses in the receptor pocket.
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3.2.8 Molecular dynamics simulations

Conformational plasticity is the characteristic feature of protein 3-D structures. Molecular
docking is achieved by shape and charge complementarity between the receptor and ligand, but
this complexation needs to be confirmed for stability of receptor, inhibitor and inter-molecular
interactions between them during MD simulations. Hence, the PLK-4 kinase domain bound to
reference and hit molecules were subjected to MD simulations using GROMACS 5.1.2 (Hess et
al., 2008; Van Der Spoel et al. 2005). Amber ff99SB force field was applied to the protein and
small molecules using antechamber with ACPYPE, and the charge on the molecules was
controlled by AM1-BCC (Hornak et al., 2006; Da Silva & Vranken, 2012; Wang et al., 2006).
The unit cell was set to cubic box with 1.0 nm dimensions and each complex was solvated with
SPC waters, CI" and Na* ions were added to neutralize the system (Berendsen et al., 1981).
Long-range electrostatic interactions were treated using PME method (Darden et al., 1993,
Essmann et al., 1995), with a real-space cutoff of 10 A, PME order of 4, and a relative tolerance
between long- and short-range energies of 107°. Short-range interactions were evaluated using a
neighbor list of 10 A updated every 10 steps while Lennard-Jones (LJ) interactions and the real-
space electrostatic interactions were truncated at 9 A.LINCS algorithm was applied to constrain
the hydrogen bonds (Hess et al.,1997).

The MD simulations protocol describes three main steps after topology generation,
solvation and addition of ions; the first step is energy minimization of the system, where 50,000
steps were run till the system reaches a maximum force lower than 1000 kJ/mol/nm? and the
purpose of this step is to discard the steric stress and let the system to become ideal for
simulations. The next equilibration step is further divided into two stages. The system is set to
constant number of molecules, volume and temperature (NVT), equilibrated and minimized until
300 K temperature for 100 ps to allow the solvent and ions to equilibrate around the protein. In
the next stage, the equilibration was set to constant number of molecules, pressure and
temperature (NPT) (1 atm pressure and 300 K temperature) for 1 ns until the system reaches
proper density. The temperature and pressure couplings were stabilised using V-rescale and
Parrinello-Rahman methods, respectively (Bussi et al., 2007; Parrinello & Rahman, 1981).

The equilibrated complex was subjected to 100 ns MD simulations and the output
trajectories were analysed for RMSD and RMSF. The initial structures and the final refined MD
simulated structures were used in relative binding free energy calculations to CFI-400945 and
the hit molecules identified from deep learning.
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3.3 Results

3.3.1 Homology modelling

The homology model of PLK-4 and its superimposition with the multiple template
structures (3COK, 4YUR, 4B6L) is shown in Figure 3.1A. The structural regions; 1, B2 strands
including G-rich loop (Aspll-Ile32), aB-and aC-helices (Lys45 to Leu67), and aH-helix
(Val216 to Ala226) do not superimpose well between the crystal structures, indicating the
regions of structural variations. Among the generated structure models, the best model was
selected based on the ERRAT overall quality factor (83.9), Ramachandran plot (94.4% in most
favoured regions, 4.8% in additional allowed regions) and ProSA Z-score (-6.38). These
parameters indicate the validity of the PLK-4 homology model and is therefore used for all
subsequent studies such as structure alignments, active site analyses, molecular docking, MD

simulations and relative binding free energy calculations.
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Figure 3.1: A) Superimposition of the 3-D structures of PLK-4 multiple template model with the
structural templates 3COK, 4YUR and 4B6L. B) The secondary structural regions are indicated in the
PLK-4 model.

3.3.2 Protein sequence alignment, and structure-based sequence alignment

The amino acid sequences of 215 protein kinases that include PLK-1, PLK-2, PLK-3,
PLK-4, TrkA, TrkB, Tie-2, Aurora A and Aurora B which were studied for inhibition by CFI-

88



400945 using in vitro studies (Sampson et al., 2015B) were collected from the human kinome.
All sequences were transferred to Clustal Omega server to generate multiple sequence alignment,
the output format Nexus is accepted by ITOL server to generate circular phylogenetic tree. The
phylogenetic relationship between 215 protein kinase domain sequences is shown as circular
phylogenetic tree in Figure 3.2A. As can be seen from the Figure, PLK-1, PLK-2, PLK-3 and
PLK-4 are present in one clade close to each other, and are also close to Aurora A and Aurora B,
but these proteins are distant from TrkA, TrkB and Tie-2. This result is compatible with the
amino acid sequence identities of PLK-4 with TrKA (24.52%), TrkB (26.21%), Tie-2 (27.62%),
Aurora A (37.76%), Aurora B (35.71%), PLK-1 (40.93%), PLK-2 (40.41%) and PLK-3
(44.04%).

In the second step, the amino acid sequences of the kinase domain from the N-terminus
till the DFG motif were extracted because this region forms the main catalytically active core
comprising ATP/inhibitor binding site of a kinase domain. From this phylogenetic tree (Figure
3.2B) the rearrangement of proteins within the clades was observed compared to Figure 3.2A.
PLK-4 is now located closer to ULK-1 and ULK-2 and far from PLK-1, PLK-2 and PLK-3.
Aurora A and Aurora B kinases are close to each other, but are distant from PLK-4. However,
PLK-4 is away from TrkA, TrkB and Tie-2 as can be seen from Figure 3.2B.

In the next step, in order to reduce the data size, Figures 3.2A and 3.2B; i.e. the
phylogenetic relationships observed between the full-length kinase domain (Figure 3.2A) and the
region retained from the first amino acid till the DFG motif (Figure 3.2B) were compared. The
redundancy in proteins that lie within one clade in both the phylogenetic trees was optimised to
retain only the representative sequences. For example, only one protein each from the PIM,
EphA, PKC, FGFR family proteins were taken. As a result, the numbers of proteins were
reduced from 215 to 132 and this facilitated easy review of the phylogenetic relationships. As
expected, it was observed that the phylogenetic tree shown in Figure 3.2C is similar to Figure
3.2A. The 3-D structures are available for 87 proteins and these were collected from PDB IDs as
shown in the Table 3.1. The missing residues in some these protein structures were built using
MODELLER and the amino acid mutations were recovered to the wild-type proteins using DS

3.5. The circular phylogenetic tree of these proteins was built for the full-length kinase domain,
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Figure 3.2: Phylogenetic trees of A) 215 kinases full-length domain. B) 215 kinases N-terminus till DFG
motif. C) 132 kinases full-length domain. D) 87 kinases of known 3-D structures full-length domain and
N-terminus till DFG motif.
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and shorter kinase domain till the DFG motif, as shown Figure 3.2D. In these phylogenetic trees

also PLK-4 is in a distinct clade and maintains distance from TrkA, TrkB and Tie-2.

In the fourth and final set of analyses for generating multiple sequence alignment, the specific
sequences from the protein 3-D structures were extracted. The structure was separated into outer
residues and buried residues by using solvent accessibility protocol in DS 3.5 for 87 protein
kinase domains. The amino acid residues collected from protein sequences represent more than
50% of the kinase domain in the sequence length and are located on different secondary
structural regions in the protein structures such as p1-, B2-, B3-, p4- strands, a-helices aB and aC
in the N-terminal domain, a-helices aD to aK and the loop regions that connect these secondary

structural elements as shown in Figure 3.3A.

This exercise of finding the outer residues was carried out for all the 87 kinase structures. The
PDB IDs of these proteins are shown in Table 3.1.The sequences based on structures were then
submitted to multiple sequence alignment and the generated circular phylogenetic tree is shown
Figure 3.3B. From this figure it is clear that PLK-4 is close toTrkA, TrkB, Tie-2 and Aurora
family proteins, and importantly these proteins are distant from the PLK-1, PLK-2 and PLK-3
proteins. To represent the result with better clarity, a network of these proteins was generated
using Cytoscape (Figure 3.3B) to the see location of PLK proteins and it is confirmed that the
proteins PLK-4, TrkA, TrkB, Tie-2 and Aurora A and B are close to each other. From the figure,
it is also clear that other proteins such as ABL1 that are inhibited by CFI-400945 (Sampson et
al., 2015B) lie within the same clade as PLK-4, indicating that this protein also has similar outer

surface residues.

Further, two sequence regions, KI3VGNLLGKG21 which forms B1 strand and G-rich loop, and
N94GEMNRY100 which forms a part of the hinge region and aD-helix were considered; these
regions represent a combination of outer and medium buried residues in PLK-4. The multiple
sequence alignment of equivalent regions from TrkA, TrkB, Tie-2, Aurora A and Aurora-B,
PLK-1, PLK-2 and PLK-3 and the phylogenetic tree is shown in Figure 3.3C. This result
demonstrates the similarity between PLK-4 and its non-family member proteins which are active
towards CF1-400945. It is therefore proposed that the consideration of outer surface residues in
the design of structure-based models will facilitate the leading part of inhibitors to enter into the

active site of the protein as in the case of CFI1-400945.
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Table 3.1: The PDB IDs of 87 protein kinase structures which were used to find outer residues to apply
the solvent accessibility criteria.

PDB ID | Kinase protein | PDB ID | Kinase protein PDB ID | Kinase PDB ID | Kinase protein PDB ID | Kinase PDB ID | Kinase protein
protein protein
1K2P BTK_Hsap 2WTK | LKB1_Hsap 3GC8 p38b_Hsap 4CRS PKN2_Hsap 4WA9 | ABL1 Hsap 5U6B AXL_Hsap
1K3A IGF1R_Hsap 2X0G DAPK1_Hsap 3LCD FMS_Hsap 4FGT CaMK1la_Hsap 4Y72 CDK1_Hsap 5U6C MER_Hsap
1U59 ZAP70_Hsap 2Y7) PHKg2_Hsap 3L8P TIE2_Hsap 4GU6 FAK_Hsap 47Y4 PAK2_Hsap 5VIL ASK1_Hsap
1Y57 SRC_Hsap 2YAC PLK-1_Hsap 3LCS ALK_Hsap 416H PLK-2_Hsap 5C26 SYK_Hsap 5UU1 VRK2_Hsap
1YRP DAPK3 Hsap | 2YCF CHK2_Hsap 30MV | RAF1_Hsap 41W0 TBK1_Hsap 5CAV EGFR_Hsap 6BDL PKG1_Hsap
1ZLT CHK1_Hsap 3A40 LYN_Hsap 3PLS RON_Hsap 4IWD MET_Hsap 5D7V BRK_Hsap 6BFN IRAK1_Hsap
2BlY PDK1_Hsap 3BHH CaMK2b_Hsap 3Q32 JAK2_Hsap 41XP MELK_Hsap 5EBZ IKKa_Hsap 6COU PKACa_Hsap
2CMW | CKlgl Hsap 3BKB FES_Hsap 3SXR BMX_Hsap 413] p70S6K_Hsap 5HVK LIMK1_Hsap | 6C9D MARKZ1_Hsap
2DQ7 FYN_Hsap 3COK PLK4_Hsap 3T9T ITK_Hsap 4QTB Erk1_Hsap 5KVT TRKA_Hsap 6EIM LOK_Hsap
2ESM ROCK1_Hsap 3COM MST1_Hsap 3TTO FGFR1_Hsap 4RA4 PKCa_Hsap 5LXC DYRK2_Hsap 6FDY ULK3_Hsap
2G01 JNK1_Hsap 3D7U CSK_Hsap 3U05 AurA_Hsap 4AREW AMPKal_Hsap 5L52 TAK1_Hsap 6FYK CLK2_Hsap
2HK5 HCK_Hsap 3DLS PASK_Hsap 3ZBF ROS_Hsap 4RPV PIM1_Hsap 5MJA EphB1_Hsap 6GQO KDR_Hsap
2IVS RET_Hsap 3DLZ Haspin_Hsap 4AF3 AurB_Hsap 4TNB GPRK5_Hsap 5NGO RIPK2_Hsap 6HMD CK2a2_Hsap
20F2 LCK_Hsap 3FZR PYK2_Hsap 4AT3 TRKB_Hsap 4UY9 MLK1_Hsap 500Y TLK2_Hsap 6NPZ AKT1_Hsap
2VD5 DMPK1_Hsap 4B6L PLK3_Hsap 5026 WNK3_Hsap
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Figure 3.3: A) Outer and buried regions of PLK-4 based on solvent accessibility surface area. B)
Phylogenetic tree of outer residues extracted based on solvent accessibility from 87 crystal structures and
its network. C) Multiple sequence alignment of (13-21 amino acid sequence region) and (94-100 amino
acid sequence region) active site residues in PLK-4 and matched residues in TrkA, TrkB, Tie-2, Aurora

A, Aurora B, PLK-1, PLK-2 and PLK-3.
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3.3.3 Repurposing

The proteins that have arrangement of 3-D side-chain residues in the ATP binding site
which are similar to PLK-4 crystal structure (4JXF) were explored using ReposER server. The
resulting proteins comprised both kinase and non-kinase proteins, and the kinase domain
complexes that showed RMSD lower than 1 A only were collected.

From the result of repurposing, one complex for each protein type was selected, the list of
proteins, their PDB IDs and the list of interface residues is given in Table 3.2. Most of the
interface residues that are close to the scaffold from ligand represent hydrophobic residues and
these interface residues in PLK-4 are Leul8, Val26, Ala39 and Leul43 along with the other
residues Gly19, Arg28, Lys4l, lle72, Leu73, Leu87, Leu89, Cys92, Gly95, Leul27, llel52,
Alal53, Aspl54 and Phel55 that also contribute to a lesser extent. From this result the kinases
that have similar 3-D binding site and interface residues as PLK-4 were retrieved. This can help
to improve the inhibitors selectivity and design novel and more potent inhibitors to PLK-4 by

exploiting other key residues to achieve selectivity.

Table 3.2: Binding site similarity of PLK-4(4JXF) with the binding site of other kinases.

S.No Kinase protein Interface residues

1 Abll (11EP) Leul8, Val 26, Ala39,Gly95, Leul43,Alal53

2 B-Raf (LUWJ) Val 26, Ala 39, Leu73, Cys 92, Leul27

3 SYK (1XBB) Leu 18, Val 26, Ala 39, Met 91,Gly 95,Leu 143

4 EGFR(1XKK) Leul8,Val26, Lys41, Leu75, Leu87

5 c-Met (2WGJ) Val 26, Ala39, Leu73, Leu89, Gly95, Alal53, Aspl54
6 ALK (2XP2) Leul8, Val26, Ala39, Leu89, Gly95, Leul43, Aspl54
7 ErbB4 (3BBT) Val26, Ala39, Lys41, Leu87, Gly95, Leud3, Phel55

8 Kit (3GOE) Leul8, Val26, Ala39, Cys92, Gly95, Leul43

9 FLK1 (3WZzZD) Leul8, Val26, Ala39, Cys92, Gly95, Phel55

10 ROS1 (3ZBF) Ala39, Leu73, Leu89, Gly95, Leul43

11 Aurora(400U) Val26, Ala39, Leu73, Leul43

12 FGFR4 (4TY)) Leul8, Val26, Ile72, lle152

13 C-Src (4U5)) Leul8, Val26, Ala39, Gly95, Leul43, Aspl54

14 LOK (5AJQ) Leul8, Gly19, Cys92, Gly95, Leul43, Alal53, Aspl54
15 PTK®6 (5H2U) Leul8, Val26, Ala39, Leu73, Gly95, Leul43
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16 MYT1 (5VCY) Leul8, Val26, Ala39, Lys41, Leu87, Cys92
17 GAK (5Y72) Arg28, Leul8, Val26, Lys4l, Cys92, Gly95, Leu143

3.3.4 3-D structural motif

3-D structural motif comprises the amino acid residues that come close together not
necessarily because of their arrangement in the linear sequence, but they come spatially close
together in order to form 3-D space from different regions of secondary structure and share
similar 3-D space with other proteins and those motifs could be a part of the protein active site or

outside the active site.

