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1.1 Introduction  

 

Proteins are vital biological macromolecules present for specific functions such as 

enzymes, hormones, defense, storage, transport, receptor, contractile and source of energy 

(Lodish et al., 2001). Proteins are synthesized in living cells using the genetic material DNA as 

template by two sequential steps, transcription and translation. The correct folding of a protein 

into its three-dimension (3-D) structure is required for its function, while protein misfolding, 

mutations and deficiency can often lead to some diseases (Scheper et al., 2007).  

Kinases are described as enzymes that phosphorylate a substrate, be it a protein, DNA, 

carbohydrate or lipid; by the transfer of negatively charged terminal γ-phosphate group from an 

energy rich molecule, adenosine triphosphate (ATP). Protein kinases represent one of the 

important family of enzymes in eukaryotes (Manning et al., 2002). It is estimated that 30–50% of 

protein kinases are phosphorylated in any given cell (Pinna & Ruzzene, 1996). Protein kinases 

function by both transphosphorylation of substrate and autophosphorylation of itself. Protein 

phosphorylation is considered as a post-translational modification that leads to a change in the 

conformation of the protein 3-D structure that is required for regulating cellular biological 

pathways. Protein kinases play a vital role in regulating cell division, differentiation, growth, 

survival, signal transduction, cytoskeletal rearrangement, immune response, nervous system 

function, transcription, learning and memory, metabolism and etc (Zhou et al., 2012; Roskoski, 

2014; Hunter, 2000). Protein phosphorylation occurs on the side-chains of hydroxyl amino acid 

residues; serine, threonine (Ser/Thr kinases), tyrosine (Tyr kinases), and deprotonated, tele-

nitrogen on the side-chain imidazole of histidine (histidine kinases) (Cohen, 2002). The extent of 

serine phosphorylation is high among the hydroxyl amino acids, some protein kinases function as 

dual-specificity kinases to phosphorylate both Ser/Thr and Tyr residues (Besant et al., 2003). 

Statistical studies based on high-throughput phosphoproteomics reported an estimated 13,000 

phosphoproteins in the human proteome and 156,000 phosphorylation sites where one of the 

amino acids is a serine, threonine, or tyrosine (Vlastaridis, 2017). 

Kinases are one of the large protein families and represent ~2% of the human proteome. There 

are more than 600 protein kinases present in the human genome. These kinases display high 
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similarity in the amino acid sequences and infer evolutionary relationships by means of having a 

common ancestral protein (Brinkworth et al., 2002). Protein kinases are classified into groups 

that consist of families and divided into multiple subfamilies. In the human genome, these 

enzymes are classified into eight groups to represent conventional protein kinases; AGC group 

represent protein kinase A, G, C families which are termed as (PKA, PKB and PKC); CAMK 

group which represent calcium/calmodulin-dependent protein kinase; CK1 group  is casein 

kinase 1; CMGC  group which contains CDK, MAPK, GSK3 and CLK family; receptor 

guanylate cyclases; STE group represent homologs of yeast Sterile 7, Sterile 11 and  Sterile 20 

kinases; Tyrosine kinase group; tyrosine kinase-like group. Other kinase group and the atypical 

kinase-like protein are a mixed collection of kinases that cannot be classified into the above 

groups and form a separate group of protein kinases (Andrade et al., 2011; Duong‐Ly & 

Peterson, 2013). Each of these groups are further divided into certain families and subfamilies in 

kinase classification (Manning et al., 2002). Protein kinases are often a part of large multi-

domain proteins. For example, Src family proteins comprise a unique, SH2, SH3 and kinase 

domains from N-terminus towards the C-terminus with spacer regions of variable lengths 

connecting the conserved domains (Boggon & Eck, 2004; Martin et al., 2010). The protein 

phosphoinositide3-kinase (PI3K) is made up of two subunits, p110 and P85, and the kinase 

domain is present towards the C-terminus of the p110 alpha subunit (Cantley, 2002). Abl protein 

has SH3, SH2 and tyrosine kinase domains (Colicelli, 2010), PDK1 has Ser/Thr kinase and a PH 

domain (Belham et al., 1999). Akt/PKB protein has a PH domain followed by a Ser/Thr kinase.  

A typical kinase domain consists of ~250 to 280 amino acid residues.  Several research groups 

have solved the three-dimensional crystal structures of protein kinases in the apo form and when 

bound to the cofactor ATP or ligands and inhibitors, and the 3-D coordinates are deposited in the 

protein data bank (PDB) (Berman et al., 2007). The 3-D structure of a protein kinase domain 

consists of two lobes, a smaller N-terminal lobe rich in β-sheets and a larger C-terminal lobe 

comprising mainly α-helices. The N- and C-terminal lobes are linked by a flexible hinge region 

and the amino acid residues located at the interface along with the hinge region forms the 

cofactor ATP binding pocket (Schindler et al., 2000). Several structural features are common to 

all kinases and are important for the activity and conformational alterations. 
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The N-terminal lobe contains a five-stranded β-sheet (β1–β5) and one catalytic α-helix (αC-

helix). The glycine-rich loop connecting strands β1 and β2 in this lobe comprises a sequence 

motif "GxGxxG" and stabilizes the phosphate groups of the cofactor ATP (therefore also called 

P-loop) during catalysis. A conserved sequence motif, HRD occurs in the catalytic loop of the 

protein. A ~25 amino acid activation loop connecting the conserved sequence motifs DFG (Van 

Linden  et al., 2014; Gardner et al., 2007) (sometimes replaced with DLG or DWG) and APE 

(Steichen et al., 2010) (sometimes replaced with XPE, where ‘X’ is any amino acid residue) in 

the C-terminal lobe is highly flexible. This loop is important for the formation of substrate 

binding cleft in the active form of kinases and undergoes a huge conformational change between 

active, inactive and intermediate states. The plasticity of these structural motifs is essential for 

regulating the activity of a kinase. In the on/active state, the activation loop is fully extended 

with the Asp of DFG motif facing the ATP binding pocket and the Phe of DFG side-chain 

occupying a hydrophobic pocket adjacent to the αC-helix, this conformation is referred to as the 

‘DFG-in state’ (Nagar et al., 2002). The active state is characterized by an inward movement of 

the αC-helix and a salt bridge interaction between a conserved Lys residue in the β3 strand (close 

to Gly-rich loop) and a Glu residue in the αC-helix (Vijayan et al., 2015). It is interesting to 

study that depending on the phosphorylation state of the kinase, cofactor/ligand/inhibitor 

binding, the kinases undergo significant conformational changes in these regions. Kinases switch 

their conformation between ‘on/active’ and multiple ‘off/inactive’ states. Specific residue 

phosphorylation by auto-phosphorylation or trans-phosphorylation in the activation loop results 

in an extended conformation exposing a surface cleft which facilitates binding of substrates. 

Despite the difference in the primary sequences, all kinases adopt a strikingly similar structural 

similarity. This similarity is greater when a kinase is in the active form. In the inactive form of 

kinases allosteric binding sites are also presented (Gilburt et al., 2017).  These structural features 

of a protein kinase are shown in Figure 1.1. 

The dysregulation of a protein kinase in the cellular events leads to several disease conditions, 

this enzyme is therefore an important target system in the pharmaceutical industry for 

intervention in oncology, immunology, cardiology, neurology, and infectious diseases (Ardito et 

al., 2017).  
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Figure1.1:The 3-D structure of Polo-like Kinase-2 (PDB ID: 4I5P). Various structural motifs are 

indicated. Helices (red), strands (blue), loops (pink). The side-chains of the first and last amino acid 

residues, Asp, Phe from DFG motif. His, Arg from HRD motif are represented in stick (carbons- yellow, 

nitrogen- blue, oxygen-red). 

1.1.1 Cancer  

Cancer is a massive group of diseases that is manifested as uncontrolled growth of cells. 

Some types of cancer invade other tissues and destroy organs due to metastasis. The symptoms 

of cancer are difficult to be noticed, but various diagnostic tests can confirm the presence of 

disease. Several factors are responsible for causing cancer such as lifestyle, pollution, alcohol 

consumption, malnutrition, physical factors such as exposure to harmful radiation, chemical 

exposure of toxins (Ames et al., 1995), hormones, bacterial infections such as Helicobacter 

pylori (Peter & Beglinger, 2007), and viral infections such as hepatitis B and C, human 

papilloma virus, Rous sarcoma virus and Epstein–Barr virus (de Oliveira, 2007). Some cancers 

are also caused by genetic factors that are inherited from parents (Ponder, 2001). Cancer is 

considered as the second leading cause of death.  Among various forms of cancer, the most 

common among men and women are lung cancer and colorectal cancer; prevalent among men 

are stomach, liver and prostate; and prevalent among women are cervical, thyroid and breast 

https://en.wikipedia.org/wiki/Human_papillomavirus_infection
https://en.wikipedia.org/wiki/Human_papillomavirus_infection
https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus
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cancer (de Martel et al., 2020). Approximately 9.6 million deaths were reported in the year in 

2018 out of 17 million populations diagnosed as cancer cases, it is projected that increase in 

burden of cancer by 2040 to be 27.5 million (https://www.who.int/). 

Cancerous cells differ from the normal cells due to their uncontrolled cell division. Several 

proteins play important roles in the biochemical events leading to cancer progression. These 

proteins may be targeted for cancer treatment by the employment of chemical inhibitors. Among 

such proteins, kinases represent as excellent targets due to their genetic alterations including 

mutations, overexpression, translocations, and dysregulation (Croce, 2008). Kinases have been 

targeted as cancer causing agent for first time in 1970 and the first 3-D crystal structure of cyclic 

adenosine monophosphate-dependent protein kinase comprising phosphorylated Ser and Thr was 

reported in 1991 (PDB ID: 2CPK) (Knighton et al., 1991).  

1.1.2 Protein kinase and inhibitor types 

Protein kinases share high sequence and structural similarity. Kinases are classified into 

receptor and non-receptor categories based upon their cellular location. Receptor kinases are 

present on the cell surface and possess one more transmembrane spanning regions and the 

enzymatic catalytic kinase domain is on the cytoplasmic side of the receptor (examples: EGFR, 

FGFR, PDGFR). Some of the non-receptor kinasesare cytosolic intracellular protein kinases 

(examples: ABL, ACK, CSK, FAK, FES, FRK, JAK, SRC, TEC and SYK) (Manning & 

Cantley, 2007). Both receptor and non-receptor kinases regulate the biological events inside the 

cell by switching the kinase into on and off states to control cellular processes such as 

proliferation, cell growth, differentiation, adhesion, migration, and apoptosis (Neet & Hunter, 

2001). Kinases are also important elements in the regulation of immune systems. Despite the 

high similarity in the kinase domains, they achieve high selectivity as evidenced by a variety of 

crucial biological roles orchestrated by these enzymes and binding to certain inhibitors 

specifically with high affinity and selectivity.  

Already some of the inhibitors to protein kinases are approved by food and drug administration 

(FDA) and are used as therapeutics in certain disease conditions. Several lead molecules are in 

the advanced stages of clinical trials. However, given the importance of the protein kinases in 
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disease conditions, studies related to the design of new potent molecules and the understanding 

of their mechanism of inhibition still remains a fertile area to conduct research (Roskoski, 2016).  

Kinase inhibitors are classified into six groups; the first group (type I) inhibitors bind at the 

cofactor ATP binding site, the DFG motif is available as DFG-in state, the inhibitor binds into 

front and gate region till the DFG motif. Most of the kinase inhibitors reported so far belong to 

type I, and bind at the site in between N-terminal and C-terminal regions divided into clefts of 

front pocket, gate and back pockets.  The type II inhibitors are designed to bind with DFG-out 

conformation of the kinase at the ATP binding pocket and occupy the back pockets (Van Linden 

et al., 2014). The type III andtype IV are called the allosteric inhibitors, type III occupies a 

pocket near to ATP binding site and type IV occupies a region away from the ATP binding site. 

Type V inhibitors called as bivalent inhibitors span the two binding sites. The type VI inhibitor is 

called covalent inhibitors as it forms a covalent bond with the protein and is considered as 

irreversible inhibitor (Martinez et al., 2020; Zhao & Bourne, 2020). Table1.1 provides a list of 

the FDA approved kinase inhibitors for cancer treatment along with their inhibitor type, year of 

FDA approval and the drug company for invention. 

Table 1.1: FDA approved kinase inhibitors used for cancer treatment. 

 

 Drug Target kinase Inhibitor 

type 

Cancer type  Pharmaceutical 

Company  

Year  

Imatinib Bcr-Abl, c-

KIT, PDGFR 

II Philadelphia chromosome–

positive chronic myeloid 

leukemia,  acute 

lymphoblastic leukemia, 

chronic eosinophilic 

leukemias,  

hypereosinophilic  

syndrome, Gastrointestinal 

stromal tumor, 

myelodysplastic/myeloprol

iferative 

disease 

Novartis 2001 
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Gefitinib EGFR, 

PDGFR 

I  Non-small cell lung cancer  AstraZeneca 2003 

Erlotinib EGFR I Non-small cell lung cancer, 

pancreatic cancers 

Roche, OSI  2004 

Sorafenib B-Raf, CDK8, 

Kit, Flt3, RET, 

VEGFR1/2/3, 

PDGFR 

II Hepatocellular carcinoma, 

Renal cell carcinom, 

thyroid cancer 

Bayer 2005 

Sunitinib PDGFRα/β, 

VEGFR1/2/3, 

Kit, Flt3, CSF-

1R, RET 

II Renal cell carcinoma,  

Gastrointestinal stromal 

tumor, pancreatic 

neuroendocrine tumors 

Pfizer 2006 

Dasatinib BCR-Abl, Src, 

Lck, Lyn, Yes, 

Fyn, Kit, 

EphA2, 

PDGFRβ 

I Philadelphia chromosome–

positive chronic myeloid 

leukemia, philadelphia 

chromosome–positive  

acute lymphoblastic 

leukemia  

GlaxoSmith-

Kline 

2006 

Nilotinib BCR-Abl, 

PDGFR, 

DDR1 

II Philadelphia chromosome–

positive chronic myeloid 

leukemia 

Novartis 2007 

Lapatinib EGFR, 

ErbB2/H 

ER2 

I human epidermal growth 

factor receptor 2 positive 

breast cancers 

GlaxoSmith-

Kline 

2007 

Pazopanib VEGFR1/2/3, 

PDGFRα/β, 

FGFR1/3, Kit, 

Lck, Fms, Itk 

I Renal cell carcinoma, soft 

tissue sarcoma 

GlaxoSmith- 

Kline 

2009 

Crizotinib ALK, c-Met 

(HGFR), 

I Anaplastic lymphoma 

kinase or C-ros oncogene 1 

Pfizer 2011 
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ROS1, 

MST1R 

postive Non-small cell 

lung cancer 

Ruxolitinib JAK1/2/3, 

Tyk 

I Myelofibrosis, 

polycythemia vera 

Incyte 2011 

Vandetanib EGFR, 

VEGFR, RET, 

Tie2, Brk, 

EphR 

I Medullary thyroid cancer AstraZeneca 2011 

Vemurafenib A/B/C-Raf and 

B-Raf 

(V600E) 

I Melanoma with BRAF 

V600E mutations 

Roche, 

Plexxicon 

2011 

Axitinib VEGFR1/2/3, 

PDGFRβ, Kit 

II Renal cell carcinoma   Pfizer 2012 

Bosutinib BCR-Abl, Src, 

Lyn, Hck 

II chronic myeloid leukemia Wyeth 2012 

Cabozantinib c-

MET/VEGFR

2,  AXL and 

RET 

II  Medullary thyroid cancer  Exelixis 2012 

Ponatinib BCR-Abl, 

BCR-Abl 

T315I, 

VEGFR, 

PDGFR, 

FGFR, EphR, 

Src family 

kinases, Kit, 

RET, Tie2, 

Flt3 

I Philadelphia chromosome–

positive chronic myeloid 

leukemia, philadelphia 

chromosome–positive  

acute lymphoblastic 

leukemia 

Ariad 2012 

Regorafenib VEGFR1/2/3, 

BCR-Abl, B-

II Colorectal cancer,   

Gastrointestinal stromal 

Bayer 2012 
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Raf, B-Raf 

(V600E), Kit, 

PDGFRα/β, 

RET, 

FGFR1/2, 

Tie2, and 

Eph2A 

tumor 

Afatinib EGFR, 

ErbB2/4 

VI Non-small cell lung cancer Boehringer-

Ingelheim 

2013 

Dabrafenib B-Raf II B-RAF V600E/K 

melanomas, BRAFV600E 

Non-small cell lung cancer, 

BRAF V600E anaplastic 

thyroid 

cancers 

GlaxoSmith-

Kline 

2013 

Ibrutinib BTK VI Mantle cell lymphoma,  

Chronic lymphocytic 

leukemia,  Waldenström's 

macroglobulinemia  

Janssen, 

Pharmacyclics 

2013 

Trametinib MEK1/2 III B-RAF V600E/K 

melanomas, B-RAF 

V600E 

Non-small cell lung cancer 

GlaxoSmith-

Kline 

2013 

Ceritinib ALK, IGF-1R, 

InsR, ROS1 

I Anaplastic lymphoma 

kinase, Non-small cell lung 

cancer after crizotinib 

resistance 

Novartis 2014 

Idelalisib PI3K-δ I Chronic lymphocytic 

leukemia/small 

lymphocytic lymphoma, 

follicular lymphoma  

 Gilead Sciences 2014 
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Nintedanib FGFR1/2/3, 

Flt3, Lck, 

PDGFRα/β, 

VEGFR1/2/3 

II Idiopathic pulmonary 

fibrosis,  Non-small cell 

lung cancer 

Boehringer-

Ingelheim 

2014 

Alectinib ALK, 

RET 

I Anaplastic lymphoma 

kinasepositive  Non-small 

cell lung cancer 

Hoffmann-La 

Roche 

2015 

Cobimetinib MEK1/2 III B-RAF V600E/K 

melanomas in combination 

with vemurafenib 

 Exelixis, Roche 2015 

Palbociclib CDK4/6 I Estrogen and human 

epidermal growth factor 

receptor 2 breast 

cancer 

Park Davis 2015 

Lenvatinib VEGFR1/2/3, 

FGFR1/2/3/4, 

PDGFRα, Kit, 

RET 

V  advanced  Renal cell 

carcinoma 

differentiated thyroid 

cancer 

Eisai 2015 

Osimertinib EGFR I Non-small cell lung cancer AstraZeneca 2015 

Abemaciclib CDK4/6 I Combination therapy with 

an (i) 

aromatase inhibitor or with 

(ii) 

fulvestrant or as a 

monotherapy for breast 

cancers 

 Eli Lilly 2017 

Acalabrutinib BTK I Mantle cell lymphomas,  

Chronic lymphocytic 

leukemia/small 

lymphocytic lymphoma 

Acerta Pharma 2017 
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Brigatinib ALK I Anaplastic lymphoma 

kinasepositive Non-small 

cell lung cancer  

ARIAD 

Pharmaceuticals 

2017 

Midostaurin Flt3 I Acute myeloid leukemia, 

mastocytosis,  mast cell 

leukemias 

Novartis 2017 

Neratinib ErbB2/H 

ER2 

I human epidermal growth 

factor receptor 2 positive 

breast cancers 

 Wyeth; Pfizer 2017 

Ribociclib CDK4/6 I Combination therapy with 

an aromatase inhibitor for 

breast cancers 

 Novartis and Ast

ex 

Pharmaceuticals 

2017 

Copanlisib  PI3K-

αand PI3K-δ 

I Follicular lymphoma  Bayer  2017 

Binimetinib MEK1/2 III Combination therapy with 

encorafenib 

for B-RAF V600E/K 

melanomas 

 Array 

Biopharma 

2018 

Dacomitinib EGFR I EGFR-mutant Non-small 

cell lung cancer 

Pfizer 2018 

Encorafenib B-Raf I Combination therapy with 

binimetinib for 

BRAFV600E/K 

melanomas 

Novartis, Array 

BioPharma 

2018 

Gilteritinib Flt3 I Acute myeloid leukemia    Astellas Pharma 2018 

Larotrectinib TRKA/B/ 

C 

unknown Solid tumors with  

neurotrophic tyrosine 

receptor kinase fusion 

proteins 

 Array 

BioPharma, Loxo 

Oncology 

2018 

Lorlatinib ALK I Anaplastic lymphoma  Pfizer 2018 
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kinase positive Non-small 

cell lung cancer 

Entrectinib TRKA/B/C, 

ROS1 

I Solid tumors with  

neurotrophic tyrosine 

receptor kinase fusion 

proteins, C-ros oncogene 1 

positive Non-small cell 

lung cancer 

Genentech/Roche 2019 

Erdafitinib FGFR1/2/3/4 I Urothelial bladder cancers  Janssen 

Pharmaceuticals 

2019 

Fedratinib JAK2 I Myelofibrosis Tragara 

Pharmaceuticals 

2019 

Alpelisib  PI3Kα I Breast cancer Novartis 2019 

Zanubrutinib BTK I Mantle cell lymphoma 

blood cancer 

BeiGene 2019 

Pexidartinib CSF1R II Tenosynovial giant cell 

tumor  

Plexxikon Inc. 2019 

Avapritinib KIT, PDGFR unknown Gastrointestinal stromal 

tumor 

Blueprint 

Medicines 

2020 

pralsetinib RET I Non-small cell lung cancer  Blueprint 

Medicines 

2020 

Selumetinib MEK1/2 II Neurofibromatosis type 1 AstraZeneca 2020 

Pemigatinib FGFR1/2/3   Biliary cancer Incyte 2020 

Capmatinib MET I Non-small cell lung cancer Novartis 2020 

Tucatinib HER2 unknown Breast cancer Seattle Genetics 2020 

Selpercatinib RET I Non-small cell lung cancer, 

thyroid cancer 

 Eli Lilly 2020 

Ripretinib KIT, PDGFR II Gastrointestinal stromal 

tumor 

Deciphera 

Pharmaceuticals 

2020 
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1.1.3 Cell cycle regulation and protein kinases  

The process of cell division and its replicationis described as cell cycle (Howard, 1953; 

Nurse, 1990), these are coordinated events controlled by a sequence of biochemical steps. The 

outcome of cell cycle is to produce from the parent cell two similar daughter cells. Cell cycle is 

required for the development and growth of all organisms.  

In addition to the normal physiological role of cell cycle, perturbation in the cell cycle regulation 

plays an important role in causing disease. One of the major factors that cause cancer are the 

perturbations in the cell cycle regulation, therefore the control of cell cycle is of major 

importance to human health because. Mammalian cell cycle process is tightly controlled by a 

group of conserved biological events with precise mechanism and transfer of genomic content 

into daughter cells without alteration (Cho et al., 2001). The cells pass through two main stages, 

the first stage is represented by non-proliferation gap (G) stage, G0, and the second stage is 

divided into four different phases during each cell division. The four phases (G1, S, G2 and 

mitotic) represent proliferation. The duplication of the nucleotide content of genome occurs 

during the synthesis (S) phase. The complete sets of chromosomes are segregated to each of the 

daughter cells in mitotic (M) phase. The cell cycle contains gap phases; the G1 phase connects 

the completion of mitotic phase to initiation of S phase in the next cycle (Harper et al., 1993). 

The G2 phase separates the S and mitotic phases. Depending on the extrinsic environmental and 

intrinsic evolving signals, the cells in G1 may temporarily or permanently leave the cell cycle 

and enter a dormant or arrested phase known as G0. The cells that have undergone DNA damage 

from internal and external factors are activated by some processes that lead to the recovery and 

repair of genomic material, while in some cases, cells enter into apoptosis (Nigg, 1995). Proteins 

control the cell cycle events and induce cells to enter from G0 into G1 phase which is a pre-

synthesis stage of DNA (Hunter & Pines, 1994, Pagano et al., 1992). In the non-proliferative G0 

state, the viable cells leave the cell cycle and continue to remain in rest state for long time 

periods. The cells in G0 phase after the exit from their last mitosis carry out specialized functions 

and no longer divide. They are actively engaged in protein synthesis and secretion, and perform 

all the primary functions of the cell. The cells in G0 phase re-enter the cell cycle in response to 

specific stimuli. Cell cycle re-entry into G1 phase involves changes in gene expression and 

protein stability (Malumbres & Barbacid, 2009).  
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The G1 phase is the pause time between the accomplishment of one round of cell cycle and the 

commencement of the next cycle. The time required for this phase is variable, depends on the 

cell type and the extrinsic influences such as the accessibility of growth factors and nutrients. 

The optimal growth in mass and size is generally obligatory before the cell enters into the S 

phase. The actions required in the progression of cell cycle are suppressed in this phase such that 

the cell cannot induce another round of propagation. This control of cell cycle is termed the 

restriction point. Defects in restriction point control are observed in cancer cells, therefore 

cancerous cells often continue to grow and try to divide even when the appropriate 

environmental signals are absent. The instructions for cell size are closely related to ribosome 

biosynthesis and nutrient availability and uptake mechanisms, also the proteins in the pathways 

of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) play a critical 

role (Fingar et al., 2002). In the absence of MYC transcription factor, the cells slow their growth 

and do not enter the S phase (Gao et al., 2004). In the S phase, DNA replication takes place. The 

duplicated DNA molecules termed as sister chromatids, with the aid of a protein complex, 

cohesion, are linked to each other (Nasmyth et al., 2000). Several CDKs are involved in the 

replication of DNA (Tanaka et al., 2007). 

The G2 phase which is a comparatively short-term period will trigger the entry into mitosis by 

the activation of the enzymatic activities of crucial enzymes (Pines, 1999) which are 

progressively accumulated and converted to their active forms. The cell enters the mitosis when 

the enzymatic functions reach an optimum level. When any DNA damage during the G2 phase is 

detected, the DNA damage response checkpoint is activated and entry of the cell into mitosis is 

delayed (Hartwell & Weinert, 1989; Gowan & Russell, 2004; Costanzo et al. 2003). 

During the mitotic phase, the cytoplasm and chromosomes are separated into both the daughter 

cells. Mitosis is generally separated into five distinct phases. 1. Prophaseis essentially the final 

part of G2 phase and it is the commencement of chromosome condensation. The duplicated 

centrosomes detach and form two poles of the mitotic spindle. 2. In higher eukaryotes 

prometaphase is said to begin with the break-down of nuclear envelope and the when the 

chromosomes begin to attach randomly to microtubules stemming from the two poles of the 

mitotic spindle in formation. 3. When all the chromosomes are appropriately arranged, the cell 

enters the metaphase. 4. In the anaphase the two sister chromatids move away from one another 
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and migrate towards opposite poles of the cell, and the exit from mitosis begins. 5. During 

telophase, to separate the nuclear DNA from cytoplasm, a nuclear membrane is formed, and the 

separation of the two daughter cells from one another is called cytokinesis (Furuno et al., 1999; 

Geley et al., 2001).  

Besides CDK family members, other kinases also play crucial roles in the cell cycle events such 

as PLK family, Wee1 and Aurora A/B, which play role during G1 till Mitotic phase. The kinases 

important in cell cycle regulation are shown in Figure 1.2. As can be seen from the figure, some 

kinases participate in the cell cycle regulation during only one phase and some kinases such as 

PLK-1, Aurora A/B participate in multiple of cell cycle phases as Aurora A and Aurora B (Nigg, 

2001). 

 

Figure 1.2: Protein kinases in various phases of cell cycle. (G1-Growth in gap1, S- DNA synthesis, G2-

Additional growth in gap2, M-Mitosis). 

 

Protein kinases in cell cycle regulation are good drug targets for cancer therapy and some of the 

FDA approved drugs are already available. Some probable drugs are in advanced stages of 

clinical trials. However, new and highly specific drugs are required for each of the kinase drug 

targets in cell cycle regulation. Since the protein kinases share high sequence and structural 

similarity, the inhibitors tend to bind the desired ‘on’ target as well as the undesired ‘off’ target 

leading to non-specific binding and therefore display side-effects of drugs. Therefore, the first 
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step is the sequence analyses of protein kinases from sequence databases available at NCBI 

(http://www.ncbi.nlm.nih.gov), UNIPROT (http://www,uniprot.org/) using sequence comparison 

methods such as multiple sequence alignments. It is important to understand the detailed 

structures of protein kinases at the atomic level from their crystal structures available at PDB and 

to construct good quality homology models in the absence of experimental structures. Since the 

desire is to design specific inhibitors to a kinase, pharmacophore based approaches, de novo 

design methods, virtual screening and fragment based approaches to screen databases can be 

employed. The docking of these molecules in the active site of a kinase will reveal the mode of 

binding and the intermolecular non-bonding interactions in the protein-ligand complex by 

employing computational techniques. In order to understand the conformational changes due to 

the functional activation of protein or upon ligand binding, molecular dynamics (MD) studies 

can be employed. The extent of binding in a protein-ligand complex can be quantified from the 

binding free energy calculations that also reveals the nature of contribution from each amino acid 

to their binding.  
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1.2 Methods 

1.2.1 Databases: 

The aim of creating a variety of databases is to segregate the knowledge information, to 

organize it and annotate by value addition. Such databases are made available in a useful way to 

the scientific community freely or for a subscription fee.  

1.2.1.1 Protein sequence database 

A protein sequence determines its biological structure and function. From the protein 

sequences, and nucleotide sequences obtained from the gene coding regions in the complete 

genome nucleotide sequencing projects, the translated amino acid sequences of proteins are 

obtained (Xu & Xu, 2004). Such protein sequences are stored in the publicly accessible sequence 

databases.  

The National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov) hosts 

proteins sequence information, the NCBI Reference Sequence (NCBI RefSeq) database is a 

curated non-redundant collection of sequences representing genomes, transcripts and proteins. 

These entries include a stable reference for genome annotation, gene identification and 

characterization, mutation and polymorphism analysis (O'Leary et al., 2016). To address a 

growing issue with redundancy in the Prokaryotic RefSeq protein dataset that is significantly 

increased in size due to the bacterial genome submissions from individual isolates and closely 

related bacterial strains, another type of RefSeq protein database that represents non-redundant 

protein sequences has been created.   The Universal Protein Resource (UniProt) is a complete 

resource for protein sequence and its annotation data available at http://www.uniprot.org/. Both 

NCBI and UniProt are the most frequently consulted protein databases by researchers. 