As per the survey of deposited kinase structures complexed with inhibitors in PDB, most
of the inhibitors consist of hydrophobic skeletal scaffold (de Freitas & Schapira, 2017) which
shows that hydrophobic inhibitors represent higher frequency. Since most of the buried amino
acid residues in the active site are hydrophobic, highly efficient and designed inhibitors do not
form hydrogen bonds with the hinge region residues and can be stabilized by hydrophobic
interactions. For instance, one of the recently reported inhibitors, AAPK-25 is designed as a dual
inhibitor for Aurora/PLK family proteins based on the naphthalene core scaffold (Qi et al.,
2019). The binding of CFI-400945 to PLK-4 involves binding patterns with hydrophobic
residues, Leul8, Val26, Ala39 and Leul43 from up and down vertically and Leu73 and Leu89
sideways horizontally as shown in the Figure 3.4A. The structural superimposition of PLK
family proteins, TrkA, TrkB, Tie-2, Aurora A, Aurora B showed 3-D motif in the ATP binding
site as indicated in Figure 3.4A.

The amino acid residues interacting with the core scaffold in PLK-4 are identical to four
residues in TrkA, TrkB, Aurora A, Aurora B; whereas in Tie-2, two residues are not identical but
retain the hydrophobic character. In the case of other PLK family members, only two of these
residues are identical in PLK-1, PLK-2 and PLK-3. The 3-D motif of the active site residues in
PLK-4 share greater similarity with TrkA, TrkB, Aurora A, Aurora B and Tie-2 and this further

explains the nature of outer residues as described in Figure 3.3B.
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Figure 3.4: A) Interaction pattern of the hydrophobic 3-D motif in PLK-4 for binding to CFI1-400945 and
regions in PLK-4 matched with other important kinases. B) Hypothetical model of 3-D motif, their
distances and gaps in PLK-4 (4JXF) C) Similarity of CFI-400945 with kinase inhibitors that are FDA
approved and in clinical trials.
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To decipher the 3-D motif for all proteins by structure superimposition is not a viable
methodology, however, searches to discover identical motifs as in Figure 3.4A and to identify
other proteins that share similar 3-D motif with PLK-4 is a viable strategy to find new drug
targets that bind to an inhibitor. A hypothetical model based on PLK-4 hydrophobic 3-D motif
was built, and calculated the distance between the residues Leul8, Val26, Ala39 and Leul43
using GSP4PDB webserver to reveal the kinase domains with similar hydrophobic cavity.
GSP4PDB webserver searches for graph-based structural patterns (GSP) in protein-ligand
complex; protein and ligand atoms are represented by nodes, and edges are used to represent
distances and gap between nodes. Our searches are based on the distance and gap between
residues, and distance between the protein and ligand atoms. The hydrophobic 3-D motif model
for PLK-4 was built, and its distance in the database is shown in Figure 3.4B. The distance
between amino acid residues and ligand ‘631’ in PDB ID: 4JXF are in the range of 3.4 to 3.7 A,
with a gap between residues Leul8 and Val26 (7 residues), Val26 and Ala39 (12 residues), and
Ala39 and Leul43 (103 residues). In order to search for proteins with similar 3-D motif as in
PLK-4, the distance between protein and ligand, and the gap between amino acid residues was
changed as shown in Figure 3.4B. The ligand was set to ‘“ANY’ so as to identify most kinases
and related protein structures. On the whole, 7,568 protein structures were retrieved, of these the
kinase structures collected without redundancy are shown in Table 3.3.The second 3-D motif
which is around the indolinone ring of CFI1-400945 that interacts with residues of PLK-4 within
3 A are Lys41 (located on B3 strand), Glu96, Ser140 and Asp154 (part of DFG motif).The Lys41
and Aspl154 are involved in ionic interactions and this interaction is most common among the
kinases. Based on the distance and gaps criteria as shown in Figure 3.4B, 1,069 proteins were
retrieved and the selected kinases without any redundancy are shown in Table 3.4. Upon
examining the retrieved structures for similar residues, it was observed that only three residues
are identical to PLK-4. Glu in Table 3.4 corresponds to the GIlu90 in the hinge region of PLK-4
and does not correspond to Glu96 as desired. Intriguingly, the methoxy substitution on the
indolinone (molecule 48) is pointing towards Glu96 side-chain and in the absence of this
methoxy substitution (molecule 47) the inhibitory activity reduced by nearly ~2.6 fold (Sampson
etal., 2015B).
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Table 3.3: Hydrophobic 3-D motif (Leul8, Val26, Ala39, Leul43) in PLK-4 for binding to CFI1-400945
and the same sequence motif identified in other kinases.

S.No Protein  Name 3-D motif residues

ID
1 1MUO Aurora A Leul39, Vall147, Alal60, Leu263
2 INVQ CHK1 Leul5, Val23, Ala36, Leul37
3 INXK MK 2 Leu70, Val78, Ala91, Leul93
4 10EC FGFR2 Leu487, Val495, Ala515, Leu633
5 10KY PDK1 Leu88, Val96, Alal09, Leu212
6 10PL C-ABL Leu267, Val275, Ala288, Leu389
7 1PKG C-KIT Leu595, Val603, Ala621, Leu799
8 1591 MEK?2 Leu78, Val86, Ala99, Leu201
9 1u4D ACK1 Leul32, Vall140, Alal56, Leu259
10 1XBB SYK Leu377, Val385, Ala400, Leu501
11 1XJD PKC-Theta Leu386, Val394, Ala407, Leu511
12 IXKK EGFR Leu718, Val726, Ala743, Leu844
13 1XR1 PIM1 Leud4, Val52, Ala65, Leul74
14 1YVJ JAK3 Leu828, Val836, Ala853, Leu956
15 1YWN VEGFR2 Leu838, Val846, Ala864, Leul017
16 1757 CLK1 Leul67, Vall75, Alal89, Leu295
17 2ACX GRK®6 Leul92, Val200, Ala213, Leu318
18 2B7A JAK2 Leu855, Val863, Ala880, Leu983
19 2C0l SRC Leu247, Val268, Ala285, Leu381
21 2CN5 CHK2 Leu226, Val234, Ala247, Leu354
22 2HW7 MNK2 Leu90, Val98, Alalll, Leu212
23 211M cFMS Leu588, Val596, Ala614, Leu785
24 21VS RET LEU730, Val738, Ala756, Leu881
25 21WI PIM2 Leu38, Val46, Ala59,Leul70
26 27T STK10 Leud2, Val50, Ala63, Leul64
27 2JC6 CAMK1 Leu29, Val37, Ala50, Leul51
28 2020 ZAP-70 Leu344, Val352, Ala367, Leu468
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29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2R4B
2W4J
2W40
2WU7
2X7G
277Q
3AGL
3AQV
3BEG
3ESN
3EYG
3FME
3FZP
3HMI
3MTL
3NR9
3NYX
3023
30CS
3PPO
3RIN
3R22
3RHX
3TXO
3VRZ
3VW6
3Z0S
3WZE
3A0J
4A0T
4AT3
4C57

ERBB4
DAPK?2
CAMK2
CLK3
SRPK?2
RSK-1
PKA
AMPK
SRPK1
MEK1
JAK1
MEKG6
PYK?2
ABL2
CDK16
CLK2
TYK2
IGF1-R KINASE
BTK
ERBB2
MK3
MMK
FGFR1
PKC Eta
HCK
ASK1
DDR1
KDR
TRKA
LOK
TRKB
GAK

Leu724, Val732, Ala749, Leu850
Leul9, Val27, Ala40, Leu93
Leu52, Val60, Ala73, Leul7l
Leul62, Vall70, Alal84, Leu290
Leu98, Val106, Alal19, Leu232
Leu68, Val76, Ala92, Leul94
Leu49, Val57, Ala70, Leul73
Leu22, Val30, Ala43, Leul46
Leu86, Val94, Alal07, Leu220
Leu74, Val82, Ala95, Leul97
Leu881,Val889, Ala906, Leu1010
Leu59, Val67, Ala80, Leul86
Leu431, Val439, Ala455, Leub56
Leu294, Val302, Ala315, Leu416
Leul71, Vall79, Alal92, Leu293
Leul69, Vall77, Alal91, Leu297
Leu903, Val911, Ala928, Leul030

Leul005, Val1013, Alal031, Leul126

Leu408, Val416, Ala428, Leu528
Leu726, Val734, Ala751, Leu852
Leu50, Val58, Ala71, Leul73
Leul39, Vall147, Alal60, Leu263
Leu484, Val492, Ala512, Leu630
Leu361, Val369, Ala382, Leu486
Leu273, Val281, Ala293,Leu393
Leu686, Val694, Ala707, Leu810
Leu616, Val624, Ala653,Leu773
Leu840, Val848, Ala866,Leul035
Leu516, Val524, Ala542, Leu657
Leud2, Val50, Ala63, Leul64
Leu560, Val568, Ala586, Leu699
Leu46, Val54, Ala67, Leul80
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61 4C8B RIPK2 Leu24, Val32, Ala45, Leul35

62 4CRS PKN2 Leu663, Val671, Ala684, Leu789
63 4DN5 NIK Leud06, Val414, Ala427, Leu522
64 4K33 FGFR2 Leu478, Val486, Ala506, Leu624
65 4L.3] P70S6K1 Leu74, Val82, Ala98, Leu216

66 4ANUS RSK2 Leu74, Val82, Ala98, Leu200

67 40TH PRK1 Leu627, Val635, Ala648, Leu753
68 4RT7 FLT3 Leu616, Val624, Ala642, Leu818
69 4USF SLK Leu40, Val48, Ala6l, Leul62

70 4YHJ GRK4 Leul93, Val201, Ala214, Leu319
71 5FTO ALK Leull22,Val1130, Alal148,Leul256
72 5GRN PDGFRA Leu599, Val607, Ala625, Leu825
73 5WVD  MNK1 Leu55, Val63, Ala76, Leul77

74 6FDZ ULK3 Leu20, Val28, Ala42, Leul4d4

75 6FYV CLK4 Leul67, Vall75, Alal89, Leu295
76 6G76 RSK4 Leu79, Val87, Alal03, Leu205
7 6GR8 AURKC Leu49, Val57, Ala70, Leul72

78 6QAS ULK1 Leu2l, Val29, Ala44, Leul45

79 6QJ7 SGK1 Leu49, Val57, Ala70, Leul73

80 4AF3 Aurora B Leu83, Val9l, Alal04, Leu207

Table 3.4: 3-D motif (Lys41, Glu96, Ser140, Asp154) in PLK-4 for binding to indolinone in CFI-400945
and the same motif identified in other kinases.

S.No Protein Name 3-D motif residues
ID

1 1WZY ERK2 Lys54, Glu109, Ser153, Aspl167
2 1591 MEK?2 Lys101, Glul48, Ser198, Asp212
3 2IN6 Weel Lys328, Glu377, Ser430, Asp463
4 2Y 41 MEK1 Lys97, Glul44, Ser194, Asp208
5 2XS0 JNK Lys55, Glu109, Ser155, Asp169
6 3ALO MKK4 Lys131, Glul79, Ser233, Asp247
7 3DAG6 JNK3 Lys93, Glul47, Ser193, Asp207
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8 3DTC MLK1 Lys171, Glu221, Ser272, Asp294
9 3VN9 MAP2K6 Lys82, Glu130, Ser183, Asp197

10 3ZIM PI3Ka Lys802, Glu849, Ser919, Asp933
11 4CXA CDK12-CYCLIN K Lys756, Glu814, Ser863, Asp877
12 4D9T RSK2 Lys451, Glu494, Ser543, Asp561
13 4F99 CDC7 Lys90, Glul38, Ser181, Asp196

14 4Y83 COT Kinase Lys133, Glu208, Ser257, Asp270
15 5BMS PAK4 Lys350, Glu399, Ser445, Asp458
16 SBYY ERK5 Lys84, Glul41, Ser186, Asp200

17 SEFQ CDK13-CYCLIN K Lys734, Glu792, Ser841, Asp855
18 5UY6 CAMKK2B Lys173, Glu268, Ser316, Asp330
19 5Z1E MAP2K7 Lys165, Glu213, Ser263, Asp277
20 6D3K PKR Lys296, Glu367, Ser418, Asp432
21 6FYO CLK1 Lys191, Glu242, Ser299, Asp325
22 6CD6 CAMKKI1A Lys136, Glul199, Ser279, Asp293

The list of proteins shown in Tables 3.3 and 3.4 indicate the proteins that share similar
binding cavity as PLK-4 and the drug design studies on PLK-4 could also involve these proteins
as targets. However, it is interesting to see that the hydrophobic 3-D motif searches identified
Aurora A, Aurora B, TrkA, TrkB confirming that the hydrophobic regions in the binding pocket
dictate CFI-400945 binding to PLK-4. Amino acids such as Glu96 and Serl40 dictate the
specificity of CFI-400945 in binding to PLK-4. This method based on the distance and gap
between residues in 3-D space appears to be a good strategy to identify structural motifs that are

otherwise difficult to be discovered based on primary sequence alignments.
3.3.5 Drug-drug similarity

The inhibitor similarity studies can resolve the relationship between binding to ‘on’ and
‘off” protein targets. Analysis of CFI-400945 for similarity with other kinase inhibitors in clinical
trials were taken from PKIDB using the webserver ChemBioServer 2.0 with edge weight control.
The total number of edges for 255 drugs also in clinical trials were 64,770 and was reduced to
2,207 with an edge weight correlation (0.3,0.3). The inhibitors shown to be similar to CFI-

101



400945 along with their protein targets are, Axitinib (Abl), Ponatinib (Abl, PDGFRa, VEGFR2,
FGFR1 and Src), Glesatinib (c-Met, VEGFR1/2/3, Ron and Tie-2), Vemurafenib (B and C-Raf,
SRMS, ACK1 and MAP4KS5), Varlitinib (EGFR) and others, as shown in Figure 3.4C.

3.3.6 Molecular docking

The ligand ‘631” from the crystal structure of PDB ID: 4JXF was modified to match the
structure of CFI-400945, followed by energy minimization in DS 3.5. This CFI-400945 was
docked into the active site of the homology model of PLK-4 using LibDock. The docking pose
that showed lower RMSD when compared with the ligand bound to PDB ID: 4JXF and a
conformation that makes hydrogen bonding interactions with amino acid residues Lys41, Glu90
and Cys92 as observed in the crystal structure was selected. The best docking pose in complex

with PLK-4 was transferred to MD simulation studies.
3.3.7 MD simulations

The best docked pose of CFI-400945 in the PLK-4 model was submitted for 100 ns MD
simulations and the simulations trajectory was analysed. The RMSD of Ca atoms for protein is
less than 2.5 A and is less than 1.5 A for CFI-400945 as shown in Figure 3.5A. The
superimposition of the input PLK-4 structure and the conformation from the last frame at 100 ns
of MD simulations is shown in Figure 3.5B. In the homology model of PLK-4, the aC-helix is
similar to 4YUR, whereas during the MD simulations, a significant movement of aC-helix was
observed and it resembles the crystal structure of 3COK. Dynamical movement of aC- helix is
one of the parameters observed in the conformational flexibility during the ligand binding and

activation/inactivation of kinases.