1.2.1.2 Protein structure database 

The 3-D structures of proteins, nucleotides, their heteromeric complexes and complexes 

with inhibitors/cofactors/substrates are determined using nuclear magnetic resonance, X-ray 

diffraction and cryo-electron microscopy. These methodologies provide high resolution 

structures of biological macromolecules. The organization Worldwide Protein Data Bank 
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(wwPDB), maintains the publicly available database of biomolecular structures in order to 

maintain a single PDB archive that is freely available to the research community (Berman et al., 

2003). The Research Collaboratory for Structural Bioinformatics Protein Database (RCSB PDB) 

available at (https://www.rcsb.org/) is one among the four organization members (PDBe, 

PDBj, RCSB and BMRB) (Velankar et al., 2010; Kinjo et al., 2012; Markley et al., 2008) for the 

retrieval of protein structures.  

1.2.1.3 Chemical libraries of small molecule databases 

Small molecule databases provide the repository of organic molecules and their physical 

properties. Some databases also provide information on the biological activity of the molecules 

(Bento et al., 2014), drug targets supported by literature citation. While some of these databases 

are publicly available and downloadable in various file formats, some of the databases are 

proprietary and hence need to be purchased from the vendors. The availability of the in silico 

libraries of small molecule databases aid in the screening, design and discovery of small 

molecule inhibitors for a protein target. Chemical libraries can host upto billions of compounds 

providing a researcher the possibility of finding a hit molecule from virtual screening of 

databases using computational methods. Some of the commonly used databases and the number 

of molecules in the database are, BindingDB (977,487, Gilson et al., 2015), Chemicals from 

European Molecular Biology Laboratory ChEMBL (2,086,898, Gaulton et al., 2012), 

ChemSpider (103,000,000, Pence & Williams, 2010), Cambridge Structural database (CSD, 

1,000,000, Groom et al., 2016), DrugBank (14460, Wishart et al., 2018), MCULE (45,788,060, 

Kiss et al., 2012), PubChem (109,908,766, Kim et al., 2016), SciFinder (182,000,000, Wagner, 

2006), ZINC (736,001,654, Irwin & Shoichet, 2005), MolPort (20,000,000, 

https://www.molport.com), Asinex (522,430, http://www.asinex.com/), ChemBridge (1,300,000, 

https://www.chembridge.com/), Chemical Diversity ChemDiv (1,600,000, 

https://www.chembridge.com/), AsisChem (2,109,738, http://www.asischem.com/), Enamine 

(2,790,127, Shivanyuk et al., 2007),  SPECS (350,000, http://www.specs.net), and etc.  

1.2.2 Basic local alignment search tool protein 

Basic local alignment search tool protein (BLASTp) is a heuristic algorithm for 

comparing or searching a protein sequence of interest (query) with all the entries in a protein 

http://www.specs.net/
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sequence database. It identifies the proteins from the database sequences that resemble the query 

protein above a certain threshold. Short matches between two sequences are initially made and 

the alignments are extended from these ‘hot spots’. It also provides statistical information about 

an alignment for example the ‘expect’ value, length of the protein sequence from database 

(Altschul et al. 2005), percentage identity, query coverage and matching score in addition to 

performing pairwise sequence alignments. Several variants of BLAST work by comparing all 

combinations of nucleotide or protein queries with nucleotide or protein databases (Schäffer et 

al., 2001). BlastP is used to search NCBI non-redundant protein sequences using BLOSUM62 

matrix (Eddy, 2004) as default settings to find all protein sequences in this database that are 

similar to the protein of interest. Also, the BlastP searches can be made on the proteins structures 

of protein data bank to identify the protein homologues with known structure that could be 

subsequently used for protein structure modeling.  

1.2.3 Multiple sequence alignment 

The arrangement of the amino acid sequences of three or more proteins in order to 

identify the regions of similarity is referred to as sequence alignment. The regions of similarity 

could be a consequence of structural, functional and evolutionary relationships between the 

sequences (Edgar & Batzoglou, 2006). The alignments obtained could be used to identify the 

mutations, regions of insertions or deletions between the sequences of interest (Needleman & 

Wunsch, 1970; Smith & Waterman, 1981; Lipman et al., 1989). The output format can be used 

to generate phylogenetic trees to quantify the evolutionary distance between the sequences and 

examine for functional domains (Sievers & Higgins, 2014). Both global and local multiple 

sequence alignments can be generated. The global algorithms create an alignment that covers 

completely both sequences and by adding the necessary gaps, whereas the local algorithms align 

only the most similar regions. The aim of both methods would be to align longer sequence 

regions with greater matching among the proteins of study. Some of the common software tools 

used for general sequence alignment include Clustal Omega (Sievers & Higgins, 2014) and T-

coffee (Notredame et al., 2000). Clustal omega generates multiple sequence alignments of 

sequences by selecting seeded guide trees and HMM profile-profile techniques (Soding, 2005). 
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1.2.4 Phylogenetic tree  

The guide tree obtained from the Clustal Omega can be transported to generate a phylogenetic 

tree (Sievers & Higgins, 2014). The visual representation of the relationship between proteins 

from different sources, depicting the path through evolutionary time from a common predecessor 

to different descendants is described as phylogenetic tree. The visualization of the tree is the best 

representation to describe evolution as a branching process, wherein populations are altered over 

time and can diverge into separate branches by hybridization or termination by extinction. The 

root of a phylogenetic tree is the highest ancestor of hierarchy between proteins, every leaf node 

denotes a protein, and the nodes correspond to the events of divergence between proteins, each 

edge signifies a relationship between two adjacent species and the length of an edge represents 

the evolutionary distance between them. Some of the most frequently used methodologies to 

understand phylogenies and compare or cluster species include UPGMA (Gronau & Moran, 

2007), maximum parsimony, Neighbor Joining, maximum likelihood and Monte Carlo or 

MCMC-based Bayesian inference techniques (Tamura et al., 2011). A popular web based tool 

for the display, manipulation and annotation of phylogenetic trees, the Interactive Tree of Life 

(iTOL) (Letunic & Bork, 2019) is available. 

1.2.5 Structural motif 

The 3-D structure of a protein can be compared with the structures of all known proteins 

by using servers such as DALI (Holm & Laakso, 2016). Such searches on protein model 

structures aid in identifying proteins that share a similar fold, active site and 

ligand/cofactor/inhibitor binding that further aid in drug design studies and to identify protein 

functions.  The binding sites of proteins found to be similar from Dali searches (based on high Z 

score) can have related functions based on the side-chains that form the three-dimensional active 

site space required for its function. Some online webservers such as IMAAAGINE (Nadzirin et 

al., 2013) and GSP4PDB (Angles et al., 2020) are designed for this purpose to search for similar 

3-D motifs which is also called structural patterns by building a hypothetical model based on the 

distances between amino acid side-chains and gap between residues.  
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1.2.6 Bioinformatics  

Bioinformatics is the evolving science that came into light as a result of the enormous 

demand for computational analyses and understanding of biological data (Luscombe et al., 

2001). It is an interdisciplinary field comprising of physics, biology, mathematics and computer 

science that deals with the application of computational tools and analyses to interpret the 

biological data using principles in Physics and Chemistry (Searls, 2010). Biological information 

such as genomic, nucleotide and protein sequences are the core of bioinformatics studies for 

analyzing, comparing the evolutionary aspects of life forms. Thus it is essential for the 

management of data in modern biology and medicine (Baxevanis et al., 2020). Bioinformatics is 

a source of performing important tasks such as prediction and recognition of genetic regulatory 

networks, analyses of gene variation and expression, analysis and prediction of gene and protein 

structure and function, modelling of protein regulatory dynamics and networks, simulation of 

environments similar to live cells, and analyses of molecular pathways in order to understand 

interactions in disease. 

1.2.7 Chemobioinformatics 

Chemobioinformatics is a multidisciplinary branch of chemistry, biology, mathematics 

and physics that deals with the use of computer modeling and simulation including empirical or 

ab initio approaches in order to study the structure and properties of molecules and materials 

(Martinez-Mayorga et al., 2020). This is one of the rapidly growing areas in Chemistry for 

applications in computer aided drug design (CADD) (Yu & MacKerell, 2017), due to the 

availability of high speed computers with high storage capability. It utilizes methods 

in theoretical chemistry that are incorporated into resourceful computer programs, useful to 

calculate the structure and property of a molecule. Computational chemistry methodologies 

usually range from very approximate (for large molecules) to highly accurate (for small systems 

only) molecular types. The ab initio methods are based on quantum mechanics. Additional 

empirical parameters are employed in empirical or semi-empirical methods (MacKerell Jr et al., 

1998). Computational chemistry finds use in modeling a molecule prior to its synthesis in the 

laboratory and hence proves to be beneficial to rule out unsuitable molecules. Also some 

properties of a molecule can be obtained computationally more easily than by experimental 

methods. 

https://en.wikipedia.org/wiki/Theoretical_chemistry
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Semi-empirical_quantum_chemistry_method
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1.2.8 Molecular graphics and visualization  

The visualization of molecular objects in virtual reality can be done using a variety of 

interactive systems that have been developed to display molecules in chemistry and biology on a 

virtual on screen in interactive mode that inturn enables the use of a variety of symbolic 

molecular representations (Martinez et al., 2019). To develop such technology for molecular 

visualization requires knowledge of both chemistry and computer sciences. Some examples of 

molecular graphics visualization software used for 3-D molecular visualization are Jmol 

(Hanson, 2010), Pymol (Schrodinger, 2010) (DeLano, 2002), UCSF Chimera (Pettersen et al., 

2004), DeepView (Guex et al., 2009), Discovery Studio (DS) visualizer. These graphics 

visualisers are used to examine 3-D models of proteins and small molecules, to examine, 

manipulate structures, and analyze molecular properties. 

Visual molecular dynamics (VMD) is a free of charge molecular visualization 3-D graphics 

program for display, animate large biomolecular systems. VMD can be used to view 3-D 

structures of molecule, and to animate and analyze the large trajectory data files obtained from 

classical MD simulations (Humphrey et al., 1996).  

1.2.9 Artificial intelligence in drug discovery  

Artificial intelligence is a kind of simulation and processing of the human intelligence by 

computers. The process includes various steps such as acquiring information, developing rules 

for using the obtained information, drawing appropriate conclusions and self-correction 

(McCarthy, 1987; Nilsson & Nilsson, 2014). Artificial intelligence uses complex algorithms and 

machine learning to obtain meaningful information from a large dataset (Batool et al., 2019). For 

example, it helps to identify compounds that could bind to ‘undruggable targets’, i.e., proteins 

whose structures are not known. Through iterative simulations of interactions of various 

compounds with small parts of a protein, one can identify a predictive set of compounds in a 

relatively small amount of time (Hessler & Baringhaus, 2018). The main opportunities for 

artificial intelligence in drug discovery lie in drug repurposing using large data sets available 

from high-throughput experiments with gene expression profiles. Machine learning and deep 

learning are a subfield of artificial intelligence used with drug design during the last decade with 

automated software provided via webservers for studies in quantitative structure activity 
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relationship (QSAR), phamacophore generation, prediction of protein folding, virtual screening, 

protein-ligand and protein-protein interactions, de novo drug design, drug repurposing, 

evaluation of absorption, distribution, metabolism, excretion and toxicology (ADMET) 

properties (Zhong et al., 2018). Employing artificial intelligence in various steps of drug 

discovery project will reduce the time and cost of the project and push the drug design to become 

more efficient. 

1.2.10 Homology modeling  

1.2.10.1 Homology modeling of protein structure 

The structure of a protein is classified at four levels, as primary, secondary, tertiary and 

quaternary structures. The 3-D structure of a protein is based on the spatial arrangement all 

atoms from its main-chain and side-chains (Lüthy et al., 1992).  Protein structures determined 

using the experimental methods are deposited in PDB (Berman et al., 2007). Insights into the 3-

D structures of proteins provides valuable knowledge on the molecular basis of their 

functions. Employing experimental methods for determining protein structures is time 

consuming and might not give a useful solution with proteins that tend to aggregate in buffer and 

remain insoluble. Lack of the knowledge of protein 3-D structures has stalled efforts to 

understand the binding specificity of a ligand in the binding site of protein. Under such 

situations, construction of the model structure of a protein based the available 3-D structure of a 

homologous protein is one of the reliable methods to obtain the structural information of a 

protein of interest (Cavasotto & Phatak, 2009). The 3-D structures of some proteins of interest 

can be modeled using homology modeling, fold prediction, hybrid and ab initio methods (Hardin 

et al., 2002). Among these homology or knowledge based modeling methods are most accurate 

when compared with the crystal structures. Homology modeling, also known as knowledge 

based comparative modeling (Kopp & Schwede, 2004), is based on the observation that when 

two protein primary sequences share high similarity, their corresponding structures are also 

similar. The protein of interest with unknown structure is called the query sequence, the 

homologous structure on the basis of which the homology model is constructed can be obtained 

from BlastP searches against PDB (Altschul et al., 2005). The structures with highest matching 

and least insertions and deletions, high resolution, no or fewer missing residues are retrieved and 

are called as the template structures. The knowledge based modeling method requires the 
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comparison between the template and  query protein sequences as pair-wise or multiple sequence 

alignments based on single or multiple template structures, respectively (Holm & Laakso, 2016). 

Homology modeling predicts the 3D structure of a query protein through the sequence alignment 

of template proteins. MODELLER (Šali & Blundell, 1993) is one the most popular methods in 

knowledge based protein structure modelling methods and is based on satisfaction of spatial 

restraints. This software can be downloaded and installed on local computers for building protein 

models. The process of homology modeling involves four steps: target identification, sequence 

alignment, model building and model refinement. Some of the software and web servers 

available for protein 3-D structure modeling are, PRIMO (Hatherley et al., 2016), Phyre2 (Kelley 

et al., 2015), I-TASSER (Zhang, 2008), SWISS-MODEL (Schwede et al., 2003) are some of the 

recent and reliable methods for modeling. 

1.2.10.2 Model validation methods  

The 3-D structure of a protein which is predicted based on modeling methods should be 

verified for its proper stereochemistry and correct protein folding. This structure evaluation 

process to assess the accuracy of model is a crucial step in computational studies, as this model 

structure will be subsequently used for structure comparison, molecular docking to design 

molecules and study their conformational transitions using molecular dynamics. Analysis of 

protein structures based on Ramachandran plot (Ramachandran et al., 1963) is performed to 

validate the stereochemical parameters of a protein structure based on the dihedral angles, the 

amino acid residues are distributed into three regions, most preferred regions, allowed regions 

and disallowed regions and outlier regions. The webservers such as PROCHECK (Laskowski et 

al., 1993), SAVES server (https://saves.mbi.ucla.edu) also provide additional information such as 

main-chain, side-chain, bond length, bond angle, bonded and non-bonded interactions, planarity 

of rings and disulfide bonds. The structure with most residues in the allowed regions and least 

residues in the disallowed regions is considered as a better model. The VERIFY 3D server is 

used to study compatibility of generated model 3-D structure by comparing its location and 

environment with known structures (Lüthy et al., 1992) and evaluates its secondary structure, 

area of buried residues and side-chains which is covered by  polar atoms. The model with high 

score is considered as the best model. ERRAT is also used to study the non-bonded interactions 
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in a protein structure, and high scoring model confirms the validity of backbone conformations 

in the structure (Colovos & Yeates, 1993). 

1.2.11 Computer aided drug design  

CADD is a technique that combines cheminformatics and bioinformatics methodologies 

(Zheng et al., 2013). CADD methods also helps to produce an atomic level structure-activity 

relationship (SAR) to facilitate the drug design process hence minimizing time and costs (Van 

De Waterbeemd, 2003). In drug discovery, the main role of CADD is to screen large libraries of 

compounds into smaller groups to correlate small molecules based on their activity, thus 

enabling discovery and optimization of hit molecules by improving upon the biological activity 

(such as ADMET and binding affinity) (Hassan Baig et al., 2016). CADD is divided into 

structure-based and ligand-based drug design approaches, that transforms features into model 

based on pharmacophore studies and QSAR (Mercader et al., 2016). Structure-based CADD 

utilizes the prior information of the target protein structure to determine the extent of interactions 

of all compounds being examined in the study. Ligand-based CADD depends on the chemical 

similarity criterion and predictive QSAR models that were created from the molecules to 

determine the known active and inactive molecules. Through QSAR modeling one can 

understand the effect of structure factors on biological activity and learn to build molecules with 

improvised and better biological profiles (Yu & MacKerell, 2017). Pharmacophore and QSAR 

models are used to search for new molecules from commercial and non-commercial chemical 

libraries using virtual screening in order to shortlist fewer number of molecules that show greater 

number of interactions and binding score that fit the protein target. Thus CADD approach 

provides an important role in the process of searching and optimizing of the potential hit 

molecules and therefore has wide applications during different stages in drug discovery process 

such as drug target identification, its validation, design and discovery of molecules, and the 

interactions of hit/lead/drug molecules with targets of interest. 

1.2.11.1 Structure-based drug design  

This method employs knowledge of the target 3-D structure as a complex with a hit 

molecule and further optimizing the bound hit molecule or a succession of derivative molecules. 

It necessitates the knowledge of receptor–ligand interactions present in the complex. The 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/compounds-of-lead
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/quantitative-structure-activity-relationship
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structural information can be obtained either from the experimental structures or homology 

models (Lounnas et al., 2013; Leach, 1994). This is a computational method for identifying 

potential hit molecules that are capable of binding to a disease related drug target. In this method 

large libraries of chemical compounds are searched at rapid speed, this is followed by molecular 

docking of the hit molecules into a target protein (receptor) binding site which could be an active 

site or allosteric binding site. In order to quantify the binding of these molecules, a scoring 

function is applied to estimate the possibility of the binding affinity of hit molecule with the 

receptor target. One of the methods in Structure-based drug design involves the design of 

molecules based on the active site of protein by virtual screening of chemical libraries 

incorporated into docking protocol or pharmacophore model which is designed based on the key 

residues that are similar to template proteins and occupy same regions (Yang, 2010). Second 

category is de novo design of a molecule from fragments inside active site and join them into a 

full molecule (Scott et al., 2012). In the third category, it is possible to optimize a molecule by 

chemical modification such that the new analogs become more potent molecules and can bind 

the receptor target with higher binding affinity (Pennington et al., 2020). The most significant 

gain of this screening is that it augments the rate of discovery of hit molecules by substantially 

lowering the number of hit molecules that are assessed experimentally for their biological 

activity experimentally and hence promises in the success rate of the in vitro and in vivo 

experiments that would be conducted.  

1.2.11.2 Ligand-based drug design 

Ligand-based drug design is a useful methodology when the receptor 3-D structural 

information is unknown and this methodology depends on the experimental data of molecules 

that are known to bind to the biological target of study. In the ligand-based drug design based 

studies, 3-D QSAR and pharmacophore modeling are the most important tools (Dixon et al., 

2006; Lin, 2000). The information on the active and inactive molecules which are assessed based 

on in vitro studies are represented as data and become as source of information in 

pharmacophore and QSAR studies. This study leads to build a model which uses virtual 

screening to search for new hits and also one molecule can be used in virtual screening as in 

SwisSimilarity server (Zoete et al., 2016). These studies can provide extrapolative models 

suitable for the lead molecule identification and their optimization. This is a useful method to 

https://www.sciencedirect.com/topics/medicine-and-dentistry/homology-modeling
https://www.sciencedirect.com/topics/medicine-and-dentistry/homology-modeling
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enable the progressand improvement of pharmacologically active molecules by studying 

compounds that bind with the drug target of importance in a disease. Alternatively, in a QSAR 

methodology, a relationship between the estimated biological properties of hit molecules and 

their experimentally measured biological activity would be derived. Often the observations and 

results drawn from the QSAR relationships are further used to predict the activity of new 

structural analogue molecules designed that are further validated experimentally. 

1.2.12 Pharmacophore modeling 

A pharmacophore is a collection of steric and electronic landscapes that are required to 

ensure the molecular interactions of a ligand with the structure of an explicit biological target 

important in disease. These interactions are supposed to induce its biological response. 

Pharmacophore modeling is a technique in CADD for qualitative and quantitative analysis of 

molecules and identify important features required for activity and recognition by a 

macromolecule (Wolber & Langer, 2005). A pharmacophore model generation is based on a set 

of active and inactive molecules and based on receptor-ligand interactions. Pharmacophore 

features are hydrophobic centroids, aromatic rings, hydrogen bond acceptors or donors, cations, 

anions, metal interactions and aromatic stacking or charge transfer interactions. An optimal 

pharmacophore model should have not more than seven features that are desired properties and 

this is based on 3-D features arranged for series of molecules and most of these features make 

non-covalent interactions with receptor. Pharmacophore models can be built physically, and can 

also be created in a computerized manner starting from the structures of known active molecules; 

i.e. ligand-based approach, or that can be derived from the 3-D structure of the target receptor; 

i.e. structure-based (Leach et al., 2010). Among the applications of pharmacophore models, a 

frequently used application is their use as a query to screen the large compound librariesin a 

virtual mode for rapid screening of molecules (Seidel et al., 2010). The eventual goal here is the 

discovery of novel hit molecules which display a set of required pharmacophore features that are 

considered critical for their biological activity towards a specific target of interest in disease. The 

pharmacophore screening regularly identifies the hit molecules with a high structural variation. 

As an additional advantage, the ease of the representation of the pharmacophore features enables 

a speedy in silico screening of even large chemical databases containing millions to billions of 

probable hit compounds. Based on the selectivity of the required pharmacophore features, 

https://en.wikipedia.org/wiki/Biological_activity
https://en.wikipedia.org/wiki/Hydrophobic
https://en.wikipedia.org/wiki/Aromatic
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Cation
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request for specific matching constraints and size of the database of small molecules, tens to 

thousands or more of hit molecules can be typically obtained by a regular pharmacophore 

screening. There are some dedicated webservers to assign the preferred pharmacophore features 

and perform virtual screening such as Pharmit (Sunseri & Koes, 2016) and some are 

incorporated into commercial software such as (Discovery studio and Schrodinger). 

1.2.13 De novo drug design  

The most challenging task in drug discovery process is the hit molecule identification, 

specifically the identification of small organic molecules with sufficient inhibitory activity on a 

specific drug target that could then be used as ainitial point for subsequent functional group 

optimization steps. Hit molecule design and identification can be realized by employing 

knowledge-based approaches that utilize the already available knowledge that is derived from 

natural substrates, ligands, patents, scientific literature review and also the structural information 

of the biomolecule (Bleicher et al., 2003). The interest of a researcher however is to identify 

small molecule inhibitors with new scaffolds altogether because these molecules can be patented 

with greater ease. A substitute for this is to use automated computational methods and data-

driven machine learning approaches to aid in the hit molecule design and identification. The 

application of the methodologies such as library screening is to identify hit molecules from 

virtual libraries containing large numbers of molecules, usually by molecular docking or 

structural similarity-based searches. Another method in the rational de novo drug design of new 

molecules with high potency is to combine two or more fragments to form a large molecule or 

extension of scaffold which represent core molecule by a series of linkers (Bemis & Murcko, 

1996). Libraries of chemical feature searches can be obtained from pharmacophore model 

generation of fragments and virtual screening of databases, and joining the fragments using 

potent linkers of suitable length from libraries and FDA approved drugs. Some webservers-based 

software are designed to this purpose PhDD, LUDI, LigBuilder, BREED, ACFIS, e-LEA3D, 

PADFrag, (Huang et al., 2010; Böhm, 1992; Wang et al., 2000; Pierce et al., 2004; Hao et al., 

2016; Douguet, 2010; Yang et al., 2018). Artificial intelligence based generative models have 

been widely used for the de novo design of hit molecules (Olivecrona et al., 2017), the 

compound optimization and lead molecule identification.   
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1.2.14 Molecular docking  

Molecular docking is a vital tool in CADD and is considered as one of the in silico 

structure based rational drug design methods. The purpose of protein-ligand molecular docking 

is to predict the principal binding mode of a ligand in the binding site of a protein of known 3-D 

structure (Pinzi & Rastelli, 2019). Docking refers to the computational plotting of chemical 

space; the probable space occupied by all possible hit molecules that would eventually be 

optimized. In a molecular docking exercise, one tries to achieve optimal conformation and 

orientation of aligand inside active site of protein (Morris & Lim-Wilby, 2008). There are two 

components that docking protocols depend upon to achieve high rate of success of the 

computational algorithm; the docking orientation and scoring function. Molecular docking is a 

flexible process and there is an ability to change ligand or protein conformation during the 

docking process (Leach, 1994). The molecular docking methodologies can be classified into 

three groups based on the flexibility of the target receptor and the hit molecule. The flexibility or 

rigidity involving either the target or hit molecule (ligand) is based upon the purpose of 

molecular docking. These features include; flexible ligand docking by keeping the target 

conformation as a rigid molecule, rigid body docking by keeping both the target and ligand as 

rigid molecules, and flexible docking that maintains both the interacting molecules as flexible. 

Flexible molecular docking is computationally most intensive but can provide more accurate 

results. In most of the docking protocols, the small molecule is considered as flexible and the 

protein is considered as rigid like Flex X, AutoDock, CDOCKER and AutoDock Vina (Kramer 

et al., 1999; Morris et al., 2009; Wu et al., 2003; Trott & Olson, 2010). Some methodologies 

such as, DOCK, GOLD, Glide, LeDOCK (Lang et al., 2009; Verdonk et al., 2003; Friesner et al., 

2004; Zhao & Caflisch, 2013) also consider both the ligand and protein active site as flexible 

conformations during docking such that the protein-ligand fit to each other in a complementary 

manner. Methods such as RDOCK and ZDOCK (Li et al., 2003; Chen et al., 2003) keep both 

receptor and ligand rigid during the molecular docking. The attractive forces such as hydrogen 

bonding, van der Waals, electrostatic and hydrophobic interactions mediate the intermolecular 

interactions between ligand and receptor. Crystal structure complex is considered as a reference 

to compare the result of molecular docking and to expect suitable pose of molecules inside the 

protein active site (Chen et al., 2006). In the absence of a crystal structure for reference, one can 

select the best molecule with highest number of interactions and rank the molecules based on 
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free energy of binding or binding scores. For proteins of unknown 3-D structures, homology 

models can be constructed for the docking purpose (Šali & Blundell, 1993). In the absence of the 

active site information of a protein, protein binding site prediction can be made using programs 

such as sitemap (Halgren, 2009), CASTp, Q-SiteFinder (Tian et al., 2018; Laurie & Jackson, 

2005). Further, molecular docking can be achieved on a single ligand or millions of ligands from 

a chemical library of molecules, molecular docking can be performed in the binding cavity of a 

protein for guided docking or the entire protein for blind molecular docking (Hetényi & van der 

Spoel, 2006). 

Successful docking methods search all binding cavities effectively and use the scoring 

functions that correctly ranks the docked molecules (Kitchen et al.,2004). Molecular docking 

can be used to perform virtual screening on large libraries of compounds, rank the docked 

poses, analyse the docked poses binding to receptor mediated via non-bonding interactions, 

propose structural hypotheses of how the hit molecules inhibit the target, which is an 

invaluable information in lead molecule optimization. Some molecular docking tools such as 

DOCK, GOLD, FlexX and ICM (Verdonk et al., 2003; Neves et al., 2012) are frequently used 

for high throughput docking studies. The stability of the hit molecule binding to the target 

receptor can be verified from MD simulations.  

Ligand scoring is used to assess the binding of small molecules to the binding site of protein. The 

scores are based on mathematical functions which is used to approximate and calculate the 

binding affinity. Each docking protocol has its scoring function and leads to rank conformations 

based on their stability. Some of the scoring functions include piecewise linear potential 1 and 2 

(PLP1, PLP2) functions (Gehlhaar et al., 1995; Gelhaar et al., 1999), the functional form of 

PLP1 is characterized with a grid-based approach and PLP2 is characterized as an angular 

dependence on hydrogen bonding interactions. The potential of mean force (PMF, PMF04) 

(Muegge & Martin, 1999; Muegge, 2006) scoring functions score complexes by summating of 

the pairwise interaction terms over all interatomic pairs of the receptor - hit molecule complexes. 
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1.2.15 Drug repurposing  

Drug repurposing technique is also called repositioning, reprofiling, re-tasking of a FDA 

approved drug for use inother disease conditions, i.e.beyond the scope of the original medical 

indication. Classical drug discovery pipeline is time-consuming and the cost is heavy on the 

resources. The time and expenditure for development of new drugs have limited several research 

groups to restrict their pursuit for discovery of therapeutics to those compounds that have already 

been approved for human usein a disease condition (Ashburn & Thor, 2004). Some of the drugs 

have been repurposed, examples are, derivatives of thalidomide (Sampaio et al., 1991), 

antibiotics (Konreddy et al.,2019), and antivirals (Mercorelli et al., 2018). These drugs have 

made a therapeutic success in the treatment of diseases much beyond their primary approved use. 

The approaches in drug repurposing are often categorized into drug-based or disease-based. The 

drug-based approaches are most popular and are preferred when the drug data such as chemical, 

physical and biological properties are available. The development of high-throughput molecular, 

clinical, and structural biology methods, compounded with the availability of large-scale 

computational capacity in terms of space and costs, has created a new and perfect prospect for 

the rationale repurposing of the existing drugs using computational methodologies instead of 

serendipity for chance findings. After the initial computational findings of drug repurposing, the 

results are further validated using molecular screening in vitro, structure-based (biophysical) and 

clinical methods. These drugs are further validated in various phases of clinical trials in the 

patient populations. Some online servers such as Drug ReposER are available which facilitate to 

search existing PDB and their 3-D amino acid patterns and binding interfaces of drug molecules 

(Ab Ghani et al., 2019). 

1.2.16 Absorption, distribution, metabolism, excretion and toxicology 

ADMET are the properties a drug molecule should adhere to in order to maintain 

optimum pharmacokinetic properties with desired pharmacological properties (Lipinski et al., 

1997). The experimental in vitro and in vivo ADMET studies suggest a profound understanding 

of pharmacokinetic properties of the selected drug candidates. To assess the likely potential of 

the drug candidate in the primary drug development phases, in terms of its efficacy and safety 

profile is essential and this is a mandatory study prior to the first phase of clinical studies. The 

evaluation of ADMET pharmacokinetics properties is a crucial step for various stages such as 
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discovery, preclinical, and clinical phases in drug development. Online servers are available for 

measuring the physicochemical properties, drug-likeness and estimation of synthetic accessibility 

of molecules (Tian et al., 2015; Ertl & Schuffenhauer, 2009; Daina et al., 2017). These 

computer-generated parameters based on chemical structures will reduce the time and costs and 

accelerate the design of lead molecules which will become a drug with a higher rate of success.  