The RMSD of aB and aC-helices for the region (Asp44-Tyr78) as shown in Figure 3.5A
during MD simulations reached upto 2.5 A. The region Glu80-Val105 that forms B5 strand,
hinge region and aE-helix has lower RMSD (1.5 A) and this region has greater structural
stability. The RMSF plot of the protein (Gly6 — Ser266 amino acid residues) is shown in the
Figure 3.5A. It can be seen that most regions in the protein structure have low RMSF indicating
the structural stability. The regions with RMSF greater than 2.5 A are Ser31-His33 (B2), Pro164-
His165 and Thr184-Arg185 (activation loop) and Thr213 -Lys217 loop connecting aH-helix and
aG-helix.
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Figure 3.5: MD simulations trajectory analyses. A) RMSD plots of PLK-4 bound to CFI-400945, RMSD
plots of some specific regions in protein, RMSF plots of residues during 100 ns MD simulations. B)
Superimposition of 100 ns frame with template proteins.

3.3.8 Deep learning based drug design and pharmacophore models

The protein target PLK-4, with inhibitor molecule 1D: CHEMBL3788 contains 763
inactive and 420 active molecules in the DeepScreening server. A model with the criteria for
hyper-parameters set to, learning rate: 0.001, batch size 16, number of neurons 100, number of
hidden layers 2, activation function ReLU, loss function cross-entropy, features based on CDK
finger print and model type: classification was selected and submitted to the DeepScreening
server. The model generated had an accuracy of 0.8 and AUC of 0.87 as shown in the Figure
3.6A. These parameters suggest high accuracy and therefore suitability of the model to predict
new lead molecules for PLK-4 inhibition.
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Figure 3.6: A) Accuracy and AUC of model for PLK-4 generated in DeepScreening webserver using
“Classification” method. B) Phamacophore model and three aromatic features required for binding
important pockets in the PLK-4 active site are indicated as spheres. C) 3-D structures of hit molecules

selected from virtual screening with high score.
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A focused library of compounds were prepared for PLK-4 using the Pharmit server. In
the PLK-4 active site sphere, three aromatic ring features in the pharmacophore model were
selected which are located in the important pockets comprising amino acid residues discussed in
3-D motif as shown in Figure 3.6B. This pharmacophore model was used for searching ZINC
database (Irwin et al., 2012) available in the Pharmit webserver. The parameters in Pharmit
server were set to molecular weight equal to or less than 550 D, one conformation for each
molecule, receptor with tolerance 1 was selected. Out of the 13,666,888 molecules in the ZINC
database, 1,303,999 molecules were retrieved from the pharmacophore searches. Of these, only
25,000 molecules with lower RMSD relative to CFI-400945 were transferred to virtual screening
by uploading them into DeepScreening webserver. The 15 best molecules which have high score

were selected and are shown in Figure 3.6C.

These 15 molecules were validated by molecular docking using LibDock, 100 conformers were
generated for each molecule and docking was carried out within the active site of PLK-4 defined
based on CFI-400945 binding site. The best docking conformer for each molecule is assessed
based on the PLP scoring function and the hydrogen bonding interactions formed with Glu90 and
Cys92 in the hinge region of PLK-4. The PLP scoring values and DeepScreening scores are
provided in Table 3.5. Three complexes of PLK-4 when bound to the molecules ZINC21805908,
ZINC33268158 and ZINC11913358 which form non-bonding interactions with the active site
residues and that occupy binding pockets similar to CFI-400945 were proceeded for 100ns MD
simulations. MD simulations studies reveal their structural stability and quantify interactions
based on binding free energy calculations to compare them with reference inhibitor, CFI1-400945.
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Table 3.5: The list of molecules selected by virtual DeepScreening along with their dock score into PLK-
4.

S.No Compound ID PLP1 Score after DeepScreening score
docking

1 CFI1-400945 -123.74

2 ZINC223848977 -96.47 1

3 ZINC11913358 -102.6 1

4 ZINC3342922 -87.23 1

5 ZINC14883927 -106.3 1

6 ZINC36618891 -102.41 0.9999

7 ZINC21805908 -94.02 0.9999

8 ZINC8703986 -99.48 0.9998

9 ZINC36613202 -87.26 0.9998

10 ZINC71937887 -111.33 0.9998

11 ZINC12769652 -104.48 0.9998

12 ZINC65003470 -90.16 0.9997

13 ZINC104431163 -109.7 0.9996

14 ZINC33085806 -100.46 0.9996

15 ZINC20417679 -96.14 0.9994

16 ZINC33268158 -109.23 0.9976

The molecules ZINC21805908, ZINC33268158 and ZINC11913358 identified from
DeepScreening and molecular docking are stabilised in the active site of PLK-4 complexes as
revealed from the MD simulations studies. The complexes were stabilized in less than 5 ns
during MD simulations and only ZINC21805908 stabilized at 30 ns and their RMSD is stable
and comparable with the reference inhibitor CFI1-400945. These molecules bind to the cavity
formed by the residues Leul7, Leul8, Gly19, Lys20, Val26, Ala39, Lys41l, Leu73, Leu89,
Glu90, Met91, His93, Asn94, Gly95, Glu96, Arg99, Tyr100, Asn103, Ser140, Asnl41l, Leul43,
Alal53, Asp154 and form hydrogen bonding interactions with Leul8, Glu90, Cys92 as shown in
Figure 3.7. This study also validated the results obtained from DeeplLearning models and

molecular docking.
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Figure 3.7:A) The 2-D representation of interactions for hit molecules with PLK-4. B) Superimposition
of frame at 5 ns (blue) with last frame at 100ns (yellow) and ZINC21805908 stabilized at 30 ns and its
superimposition at 30 and 100 ns.C) Stable hydrogen bonding during MD simulations for 100ns. D)
RMSD of CFI-400945 and hits molecules during 100 ns MD simulations.

The last 10 ns of the MD simulations trajectories comprising 1000 frames for each
complex and CFI-400945 were transferred to g_mmpbsa calculations (Kumari et al., 2014) and

their binding free energy was calculated as shown in Table 3.6.
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Table 3.6: Various contributions to binding free energies (kJ/mol) for CFI-400945 and hit molecules
when bound to PLK-4.

Molecules vdw Electrostatic Polar solvation SASA Binding free
energy energy
CF1-400945 -233.996+0.403 -85.309+0.319  222.798+0.416 -23.799+0.030  -120.291+0.408
ZINC21805908  -239.533+0.390 -36.395+0.392  179.318+0.975 -22.348+0.034  -118.999+ 0.655
ZINC33268158 -202.835+0.347 -54.765+0.329  187.339+0.468 -19.750+£0.029  -90.009+ 0.397

ZINC11913358 -188.134+0.381 -16.319+0.223 117.337 +0.383  -18.642+0.030  -105.777+0.404

The binding free energies of molecules, CFI-400945 (-120 kJ/mol) and ZINC21805908 is (-119
kJ/mol) are nearly similar to each other. The molecule ZINC11913358 has (-106 kJ/mol), and
binding free energy to ZINC33268158 is (-90 kJ/mol). The energy contribution from non-polar
term expressed as solvent accessible surface area (SASA) is nearly similar for CFI-400945 and
the three ligands. Among the polar terms, the major driving force for the binding between PLK-4
and CFI1-400945, and the three ligands is the van der Waals interaction, with highest contribution
from ZINC21805908 (239.533 + 0.390 kJ/mol) and contribution from ZINC11913358 is (-
188.134+0.381 kJ/mol). The contribution from electrostatic polar energy of the four molecules
binding to PLK-4 is variable and ranges between (-16.319+0.223 to -85.309+0.319 kJ/mol).

As shown in Figure 3.8, the residues that contribute to the binding of CFI-400945 and the
identified hit molecules are Leu73, Glu74, Glu90-Glu96, Arg99, Tyrl00, Serl40-Leul43,
Alal53 and Aspl54 in the negative scale, and contribution in the positive scale from Leul,
Gly19-Gly21, Val26 and Ala39. This positive energy values are observed due to the high
contribution from apolar energy. Further, Lys41 contributes to the binding of CFI-400945 and
ZINC33268158 by the formation of hydrogen bonding interactions during MD simulations.
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Figure 3.8: Binding free energy and contribution of amino acid residues in PLK-4 for binding to CFI-
400945 (reference) and hit molecules during the last 10 ns of MD simulations.
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3.4 Discussion

Protein kinases represent one of the best drug targets for cancer intervention. There is an increase
in the number of approved kinase inhibitors and numerous inhibitors are still in various phases of
clinical trials and some of these inhibitors are cytostatic which leads to cell cycle arrest and
apoptosis (Gross et al., 2015). Study of selective and multi-kinase inhibitors is still a subject
great interest because of the high sequence and structural similarity shared between the kinases
(Bradley et al., 2021; Modi & Dunbrack, 2019). Several studies report the investigation of
protein Kkinases, sequences, structures and inhibitor binding, and are provided in easy to access
formats such as online databases (Bradley & Beltrao, 2019; Miljkovi¢ & Bajorath, 2018; Krupa
et al., 2004; Tina et al., 2007). CFI-400945 is one of inhibitors that inhibits PLK-4 and some of
the other kinases with high affinity at nanomolar concentrations. Due to the developments in the
field of computational chemistry and bioinformatics, several online tools are available as local
host software and open source. Hence, the studies on sequence and structure analyses of several
protein kinases was performed based on multiple sequence alignment and phylogentic trees,
Repurposing, drug-drug similarity are also exploited to understand interference of bioactivity in
PLK-4 and with others drug targets as shown in Figure 3.4C. Study of active site 3-D space with
fewer number of residues that interact with the inhibitor core scaffold and fragments can be
achieved by a number of protocols to search for 3-D structural motif such as IMAAAGINE
(Nadzirin et al., 2013) and GSP4PDB. PLK-4 displays 3-D hydrophobic motif and shares a
similar region with 80 protein kinases which were retrieved using recent protocols based on
distance between atoms and interacting residues and gap between amino acid residues of protein
as shown in Figure 3.4B. The 3-D motif around indolinone has four residues of which only 3
residues are identical with PLK-4, and Glu96is more specific to PLK-4. The other research
groups have made changes on indolinone which are closer to Glu96 and Ser140 to generate
molecules such as YLZ-F5 and YLT-11 (Zhu et al., 2020; Lei et al., 2018).

SBDD studies using pharmacophore and QSAR can be exploited to select more potent
molecules by identification of the best features in an inhibitor which binds to key amino acid

residues in the protein active site.
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Based on the PLK-4-CFI-400945 interactions pattern, three important pharmacophore
features were selected as shown in Figure 3.6B, and were used to perform searches via virtual
screening. The library of molecules prepared using Pharmit Screening was used as input to
DeepScreening webserver.

CFI1-400945 is a PLK-4 inhibitor which is in clinical trials, and other inhibitors modified from
CFI-400945 are (E)-4-(3-arylvinyl-1H-indazol-6-yl) pyrimidin-2-amine derivatives, YLZ-F5,
YLT-11, and indolin-2-one derivatives were designed based on computational methods (Liu et
al., 2017; Zhu et al., 2020; Lei et al., 2018; Shiri et al., 2016). Further, centrinone is reported as
selective PLK-4 inhibitors (Wong et al., 2015). The reported inhibitors to PLK-4 are limited and
are mostly designed as a part of analogue-based drug design. Hence, CFI-400945 PLK-4
complex 3-D structure and motifs have been studied based on computational methods and the
retrieved information was used to design new inhibitors. Based on active and inactive molecules
from ChEMBL database examined towards PLK-4 inhibition, a model was built using deep
learning classification method. CFI-400945 analogs represent 10% of molecules which were
used to build model based on deep learning and model accuracy as shown in Figure 3.6A. The
model has high accuracy and was used to screen library of molecules. Fifteen molecules that are
more diversified from reported molecules were selected, and three of them which were
transferred to validation studies were found to be stable and bind to PLK-4 based on binding free

energies shown in Figure 3.7 and Table 3.6.
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3.5 Conclusions

The similarities of PLK-4 with other kinases such as TrkA, TrkB, Tie-2, Aurora A,
Aurora B, PLK-1, PLK-2, PLK-3 and other proteins that were reported to be inhibited by CFI-
400945 were studied in many different ways such as sequence and structure comparisons, by
considering the full kinase domain, N-terminal till the DFG motif, outer residues extracted from
crystal structure of kinases which involve 3-D motifs comprising the active site. The sequence
comparison based on structures show better correlation to understand how multiple targets are
affected by the inhibitor. Searches based on 3-D structural motif is also an efficient method to
reveal similar binding pockets in the reported crystal structures of proteins that would have
implications in the drug repurposing. Pharmacophore features based design of inhibitor libraries
and virtual screening based on deep learning models aid in the selection of hit molecules for a
receptor target. Methodologies in molecular docking and molecular dynamics reveal the stability
of the complexes and identify the key residues that contribute to their binding.
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CHAPTER-4

Structural insights into the inhibitor binding and new inhibitor
design to PLK-1 Polo-box domain using computational studies
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4.1 Introduction

Cancer has been one of the biggest challenges to the medical research community and is
considered as the second leading cause of death globally (Ames et al., 1995). The unifying theme
among the various types of cancers is the rapid cell division accompanied by abnormal cell
growth. Several cell cycle-regulated kinases have been implicated to play a major role during
these processes. Defects in cell cycle leads to apoptosis or diseases such as cancer. CDKs, PLKs
and Aurora kinases are some of the important kinase families in the cell cycle regulation (Fu et
al., 2010).

PLK was first identified in drosophila, its mutation causes the formation of monopolar
and multipolar mitotic spindles, and abnormal segregation of chromosomes (Sunkel & Glover,
1988). The first polo kinase homolog in humans, PLK-1 has been identified and cloned (Clay et
al., 1993; Golsteyn et al., 1994) and it has been shown that during the G2 to M phase transition,
PLK-1 is phosphorylated on serine and its kinase function is stimulated (Hamanaka et al., 1995).
In humans, five PLKs-1 to 5 have been identified, these Ser/Thr kinases are key regulators for
various cellular events during cell division. PLK-1 efficiently participates in mitotic entry,
spindle assembly, anaphase entry and cytokinesis in mitotic phase, and DNA checkpoint,
chromosome condensation and centrosome maturation in interphase during the cell division. The
PLK-2 and PLK-4 promote centriole duplication in G1 phase (Cizmecioglu et al., 2008;
Cizmecioglu et al., 2012), PLK-3 regulates DNA replication in S phase (lida et al., 2008). PLK-5
has been reported to play a role in neuronal differentiation (de Cércer et al., 2011A; de Carcer et
al.,, 2011B). Among all PLKs, PLK-1 has gained greater importance due to its role in
tumorigenesis in various cancers.