1.2.17 Molecular dynamics simulations 

The first characterization of protein 3-D structure by X-ray crystallography (Gutte, 1975) 

was more than 60 years ago, and the first MD simulations for protein was in 1970 at the time of 

developing of computers (Levitt & Lifson, 1969; McCammon et al., 1977). During this time, 

studies on protein structure engineering, their sequence to structure and function relationships 

were limited. The crystal structures of proteins deposited in PDB are considered as static 

structure as they provide a snapshot conformation of the protein. It is known that protein 

structures are not static, but there are wiggling and giggling of bonds that leads to conformational 

alterations and sometimes function. MD simulations are often used to discover the 

conformational space occupied by the molecules, and it is the most preferred method especially 

for biological macromolecules such as proteins. The MD simulations is one of the techniques to 

simulate their motion based on classical MD simulations of protein structures from experiment 

and also the computational models built based homology modeling and de novo designed 

proteins (John & Sali, 2003; Dahiyat & Mayo, 1997). MD simulations approach investigates the 

atom location in 3-D space. In this approach, a single-point model is swapped by a dynamic 

model in which the nuclear system is forced into motion. The simulation of the motion is 

realized by the numerical solution of the classical Newtonian dynamic equations (Pace et al., 

1996). The MD simulations method is based on Newton’s second law or the equation of 

motion, F=ma, where ‘F’ is the force exerted on the particle, ‘m’ is its mass and ‘a’ is its 

acceleration. From the knowledge of the force on each atom, it is possible to determine the 

acceleration of each atom in the system. Integration of the equations of motion then yields a 

trajectory that describes the positions, velocities and accelerations of the particles as they vary 

with time. From this trajectory, the average values of properties can be determined. The method 

is deterministic; once the positions and velocities of each atom are known, the state of the system 

can be predicted at any time in the future or the past. The contribution arising from forces due to 
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interactions between bonded and non-bonded atoms are considered, non-bonded forces arise due 

to van der Waals interactions, modeled using the Lennard-Jones potential, and charged 

(electrostatic) interactions modeled using Coulomb's law (Childers & Daggett, 2017; Geng et al., 

2019). 

MD simulations can be time consuming and computationally expensive (Shaw et al., 2008). The 

MD simulations of solvated proteins can be performed using several program packages to 

simulate protein flexibility. AMBER (Case et al., 2005), CHARMM (Jo et al., 2008), 

CHARMm, DL_POLY (Smith et al., 2002), GROMACS (Lindahl et al., 2001), GROMOS (van 

Gunsteren & Berendsen, 1987), NAMD (Nelson et al., 1996), LAMMPS (Grindon et al., 2004) 

are some of the popular software capable of carrying out MD simulations. 

1.2.17.1 Force fields  

The term force field denotes the combination of a mathematical formula and associated 

parameters that are used to describe the energy of the protein as a function of its atomic 

coordinates. A force field is a mathematical expression describing the dependence of the energy 

of a system on the 3-D coordinates of its particles. Forcefield is used to describe a system and is 

divided into two terms, one describing the bonded interactions which represent atoms with 

covalent bond and their equation deals with bond length, bond angle and dihedral. In the second 

term, the equation represents non-bonded interactions from van der Waals and electrostatic 

forces, and computed by Lennard-Jones potential and Coulomb's law respectively. 

 It is represented in an analytical form to denote the interatomic potential energy, and a set of 

parameters entering into the form.  

 (1.1) 

The force field parameters are classically attained either from ab initio or semi-empirical 

quantum mechanical calculations or by fitting to the experimental data such as X-ray and 

electron diffraction, NMR, infrared, Raman and neutron spectroscopy, etc (Weiner & Kollman, 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gromacs
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gromos
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/namd
https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Coulomb%27s_law
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1981; Chen & Yip, 2017). The structures of molecules are purely defined as a set of atoms that 

are held together by simple elastic (harmonic) forces and the force field replaces the true 

potential with a simplified model valid in the region being that is being simulated. Preferably it 

must be simple enough to be evaluated quickly, but should be sufficiently in detail to be able to 

reproduce the properties of the systems under study. Several types of force fields are available in 

the literature, to describe molecules with different degrees of complexity, and oriented to treat 

different kinds of systems. Force fields such as Dreiding and Universal (UFF) force fields 

(Rappé et al., 1992), that contain parameters for all the atoms in the periodic table are widely 

applicable. Other very popular force fields are CHARMM (Brooks et al., 1983), AMBER, 

GROMOS, OPLS (Jorgensen et al., 1996), and COMPASS (Sun et al., 1998). Many of these 

force fields are continuously evolving and different versions are available (e.g. CHARMM19, 

CHARMM22, CHARMM27; GROMOS96, GROMOS45A3, GROMOS53A5, GROMOS53A6; 

AMBER91, AMBER94, AMBER96, AMBER99, AMBER02 ; etc.) (Małolepsza et al., 2010). 

The forcefield applied must be compatible with both protein and the small molecule under 

studies. 

1.2.17.2 Trajectory data analyses and post MD simulations 

MD simulations trajectory is used to analyse how the biological and chemical structures 

change with time at an atomic level. Crystal structure is considered as a snapshot since it does 

not give information about dynamical structure of the protein that can only be achieved by MD 

simulations to generate an ensemble of structures. This has significant contribution in the drug 

development as it also reveals the alternative conformations of the protein thus revealing the 

allosteric binding sites in the protein structure.  

1.2.17.2.1 Root mean square deviation 

Root mean square deviation (RMSD) is one of the most commonly used quantitative 

measures of the similarity between two superimposed 3-D atomic coordinates (Van Der Spoel et 

al., 2005). RMSD values are presented in Å and are calculated  for any type and subset of atoms; 

for example, Cα atoms of the entire protein, all atoms in the protein or Cα atoms of all residues 

in a specific subset, or all atoms in a protein complexed with ligand. It has been observed that a 
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stable system will show lower RMSD and folded regions are stable and loops more flexible and 

therefore contribute to increase in RMSD of the systems. 

RMSD can be calculated using the following equation. 

                                                                  (1.2) 

ri term represents position of atomic system at time i and r0 is the reference position. 

1.2.17.2.2 Root mean square fluctuation 

When a dynamical molecular system fluctuates about some well-defined average 

positions, the RMSD from the average over time can be referred to as the root mean square 

fluctuation (RMSF) (Van Der Spoel et al., 2005). RMSF provides information on the local 

structural flexibility, thermal stability, and heterogeneity of macromolecules. The RMSF is a 

measure of the deviation between the position of particle i and some reference position. 

                                                                             (1.3) 

Where ri is the position at time i and <r> represent average value. 

 

1.2.17.2.3 Hydrogen bonds 

Biological systems are stabilized by weak intramolecular and sometimes intermolecular 

non-bonding interactions such as hydrogen bonds, ionic interactions, van der Waals and 

hydrophobic interactions. A hydrogen bond is an attractive force in which a hydrogen atom that 

is covalently bonded to an electronegative atom (donor, D) is attracted to lone pair of electrons 

on another electronegative atom (acceptor, A) in the same molecule (intramolecular hydrogen 

bond) or another molecule (intermolecular hydrogen bond). A typical hydrogen bond has about 

5-10% covalent bond character. In the context of protein structure and CADD, hydrogen bonds 

are responsible for stabilizing protein-ligand complexes. Hydrogen bonds provide the directional 

https://en.wikipedia.org/wiki/Root_mean_square_fluctuation
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Root_mean_square_fluctuation
https://en.wikipedia.org/wiki/Root_mean_square_fluctuation
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interactions that underpin protein structure and specificity to molecular recognition via 

intermolecular interactions. The accepted geometry for a hydrogen bondis a distance of less than 

3.5 Å between hydrogen D and A and an D-H-A angle of 180° ± 30°. In Gromacs, hydrogen 

bonds can be computed using the command “gmx hbond” (Van Der Spoel et al., 2005) to 

compute and analyze number of hydrogen bonds and can calculate distance between acceptor 

and donor atoms of the two groups in protein complex. Number of intramolecular hydrogen 

bonds between specific atoms can be indexed so that the extent of hydrogen bonds in the 

available in the docked pose and those that are retained during MD simulations can be analysed. 

1.2.17.3 Normal mode Analysis  

Normal mode analysis (NMA) is a fast and simple technique to estimate vibrational 

modes and protein flexibility (Bahar et al., 2010). In NMA, sometimes restrained to Cα atoms 

only, the atoms are modeled as point masses connected by springs, which represent the 

interatomic force fields. NMA have been developed to reveal the dynamic features of proteins 

(Velázquez-Muriel et al., 2009; Bakan et al., 2011). The NMA is used to study the slow dynamic 

and large scale motion of biomolecules and it has application in structural analyses. The elastic 

network model is one particular type of NMA. In this model, the springs connecting each node to 

all other neighboring nodes are of equal strength, and only the atom pairs within a cutoff distance 

are considered.  

1.2.17.4 Binding free energy 

There are several methods at different levels of intricacy which have been used for 

calculating binding free energies in biological macromolecular systems such as proteins. 

Screening of large molecular databases of small molecules to identify a hit molecule that has the 

potential to eventually become a lead and drug molecule relies on simplified scoring schemes to 

attain the required competence (Parenti & Rastelli, 2012). The binding free energy can be 

predicted on the basis of a continuum solvent approximation assuming quadratic fluctuations 

around a unique configuration (Kollman et al., 2000). The Molecular Mechanics Poisson–

Boltzmann and Surface Area (MMPB-SA) methodology is a prevalent method that is based on a 

mixed scheme combining configurations sampled (Srinivasan et al., 1998; Hou et al., 2011) from 

MD simulations with explicit solvent, together with free energy estimators based on an implicit 
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continuum solvent model. MM-PBSA method is used to compute the various types of free 

energies, polar, non-polar and binding free energy of biomolecules (Gilson & Honig, 1988; 

Sitkoff et al., 1994). g_mmpbsa is a command to calculate binding free energy to protein ligand 

complex (Kumari et al., 2014) from a GROMACS trajectory output and this tool contains 

different non-polar solvation models that includes models based on the solvent accessible surface 

area (SASA), solvent accessible volume (SAV) and a model which covers repulsive (SASA-

SAV) and also estimates the energy influence from residues to the binding energy. 

The g_mmpbsa (Kumari et al., 2014) is a tool compatible with GROMACS output MD 

trajectories. The binding free energy is estimated based on the following equations. 

The binding free energy of the protein complexed with inhibitor in a solvent such as water is 

expressed as 

∆Gbind = Gcomplex − Gfree-protein − Gfree-inhibitor                (1.4) 

where, GComplex is the total free energy of the protein-inhibitor complex and Gfree-protein and  

Gfree-inhibitor are total free energies of the isolated protein and inhibitor in the solvent, respectively.  

The free energy of each individual entity "G" indicated above is represented by  

G = EMM − TS + Gsolvation       (1.5) 

TS refers to the entropic involvement towards the free energy in vacuum where T and S denote 

the temperature and entropy, respectively. The term Gsolvation is the free energy of solvation, 

which is the energy required to transfer a solute from vacuum into the solvent. This is expressed 

as the summation of Gpolar and Gnon-polar, the electrostatic and non-electrostatic contributions, 

respectively to the solvation free energy. 

Gsolvation= Gpolar+ Gnon-polar       (1.6) 

EMM is the average molecular mechanics potential energy in vacuum, that includes the energy of 

both bonded as well as non-bonded interactions and calculated based on the molecular 

mechanics (MM) force field parameters.  

EMM= Ebonded+ Enon-bonded= Ebonded+ (EvdW+ Eelec)     (1.7) 
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 where Ebonded is bonded interactions consisting of the bond, angle, dihedral and improper 

interactions. The Enon-bonded is the non-bonded interactions that include both electrostatic and van 

der Waals interactions and is modeled using Coulomb and Lennard-Jones (LJ) potential 

functions, respectively. 
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2.1 Introduction 

 

Cancer is a major health hazard caused by the deterioration of lifestyle with increase in 

pollution, chemical and radiation exposure, food quality, bacterial and viral attack, genetic 

modification and heredity (Anand et al., 2008; Islami et al., 2018). Cancer is the second leading 

cause of death worldwide and the numbers of cancer deaths are increasing steadily causing a 

great financial burden on every nation (Wang et al., 2016). Various forms of cancer are 

responsible for accounting to nearly 10 million deaths in 2020 (Ferlay et al., 2020). Targeted 

therapies for cancer include hormone therapy, signal transduction inhibitors, angiogenic 

inhibitors, apoptosis inducers and immunotherapy (Sawyers, 2004; Noble et al., 2004).  Protein 

kinases have been demonstrated as cancer drug targets that function in signal transduction, 

angiogenesis and apoptosis (Noble et al., 2004). These enzymes can be classified as Ser/Thr 

kinases or Tyr kinases depending on the site of phosphorylation, their inhibitors are designed as 

ATP (cofactor) competitive molecules and allosteric inhibitors (Zhang et al., 2010). More than 

500 protein kinases are present in the human genome that play various physiological roles in cell 

cycle regulation, cell proliferation and differentiation, cell survival and apoptosis (Manning et 

al., 2002). Cell cycle proteins include some kinases required for the maintenance of the cell cycle 

regulation. These events can be divided into three stages, interphase, mitotic and cytokinesis 

(Bamum & O’Connell, 2014). Each stage is divided into different phases and when required, the 

cell cycle checkpoints halt the cell growth and allow the time for DNA repair. These checkpoints 

are regulated by CDKs, PLKs, and Aurora kinases, and most of the proteins in these stages if 

unregulated become cancer causing proteins (Malumbres & Barbacid, 2009). PLKs are cell cycle 

proteins of Ser/Thr kinases family and consist of five members, PLK-1 to PLK-5 (Barr et al., 

2004). PLKs have a conserved domain towards their C-terminus called the PLK polo box 

domain (PLK PBD). The length of the PBD is ~70 amino acid residues, there are two PBDs 

located in PLK-1, PLK-2 and PLK-3, while PLK-4 and PLK-5 possess only one PBD.  PLKs-1 

to 4 share high sequence identity in their kinase domain located in the N-terminus and play 

crucial roles in cell cycle events. PLK-5 has a truncated kinase domain (Holtrich et al., 1994; 

Barr et al., 2004) and is therefore enzymatically inactive.  
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PLK-2 is homologous and highly similar to PLK-1 and its function in cell cycle is 

phosphorylation of the centrosome-associated substrates (Cizmecioglu et al., 2012; Hu et al., 

2016). PLK-2 in mice model is also shown as a good target compared to PLK-1 due to its less 

toxicity (Zhan et al., 2018). PLK-2 is the major enzyme responsible for the phosphorylation of α-

synuclein at Ser129 (Inglis et al., 2009), and inhibition of PLK-2 has been shown to significantly 

decrease the phosphorylation of α-synuclein indicating that PLK-2 is also an important drug 

target for Parkinson’s disease (Aubele et al., 2013).  

 

PLK-1 plays a crucial role in the cell cycle progression including entry into mitosis, centrosome 

maturation and separation till a bipolar mitotic spindle is formed, metaphase to anaphase 

transition, mitotic exit and cytokinesis which leads to result in the formation of two new daughter 

cells. PLK-1 is regarded as an important protein in mitotic phase and shows high over-

expression, hence PLK-1 is an approved drug target in oncogenic field to reduce tumors 

(Holtrich et al., 1994). Molecules such as BI-2536, NMS-1286937 and BI-6727 were designed 

towards PLK-1 inhibition at nanomolar concentrations, and are being studied in phase II and III 

clinical trials (Weiss et al., 2018; Awad et al., 2017; Maertens et al., 2012).  

PLK-2 kinase is referred as centrosomal kinase and contributes in centriole duplication. 

PLK-2 which is called as serum-inducible kinase (Snk) was first reported in 1991 (Llamazares et 

al., 1991) and its biological function is studied due its role in G1 to S phase along with PLK-4 

(Syed et al., 2006). PLK-2 can regulate centrosome duplication based Aurora A/SIRT1/PLK-2 

pathway (Ling et al., 2018). PLK-2 inhibition is observed to be potential tumor suppressor and 

plays significant role in epithelial-derived cancers. Recurrent focal deletion has been observed 

with abundant solid cancers and lower expression of PLK-2 is related to some cancers such as 

NSCLC, breast cancer, neck and head osteosarcoma and carcinoma associated with poor 

prognosis and further lower expression of PLK-2 leads to ovarian cancer and  B-cell lymphoma, 

and down expression in glioblastoma, glioblastoma multiforme, multiple myeloma (Villegas et 

al., 2014; Beroukhim et al., 2010; Xie et al., 2018; Syed el al., 2011; Matthew et al., 2018). PLK-

2 is observed to have effect on apoptosis by targeting Fbxw7/Cyclin E pathway in colorectal 

cancer (Ou et al., 2016) suggesting that PLK-2 is a crucial therapeutic target. PLK-3 plays a role 

to effect DNA damage during G2–M transition due to increase in its activity. PLK-4 is important 

in proper centriole duplication and its activity during S and G2 phase. PLKs PBD is a regulation 
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unit and plays role in protein - protein interactions and is considered as an indirect target to 

inhibit PLK proteins. Since PLKs represent critical targets in cell cycle function and as 

oncogenic targets due to high over-expression (Schmit & Ahmad, 2007), research is in progress 

to find PLK kinase domain inhibitors (Steegmaier et al., 2007; Rudolph et al., 2009; Gumireddy 

et al., 2005; Gilmartin et al., 2009; Sampson et al., 2015; Beria et al., 2011; Hikichi et al., 2012).  

Some of the PLK inhibitors which are now in clinical trials are shown in the Table 2.1.  

Table 2.1: PLKs and Wee1 inhibitors in clinical trials.  

DRUG Clinical Trials Phase Target  

BI-2536 II PLK-1, PLK-2, PLK-3, c-Myc, BRD4 

Volasertib III PLK-1 

Rigosertib III PLK-1 

GSK461364 I PLK-1 

CFI-400945 II PLK-4, TrkA, TrkB, Tie-2, Aurora A, Aurora B 

Onvansertib  II PLK-1 

Adavosertib  II Wee1 

TAK-960 I PLK-1 

 

The inhibitors targeted to PLK-2 are pteridine derivatives which are analogs of PLK-1 inhibitor 

BI-2536 and have nanomolar inhibition, the pyrido-pyrimidinone derivatives have micromolar 

inhibition for PLK-2 (Reddy et al., 2016). Derivatives of pyrido-pyrimidinone and  

tetrahydropteridine were studied from computational perspective based on 3D-QSAR 

methodologies (Balupuri et al., 2017; Bhujbal et al., 2019). Due to the pivotal function of PLK-2 

and its significance in cancer intervention, I have employed computational perspective to design 

more potent molecules based on the chemical environment of the active site of PLK-2 from its 3-

D structure. 

The availability of the 3-D structures of a large number of proteins has promoted the 

rational drug design and discovery (Lounnas et al., 2013) and CADD has a huge potential in the 

discovery of new drugs. Among these methods, virtual screening is one of the fast and reliable 
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techniques to discover new ligands on the basis of biological structures. It uses high throughput 

screening methods such that within short period of time and low budget, virtual libraries 

comprising of millions of molecules can be searched (Walters et al., 1998). There are two 

generally accepted approaches for virtual screening: ligand-based and structure-based methods. 

Ligand-based virtual screening uses two dimensional (2-D) or 3-D similarity searches between 

large databases of molecules and known active molecules. The structure-based virtual screening 

applies diverse modeling techniques to mimic the binding interaction of a ligand to a 

biomolecular target (Merz et al., 2010). Virtual screening includes QSAR, docking, de novo 

design and pharmacophore modeling, to search for new molecules that include some important 

features which reflect the bio-activity of the designed molecules (Cherkasov et al., 2014). 

The SBDD proceeds via several steps that include drug target identification, 3-D 

structure elucidation of the target, small molecule compound library preparation, virtual 

screening of libraries, molecular docking studies, post-processing and ranking of the results by a 

pre-defined scoring function. These methods resolve the mechanism of binding, reveal the SAR 

and guide the selection of best molecules compared to the previously reported molecules (Irwin, 

2008; Rella et al., 2006).  

Chemical libraries of small molecules comprise millions of entries and the objective is to 

select few molecules that would possess highest predicted inhibitory activity. In this context, 

pharmacophore-based method for virtual screening of chemical libraries employs the highly 

potent inhibitors for building a pharmacophore model. A pharmacophore is a collection of steric 

and electronic features that are required to ensure non-bonding interactions and binding with a 

specific biological target in order to activate or inhibit its biological response (Wermuth et al., 

1998). 

Pharmacophore modeling is also divided into two types; structure-based pharmacophore model, 

where key active site residues that play important role based on the protein-ligand interactions is 

generated. In the ligand-based phamacophore model, a pharmacophore model is generated based 

on a series of molecules that have structure-activity relationship with a varying range of 

inhibitory activities (Kandakatla & Ramakrishnan, 2014). The constructed pharmacophore 

models using ligand-based and structure-based methods are considered as queries and can be 

used to search for new hit molecules that possess the required pharmacophore features, using 

virtual screening protocol. The identified hit molecules from virtual screening are subjected to 
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molecular docking for further validation as probable inhibitors against a particular receptor target 

(Yang, 2010). Currently, machine learning tools integrated with virtual screening protocols are 

used to search the big data and identify new hit molecules (Lavecchia, 2015). These methods are 

highly impressive as millions of compounds can be searched within short period of time.  

  BI-2536 shows nanomolar inhibition of PLK-1 and PLK-2, and its crystal structure is 

available in complex with both the proteins. In this work, based on the structure of BI-2536 and 

its interactions with PLK-2, I have built a structure-based pharmacophore model, and the best 

pharmacophore was used for virtual screening of ZINC database (Irwin et al., 2012). A series of 

screening procedures were employed to select the best molecules that bind to PLK-2. Further, 

some molecules that were screened-out in the initial steps of virtual screening were processed by 

molecular pruning, such that all molecules efficiently bind to the PLK-2 active site by molecular 

docking. The binding efficiency of the PLK-2 - hit molecule complexes were studied using MD 

simulations. The stabilities and binding free energies of the complexes and the contribution from 

each active site residue to the binding is also calculated.  
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2.2 Methods  

2.2.1 Pharmacophore model generation and virtual screening  

The aim of pharmacophore-based virtual screening is to identify hit molecules with 

certain electronic and steric features at specific geometrical positions that are responsible for the 

biological activity, from in silico databases of small molecules. In the present study, to build a 

pharmacophore model for PLK-2 inhibitors, structure-based approach for the inhibitor BI-2536 

complexed with PLK-2 (PDB ID: 4I5M) was used since BI-2536 is a nanomolar affinity 

inhibitor for PLK-1 (0.83 nM), PLK-2 (3.5 nM) and PLK-3 (9 nM) kinases. The missing 

residues in the activation loop were constructed based on the structure (PDB ID: 4I6H) (Aubele 

et al., 2013) using MODELLER (Šali & Blundell, 1993) incorporated into DS 2.5. The amino 

acid mutations Ser83/Cys83, Thr87/Val87, Ser119/Ala119, Ser216/Cys216, Ala259/Cys259, 

Ser291/Cys291, Thr335/Leu335 in the (PDB ID: 4I5M) were reversed to match the wild-type 

PLK-2 sequence. The Pharmit server (Sunseri & Koes, 2016) was used to generate 

pharmacophore for BI-2536, the essential features were selected based on the functional groups 

involved in making non-bonding interactions with the protein.  

ZINC database (Irwin et al., 2012) comprising of 12,996,897 molecules was used for virtual 

screening. In the first step of virtual screening, the selected Pharmit pharmacophore features 

were used for screening of ZINC database and the molecules retrieved were considered as the 

first set. The second step of screening included the receptor site interactions along with 

pharmacophore features for virtual screening and the selected molecules are considered as the 

second set. The molecules that did not qualify when the criteria of receptor site interactions were 

included (first set - second set), were considered as the third set of molecules.  

The third set of molecules were saved in .pdb format and docked into PLK-2 active site using 

LibDock (Rao et al., 2007). During molecular docking, 20 conformers were generated for each 

molecule, and these conformers were screened by Pharmit server using pharmacophore features 

that included receptor site interactions.  The molecules that fit into the PLK-2 active site were 

screened-in by the Pharmit server and were considered as the fourth set of molecules. The second 

and fourth sets of molecules that passed into active site of PLK-2 were combined and this virtual 
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data of small molecules obtained from pharmacophore screening were proceeded to library 

screening.  

2.2.2 Library Screening  

The resulting molecules from the above step were imported to “Screen Library” protocol 

(Kabsch, 1976) of DS 2.5. The pharmacophore from Pharmit was imported into DS 2.5 and was 

then used to screen the combined database of molecules (second and fourth sets) to retrieve the 

molecules that possess the desired pharmacophore features and to rank them accordingly based 

on their fit value.  

In the Screen Library protocol, 255 conformers were generated for each molecule, a 

minimum of 2 and a maximum of 6 pharmacophore features were selected with a rigid fitting 

method of the small molecule. The molecules were selected based on their fit value with the 

pharmacophore.  

2.2.3 Molecular pruning  

Molecular pruning is one of the methods to optimize the size of small molecule ligands, 

where the unwanted fragments are removed and preferably substituted with more desired 

functional groups (Bathula et al., 2015). Here, the molecules obtained from database screening 

were refined through molecular pruning. Some of the linker regions prevent the superimposition 

of molecules on the pharmacophore due to steric clashes with active site chemical environment. 

In this study, the third set of molecules which were not screened-in by Pharmit server were 

proceeded for molecular pruning.  

 

2.2.4 Molecular docking  

The PLK-2 bound to BI-2536 (PDB ID: 4I5M) (Aubele et al., 2013) was used to dock the 

molecules obtained from virtual screening. Prior to docking, the protein was prepared using 

“Minimize protein” protocol of DS 2.5. All the crystal waters were removed, hydrogen atoms 

were added and CHARMm force field was applied using “Receptor-Ligand Interactions tool” in 

DS 2.5 and the protein structure was energy minimized (Brooks et al., 1983). CDOCKER (Wu et 

al., 2003), a molecular docking tool available in DS 2.5 was used to dock the molecules obtained 
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from virtual screening and molecular pruning. The protein active site was defined based on the 

binding location of BI-2536 and extended to residues that reside within its 5 Å cut-off distance 

and the number of docking poses was set to 100.  

The reference molecule BI-2536 was initially used for molecular docking into the active site of 

PLK-2 kinase to assess the reliability of CDOCKER docking protocol. PMF04 ligand scoring 

method was used to analyze the docking results (Muegge, 2006). The selected molecules after 

docking were further analyzed through MD simulations. 

2.2.5 Molecular dynamics simulations 

  Conformational flexibility is an inherent feature in the protein 3-D structures. The 

docking pose of one frame of the protein bound to ligand is insufficient to understand the binding 

pose of the designed molecules, their ability to remain bound to the active site and the 

mechanism of its functional regulation. Hence, PLK-2 kinase bound to hit and reference 

molecules were subjected to MD simulations using GROMACS 5.1.2 (Hess et al., 2008; Van 

Der Spoel et al., 2005). Amber ff99SB force field was applied to the protein and small molecules 

(Hornak et al., 2006) using antechamber with ACPYPE scripts (Da Silva & Vranken, 2012) and 

the charge was controlled using AM1-BCC (Wang et al., 2006). The unit cell was set to cubic 

box with 1.0 nm dimensions and each complex was solvated with SPC waters, Cl- and Na+ ions 

were added to neutralize the system (Berendsen et al., 1981). Long-range electrostatic 

interactions were treated using particle mesh Ewald (PME) method (Darden et al., 1993; 

Essmann et al., 1995). LINCS algorithm was applied to constrain the hydrogen bonds (Hess et 

al., 1997). 

MD simulations proceed through three principal stages, the first stage is energy minimization of 

the system, where 50,000 steps were run till the system reached a maximum force less than 1,000 

kJ/mol/nm2 and the purpose of this step is to remove the steric stress and let the system to 

become relaxed. The next equilibration stage is further divided into two steps. The system is set 

to constant number of molecules, volume and temperature (NVT), equilibrated and minimized 

until 300 K temperature for 100 ps to allow the solvent and ions to equilibrate around the protein. 

In the next step, the equilibration was set to constant number of molecules, pressure and 

temperature (NPT) (1 atm pressure and 300 K) for 1 ns until the system reaches proper density. 

The temperature and pressure couplings are V-rescale and Parrinello-Rahman methods, 
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respectively (Bussi et al., 2007; Parrinello & Rahman, 1981). The final step of MD simulations 

was performed for 50 ns on apo PLK-2 and hit molecule complexes. The generated trajectories 

were used for further analysis. The RMSD, RMSF plots of apo and protein-hit molecule 

complexes revealed the conformational changes and stability of the complexes.  

 

2.2.6 Normal mode analysis 

NMA of the MD trajectories was studied using NMWiz of ProDy (Bakan et al., 2011) 

available as a plugin with VMD (Humphrey et al., 1996) to analyze local and global regions, size 

of motion and fluctuating flexible regions in PLK-2. 

 

2.2.7 Binding free energy calculations and contribution of residues to the hit molecule 

binding 

Estimating protein-ligand interaction energies is a challenging task for the current 

simulation protocols. The molecular mechanics energies combined with the MM-PBSA and 

MM-GBSA methods are popular approaches to estimate the free energy of binding of small 

ligands to biological macromolecules. MM-PBSA method (Homeyer & Gohlke, 2012) is used to 

calculate the binding free energy and residue-wise energy decomposition of active site amino 

acids. The g_mmpbsa tools (Kumari et al., 2014) designed to work with GROMACS output 

trajectories was used to calculate binding free energy for all complexes. The energy terms 

obtained from this calculation are van der Waals, electrostatic, polar and apolar solvation 

energies.  
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2.3 Results  

 

2.3.1 Pharmacophore model generation and virtual screening  

The crystal structure of human PLK-2 (PDB ID: 4I5M) bound to BI-2536 was used for 

the computational studies. The missing residues in the activation loop (203-213) were 

constructed using DS 2.5 based on 4I6H, the crystal structure of PLK-2 bound to a high affinity 

inhibitor (Aubele et al., 2013). The amino acid mutations are located away from the active site of 

the protein and were reversed to match the wild-type PLK-2. The active site of PLK-2 is formed 

by Lys86, Val87, Leu88, Gly89, Lys90, Gly91, Cys96, Glu98, Ala109, Lys111, His134, Val143, 

Leu159, Glu160, Tyr161, Cys162, Ser163, Arg164, Arg165, Phe212, Gly222 and Asp223. The 

crystal structures of PLK-1 (2RKU) (Kothe et al., 2007) and PLK-2 (4I5M), both bound to BI-

2536 were compared by structure superposition. The protein structures are highly similar and 

superimpose with low RMSD (0.64 Å). The binding site residues of BI-2536 are identical in both 

proteins (PLK-1/PLK-2) with the exception of (Arg57/Lys86, Phe58/Val87, Gly81/Ala110, 

Leu132/Tyr161, Arg134/Ser163). This high sequence similarity is also reflected by the almost 

similar inhibition of PLK-1 and PLK-2 by BI-2536 with IC50 values of 0.83 nM and 3.5 nM, 

respectively (Steegmaier et al., 2007). 