The evolutionarily conserved PLKs have a common domain architecture with a N-
terminal kinase domain and a C-terminal PBD, however, PLK-5 lacks the functional kinase
domain (de Carcer et al., 2011B). In the C-terminus, two PB motifs that share high sequence
similarity form the non-catalytic PB domain (PBD) and are present in all PLKs excepting PLK-
4, which has only one PB motif. Based on the controlled regulation of cell cycle in normal cells
orchestrated by several enzymes and regulatory proteins, and the importance of PLKSs in
regulating cell division, these kinases have been proposed as important drug targets. However,

there are over 500 kinases in the human genome and several of these have been targeted for drug
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design studies (Manning et al., 2002). Because of the high similarity in the sequences and
structures of kinases, there is less selectivity that makes the drugs promiscuous. For example,
preventing the activity of PLK-1 with ATP-competitive inhibitors commonly inhibit all PLKs
and a single mutation in the catalytic residues of PLK-1 leads to dramatic resistance to the ATP-
competitive inhibitors (Burkard et al., 2012). Therefore, it would be sensible to also explore the
other regulatory domains that control the kinase activity, in order to design drugs for cancer
therapy. In PLK-1, PBD comprises the PB1 (residues 407-494) and PB2 (residues 509-598)
regions, and a polo cap consisting of 33 amino acids towards its N-terminus. PBD is also
involved in the subcellular localization and substrate interaction of PLK-1 (Lee et al., 1998; Park
et al., 2010), through interactions with a phosphorylated Ser/Thr motif it brings the enzyme in
close proximity to its binding targets or substrates localized at these sites (Cheng et al., 2003;
Elia et al., 2003). A large number of PBD binding proteins required for various PLK-1 dependent
mitotic functions have been identified, indicating that PBD directly mediates various PLK-1
dependent biochemical steps and cellular processes in specific subcellular structures (Park et al.,
2010).

The crystal structure of PBD bound to phosphopeptide (PLHSpT) (Yun et al., 2009) has
been reported, it binds within a positively charged pocket at the inter-domain interface. This
pocket plays a role in substrate recognition and regulates PLK-1 function. Site-directed
mutagenesis of the positively charged cleft causes disruption of phospho-dependent interaction
and subcellular localization of PLK-1, indicating that PBD-phosphopeptide binding is essential
for PLK-1 targeting to recognize the substrate and also regulate the PLK-1 activity. It has been
reported that the kinase activity of PLK-1 is stimulated by the binding of phosphopeptide to
PBD, the targeting of PBD in PLK-1 results in cell cycle arrest, inducing apoptosis (Elia et al.,
2003). The inhibition of PBD induced a monopolar spindle appearance that exactly resembles
catalytic inhibition of PLK-1 (Lee et al., 1998). Several reports suggest that PLK-1 can also be
inhibited by interfering with its regulatory domain, PBD because both the domains have mutual
cooperative effect on each other. A natural product thymoquinone and its synthetic derivative
Poloxin bind to the PLK-1 PBD. These compounds inhibit the in vitro and in vivo functions thus
validating PLK-1 PBD as an anticancer target (Reindl et al., 2008). It has recently been shown
that inhibitors of PBD can be employed to interfere with functions of PLK-1 and targeted

towards cancer therapy (Archambault & Normandin, 2017). In fact, PBD can be described as a
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second drug target in PLK-1 as it is present only in PLK family of proteins and therefore
inhibition of PBD is sufficient to disrupt the activity of PLK-1. These reports validate PBD as a
good target for drug design studies for cancer treatment.

Some inhibitors such as phosphopeptides, poloxin, vinyl sulfone derivatives,
thymoquinone, have been shown to bind PBD with millimolar to micromolar affinities and
inhibit the PLK-1 activity (Yun et al., 2009; Reindl et al., 2008; Scharow et al., 2015; Qin et al.,
2016; Normandin et al., 2016). Hence, there is a need to find more potent inhibitors of PBD. The
acylthiourea analog inhibitors for PLK-1 PBD have shown structure activity relationships and
micromolar binding affinities (Yun et al., 2016).

In this work, the PLHSpT inhibitor bound to PBD has been used as a structure-based
pharmacophore to screen ZINC database. Similarly, ligand-based pharmacophore has been
generated to screen small molecule ZINC Lead-Like database. The best molecules based on
pharmacophore screening were docked into the PBD active site. The stability of complex
formation and molecular basis for their inhibition was studied using MD simulations and binding

free energy calculations.
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4.2 Materials and methods

4.2.1 Protein structure and preparation

In the PDB (Berman et al., 2002) among the crystal structures of PLK-1 PBD, PDB ID:
3HIK (Yun et al., 2009) with the highest resolution (1.77 A) was used for computational studies.
The missing Nz atom of Lys388 was added using MODELLER (Sali & Blundell, 1993)
incorporated into the Chimera UCSF and was accessed using the web service (Pettersen et al.,
2004).
4.2.2 Ligand preparation and molecular docking

The acylthiourea analog inhibitors of PLK-1 PBD (Yun et al., 2016) were drawn by DS
2.5and energy minimization was performed using CHARMM force field and MMFF94 charges
(Brooks et al., 1983; Halgren et al., 1996). The active site of the protein was defined in the
PLHSpT binding pocket, the molecular docking of energy minimized inhibitors into the active
site was performed using CDOCKER (Wu et al., 2003) integrated with the DS 2.5. The number
of docking poses was set to 50, CHARMM force field was used with Grid extension set to 8.0
and simulated annealing was used in the docking process. To validate the docking methodology,
PLHSpT was docked into the active site of PDB ID: 3HIK. The best docking pose of
acylthiourea derivatives and the new molecules identified in this work were selected based on
their docking score, followed by visual inspection on graphics to estimate the non-bonding
interactions in the protein-inhibitor complexes.
4.2.3 Pharmacophore generation and virtual screening

The crystal structure of PDB ID: 3HIK was used to generate a ligand-based
pharmacophore of peptide inhibitor using Pharmit (Sunseri & Koes, 2016). Pharmit is an online
server to generate an editable pharmacophore-based on protein-ligand complex and virtual
screening of small molecule libraries. Protein-inhibitor complementarity is enhanced by several
non-bonding interactions. Pharmit has been successfully used for the identification of potential
inhibitors for acetylcholinesterase (Shiri et al., 2018). Among the non-bonding interactions, the
pharmacophore features (hydrogen bond acceptor, hydrogen bond donor, ring aromatic,
hydrophobic, ionic interaction) in PBD-PLHSpT complex were manually edited and were further
used for virtual screening of ZINC database (Irwin et al, 2012) comprising of 11,494,056

molecules. The obtained hits were analyzed to rank the molecules that had low RMSD and fewer
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rotatable bonds. The top 10 hits were considered as probable hit molecules. The PBD
pharmacophore was validated using a decoy set which consists of 1000 molecules downloaded
from (http://www.schrodinger.com/glidedecoyset). The pharmacophore identified hit molecules
were combined with 1000 molecules decoy set and virtual screening was once again carried out.
The top 10 hit molecules from pharmacophore screen were docked into the active site of PBD
using CDOCKER as described above. The best four PBD-molecule complexes were further
validated by using MD simulations.
4.2.4 Ligand-based virtual screening

The SwissSimilarity web server (http://www.swisssimilarity.ch) was used for ligand-
based virtual screening to exploit the binding features in the acylthiourea derivative (molecule 3e,
Yun et al., 2016). SwissSimilarity is an online webserver for LBDD that uses 3-D similarity
searching method. This method is based on the combined score 2-D/3-D screening which utilizes
the principle of FP2 Tanimoto coefficient and Electroshape-5D Manhattan distance (Zoete et al.,
2016). The molecules identified from ZINC Lead-Like database (4,328,000 molecules) search
were docked into the PLK-1 PBD active site using CDOCKER. The best two PBD-molecule
complexes were further validated by MD simulations.
4.2.5 Molecular dynamics simulations

The crystal structure of a protein is rigid and the binding of inhibitors to form the protein-
inhibitor complex requires to be stabilized owing to the induced fit mechanism. The inherent
flexibility in proteins needs to be studied to explain their function at an atomic level. Hence, MD
simulations studies is a recommended method to investigate the stability of the protein-inhibitor
complex (Saxena et al., 2017). The MD simulations were carried out using GROMACS 5.1.4
(Hess et al, 2008; Van Der Spoel et al., 2005) to study 25 ns MD simulations of PBD —
complexed with PLHSpT, acylthiourea derivatives and the new inhibitors identified in this work.
The MD simulations of apo-protein (in the absence of inhibitors) was also studied to understand
the effect of inhibitor binding in stabilizing the structure of PBD. The Amber ff99SB (Hornak et
al., 2006) force field was applied to the proteins and inhibitors. For the inhibitors, force fields
were assigned using ACPYPE script (da Silva &Vranken, 2012) with AM1-BCC charges in
Antechamber (Wang et al., 2006). All systems were immersed in a cubic box, three-point model
(SPC) was used for solvation, and Na* and Clions were added to neutralise the system
(Berendsen et al., 1981).
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Energy minimization using steepest descent algorithm as an integrator was initially run to reach
stable potential energy. Position restraint was applied to equilibrate the system in two steps; NVT
to ensure even solvent orientation around the system at 300 K for 100 ps, followed by NPT for
Ins at 300 K to reach proper density. The final MD simulations were performed at 300 K for 25
ns using 0.002 ps time step, updated the energy and log files after every 10 ps. The Parrinello—-
Rahman method was used to control pressure (Parrinello & Rahman, 1981) and the temperature
was maintained using V-rescale thermostat (Bussi et al., 2007). The long-range electrostatics
were applied using Particle Mesh Ewald (PME) method (Darden et al., 1993; Essmann et al.,
1995) and space cut-off of 10 A, the relative tolerance between long and short range energies
were found to be 107 and with PME order of 4.Short-range interactions were evaluated using a
neighbor list of 10 A and updated after every 10 steps; while the Lennard-Jones (LJ) interactions
and real space electrostatic interactions have been regarded with cut off of 9 A. LINCS algorithm
was used to constrain hydrogen bonds (Hess et al., 1997). The final models were evaluated by
the average snapshots from the trajectory files generated by MD simulations after the structure
stabilization was achieved (15-25 ns).

The RMSD of the Ca atoms with respect to their starting structures were calculated by
using gmx rms of GROMACS, to study the conformational variations in the PBD-inhibitor
complexes. The convergence of MD simulations was analyzed in terms of the potential energy
and RMSD plots. The RMSF was calculated using gmx rmsf to study the stability of frames
relative to the initial frame during MD simulations. The last 10 ns trajectory files were used for
MM-PBSA calculations, to estimate the binding free energy and residue-wise contributions to

the inhibitor binding in the protein active site.

4.2.6 Binding free energy calculations

MM-PBSA is used to calculate the binding free energy from initial and final states of an
ensemble of structures generated from MD simulations (Baker et al., 2001). This parameter is
used to assess the interactions in protein-ligand complexes (Homeyer & Gohlke, 2012). The
g_mmpbsa (Kumari et al., 2014) is a tool compatible with GROMACS output MD trajectories.
From the last 10 ns of each complex that contains 1000 frames, the binding free energy was

estimated.
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4.3 Results

4.3.1 Three-dimensional structure of PLK-1 PBD

The crystal structure of PLK-1 PBD (PDB ID: 3HIK) is a monomer, with two PBs related
by a 2-fold symmetry axis. Each PB contains a continuous six-stranded anti-parallel B-sheet and
an o-helix. The phosphopeptide inhibitor PLHSpTIlies at the interface between the two

homologous PBs made by the anti-parallel B-sheets as shown in Figure 4.1A.

83)

(e
414

Figure 4.1: A) 3-D representation of PLK-1 PBD (PDB ID: 3HIK). Phosphopeptide PLHSpT from
crystal structure (blue) and docked pose (yellow) are shown in stick. B) Docking conformation and
location of acylthiourea analogs in the active site of PBD. C) 2-D representation of acylthiourea inhibitor
(3a) in the PLK-1 PBD active site, various non-bonding interactions are indicated.

The inhibitor proline-1 carbonyl oxygen main-chain forms hydrogen bonding interactions with
the side-chain guanidine group of Arg516 and the carbonyl oxygen of leucine-2 main-chain
(from peptide) forms hydrogen bonding interactions with the main-chain NH of Asp416. The
serine-4 main-chain NH and carbonyl oxygen atoms form hydrogen bonds with main-chain
carbonyl oxygen and NH atoms of Trp414. The CH> group of serine-4 side-chain also forms pi-
sigma interactions with Trp414 side-chain indole ring. The terminal phosphorylated threonine-5
carboxylate group forms hydrogen bond with main-chain NH of Leu491 and the phosphate
oxygen forms hydrogen bond with side-chain NH of Lys540 and His538.
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4.3.2 Molecular docking of acylthiourea analogs

The docking of the peptide PLHSpT into the active site of PBD domain resulted in a
conformation that has low RMSD with the crystal structure as shown in Figure 4.1A. This
validated CDOCKER as a useful methodology for docking of inhibitors in the active site of
PBD.The binding conformations of acylthiourea derivatives were ranked based on the docking
scores (Table 4.1).
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Table 4.1: Structures, docking scores and binding free energies of acylthiourea analogs when bound to
PLK-1 PBD.

Dock Score  AGoinding(kJ/mol)

Compounds R Rl R2 Kda(uM) PMF04 (15 -25 ns)
3a CHs H H 737463 -17.81 -15.247+0.479
3b -CH.CH: H H 64.3+38 -30.52 -23.099+0.424
3e -CH2Ph  H H 68.8+£3.7 -30.83 -15.213+0.533
3u -CHPh - CI CI 5.1+0.3 -30.78 -31.040+0.418
3v -CHPh Br Br 2.3+0.1 -38.01 -52.496+0.526
3w -CH,Ph H Br 6.9+0.6 -43.10 -36.919+0.389
3x -CH2Ph H | 5.6%0.3 -38.03 -50.433+ 0.409

The best docking conformation and their location in the active site of PBD is shown in Figure
4.1B. The docking pose of a representative acylthiourea molecule (3a) into the PBD active site is
shown in Figure 4.1C. These molecules bind at the shallow interface between PB1 and PB2
regions, the amino group of sulfonamide binds the main-chain oxygen of Trp414, while the
iminonitrogens of thiourea form hydrogen bonds with the main-chain carbonyl oxygen of
Leud91, the adjacent carbonyl oxygen forms hydrogen bond with N¢side-chain of Lys540. Most

of these interactions are also reported in the molecular docking of acylthiourea in PLK-1 PBD
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(Yun et al., 2016). The phenyl ring in 3e and subsequent molecules fit into a compact cavity
formed by Leu491, Lys492, Ala493, 11e553, His538, Lys540 and Arg557. One of the halogens in
3u (Yun et al., 2016) and subsequent molecules is in the proximity of Leu490 and Leu491 and is
partially solvent exposed. The second halogen is directed towards the deep cavity alongside 1-

strand in the PB1 region.

4.3.3 Pharmacophore-based identification and docking of new inhibitors toPBD

The pharmacophore-based new inhibitor identification is based on two principles, SBDD
and LBDD. The Pharmit webserver, a structure-based pharmacophore generation method was
used to find geometrical and electrostatic features in PLHSpT. Virtual screening of ZINC
database using all features in this pharmacophore (Figure 4.2A) could not identify new
molecules, hence the pharmacophore features were reduced and retained only the essential
features that are responsible for protein-ligand complementarity. In this process, pharmacophore
features (one hydrogen bond donor and three hydrogen bond acceptors) that interact with Trp414,

Asp416 and Lys540 were retained as shown in Figure 4.2A.
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Figure 4.2: A) Intermolecular interactions between phoshopeptide inhibitor PLHSpT and PLK-1 PBD.
The interactions used for pharmacophore screening are indicated in green. B-G) 2-D representation of
Pharmit and SwissSimilarity molecules in the PLK-1 PBD active site, various non-bonding interactions
are indicated.