Structure-based pharmacophore generation method Pharmit was used to construct a 

model based on the pharmacophoric features of high potent inhibitor BI-2536, which has 

multiple hydrogen bond acceptors, hydrogen bond donors, two aromatic rings, hydrophobic and 

hydrophilic features. To minimize the number of features and enhance the selectivity, the 

pharmacophore features responsible for the biological activity which are located in the PLK-2 

active site were selected. The methylpiperidine and the cyclopentane ring of BI-2536 are solvent 

exposed and hence were not considered for pharmacophore generation.   

The best pharmacophore model comprises of six features containing three hydrogen bond 

acceptors, one hydrophobic feature (on the substituted pyrazinone ring) and two aromatic rings. 

A hydrogen donor which forms hydrogen bond with Leu88 on the β1 strand is not included in 

the pharmacophore model, since inclusion of this feature resulted in fewer hits (less than 50 

molecules) and high RMSD (> 0.45 Å). The best pharmacophore model selected based on the 

above features is shown in Figure 2.1, and this pharmacophore model was used to perform 
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virtual screening against ZINC database (Irwin et al., 2012). Virtual screening using Pharmit 

server (Sunseri and Koes, 2016) was used for ZINC database that has 123,073,955 

conformations for 12,996,897 molecules. In this step a total of 4,881 molecules (first set) were 

selected with RMSD (< 0.4 Å) having the six desired pharmacophore features, and one 

conformation was selected for each of these molecules. In the next stage of virtual screening, in 

the same pharmacophore model, the complementary features of the receptor PLK-2 (4I5M) were 

included as an exclusive shape with zero tolerance and were used to perform virtual screening on 

the 4,881 molecules dataset. At this stage, upon inclusion of the receptor information, the 

number of hit molecules was reduced to 1,394 (second set) and these molecules fulfilled the 

criteria of PLK-2 active site or the receptor environment. The remaining molecules which have 

not passed into the active site environment were termed as the third set (3,487 molecules) and 

were moved to ligand conformation generation step in the presence of receptor using molecular 

docking protocols. 

 

 

 

Figure 2.1: Flowchart for virtual screening of ZINC database using BI-2536 based pharmacophore. 

These third set molecules were docked into PLK-2 active site using LibDock protocol (Rao et 

al., 2007). For 3,487 molecules, LibDock generated 67,523 conformers as docking poses when 

docked into PLK-2 active site. These conformers were imported and screened by Pharmit server 
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to perform virtual screening using the best pharmacophore that included the receptor 

interactions. As a result, 177 molecules (fourth set) passed into the active site of PLK-2. This 

exercise of increasing the initial conformations by molecular docking improved the identification 

of hit molecules in numbers. Thus, preparing the molecules for docking in the active site of PLK-

2, resulted in the refinement and improvement of hit identification by 5%. The molecules 

screened-in using receptor environment of PLK-2 were combined (second and fourth sets) and 

finally, a total 1,571 molecules were used to perform the final library screening. 

2.3.2 Library screening 

The number of hit molecules from virtual screening which accurately fit in to PLK-2 

active site are 1,571. To further screen and identify best molecules from this list, the “Screen 

library” protocol available in DS 2.5 was used by keeping the same pharmacophore features of 

BI-2536 generated by Pharmit.  

In this protocol, the scoring function is a fit value which expresses the quality of mapping, a 

higher fit value indicates the greater number of features mapped on to the pharmacophore. Out of 

1,571 molecules, 9 molecules were selected based on the fitness value. The identified molecules 

along with their ZINC ID and fit values are shown in Table 2.2. To assess the ability of these 

molecules to fit into the active site of PLK-2, a detailed molecular docking and binding site 

analysis was performed. 

 

2.3.3 Molecular pruning  

The molecules (3,310) which have not passed into the active site of PLK-2 by Pharmit screening 

(third set – fourth set) after including the receptor site interactions were also considered in the 

last step of library screening. These molecules have a high fit value and new chemical scaffolds; 

however, they carry some bulky groups that block them from binding to the key residues in 

PLK-2 active site caused by steric hindrance during molecular docking. For example, in the 

molecule (ZINC21777040), the pyrimidine nitrogen is capable of forming hydrogen bond with 

the hinge region Cys162 NH group, but the adjacent methyl group blocks its 
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Table 2.2:  Fit values, docking scores and structures of reference, and hit molecules identified 

from ZINC database based on pharmacophore screening. 

 

Compound ID Structure Fit value PMF04 

 

BI-2536 (4I5M) 

 

 

 

 

 
 

 

3.74 

 

-43.62 

 

1C8 (4I6H) 

 

 

 

 

 

 

3.31 

 

-56.61 

 

11G (4I6B) 

 

 

2.94 

 

-33.94 

 

ZINC20634160 

 

 

3.77131 

 

-44.45 

 

ZINC800347 

 

 

3.02651 

 

-27.32 



62 
 

 

ZINC584661221 

 

 

2.81501 

 

-43.15 

 

 

ZINC67263813 

 

 

3.60784 

 

-47.74 

 

ZINC27526373 

 

 

3.39748 

 

-43.25 

 

ZINC38784062 

  

3.32331 

 

-45.26 

 

ZINC2790885 

 

 

2.96663 

 

-43.84 

 

ZINC10382343 

  

3.88 

 

-22.75 
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ZINC33255974 

 

2.56 -43.66 

 

ZINC21777040 

  

3.02325 

 

-55.58 

 

ZINC19698620 

  

3.17877 

 

-56.09 

 

ZINC64439244 

  

3.89 

 

-52.8 

 

ZINC15670502 

 3.87 -43.15 
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 entry into the active site of PLK-2. The deletion of methyl group permits the docking of this 

molecule with a high docking score. Similarly, the molecule ZINC19698620 was pruned to 

delete the methyl group such that the pyrimidine nitrogen is capable of forming hydrogen bond 

with the hinge region Cys162 NH. The pruned molecules along with their ZINC IDs, fit value 

and structures are shown in Table 2.2. The molecules thus selected from pharmacophore model 

features of BI-2536 that included PLK-2 receptor environment and the refined molecules after 

pruning were proceeded to the molecular docking studies. 

2.3.4 Molecular docking and ligand scoring  

The identified hit molecules obtained from virtual screening were further evaluated by 

CDOCKER docking program to confirm their binding conformation and affinity to PLK-2 

(4I5M).  The best scored molecules were visualized on graphics for non-bonding interactions 

such as hydrogen bonds and pi-stacking. The results of molecular docking are provided in Table 

2.2. The binding efficiency of protein-hit molecule complexes and the reference inhibitors is 

quantified by PMF04 scores. For reference molecules from PDB IDs (4I5M, 4I6H and 4I6B), the 

values lie between -56.61 and -33.94, while the scores of the newly identified hit molecules was 

found to be in the range of -56.09 to -27.32. The highest docking score was obtained for 

ZINC19698620 (-56.09). 

Since BI-2536 is an ATP competitive inhibitor, the newly identified hit molecules also bind at 

the same location at the inter-subunit interface and form hydrogen bonds with hinge region 

residue Cys162. In addition, hydrogen bonds are also formed with Lys86, Arg165 and Asp223 

which are a part of β1-strand, hinge region and activation loop, respectively. The pi-pi stacking 

interactions with Phe212 at β6 -strand, pi-cation interaction with Lys111 and Arg165, and sigma-

pi interaction with Leu88 and Arg165 are also observed as shown in Figure 2.2A-D. To compare 

the binding ability of the identified hit molecules relative to reference inhibitors, the stability of 

PLK-2 complexed with reference and hit molecules was further studied using MD simulations.  
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. 

Figure 2.2: (A-D) 2-D interaction plots of hit molecules with active site residues of PLK-2. Hydrogen 

bonding interactions are indicated as green dashed links.  

 

2.3.5 Molecular dynamics simulations  

The PLK-2 complexed with six hit and three reference molecules were subjected to 50 ns 

of MD simulations using GROMACS. The trajectories of MD simulations were used for RMSD, 

RMSF and hydrogen bonding distance measurements. The average structure of MD simulations 

(0-50 ns) and the input structures were compared by structure superimposition. The RMSD plot 

of the apo-protein is shown in Figure 2.3A that displays an RMSD less than 2 Å, which is 

indicative of the inherent stability in the protein. From the RMSD plots of the complexes shown 

in Figure 2.4A-I, it was observed that in all the complexes RMSD of the protein Cα atom was 

less than 3 Å and the RMSD of the ligand was found to be less than 1 Å. The exception is the hit 

molecule ZINC19698620, the RMSD jumped up to 2.2 Å (between 16-32 ns) due to fluctuations 

in the side chains but the main scaffold remained within its location. This observation is also 
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apparent from the hydrogen bonding distance that remained unchanged during the of MD 

simulations.  

 

Figure 2.3: (A-D) Apo PLK-2 RMSD, RMSF, porcupine plot and normal mode analysis plots. 

 

Figure 2.4: (A-I) RMSD plots of PLK-2 complexed with reference inhibitors and new hit molecules 

identified from ZINC database. Protein (red) and ligand (black).  
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The identified hit molecules were also as stable as the reference inhibitors during the MD 

simulations. The RMSF plots indicated the regions of fluctuations in PLK-2. As shown in Figure 

2.5, there are a total of seven flexible regions in the protein; the glycine-rich loop (90-93), the 

loop (117-122) connecting β3 strand and αC-helix, the loop (151-154) connecting β4-β5 strands, a 

loop (214-217) joining β6-β7 strands, the activation loop (232-242) and the loops before (254-

258) and after (281-290) residues, respectively display fluctuations in the structure of PLK-2. 

The RMSF plot of apo PLK-2 (Figure 2.3B), indicated fluctuations in the regions similar to the 

PLK-2 - hit molecule complexes. The new hit molecules and the reference inhibitors show 

fluctuations in the same regions in the PLK-2 structure. The structural superimposition of 

protein-ligand complexes before and after MD simulations showed good agreement and low 

RMSD for hit molecules as well as with references molecules as shown in Figure 2.6A-I. 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.5: RMSF plots (A) reference inhibitors complexed with PLK-2 (B) Identified hit molecules 

complexed with PLK-2 (C) Location of fluctuating regions (multi-colours) in the PLK-2 are shown in 

cartoon representation (gray). 
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Figure 2.6: (A-I) Superimposition of the docked pose (pink) with the average structure (blue) of the 

reference inhibitors and new hit molecules after MD simulations. 

 

These analyses of molecular docking and MD simulations revealed that the docking pose is 

accurate, and it is quite similar to the refined pose after MD simulations. The intermolecular 

interactions of the scaffold with the hinge region retained stability in all molecules during all 

frames from MD simulations. The hydrogen bond distances with each new hit molecule are 

shown in Figure 2.7. The identified hit molecules showed three different patterns of binding 

towards the hinge region residues (main-chain atoms of Glu160 and Cys162) with three, two and 

one hydrogen bonds (Figure 2.7A-F).  

ZINC21777040 formed hydrogen bonds with Cys162 main-chain NH and C=O, and with 

Glu160 main-chain C=O (Figure 2.7A) ZINC800347 also similarly formed three hydrogen 

bonds, two with Cys162 and one with Glu160 amino acid residues. Both ZINC67263813 and 

ZINC20634160 formed two hydrogen bonds with Cys162 NH and C=O group of main-chain. 

Both ZINC584661221 and ZINC19698620 formed one hydrogen bond with Cys162 main-chain 

NH during 50 ns of MD simulations. Both the protein and hit molecules initially had some 
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fluctuations but eventually stabilized during the course of MD simulations as can be seen from 

the RMSD plots. Hence, 20 ns of MD simulations data (30-50 ns) containing 2,000 frames was 

considered to be sufficient to represent the conformational flexibilities and dynamics of protein-

hit molecule complexes and these were considered for the calculation of binding free energies so 

as to verify their suitability and to rank them relative to the reference molecules.  

 

 

 

Figure 2.7: (A-F) Intermolecular hydrogen bonding distance between Glu160 and Cys162 main-chain 

NH, C=O of PLK-2 with reference and identified hit molecules. 

2.3.6 Normal mode analysis  

It is important to consider the normal mode analysis to understand the mobility in the 

protein and the structural changes which are a collection of micro-ensemble states fluctuating 

about the thermodynamically stable state. From the RMSF studies of the apo PLK-2 and when 

complexed with various hit molecules it was found that a total of seven regions are flexible. To 

confirm this, normal mode analysis using NMWiz of ProDy (Bakan et al., 2011) available as a 

plugin with VMD (Humphrey et al., 1996) was performed. The results are shown in Figure 2.3C-

D and Figure 2.8A-D for the apo and PLK-2 complexes respectively, which confirm the regions 
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of fluctuations from the RMSF plots. Based on ten normal modes, three modes were taken, 

which generated the same fluctuating regions in the apo as well as complexed PLK-2, however 

with different magnitude of fluctuations. For example, in the apo PLK-2, the region (280-290) 

shows high fluctuation and in the presence of hit molecules, the extent of fluctuations decreased. 

In the presence of hit molecule, the activation loop (232-249) shows high fluctuations which is 

quite stable in the apo PLK-2. This indicates the involvement of activation loop in binding the hit 

molecules and their stabilization. To analyze the local motion by principal component analysis 

5,000 frames of PLK-2 from MD simulations were used. A vector represents the orientation of 

motion and expresses about the size of motions, the colors indicate that the same parts of 

proteins fluctuate at the same time when two different motions are available, the backbone of 

protein shows same color and some regions are different, expressing the global and local 

motions. The regions corresponding to the glycine-rich loop, αC-helix, activation loop and the 

loop after αF-helix showed high local motion and fluctuations.  

 

Figure 2.8: (A-B) Normal mode analysis of PLK-2 and local fluctuating regions. 
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2.3.7 Binding free energy calculations  

The docking scores of hit molecules show converging values related to the reference 

molecules. Further, the binding free energies of the hit compounds towards PLK-2 were also 

determined in order to assess their binding capacity upon complex formation. The last 20 ns of 

MD simulations trajectories were used in this analysis of each complex which consists of 2,000 

frames and the binding free energy was calculated using MM_PBSA method. 

The binding free energy, van der Waals, electrostatic, polar and apolar solvation energies were 

calculated and compared them with references molecules in order to classify the new hit 

molecules as high or low potent inhibitors. The binding free energies of all the complexes are 

shown in Table 2.3. 

Table  2.3: Contributions from various  energies (kJ/mol) for  reference inhibitors and identified hit 

molecule complexes. 