123



The screening of ZINC database using these features identified 1,510 molecules that were ranked
based on the RMSD and number of rotatable bonds. The screened molecules were combined
with 1000 molecules decoy set and virtual screening was carried out using the pharmacophore
model. The pharmacophore model identified only the screened molecules, indicating that, this
pharmacophore model is good in order to distinguish between active screened molecules and
inactive decoy molecules. The top 10 molecules were docked into the active site of PBD. The
best four molecules (ZINC000102928116, ZINC000036144951, ZINC000244933073 and
ZINC00012984727) interacted in the binding pocket of PBD similar to PLHSpT. The structures
and docking scores of these molecules are shown in Table 4.2. These results were further

validated by MD simulations of protein-hit molecule complexes.

4.3.4 Ligand-based virtual screening

The SwissSimilarity web server was used for ligand-based virtual screening of ZINC
Lead-Like library molecules on the basis of the molecule 3e, an acylthiourea analog. The top 40
hits mostly comprised acylthiourea, thiourea and urea moieties and were therefore omitted. The
remaining molecules with a score greater than 0.75 were docked into the active site of PBD. The
CDOCKER docking identified two molecules (ZINC00178367 and ZINC01040802) in the PLK-
1 PBD active site that reproduced the binding mode similar to acylthiourea analogs. The
structures, docking scores of these molecules are shown in Table 4.2. These PBD-hit molecule

complexes were further studied using MD simulations.

4.3.5 MD simulations of PLK1- PBD- inhibitor complexes

The crystal structure of apo-PBD, PBD-PLHSpT (PDB ID: 3HIK), PBD-acylthiourea
complexes, and PBD-complexed with new inhibitors identified in this work were subjected to
MD simulations for 25 ns using GROMACS. The stability of the systems as visualized from
RMSD plots indicated that their structural stability was attained after 10 ns of MD simulations.
All the molecular systems when bound to known inhibitors (PLHSpT and acylthiourea analogs)
appeared to be stable (Figure 4.3A-I), the proteins were stable with less than 2 A deviation and
the inhibitor deviation was often less than 1 A, indicative of the high stability of protein-inhibitor

complexes.
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Table 4.2: Docking scores and binding free energies (kJ/mol) of molecules from ZINC database
identified from pharmacophore screening. The molecules (pl-p4) are identified by Pharmit, (s1-s2) are
identified from SwissSimilarity.

Compounds ~ ZINC Id Molecules structure Dock AGbinding
score (15-25ns)
PME04
SN
pl ZINC000102928116 e % Che 8591 8484620607
F A N P N
/L/\ ]j [] \l °
F l F M
T " |///\§
ofn\//ik/\u/u\\]/'"\///o
D2 ZINC000036144951 L I -53.69 -66.578+0.417
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o ,\\ )
o
o //
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Figure 4.3: A-1) RMSD of PLK1-PBD-inhibitor complexes. A-G) acylthiourea derivatives, H) PLHSpT,
I: Apo-PLK-1 PBD. Protein- maroon, inhibitor- green.

The location of the known inhibitors remain stable (Figure 4.4A-H) and most of the non-bonding
interactions between PBD and inhibitors were also retained during MD simulations. Based on
mutagenesis studies, it has been identified that Trp414, His538 and Lys540 in the PLK-1 PBD

active site are the essential residues for inhibitor binding (Qin et al., 2016).

In this work, it has been shown that hydrogen bonding interactions between N( of Lys540 and
carbonyl oxygen of acylthiourea analogues are retained throughout the MD simulations as shown
in (Figure 4.5A). From the MD simulations of the best-docked complexes of the Pharmit and
SwissSimilarity molecules (Figure 4.2B-G) and as indicated in the (Figure4.5A), Lys540 always
forms hydrogen bonding interactions with the inhibitors. The indole side-chain of Trp414 forms
I1-IT stacking interaction with the inhibitor aromatic ring. It is observed that the new molecules
from the ZINC database bind PBD active site in the same location (Figure 4.6A-F) similar to that

of the known inhibitors.
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Figure 4.4: A-H) Superimposition of PLK-1 PBD initial and average structures from MD simulations.
Initial (brown) and average (cyan); and inhibitors input (blue), average (green).
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Figure 4.5: A) Hydrogen bonding distance of carbonyl oxygen (inhibitor) and N of Lys540 .B) RMSF

of apo and inhibitor bound PLK-1 PBD.
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Figure 4.6: A-F) Superimposition of PLK-1 PBD initial and final snapshot structures of MD simulations.
Initial (brown) and final snapshot (cyan); and inhibitors input (blue), snapshot (green).

The structures were stable as estimated from the RMSD plots (Figure 4.7A-F) with less than 2.5
A RMSD for protein and ligands.

The RMSF plot is indicative of the regions that have deviations in protein structure during the
MD simulations that is an indicative of the flexible regions in the protein. Comparison of the
RMSF plots (Figure 4.5B) indicated that the apo-protein and PBD-known inhibitor complexes
have fluctuations in similar regions in the protein. RMSF plots of PBD complexed with Pharmit

and SwissSimilarity molecules are shown in Figure 4.8A-B.
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Figure 4.7: A-F) RMSD plots of PLK-1 PBD-inhibitor complexes identified from structure and ligand
pharmacophore-based virtual screening. Identity of the molecules in ZINC database is indicated. Protein

(maroon), inhibitor (green).
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Figure 4.8: A-B) RMSF plots of molecules identified using Pharmit and SwisSimilarity bound to PLK-1

PBD.

These plots are superimposable for all inhibitors (acylthiourea, Pharmit and SwissSimilarity

molecules). It has been observed that the 495-508 amino acid region connecting the PB1 and

PB2 structural motifs has higher amplitude of fluctuations.

Similarly, 447-449 (beta-hairpin

connecting 2nd and 3rd B-strands in PB1 and 466-469, a region connecting the a-helix and the
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Ist B-strand in PB1 show reasonable fluctuations irrespective of inhibitor binding. This indicates

the compact and highly stable PLK-1 PBD domain structure.
4.3.6 Binding free energies of PBD-inhibitor complexes

The experimental binding affinities of acylthiourea to PLK-1 PBD were measured using
microscale thermophoresis (MST) (Yun et al., 2016) and are shown in Table 4.1. MST method
measures the protein-ligand binding by detecting the mobility of molecules in temperature
gradients (Rudolph et al., 2009). The binding affinity of the protein-inhibitor complex is a
measure of the strength of the binding interactions between protein and its inhibitor. It is
typically measured as the equilibrium dissociation constant (Kq), the smaller the Ky value, the
greater is the binding affinity of the inhibitor and hence its inhibition. In this work, the binding
free energies for all complexes were calculated using g_mmpbsa for the last 10 ns of the MD

simulations and the values are shown in Table 4.1.

The dissociation constant (Kq) is lower (14 uM) for the reference peptide inhibitor (PLHSpT).
These corresponding values for the acylthiourea analogs (Table 4.1) with methyl, ethyl and
phenyl groups (73.7-64.3 uM), the binding affinities indeed improved by 10 to 30 times by
halogen substitution on the sulfamoylphenyl group (2.3 -6.9 uM) (Yun et al., 2016). The effect
of halogens on binding free energies has been reviewed (Mendez et al., 2017) by analyzing the
halogen bonding in protein-ligand complexes. A halogen bond is measured by the sum of van der
Waals radii between the participating atoms in the complex. Analyses of the crystal structure
complexes in two independent studies (Kortagere et al., 2008; Sirimulla et al., 2013) revealed
that Leu backbone carbonyl and amino groups have the highest propensity (next to Gly) to form
halogen bonds despite the bulky side-chain. These halogen bond interactions are found in the
current study with Leu490 and Leu491. Further, it has been reported that the aromatic bulky
side-chains of proteins are involved in halogen bonds with ligands. Interestingly, the donor-
acceptor bond angles are rarely linear. Also, in this work, it is observed from molecular docking

studies, an important role of Trp414 in positioning the halogen atom.

Based on the g_mmpbsa calculations, peptide inhibitor with lower Kq (14 pM) shows
highest binding free energy (-115 kJ/mol) (Table 4.1) compared to all the acylthiourea
derivatives. This observation could be because of the large size of the peptide inhibitor that spans
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over the entire PBD active site and makes several non-bonding interactions with PBD. Binding
free energy is indeed an estimate of the intermolecular interactions in the complex. As shown in
Table 4.1, the molecules 3a, 3b and 3e with modest binding affinities showed lowest binding free
energies (-15 to -23 kJ/mol). Comparison among the acylthiourea derivatives showed that the
halogen substitution on the sulfamoylphenyl increased the binding free energies (-31 to -52
kJ/mol); these observations are in correspondence with the experimental binding affinities
measured using MST (Yun et al., 2016).

Table 4.3 shows the contribution from van der Waals, Coulomb, polar and non-polar
solvation energies to the binding free energy of the protein-ligand complexes. It is possible that
both van der Waals and Coulomb interactions are important for protein-inhibitor recognition. In
addition, the non-polar contribution to the solvation free energy also has an essential role in the
binding. The contribution from polar solvation free energy is however unfavorable for
acylthiourea derivatives. It is indeed interesting that the extent of unfavorable contribution from
polar solvation free energy is reduced significantly, alongside a significant decrease in the
contribution from electrostatic energy for 3u and 3v molecules that are di-halogen compounds.

Table 4.3: Various contributions to the binding energies (kJ/mol) of phosphopeptide and acylthiourea
analogs when bound to PLK-1 PBD.

Compounds  vdW Electrostatic ~ Polar solvation Non-polar AGbinding
energy solvation (15 -25 ns)
PLHSpT  -178.600+0.617 -714.185+1.810 797.637+2.036 -20.228+0.041 -115.438+1.533
3a -91.209+0.312  -115.561+0.508 204.237 £0.596 -12.685+ 0.028 -15.247+0.479
3b -104.335+0.424 -130.294+ 0.485 225.126+0.641 -13.583+0.032 -23.099+0.424
3e -117.089+0.338 -126.939+0.508 243.516+0.821 -14.680+0.032 -15.213+0.533
3u -108.911+0.445 -51.676+0.651 144.706£0.704 -15.159+0.041 -31.040+0.418
3v -115.727+0.536 -58.967+0.802 135.250+1.280 -12.997+0.038 -52.496+ 0.526
3w -131.498+0.451 -103.451+0.609 213.008+0.873 -14.983+0.040 -36.919+0.389
3X -121.582+0.349 -125.161+0.478 211.540+0.610 -15.246+0.030 -50.433+ 0.409

An aspect of molecular docking conformations that was resolved from MD simulations is the
orientation of halogen in 3x and 3w (mono-halogen) molecules. One possibility is that halogen is

buried in the deep cavity between PB1 and PB2 motifs (I) or the other conformation in which
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halogen is exposed and interacts with Leu490 and Leu491 (I1). PLK-1 PBD when bound to each
of these conformations were subjected to MD simulations. It is observed that only the Il
conformation retained the hydrogen bonding interaction between NC of Lys540 and carbonyl
oxygen throughout the MD simulations, and the binding free energies also followed a trend
similar to other acylthiourea analogs. From this, the docking conformations of mono-bromo and
mono-iodo molecules were assigned. This is in line with the observations made by Kortagere et

al., 2008 and Sirimulla et al., 2013 in the orientation of halogens in the protein-ligand complexes.

Table 4.4 shows the contribution from van der Waals, Coulomb, polar and non-polar solvation
energies to the binding free energy of the protein-new hit molecule complexes identified in this
work. Similar to the acylthiourea derivatives, it is possible that for these inhibitors too, van der
Waals and Coulomb interactions, and polar contribution to the solvation free energy are
important for protein-inhibitor recognition.

Table 4.4: Various contributions to binding free energies (kJ/mol) of molecules from ZINC database

identified from pharmacophore screening. pl-p4 molecules are identified by Pharmit. s1 and s2 are
identified from SwissSimilarity.

Compounds vdwW Electrostatic Polar Non-polar AGbinding
energy solvation solvation (15 -25 ns)
pl -161.397+0.369  -59.992+0.311  153.645+0.894 -17.089+0.048 -84.846+0.697
p2 -109.770+0.552  -11.022+0.319  66.002+0.456 -11.810+0.056 -66.578+0.417
p3 -135.880+0.388  -31.448+0.211  100.503%+0.486 -16.567+0.031 -83.393+0.386
p4 -120.523+0.425 -51.847+0.278  156.178+0.525 -15.226+0.032 -31.371+0.530
sl -90.525+0.295 -48.247+0.408  130.863+0.647 -11.920+0.037 -19.860+0.543
s2 -89.459+0.503 -26.593+£0.393  86.957+0.896 -12.281+0.061 -41.377+0.342
As shown in Tables 4.2 and 4.4, the binding free energies of PBD-new inhibitor

complexes identified from Pharmit and SwissSimilarity were higher compared to the

acylthiourea analogs that is indicative of their better binding efficiency and are therefore

potentially better inhibitors of PBD.
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4.3.7 Residue-wise decomposition to binding free energies

To estimate the residue-wise contribution to the binding of inhibitors to PBD and hence
understand the molecular basis for inhibition, the MM_PBSA analyses for the last 10 ns MD
simulations data was utilized. The individual contribution of amino acids for PLHSpT peptide
inhibitor binding to PBD is shown in Figure 4.9A.

100 A
50
o

-50

-100 L491

150 wa14 R557

D516

kJ/mol

-200

-250
K540
-300
350 400 450 500 550 600
Residues

400 450 500 550

Residue

Figure 4.9: A) Energy contribution of residues to the binding of PLHSpT-protein complex. B)
Contribution from individual residues to the binding of acylthiourea derivatives and inhibitors identified
from structure and ligand virtual screening. p1-p4 molecules are identified by Pharmit,s1 and s2
molecules are identified from SwissSimilarity.

As seen in the Figure 4.9, several residues make positive and negative contributions to the
binding free energies. The contribution from active site amino acids (Trp410, Lys413, Trp4l4,
Val415, 11e416, Trpdl7, Serd418, Tyr485, Leud90, Leud91, Lys492, Alad93, Gly494, Ala495,
Asn496, Asp516, Asp520, GIn531, Asn533, Phe535, GIn536, His538, Lys540 and Arg557) are
responsible for the binding of PLHSpT to PBD. Among these, significant contributions from the
amino acids Trp414, Leud91, Asp516, Lys540 and Arg557 are noteworthy. The contributions
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from these residues are responsible for the better binding energy of these inhibitors. The residue-
wise contribution to the binding of acylthiourea analogs to PBD is shown in Figure 4.9B.
Similarly, the amino acid residues in the protein active site that contribute to the binding of the
Pharmit and SwissSimilarity molecules is also shown in Figure 4.9B. Table 4.4 shows the
contribution from various components to the binding free energies and this is in concurrence

with the acylthiourea analogs.

Since the new molecules identified in this work are from ZINC Lead-Like database, there is a

possibility to improve their binding by suitable modifications for better binding to PLK-1 PBD.
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4.4 Discussion

Protein kinases play an important role in biological events such as cell signaling, cell
division, metabolism, transcription, proliferation and survival (Lodish et al., 2001). Structurally
kinase domains are more similar to each other and therefore inhibition of a kinase leads to severe
side effects also due to the binding to normal healthy cells (Brinkworth et al., 2002). In the recent
years, studies are targeted towards understanding the biological function of a kinase and rationale
intervention of its activity, increased selectivity of current drugs by design analogs or new ATP
competitive inhibitors. Some kinase inhibitors are non-ATP competitive inhibitors which bind to
allosteric site, bivalent inhibitors, covalent inhibitors and all these inhibitors are directly targeted
towards the kinase domain (Martinez et al., 2020). PLK proteins comprise a kinase domain as the
catalytic unit and also a C-terminal regulation unit, PBD. Based on biological studies of PBD it
is considered as an indirect mechanism to inhibit kinase domain of PLKs. PLK-1 PBD inhibition
leads to inhibit kinase domain of PLK-1, hence PLK-1 PBD is considered as a promised target to
play role in cancer disease. The acylthiourea derivatives are shown as good inhibitors of PLK-1
PBD, and these are validated based molecular docking, MD simulations and binding free energy
calculations. The results of this work gives a perception to enhance the activity of acylthiourea
inhibitors, halo-acylthiourea for mono-substituted and halo atom orientation that is towards outer
residues based computational studies.

4.4.1 Design of molecules based on pharmacophore and ligand based virtual screening

Pharmacophore and QSAR based virtual screening of small molecules followed by molecular
docking to search for hit molecules in the drug design studies has been in practice in the recent
years (Mercader et al., 2016). Pharmacophore-based virtual screening selects the best features
which may be hydrogen bond donor, hydrogen bond acceptor, benzene ring, hydrophobic and
hydrophilic features and etc. The PLK-1 PBD pharmacophore was generated based on PLHSpT
phosphopeptide by assigning four important pharmacophore features as shown in (Figure 4.2A)
which make non-bonding interactions with PLK-1 PBD residues. Molecules were screened and
selected based ligand based virtual screening which depend on 2-D/3-D screening using FP2
Tanimoto coefficient and Electroshape-5D Manhattan distance. These molecules were validated
using molecular dynamics simulations. The molecules selected from pharmacophore and ligand

based virtual screening studies show high binding free energy as indicated in the Table 4.4.
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4.5 Conclusions

From previous literature, the role of PLK-1 PBD in cell cycle regulation has been
established and therefore the PBD domain has been considered as a viable cancer drug target.
The discovery of small molecule inhibitors to this essential drug target is an ongoing quest.
Therefore, computational methods were used to understand the binding of reported acylthiourea
analogs to PBD using molecular docking and MD simulations methods and compared with the
reported crystal structure bound to phosphopeptide PLHSpT. The PBD structure is stable and has
fewer fluctuations from the MD simulations studies, the binding free energies calculated are in
correlation with the reported experimental binding affinities. Among all the active site amino
acids, Trp414, His538 and Lys540 have been shown to be essential for inhibitor binding. Based
on the structure and ligand-based pharmacophore generation and screening methods, new
molecules have been identified that bind PLK-1 PBD with better binding as estimated from
molecular docking scores and binding free energy calculations. In this study, the molecular basis
for the acylthiourea inhibitor binding to PBD are explained and new inhibitors that would have

better binding and therefore improved inhibition are proposed.
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CHAPTER-5

Computational fragment-based design of Weel Kkinase
Inhibitors with tricyclic core scaffolds
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5.1 Introduction

Cell division is characterized by complex biological processes that result in the
generation of new daughter cells identical to the parent cell during a cell cycle. Eukaryotic cell
cycle passes through different phases, G1 to S (DNA replication) to G2 to mitosis (chromosome
separation) to cytokinesis (cell division). The timings of each of these phases is coordinated by
the expression of cyclins, which bind and activate CDKs (Jeggo et al., 2016), that in turn
phosphorylate several proteins which play important roles in various phases of the cell cycle.
Each of these directed stages in cell division are confirmed so as to ensure the correct formation
of new cells and these events are known as cell cycle checkpoints (Nigg, 1995; Alberts et
al.,2004). The cell cycle checkpoints are surveillance mechanisms that monitor the order,
integrity, and fidelity of major events in the cell cycle. The cell cycle checkpoints occur in three
stages G1-S, G2-M, and mitotic phase (Otto & Sicinski, 2017). Prior to cell division, the cells
depend upon cell cycle checkpoints to allow time for repair of DNA damage, since any
irregularities in the cell cycle events lead to diseases such as cancer (Lindahl, 1993). Several
factors lead to the destruction of DNA; the external factors such as exposure to radiation and
internal factors such as toxic metabolites from chemical and biochemical processes and their by-
products could have hazardous effects on the genome resulting in genetic mutation that often
manifests as cancer (Lindahl & Bernes, 2000). The regulation of cell cycle checkpoints and DNA
damage repair for genomic stability has been the prime focus of cancer therapy. One of the
essential families of proteins in cell cycle regulation is the protein kinases; these are mainly
classified as Tyr kinases and Ser/Thr kinases. Kinases such asataxia-telangiectasia mutated
(ATM), ataxia-telangiectasia-related (ATR), checkpoint kinase 1 (CHK1), checkpoint kinase
2(CHK2), and Weel play a key role in the DNA damage repair and are therefore good drug

targets for cancer (Ronco et al.,2017).

Weel belongs to a family of protein Tyr kinases and is highly expressed and active in
several cancer types such as lung, ovarian, solid tumor, adenocarcinoma, esophageal, breast
cancer, cervical cancer, diffuse intrinsic pontine glioma, leukemia, melanoma, glioblastoma, and
medulloblastoma (lorns, et al., 2009, Mir et al., 2010; Yang et al., 2020). Weel kinase is the
gatekeeper of the G2-M cell cycle checkpoint that allows DNA repair before mitotic entry (Do et
al., 2013). This protein is involved in the terminal phosphorylation of CDK1 to inactivate the
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CDK1-cyclin B complex resulting in G2 cell cycle arrest in response to DNA damage.
Therefore, inhibition of Weel kinase activity prevents the phosphorylation of CDK1 and impairs
the G2 DNA damage checkpoint. This may lead to apoptosis when treated with DNA damaging
chemotherapeutic agents. Therefore, inhibition of Weel kinase is expected to evade the G2-M
phase arrest and drive cancer cells into premature mitosis. It has been reported that Weel
inhibition by either small molecule inhibitors or small interference RNA leads to premature entry
of cells into mitosis that results in cell death. Further, Weel plays a role during S-phase by
inhibiting CDK2 which leads to slow cell cycle progression and maintains DNA from breakage
with stabilizing replication fork (Leijen et al., 2016).Targeting Weel for inhibition and
compromising the G2-M checkpoint presents an opportunity to potentiate cancer treatment
(Matheson et al.,2016).

The Weel kinase has an N-terminal regulatory region with phosphorylation sites on
serine; the C-terminal region spans the kinase domain (299-569). Similar to the 3-D structure of
all kinases, the Weel kinase also accommodates the N- and C-terminal domains with the active
site located at the inter-domain interface. Some ATP competitive inhibitors to Weel kinase are
validated and entered into clinical trials. AZD1775 (MK-1775) (Hirai et al., 2009) has been
shown as a selective inhibitor of Weel kinase and preclinical results report its anti-tumor activity
in multiple cancer cell lines. Few small molecule inhibitors of Weel kinase have been reviewed
(Matheson et al.,2016) and phase |1 clinical data report potent and selective inhibitor of Weel in
p53-deficient tumors (ineffective G1 DNA damage checkpoint) in combination with cisplatin,
Docetaxel, gemcitabine and carboplatin (Mendez et al, 2018; Leijen et al., 2016). However,
given the essential role of Weel in G2 DNA repair checkpoint, more potent and selective
inhibitors for this important drug target are required. SBDD is an important component in
computer-aided development of new drugs (Hassan Baig et al., 2016). In the current study, based
on the structure of Weel kinase-inhibitor complex, the fragment-based de novo methods for the
design of Weel kinase inhibitors were used; the proposed inhibitors were validated using
molecular docking, MD simulations of the best protein-inhibitor complexes, and the binding free

energy calculations of the complexes.
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5.2 Materials and methods

5.2.1 Weel structure and preparation

The crystal structure of Weel kinase domain was solved at 1.81 A resolution (Squire et
al., 2005), and its 3-D coordinates complexed with inhibitor PD0407824 are available (PDB ID:
1X8B) in the PDB (Berman et al., 2002). The missing amino acids in the activation loop region
were built using MODELLER (Sali & Blundell, 1993) from chimera UCSF (Pettersen et al.,
2004). Hydrogens were added at pH 7.5, and the complex was energy minimized to optimize the

location of hydrogens.

5.2.2 Design of inhibitors

5.2.2.1Selection of core scaffold

AZD1775, a Weel kinase inhibitor (PDB ID: 5V5Y) (Zhu et al., 2017) and in the second
phase of clinical trials, was initially used to find the core scaffold of proposed inhibitors using
Pharmit (Sunseri & Koes, 2016). Based on the query inhibitor structure, Pharmit an online server
specifies a pharmacophore that describes a set of spatial steric and electrostatic features required
for the activity of the molecule. The features that make non-bonding interactions with the hinge
region of Weel kinase were selected, and these pharmacophore features were used for virtual
screening of ZINC database (Irwin et al., 2012) of small molecules. ZINC database in Pharmit
server had 11,494,056 molecules with 165,282,714 conformations. The filters for screening the
hits were set to three aromatic rings with a molecular weight less than 300. The molecules
obtained from virtual screening were selected based on low RMSD with AZD1775. The best
core scaffolds with fused ring systems and the presence of possible sites for substitution to
extend the core into kinase sub-pockets were selected. Three 6-6-5 core scaffolds with different
locations of nitrogens were considered based on their ability for further growth, such that their
locations can be optimized in the kinase sub-pockets. Such core scaffolds are already reported in
the previous crystal structures as shown in Figure 5.1A-C (Hiruma et al., 2017; Miller et al.,
2010; Glatthar et al., 2016).
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Figure 5.1: The binding mode of hetero-tricyclic 6-6-5 core scaffolds to the hinge region of kinases from
crystal structures. A) PDB ID: 5091. B) PDB ID: 2X6l. C) PDB ID: 51U2.

5.2.2.2 Fragment library preparation and fragment selection

The software for breaking up of compounds to get series of fragments is based on the
principle of retrosynthesis (Bemis & Murcko, 1996; Kolb & Caflisch, 2006). The fragment
libraries are available as commercial and open access such as Asinex, eMolecules, and ZINC
databases. As shown in Figure 5.2A, the active site of Weel kinase has two sub-pockets in the
direction of which the core scaffold can be extended. One is a front binding pocket, and the other
is targeted towards DFG motif (DLG in Weel) and back sub-pockets in the kinase domain. The
fragment libraries were selected based on Ludi (B6hm, 1992) and Pharmit searches. The Pharmit
server was used to search for the fragments by applying the pharmacophore hit screening
parameters; rule of three (Congreve et al., 2003) by assigning important filters such as molecular
weight less than 200, three hydrogen bond donors, three hydrogen bond acceptors, polar
solvation area (60 A?), three rotational bonds, and up to two aromatic rings, from PubChem (Kim
et al., 2016) and ZINC databases. The PubChem database had 74,334,235 molecules with
1,028,851,902 conformations.

The extracted fragments using Pharmit server were prepared by the addition of
hydrogens, CHARMM force field was applied, energy minimization was carried out, and the

fragments were saved in the .str format for use in the de novo link library generation. Ludi
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library integrated in the DS 2.5 contains 900 one linkage entries in the de novo link protocols.
All the desired fragments from Pharmit and Ludi library were proceeded for the de novo linking

step to the core scaffolds selected.

[front cleft | gate | back cleft |

Figure 5.2: A) Pharmacophore features used for searching core scaffold. B) Solvent exposed fragment.C)
Fragments oriented towards DLG motif, based on template molecule AZD1775.

5.2.3 Fragment linking and molecular docking

5.2.3.1 Fragment linking

The binding of the three tricyclic 6-6-5 core scaffolds to the Weel kinase (PDB ID:
1X8B) was obtained by molecular docking. A 5 A cavity was defined around the hinge region
amino acid Cys379, and CDOCKER was used to dock the core scaffolds. The best docking pose
was assessed based on docking score and the presence of hydrogen bond with Cys379. The best
docked scaffold bound to Weel kinase was opened in the de novo link of DS 2.5 protocol. In the
protein preparation steps, the binding site was defined around the scaffold and the cavity was
expanded to cover key residues responsible for binding PD0407824 and AZD1775 that include
(Glu303, 11e305, Gly306, Ser307, Val313, Ala326, 11e327, Lys328, Glu346, Val360, 1le374,
Asn376, Glu377, Tyr378, Cys379, Asn380, Gly381, Gly382, Ser383, Asp386, Ser430, Phe433,
and Asp463). The link points on the core scaffold are defined as shown in Figure 5.3, a single
hydrogen atom was selected at a time at the desired position to allow the fragment to grow by
searching the fragment libraries described above. A maximum of 100 atoms in each fragment
were chosen, the bond rotation was set to “One at a time,” with maximum fit attempts of 5000

and up to 1 A RMSD. This de novo linking was carried out for all the three core scaffolds. The
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fragments that are mainly hydrophobic in character are discarded at this stage from fragment

library.

This protocol ranks the fragments based on the Ludi score which is a function of the non-
bonding interactions. The highest ranked fragments were selected, and in the subsequent step, the
binder fragment was linked to the core scaffold and the geometry of the molecule was optimized

by energy minimization.

6 6-5 System

N-Term%

N-Terminal

N-Terminal )

Figure 5.3: Possible tricyclic systems 6-6-5 and their binding to Weel kinase domain. R, R1, and R2 are
the sites of extension of fragments.

5.2.3.2 Molecular docking

To understand the mechanism of protein-inhibitor binding, the key amino acid residues in
the chemical space that effectively contribute to the binding of inhibitor needs to be deciphered.
The complete molecules after fragment ligation to the core scaffold were docked into the active
site of Weel kinase. The new de novo designed molecules were drawn in DS 2.5, hydrogens
were added, and the molecules were energy minimized with CHARMM force field (Brooks et
al., 1983). CDOCKER (Wau et al., 2003) was used to dock the new inhibitors within a 5-A cavity
defined around PD0407824. The binding of molecules to the ATP binding site of Weel kinase
was analyzed using “score ligand poses” available in the receptor-ligand interaction protocol in
DS 2.5, and the scoring functions, PLP1, PLP2, PMF, and PMFO04 (Gehlhaar et al., 1995;
Gelhaar et al., 1999; Muegge & Martin, 1999; Muegge, 2006), were applied in the docking
analyses. The criteria for inhibitor selection were, low RMSD between the initial and docked
orientations and when the intermolecular interactions with Weel kinase were retained. The

selected molecules were subjected to ADME calculations.

144



5.2.4 ADME parameter calculations

The ADME properties are one of the most effective parameters to relate the ability of
drug permeation, distribution, metabolism, and retention in the host for reasonable time. Reliable
software tools to calculate the molecular properties such as physico-chemical properties,
solubility, lipophilicity, pharmacokinetics, and drug-likeness are available (Lipinski et al., 1997).
The in silico designed molecules would be characterized to assess their drug-like properties
before the chemical synthesis (Tian et al., 2015). Further, one of the challenges in the design of
new molecules is the possibility of the proposed molecules to be actually synthesized (Ertl &
Schuffenhauer, 2009). The drug-like properties of a candidate molecule from de novo design are
calculated using the SwissADME server (http://www.swissadme.ch/index.php); this web server
also supports the calculation of the synthetic accessibility of the molecule. The molecules that

qualify the ADME properties were proceeded to MD simulations in complex with Weel kinase.
5.2.5 Molecular dynamics simulations

The reference molecules AZD1775, PHA-848125, and the molecules designed using
pharmacophore-based de novo design in this work, in complex with Weel kinase obtained from
molecular docking, were further studied using MD simulations. GROMACS 5.1.4 (Hess et al.,
2008; Van Der Spoel et al., 2005) was used to run the MD simulations for 25 ns. The MD
simulations of the complexes were studied to understand the contribution from inhibitor binding
to the protein stability. Amber ff99SB force field (Hornak et al., 2006) was applied to the protein
as well as small molecules; force fields were assigned to molecules using ACPYPE script (da
Silva &Vranken, 2012) with AM1-BCC charges in Antechamber (Wang et al., 2006).

All the molecular systems were immersed in a cubic box, three-point model (SPC) was used for
solvation, and to obtain a neutral molecular system Na* and CI" ions were added (Berendsen et
al., 1981). For energy minimization to remove the steric stress and let the system to relax,
steepest descent algorithm was used. The number of steps was set to a maximum of 50,000 with
step size of 0.01 and maximum force was set to less than 1000 kJ/mol/nm?. This was followed by
position restraint to equilibrate the system and maintain the solvent and ions around the protein.

This system was heated until 300 K for 100 ps; in the subsequent step, the system was
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equilibrated at 1 atm and 300 K for 1000 ps until it reaches proper density. The final MD
simulations were performed at 300 K for 25 ns using 0.002 ps time step. The known reference
molecule AZD1775 bound to Weel kinase was studied for 100 ns MD simulations. The
Parrinello-Rahman method was used to control the pressure (Parrinello & Rahman, 1981), and
temperature was maintained using V-rescale thermostat (Bussi et al., 2007). The long-range
electrostatics were handled using the PME method (Darden et al., 1993; Essmann et al., 1995)
with a real-space cut-off of 10 A, PME order of 4, and a relative tolerance between long- and
short-range energies of 10°°. Short-range interactions were evaluated using a neighbour list of
10 A updated every 10 steps while Lennard-Jones (LJ) interactions and the real-space
electrostatic interactions were truncated at 9 A. Hydrogen bonds were constrained using LINCS
algorithm (Hess et al., 1997). The final models in all the systems were obtained by averaging the
snapshots from the trajectory generated by MD simulations after the structure stabilization was
achieved (15-25 ns).

RMSD of the Ca atoms with respect to their starting structures were calculated by using gmx
rms of GROMACS to study the conformational variations in the protein-inhibitor complexes.
The convergence of MD simulations was analyzed in terms of RMSD plots. The RMSF were

calculated using gmx rmsf to study the stability of frames relative to the initial frame.
5.2.6 Binding free energy calculations

To estimate the strength of the small molecules binding to Weel kinase, the stabilized
regions of the MD simulations trajectories based on the RMSD results (15-25 ns) were analyzed.
Binding free energy was calculated on a number of snhapshots in the stabilized region of the
protein-inhibitor complex from the last 10 ns of MD simulations of each complex. The
g_mmpbsa (Kumari et al., 2014) tools which were designed to work with GROMACS output
trajectories were used to calculate the binding free energy of each complex. The total energies
were calculated using MM-PBSA (Homeyer & Gohlke, 2012) to understand the effective
contribution of reference molecules and de novo designed molecules identified in this work. The
effective participation due to the contribution from van der Waals, electrostatic, polar and apolar

solvation energy terms is estimated from the binding free energy calculations.
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5.3 Results

5.3.1 Protein structure

In the crystal structure of Weel kinase (PDB ID: 1X8B) bound to phenylpyrrolo[3,4-
C]carbazole-based inhibitor (PD0407824), the missing 20 amino acid activation loop [amino
acids 436-455] was modeled using MODELLER in UCSF Chimera.

5.3.2 Core scaffold and fragments identification

The crystal structure of Weel kinase bound to the inhibitor AZD1775 (PDB ID: 5V5Y)
comprises three hydrogen bonding interactions: Cys379 NH with N14 (2.16 A), Cys379 O with
H121 (2.061 A), and Asn376 H with 018 (2.223 A). The Pharmit pharmacophore search using
AZD1775 identified several features such as hydrophobic, aromatic, and hydrogen bond donor
and acceptors. In order to identify new core scaffolds that bind to the hinge region, the
pharmacophore features, two aromatic rings, and four hydrogen bond acceptors were retained as
shown in Figure 5.2A. These pharmacophore features with defined filters in Pharmit when used
to search ZINC database identified several molecules with low RMSD. The top hits were docked
into the active site of Weel kinase. The possibility of these hit molecules having more than one
position for forming intermolecular hydrogen bonding with hinge region residues, proper
position and orientation to extend the core while building the fragments towards unoccupied
active site space was assessed. Among the top 10 hits, tricyclic scaffolds had higher probability
of possessing these characteristics and hence the molecules selected ZINC40388002,
ZINC05605098, and ZINC95922878 as core scaffolds comprise tricyclic 6-6-5 systems. These
scaffolds show different binding modes at the hinge region as shown in the Figure 5.3. As
anticipated and required to bind the hinge region, they make hydrogen bonding interactions with
hinge region Cys379 main-chain NH. To extend the core scaffold, the fragments obtained from
Pharmit searches based on pharmacophore features and fragments from Ludi library were used.
The pharmacophore features for fragments that accommodate solvent exposed front binding cleft
(Figure 5.2B) and back binding pocket (Figure 5.2C) are taken from PDB ID: 5V5Y.
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5.3.3 Fragment selection based on diverse hits

The ATP competitive inhibitors bind at the inter-domain interface of kinases. While the
core scaffold binds the hinge region, the fragment moieties would bind the front solvent exposed

and back binding (close to DFG/DLG) pockets in the active site.

After the binding of core scaffold to the hinge region, the remaining space in the active site is
available for different fragments to occupy. The position of extension at the chosen atoms on the
three core scaffolds showed different sizes and numbers of fragments. The number of fragments
at each position is shown in the Venn diagram (Figure 5.4A-B). However, the number of
common fragment hits represented by their union is much smaller as indicated in the Figure
5.4A-B. This is indicative of the diversity of the fragments and therefore the residence of the
fragments in the chemical space of Weel kinase. The list of fragments from Ludi, ZINC, and

PubChem databases are shown in Table 5.1.
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Figure 5.4: Bar graph indicating numbers of fragments on each scaffold. “R” indicates the site of

fragment linking. Venn diagram indicates the number of fragments residing in (A) back pockets and (B)
solvent exposed region.
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Table 5.1: List of fragments oriented towards various pockets in the kinase

List of fragments in the DLG binding pocket

List of fragments towards solvent exposed front binding pocket

List of Ludi
fragments
towards DLG
binding pocket

Scaffold 1 Scaffold 2 Scaffold 3 Scaffold 1 Scaffold 2 Scaffold 3 Scaffold 3
To1 TO1, TO2 SPO PubChem-67147731 ZINC000005138367  ZINC000091365519 To1
TO4 T03, T4 uo1 ZINC000091365519  ZINC000020523314  ZINC000032174397 T18
T09 T08, T09 uo2 ZINC000019881985  ZINC000062796818  TO1 S02
T10 T12,T14 uo3 ZINC000002527894 ZINC000019476234 T10 S05
T12 Ti6, T17 uo4 T03, T04, S69, ZINC000000153945 S14 S08
T14 S09, S18 uos S93, SPO, SP4, ZINC000536953667 594 s18
u13 $37, S62 u12 SP6, SP8, SQ2, ZINC000032174397 SF1 S25
u15 S81, S84 u16 SS81, STO, ST3, ZINC000021954100 SS9 S35
u22 S87, S88 u17 U04, U05,U06, ZINC000035037193 uo1 Si4
u28 S99, SB4 u19 u10, Ul1, U13 ZINC000002527894 uos SLO
u33 SFO, SF3 u20 u15, Ule, U17 ZINC000019476232 uo9 SP5
u45 SF8, SJ2 u22 u19, u22, uz3 Us2 sQ7
u46 SJ4, SK4 U4l U24, U33, U36 UA4 u13
uso SK9, SO0 u42 u37, u4o, u4z UA5 UEO
uss SP1 U44 U52, Us3, Us4 UF5 D50
UA6 SP5 us0 u60, Ue4, U71 M46 D51
UB3 SP6 us1 u7s, U78, U0 M91 Mm37
uD7 SP7 us2 us4, Us9, U9z MCO M39
UED SS7 us3 UAG, UCO, UC2 M44
UE2 SS8 Us5 UCs, UG5, ucr M49
UE3 ST4 Us6 uD6, UD7, UE1, UE2 M79
UG9 ST8 us7 UES3, UE6 MC2
ZINC000002576728 ST9 u65 UE7, UF2 MC4
ZINC000026545977 Su9 u66 UF4, UFS MC6
ZINC000002559430 SX6 ue7 UH1, UH3 ME1
ZINC000082522346 SX9 u69 UHS5, UH6 ME5
ZINC000083571373 SY1 u71 UH8, UH9 MH4
ZINC000082522345 u29 us3 M55, M61
ZINC000004519995 u3? uss M80, M86
ZINC000084287157 u45 us6 MG1, MG3

UB3 UA6

UB9 UAS

D07 uc3

D21 uDo

D50 uD1

D61 uD7

D69 UES

D76 UE7

M64 UG7

MI5
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5.3.4 Core and fragment linking, and molecular docking of de novo designed molecules

The crystal structure of a protein is required to understand its molecular mechanism of
function and the design of small molecules that inhibit its activity. The molecular docking
studies guide in the expectation of the pose and orientation of the molecules in the receptor
active site. The docked core scaffolds should have accurate orientation, and the fragments should
reside in the favored environment of the protein active site. The crystal structure of a kinase
complexed with inhibitors guides us to understand which position in the core scaffold is suitable
for growing the linker, size of the linker, and the type of fragments in the proximity of active site
residues and their preferences. In this study, all crystal structures of kinases were scanned which
have more than 4000 molecules and few of them exploit the tricyclic core scaffold systems 6-6-
5. As shown in Figure 5.3, variable distribution of hetero atoms shows a unique binding mode at
the hinge region of Weel kinase for the design of new inhibitors. The core scaffold binds only
the hinge region and there is a need to extend it by linking the fragments so as to fill the larger
binding pocket in Weel kinase. The fragments selected based on the “Rule of three” from
Pharmit and Ludi database were used for de novo link to the core scaffold. A 5-A sphere around
the inhibitor binding in PDB ID: 1X8B was defined to select the fragments. The selected
fragments for front and back binding pockets of Weel kinase from de novo link protocol are

shown in Table 5.1.

The first scaffold could bind 30 fragments in the DLG pocket and 74 in the front binding pocket.
The second scaffold binds 54 and 11 fragments in the DLG and front binding pockets,
respectively. Likewise, the third scaffold binds 39 and 18 fragments in the DLG and front
binding pockets, respectively. For this scaffold, fragments from Ludi library were also selected
to fill a back sub-pocket (Table 5.1). The location of these fragments is shown in the bar graph of
Figure 5.4.

The molecules obtained by linking the fragments to the core scaffolds were drawn in DS 2.5,
energy minimized after adding hydrogens using CHARMM force field. These molecules were
docked into the active site of Weel kinase using CDOCKER. The criteria for shortlisting these

molecules are that they show minimum RMSD with the core scaffold docked, and the de novo
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linked fragments are in suitable orientations to fit into the back and front pockets of protein
active site. The molecules that have good superimposition and low RMSD with the PD0407824
and high docking scores were selected as probable inhibitors of Weel kinase. The selected

molecules were proceeded for the next stage of ADME calculations.

The synthetic accessibility of the proposed molecules is scored from 1 to 10 based on the
complexity of the molecules, number of stereo-centers, etc. The lower the score, the greater is
the synthetic accessibility of the molecule. In this work, the synthetic accessibility scores are less
than 4.75, which is indicative of the ease in their synthesis. The calculation of ADME properties
using SwissADME server shows acceptable values within the range. The topological polar
surface area (TPSA) is between 20 and 130 A?, lipophilicity; expressed as cLogP is less than 5,
and water solubility expressed as Log S shows that most molecules are soluble or moderately
soluble in water. The skin permeation possibility expressed as Log Kp is also reasonable
indicating the possibility of skin permeation. Further, all the ADME properties of the de novo
designed molecules in this work possess ADME properties similar to the reference molecules
AZD1775 and PHA-848125 (Daina et al., 2017) as shown in Table 5.2.

Table 5.2: ADME, TPSA, lipophilicity, water solubility, and skin permeation of reference and de novo
designed molecules.

Compounds TPSA Consensus LogS  LogKp Synthetic
(A2 LogPo/W (EsoL) Accessibility
AZD1775 104.34 2.76 -4.85 -7.15cm/s 4.23
PHA-848125  91.21 2.39 -450 -7.12cm/s  4.07
2A 107.17 2.66 -3.69 -7.67cm/s  3.59
2B 114.95 181 -2.87  -8.40 cm/s 4.74
2C 103.82 3.68 -5.74  -6.75cm/s  4.34
2D 85.65 2.18 -3.03 -799cm/s  3.67
2E 91.37 2.65 -3.70 -7.17cm/s  3.75
2F 97.97 2.09 -3.67 -6.99cm/s 2.70
2G 113.16 1.36 -2.74  -8.09cm/s 2.88
2H 93.79 1.79 -3.00 -752cm/s 275
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Based on the above criteria, eight molecules were finally chosen from the three core scaffolds,
based on the first core (2A, 2B, and 2C), the second core (2D and 2E), and the third core (2F,

2G, and 2H) and the structures of these molecules are shown in the Figure 5.5. The molecular

docking scores of de novo designed molecules are similar to the reference molecules. The
docking score of the reference crystal structures AZD1775 and PHA-848125 and the new

molecules proposed in this work are shown in the Table 5.3. These results show that the new

molecule binding pose is similar to the location of the reference molecules; further, all the

molecules form hydrogen bonding interactions with the hinge region residue Cys379.
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Figure 5.5: Molecules (2A-2H) generated using fragment-based de novo design of inhibitors.

Table 5.3: Ligand score PLP1, PLP2, PMF, PMFO04 of references inhibitors (AZD1775, PHA-848125
and the molecules generated using de novo fragment link (2A-2H)) and hydrogen bond distance.

Compound PLP1 PLP2 PMF PMF04 H bond distance
Cys379:NH--- N of core
scaffold

AZD1775 -134.78 -124.01 -166.69 -80.16 2.164A

PHA-848125 .126.45  -114.6 -160.36 -86.01 2.252A

2A -111.57 -100.91 -125.44 -61.49 2.389A

2B -102.45 -94.9 -137.25 -75.75 2.75A

2C -101.12 -93.59 -139.99 -73.45 2.295A
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2D -100.95 -93.5 -129.71 -67.11 2.497A

2E -104.72 -96.71 -102.96 -56.33 2.491A
2F -97.67 -92.34 -126.39 -60.82 2.348A
2G -109.38 -102.67 -143.19 -12.62 2.409A
2H -95.99 -89.24 -123.82 -69.13 2.241A

5.3.5 MD simulations and binding free energy calculations

The binding of de novo designed molecules to Weel kinase was further assessed using
MD simulations studies. The RMSD plot of AZD1775 bound to Weel kinase and the hydrogen

bond distance with hinge region during 100 ns is shown in Figure 5.6.
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Figure 5.6: Weel-AZD1775 complex. A) Three hydrogen bonds are shown as green dotted lines. B) The
RMSD of protein (green) AZD1775 (turquoise) are obtained from MD simulations studies. C) Hydrogen
bonding distances between Cys379 NH with N14 (green), Cys379 O with H121 (maroon) and Asn376 H
with 018 (black) during 100 ns MD simulations.

The last 1 ns of MD simulations trajectory was used to calculate the average structure.
Comparison of the initial and average structures by structure superimposition shows that the core
scaffold shows good stability and low RMSD confirmed by conserved hydrogen bonding
interaction with hinge region indicating the suitability of these core scaffolds in the design of
Weel kinase inhibitors. The fragments of back-pocket for molecules 2A and 2B show minor
deviation from docking pose as indicated in the superimposition of the docked pose and average

structure from MD simulations trajectory shown in the Figure 5.7. Likewise, for the front
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binding pocket, the fragments in the molecules 2B and 2D show minor deviations. The

superimposition of structures is reasonably good for other molecules (2C, 2E, 2F, 2G, 2H).

Figure 5.7: Superimposition of docked (blue) with the average structures (tan) of the molecules (2A-2H)
after MD simulations.

The resulting RMSD plots of the protein-inhibitor complexes indicate that the protein RMSD is
lower than 3 A and is lower than 2 A for inhibitor as shown in Figure 5.8. The analysis of the
trajectories of the three molecules with the hinge region residues of Weel kinase as shown in
Figure 5.9 is less than 3 A distance, which clearly indicates that the essential hydrogen bond is

retained during MD simulations.
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Figure 5.8: Schematic representation of RMSD plots for Weel kinase complexed with PHA-848125 and
the de novo designed molecules from MD simulations(2A-2H), proteins (green), and inhibitors
(turquoise)
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Figure 5.9: Intermolecular hydrogen bonding distance between Cys379 main-chain NH and reference
molecules, and the de novo designed molecules (2A—2H)
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The RMSF plots (Figure 5.10) indicated that for most part of the protein, amino acid residues
have lower fluctuations, less than 2 A, and only the activation loops from 436 to 455 display
high fluctuations and reach up to 5 A. The reference molecules also display similar regions of

fluctuations.
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Figure 5.10: RMSF of Weel kinase when bound to reference inhibitors, AZD1775 and PHA848125, and
de novo designed molecules (2A-2H)

The binding free energies of the protein-de novo designed complexes and the crystal structure
complexes of Weel with AZD1775 and PHA-848125 were calculated using MM_PBSA and are
shown in Table 5.4. The energy contributions from van der Waals, electrostatic, and polar
solvations show compatibility with each other and reference molecules. Comparison of these
data indicates that the binding free energies of these molecules are comparable to the molecules

already approved. T

he contribution of the active site amino acids in Weel kinase to the binding of de novo designed
molecules is shown in Table 5.5. As shown in Figure 5.11, the amino acid residues responsible
for inhibitor binding are preceding the a-C helix (Val360), hinge region residues (Asn376,
Tyr378, Cys379, Asn380, Gly381, Gly382, Ser383), a-D helix (Asp386), B-7 strand (Ser430,
Phe433), and activation loop (Asp463). Similar contributions are also made by the reference

molecules.
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Table 5.4: The van der Waals (vdW), electrostatic, polar and apolar solvation and binding free energies

in kJ/mol

Compounds  vdW Electrostatic ~ Polar solvation Apolar solvation AG Binding(15-25 ns)
AZD1775  -237.809+ 0.440 -25.201 +0.314 171.063£0.669 -22.325+0.036  -114.308 + 0.658
PHA-848125 235517+ 0.301 -45.786 +0.404 178.697 +0.506 -21.901 £0.027  -124.516+0.407
2A 199.019+0.385 -28.359 +0.304 142.155+0.506 -19.146+0.030  -104.395+ 0.426
2B -192.167+ 0.309 -30.942+0.343 132.808 + 0.427 -18.190 +0.032  -108.489 +0.475
2C -205.051 £0.534 -33.550 £0.373 144.653+0.692 -19.769+0.045  -113.696 = 0.597
2D -203.704 £0.448 -55.390 + 0.499 188.298+0.787 -19.858 +0.035 -90.627+ 0.515
2E -210.400+ 0.389 -38.033+0.435 146.818+0.592 -19.393 +0.028  -121.014+0.450
2F -211.261 £0.353 -32.433 +0.217 161.718 £+0.360 -18.813+0.025  -100.773 £0.445
2G -210.526 +0.318 -38.147 +0.318 162.140 +0.534 -19.301 +0.027  -105.846 + 0.401
2H -202.313+0.306 -25.680 +0.249 132.609+ 0.381 -18.027 +0.023  -113.419 +0.403

Table 5.5: Contribution of Weel kinase active site residues to the bindingof reference and de novo
designed molecules in kJ/mol.

Residue AZD1775 PHA- 2A 2B 2C 2D 2E 2F 2G 2H
No 848125

Val360 -4.4043  -6.2899  -5.3351  -5.0964 -4.0304 -7.166  -5.2443  -5.7521  -5.2906  -4.9821
Asn376 -4.2291 2.7704 -1.638  -1.2088  -1.4464 -2.0873 -1.0156  -0.8625 -1.395  -0.8883
Tyr378 -3.2064  -6.7231 -4.825 -3.757  -6.3315 -2.0394 -3.0336  -3.7572  -4.4612  -0.2006
Cys379 -12.812  -10.819  -11.092 -10.468 -13.706 -59121  -5.8695 -9.8591  -10.854  -11.332
Asn380 -3.8554  -5.8956  -14.732  -5.1546  -20.206  -0.6542 -0.798  -1.1531  -5.3197  -4.0323
Gly381 -5.8275 -9.8001  -29.336 -4.542  -22.624  -0.6185 -2481  -14702  -7.1967  -2.3166
Gly382 -21.185  -26.363  -30.076  -23.566  -26.761  -6.3956  -10.641 -17.915 -25.186 -19.786
Ser383 -7.0413  -49643  -10.121  -4.2959  -14537 -24.064 -25.772 -13.944 -10.639 -7.3816
Asp386 -7.486  -32.882 -11.129 -29525 -8.6823  -18.913 -6.8308 -8.7208  -8.3344  -0.2155
Ser430 -8.6743  -0.7531  -13.741  -11.475 -17.221  -10.655  -15.152  -3.1613 -2.3612 -2.7182
Phe433 -44.543  -44.087  -41512  -44495  -36.664  -38.200 -43.205 -41.138  -41.207 -38.061
Asp463 -12912  -33.262  -24.403  -19.018 -19.934  -30.313  -11.884  -22.329 -24.464 -23.444
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Figure 5.11: Contribution from amino acid residues in the Weel kinase to the binding of reference
inhibitors (AZD1775 and PHA848125) and the de novo designed molecules (2A-2H). The amino acid
residues with higher contribution are indicated.

All inhibitors make hydrogen bonding interactions with Cys379; pi-pi stacking interactions
between the 6-6-5 core scaffold and side-chains of aromatic amino acids of Tyr378 and Phe433
are also present in all the eight molecules. Further, sigma-pi stacking interactions between
inhibitors and 11305, Val313, and Phe433 are also present. Some additional hydrogen bonding
interactions with Glu303, Glu346, Asn376, Tyr378, Ser383, Asn431, and Asp463 are observed.
These hydrogen bonding and hydrophobic interactions stabilize the Weel kinase-de novo

designed inhibitor complexes.
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5.4 Discussion

During the last two decades, in the field of drug discovery, fragment-based design for
new molecule identification has emerged successfully. The key features are the identification of
core scaffold, low molecular weight fragments, and their appropriate linkage so as to design new
small molecules that would fit into the active site of receptor chemical space. Further, the
binding affinity of the new molecule is estimated to be more than the sum affinities of each
individual fragment and form intermolecular interactions with the receptor to stabilize the
complex (Fink et al., 2005; Jencks, 1981; Erlanson et al., 2016; Scott et al., 2012). Earlier, the
screening of the core scaffold and fragments to identify the best binders was carried out using
experimental methods such as X-ray crystallography, nuclear magnetic resonance, and surface
plasmon resonance (Murray & Blundell, 2010). These techniques examine the affinity of some
fragments from a mixture of fragments and report the binding conformation of a hit molecule to
the active site of protein and therefore guide the discovery of more efficient fragments. In the
recent times, computational chemistry approaches have been applied in the rational drug design.
The search for new fragments by using pharmacophore models followed by virtual screening of
database methods or destruction of approved drugs and high potent molecules has been in
practice (Teague, 2011). More recently, machine learning methods are applied to produce
relationships between available data of small molecules and their physico-chemical properties;
the results are further extrapolated to predict the chemo-informatic properties of new molecules

and therefore their application for in silico drug design studies (Mitchell, 2014).

Scaffold hopping is one of the methods to introduce more favorable core building blocks
of a molecule based on the reported inhibitors; this can be achieved by the addition of
heteroatoms to scaffold rings or addition of new rings and in some cases to replace the core by a
substructure with a different topology (Hu et al., 2016). In the de novo design of fragments
protocol, a prepared fragment library is searched to return all the fragments that can covalently
link with the core scaffold and make interactions with the neighboring residues in the protein
active site. The designed fragments should adhere to the rule of three (Kolb & Caflisch, 2006).
The quality of the fragments identified is further studied to confirm their binding efficiency by
molecular docking, RMSD, energy strain, MD simulations, and energy decomposition studies
(Verdonk et al., 2011; Ichihara et al., 2011). The crystal structure of a protein-inhibitor complex
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guides us to find the location and exact position of fragment substitution on the core as against a
mere random selection of fragments. The crystal structure provides guidance to know the size of
linkers based on the space that remained unoccupied; they also indicate how a substitution causes
steric hindrance to atoms on the core scaffold and hence reduce their chance to reach an energy

minimum conformation.

Fragment-based design of novel lead molecules is now a validated method, and some molecules
from these studies have entered clinical trials. For example, Astex Pharmaceuticals designed,
AT7519 (Squires et al., 2009), a cyclin-dependent kinase inhibitor is in clinical trials and was
reported to be effective in overcoming chemo-resistance in colon and cervical cancer (Chen et
al., 2014). AT9283 (Howard et al., 2008), an Aurora kinase inhibitor is in clinical trials(\Vormoor
et al., 2017; Hay et al., 2016).The first FDA-approved drug designed using fragment-based drug
discovery is PLX4032 and produced by Plexxikon Inc. and Hoffmann-La Roche Ltd. (Tsai et al.,
2008). BI-2852 designed by Boehringer Ingelheim, Vanderbilt University as inhibitor of K-Ras
target (Kessler et al., 2019), eFT508 inhibitor for MNK1, MNK2 and developed by eFFECTOR
Therapeutics for advanced castrate-resistant prostate cancer as ATP-competitive inhibitor (Reich
et al., 2018) are taking lead in the drug discovery pipeline. Some of the recent literature also
provide advances in cancer and other disease drug discovery based on fragment-based
technology (Mortenson et al., 2018; Erlanson et al., 2020; Jahnke et al., 2020)

5.4.1 Kinase pockets and hinge region scaffold

More than 500 kinase genes have been identified in the human genome. A typical kinase
domain which is often the catalytic part of a larger protein comprises between 240 and 300
amino acid residues (Manning et al., 2002), the N-terminal 3-sheet domain and the C-terminal a-
helix domain are connected by a hinge region, the glycine rich loop interacts with the
phosphodiester of ATP, a highly flexible activation loop and conserved motifs such as
DFG/DLG and HRD/HMD are essential for the enzyme activity. Most of the kinase inhibitors
are ATP competitive inhibitors, which mainly bind the hinge region of a kinase domain and are
extended into sub-pockets or clefts. The inhibitors are classified based on their orientation inside
active site into three regions, front cleft which has residence for pyrimidine of ATP, DFG motif

region, and a third region with back cleft of multiple sub-pockets. The 3-D structure of a kinase
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has an inherent conformational switch for active and inactive forms in the active site pocket with
DFG motif flipping between “in” or “out” conformational states (van Linden et al., 2013).
Scanning of kinase structures in the PDB revealed that the hinge region in the active site is
occupied by a core scaffold; the back and front binding pockets are occupied by aromatic rings

holding some functional groups.

In vitro studies reported Milciclib (PHA-848125), a pyrimidine-based tricyclic scaffold as a
potent Weel kinase inhibitor that shows good dissociation constant and inhibition of cell growth
(Zhu et al., 2017); crystal structure of this complex has also been reported [PDB ID: 5VC6].
Another pyrimidine-based tricyclic scaffold as Weel inhibitor has been reported with sub-
micromolar affinities (Tong et al., 2015). Scanning of kinase structures in the PDB revealed such
tricyclic core scaffolds with heteroatoms as kinase inhibitors and is shown to form
intermolecular hydrogen bonding with hinge region residues. The PDB IDs for different types of
core scaffolds with the tricyclic system are 5-6-5 [4E6Q], 6-5-6 [3RVG], 6-6-6-6 [2R7B], 6-7-6
[4IWD], and 5-7-6 [5T8F] (Kulagowski et al., 2012; Lim et al., 2011; Gopalsamy et al., 2007;
Northrup et al., 2013; Castanedo et al., 2017). In our study, the 6-6-5 system was used as the core
scaffold (ZINC40388002, ZINC05605098, and ZINC95922878) with different positions of
heteroatoms (nitrogens) as shown in Figure 5.3. These core scaffolds show three different

binding modes at the hinge region and form hydrogen bonds as shown in the Figure 5.3.

The large numbers of fragments retrieved from the virtual screening when linked to each
scaffold generate hundreds of molecules, and this will generate a combinatorial library. Based on
the molecular docking into the Weel kinase active site, eight molecules represented by 6-6-5
system were chosen that fit into active site and form hydrogen bonding interactions with Cys379

and with high docking score.

The ADME properties calculated for the de novo designed molecules showed suitable physico-
chemical properties, lipophilicity, water solubility, drug-likeness, and synthetic accessibility, and

these parameters are equivalent to the reference Weel kinase inhibitors.

From the molecular docking and MD simulations studies, it was observed that these fragment-

based de novo designed molecules bind the ATP binding site of Weel kinase and are therefore
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ATP competitive inhibitors. The newly designed inhibitors show high intermolecular interactions
and structural stability of the protein-inhibitor complexes as indicated by the high docking scores
and binding free energies. The fragments linked to the core scaffold generated new molecules,
and importantly, these new scaffolds circumvent the existing patents of reported kinase
inhibitors.
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5.5 Conclusions

The 3-D structure of a protein inhibitor complex guides us to predict new molecules
using computational de novo drug design methods. The crystal structure of Weel kinase
complexed with pyrimidine-based inhibitor was utilized to identify three tricyclic [6-6-5] core
scaffolds from ZINC library that form hydrogen bonding interactions with the Cys379 main-
chain NH in the hinge region. Pharmacophore-based searches of ZINC and PubChem databases
and Ludi library identified several fragments that were linked to the core scaffold using de novo
linking protocols. From the molecular docking, it was observed that the extended molecules are
located in the ATP binding site of Weel kinase and fit well in the chemical space of the protein
active site. These molecules display desirable ADME properties. MD simulations studies
revealed stability of the Weel kinase-inhibitor complexes and significant contribution from the
active site residues in the complex formation. The new molecules identified in this work are
comparable in terms of binding location, docking scores, and binding free energies to the
reference Weel kinase inhibitors.
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