Compound ID vdW Electrostatic Polar solvation 

energy 

SASA energy  Binding free 

energy  

BI-2536(4I5M) -265.996±0.281     -33.443±0.160     147.795±0.323 -23.824±0.020 -175.480±0.306     

1C8 (4I6H) -221.648±0.258     -30.541±0.164     129.749±0.349     -19.144±0.019     -141.592±0.310     

11G (4I6B) -158.497±0.209     -9.195±0.082     77.301±0.181     -14.376±0.015     -104.765±0.243     

ZINC20634160 -200.385±0.281     -37.881±0.209     140.241±0.380     -19.352±0.018     -117.368±0.300     

ZINC800347 -166.211±0.250     -42.932±0.177     101.136±0.274     -15.332±0.018     -123.345±0.230     

ZINC584661221 -219.576±0.241     -8.414±0.148     127.237±0.223     -17.621±0.016     -118.389±0.294     

ZINC67263813 -212.201±0.247     -44.179±0.250     187.450±0.339     -19.946±0.017     -88.877±0.304     

ZINC21777040 -211.384±0.281     -41.500±0.194     130.948±0.242     -18.814±0.019     -140.738±0.324     

ZINC19698620 -224.563± 0.411     -83.566±0.342     190.967± 0.531     -21.270± 0.031     -138.398±0.340     

 

From the data given in Table 2.3 it was observed that the reference molecule BI-2536 showed 

binding free energy of -175 kJ/mol, while the inhibitor bound to (4I6H) shows the binding free 

energy of -142 kJ/mol. For the pteridine scaffold bound to (4I6B) the binding free energy is 

found to be -104 kJ/mol. The identified hit molecule (ZINC21777040) from virtual screening has 

lowest binding free energy (-140 kJ/mol) which also has a pteridine scaffold and this indicates 

that pteridine has high selectivity towards PLK enzymes. The second identified molecule 

ZINC19698620 has binding free energy of -138 kJ/mol.  ZINC21777040 and ZINC19698620 are 

pruned molecules and show low binding free energies compared to other hit molecules. This 
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indicates that pruning of libraries of molecules to the desirable size will lead to the identification 

of more potent hit molecules.  

The third molecule (ZINC800347) is small in size and shows three stable hydrogen bonds with 

PLK-2 and has a binding free energy of -123 kJ/mol. The hit molecule (ZINC20634160) shows 

binding free energy (-117 kJ/mol), ZINC67263813 has a binding free energy (-88.877 kJ/mol) 

and ZINC584661221 has a binding free energy of -118 kJ/mol when bound to PLK-2. As shown 

in the Table 2.3, these low binding free energies are comparable to the reference molecules that 

is indicative of good binding ability and hence stable complex formation.   

 

2.3.8 Contribution of PLK-2 active site residues to the binding of hit and reference 

molecules 

The active site residues in PLK-2 for the binding of BI-2536 were examined. The 

contribution based on energy decomposition studies of highly participating residues in PLK-2 to 

the binding of hit molecules are Glu160, Tyr161, Cys162, Ser163, Arg165, Phe212 and Asp223. 

The energy contributions of the reference and hit molecules are shown in Table 2.4. BI-2536 

shows high contribution to the binding site residues than all the other molecules, it also shows 

that some residues (Val87, Leu88 and Gly89) on β1 strand participate in inhibitor binding which 

is close to the piperazine ring. Due to the rotational bond between piperazine and benzene ring, 

this terminal part is able to form contacts with these residues. The molecule bound to 4I6H 

shows high contribution towards Asp223 than BI-2536. The molecules identified by 

pharmacophore-based virtual screening show nearly the same and high contribution similar to 

reference molecules as shown in Table 2.4. From these observations, it was also seen that the 

residues involved in the binding of hinge region (160-164), pi-pi and pi-sigma stacking with 

Phe212 and Arg165 show the highest contribution compared to the other residues. Figure 2.9 

represents the contribution of all residues to the binding in all the complexes.  
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Table 2.4: Residue-wise energy (kJ/mol) contribution to the binding of reference inhibitors and identified 

hit molecules in the PLK-2 active site. 

 

 

 

Figure 2.9: Contribution from active site amino acid residues in the PLK-2 kinase to the binding of 

reference inhibitors and the new hits molecules. The residues with higher contribution to binding free 

energies are indicated. 

 

 

Compound ID Glu160 Cys162 Ser163 Arg165 Phe212 Asp223 

BI-2536 (4I5M) -3.541 -13.492 -8.160 -70.868 -49.628 -1.274 

1C8 (4I6H) -4.489 -10.377 -1.108 -17.826 -40.827 -15.465 

11G (4I6B) -1.094 -6.216 -0.609 -5.743 -40.741 -4.455 

ZINC20634160 -1.954 -8.347 -11.826 -56.277 -45.104 -16.733 

ZINC800347 -7.711 -9.469 -3.029 -47.732 -34.333 -3.942 

ZINC584661221 -0.439 -5.349 -0.987 -12.482 -47.489 -19.515 

ZINC67263813 1.753 -15.061 -10.902 -53.059 -39.144 -31.182 

ZINC21777040 -7.911 -9.743 -3.317 -51.652 -44.900 -7.417 

ZINC19698620 -5.073 -8.192 -4.96 -52.454 -53.217 -4.780 
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2.4 Discussion  

Virtual screening uses computer-based methods to discover new molecules on the basis 

of the structure of biologically active molecule. The basic goal of virtual screening is the 

appropriate selection of molecules from enormous chemical space of millions of small organic 

molecules, by screening against a specific protein target in order to identify a manageable 

number of compounds that bind the target with highest chance of becoming a lead molecule to a 

drug candidate (Reymond & Awale, 2012).  In the recent years, due to the availability of fast 

computers, virtual screening is accelerated to overcome the time barrier in order to find new 

molecules in drug discovery (Sunseri & Koes, 2016). There are some intermediate steps linked to 

virtual screening which need accurate preparation such as QSAR or pharmacophore model 

generation, which have some constraints such as number of features that should not exceed seven 

(Yang, 2010). Another issue is target binding site consideration, for this purpose some protocols 

are already available in software suites such as DS and Ligand Scout (Wolber & Langer, 2005) 

to build the model based on the binding site residues. The flexibility of protein-inhibitor complex 

leads to changes in the local environmental features, hence some studies are based on the MD 

trajectories clustering before the virtual screening (Wieder et al., 2017). In the present study, the 

best generated pharmacophore model and the receptor environment was included for virtual 

screening of ZINC database. 71.44% of the molecules match the pharmacophore but sterically 

hindered due to clash with the receptor active site environment and hence do not bind the PLK-2 

kinase domain. These molecules that did not pass into the active site were prepared by the 

generation of conformers by docking into the protein active site. This enrichment of conformers 

allowed higher selection of molecules from virtual screening. 5% improvement in the virtual 

screening results by docking the molecules into the active site of protein was observed. Hence 

preparing all the molecules based on receptor active site will improve the scope of search for the 

molecules. This aspect can be further exploited by generation of kinase oriented conformations 

of small molecule databases. Since the kinases share high structural homology, generation of 

small molecule conformations in the protein environment will enhance the success of virtual 

screening.    

 

 



75 
 

2.4.1 Hinge region scaffold and pruning of molecules  

ATP is an essential cofactor of kinases and is classified as moderate binder with sub-

millimolar (Km) binding. In the ATP binding site, adenine moiety binds at the hinge region and 

pyrimidine ring forms hydrogen bonds with the protein backbone. Most of the designed 

inhibitors inactivate the typical function of kinase and are therefore classified as competitive 

with ATP (cofactor). Some chemical scaffolds have been designed to form hydrogen bonds with 

the main-chain residues at the hinge region such that one, two or three hydrogen bonds can be 

formed at this location (Xing et al., 2015). As shown in Figure 2.7A-F, molecules identified in 

this work, make three hydrogen bonds (ZINC800347 and ZINC21777040), two hydrogen bonds 

(ZINC20634160 and ZINC67263813) and other molecules that form a single hydrogen bond 

with hinge region of PLK-2 kinase domain.  

However, the presence of some bulky substitutions on the ring prevents the formation of hinge 

region hydrogen bonds essential for the kinase binding. Therefore, the molecules identified from 

the pharmacophore including the receptor features, when are not of suitable size are prevented 

from binding to the active site due to steric bulk and need to be modified by removing or pruning 

the side chains. This will allow the optimal orientation of the hit molecules in the receptor 

binding site and allow the non-bonding interactions required for inter-molecular recognition. 

Studies on the truncation of molecules and generation of a series of analogs for morphine 

(Archer et al., 1996) are reported for the Mu-type opioid receptor (Archer et al., 1994).  

This vision was extended to those molecules that match with pharmacophore model alone to get 

more diversified molecules and thus two molecules were truncated. From this exercise, the 

identified molecules (ZINC21777040 and ZINC19698620) showed low binding free energies 

that are comparable to the reference molecule. As shown in the Table 2.3, the second type of 

molecules resulted from virtual screening were large in size and possess more than four rings and 

several rotatable bonds, it is nearly impossible to accommodate them in the active site of PLK-2. 

It is observed that these molecules from virtual screening and molecular pruning can be exploited 

to retrieve active hit molecules for PLK-2 inhibition. 

For the reference molecules bound to (4I5M, 4I6H, 4I6B) reported inhibition activities are 8.8 

nM, 5 nM, 1170 µM, respectively (Aubele et al., 2013) and by MM_PBSA calculations it was 

observed that 4I5M (-175.480) kJ/mol showed low binding energy than 4I6H (-141.592) kJ/mol. 
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It has been reported that large molecules show low binding free energy than small molecules due 

to the conformational flexibility and bulky size (Araki et al., 2016). Finally, the designed 

molecules show concurrence in binding conformations and energies with the reference 

molecules, and this confirms the validity of the pharmacophore model as a robust model to find 

new hit molecules to bind a target protein. 
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2.5 Conclusions 

 

The available crystal structure of BI-2536 bound to PLK-2 was used to generate a 

structure-based pharmacophore that had six pharmacophore features. The molecules identified 

from pharmacophore-based virtual screening of ZINC database were further improved by in situ 

conformation generation in the PLK-2 active site and molecular pruning to trim the size of 

molecules such that they appropriately bind the enzyme active site. These protocols showed 

improvement in obtaining new hit molecules using virtual screening that were comparable to the 

reference inhibitor BI-2536. The molecules bound to the hinge region residues forming hydrogen 

bonds with Glu160 and Cys162, β6 strand, and activation loop residues. Further studies based on 

molecular docking, MD simulations, and binding free energy calculations of new hit molecules 

revealed that they form stable complexes and fit well into PLK-2 active site similar to reference 

molecules and are therefore proposed as new hit molecules to bind PLK-2.  
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Identification of 3-D motifs based on sequences and 

structures for binding to CFI-400945, and deep screening 

based design of new lead molecules for PLK-4 
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3.1 Introduction  

Protein kinases represent one of the important family of proteins in all life forms; 

eukaryotes, bacteria, archaea and viruses (Manning et al., 2002; Forterre, 2010; Esser et al., 

2016; Jacob et al., 2011). A typical protein kinase functions by catalysing the transfer of a 

phosphate group from ATP, a nucleoside triphosphate to an amino acid residue of a protein 

substrate. Depending on the specific amino acid to be phosphorylated, protein kinases are 

classified into Ser/Thr kinases or Tyr kinases, and sometimes dual-specificity kinases. Protein 

kinases function by both autophosphorylation of itself and transphosphorylation of other 

proteins. Phosphorylation is considered as a post-translational modification of a protein that 

results in the conformational change of its structure and therefore functional activation thus 

regulating its enzymatic activity, cellular location, and association with other proteins 

(Beenstock et al., 2016). 

Kinases represent one of the large family of proteins and comprise about 2% of the 

human proteome (Manning et al., 2002), about 30% of the human proteome is phosphorylated by 

the action of protein kinases. A typical kinase domain consists of 250-300 amino acid residues 

along the linear sequence. A kinase 3-D structure comprises of an N-terminal lobe mainly 

comprising β-sheets and a C-terminal lobe rich in α-helices. The N- and C-terminal lobes are 

connected by a linker region, the amino acid residues from this hinge region, and the residues in 

the vicinity from both the domains form the active site of the protein that is occupied by the 

cofactor ATP (Hanks & Hunter, 1995). 

During the process of cell division, a mother cell divides to produce two daughter cells 

with faithful transfer of the hereditary genetic information from one generation to the next 

generation cells. These mechanisms of cell division are conserved throughout the evolution, the 

cell cycle events are controlled and regulated by the protein kinases (Wang & Levin, 2009). The 

coordinated progression during cell division from G0 to G0/G1 phase is orchestrated by protein 

phosphorylation due to the action of several Ser/Thr kinases. The families of kinases that play an 

essential role during cell division are CDKs, PLKs, Aurora kinases A, B and C, NIMA (never in 

mitosis gene A)-related kinases (NEKs), mitotic checkpoint regulators (Bub1, BubR1, and 

Mps1) and Mastl (Malumbres, 2011). 
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PLKs belong to the family of Ser/Thr kinase proteins that consist of five members (PLK-1 to 

PLK-5). The N-terminal region of the PLKs comprises the kinase domain and the C-terminal 

region comprises a highly conserved, non-catalytic PBD that plays a pivotal role in the function 

of these enzymes. The PLK-1, PLK-2, PLK-3 and PLK-4 are differentially expressed during the 

cell cycle and in different tissues (Takai et al., 2005). PLK-5 plays a role in cell cycle 

progression and neuronal differentiation. This protein has a truncated kinase domain with the 

loss of the main activatory autophosphorylation site and the conserved key residues involved in 

phospho-substrate recognition, hence PLK-5 is a catalytically inactive kinase. In the eukaryotic 

cell division, PLK-1 to PLK-4 play a variety of roles such as centrosome maturation, checkpoint 

recovery, spindle assembly, cytokinesis, and apoptosis. PLK-4 regulates centriole duplication 

during the cell cycle (Nigg & Raff, 2009) and is therefore approved as oncogenic target in the 

treatment of multiple cancers such as breast cancer, lung cancer, paediatric cancers, 

medulloblastomas and neuroblastoma of central nervous system and atypical teratoid tumours of 

brain (Sredni et al., 2017A; Sredni et al., 2017B; Bailey et al., 2018; Suri et al., 2019). These 

disease conditions are involved in the overexpression of PLK-4 resulting in centriole 

uncontrolled growth and genomic disorder leading to tumorigenesis (Holland et al., 2010). PLK-

4 is therefore a good drug target as it plays a crucial role in cell cycle and controls the centriole 

formation events (Moyer & Holland, 2019) and its deregulation is implicated in multiple 

tumours. 

Recently some PLK-4 inhibitors such as YLZ-F5 and YLT-11 are shown to inhibit 

human ovarian cancer cell growth by inducing apoptosis and mitotic defects, and to inhibit 

human breast cancer growth via inducing maladjusted centriole duplication and mitotic defects, 

respectively (Zhu et al., 2020; Lei et al., 2018). Indolin-2-one derivatives are reported as PLK-4 

inhibitors based on quantitative structure activity relationship, with comparative molecular field 

analysis and comparative molecular similarity indices analysis (Shiri et al., 2016). CFI-400945 is 

a potent and selective PLK-4 (Sampson et al., 2015A) inhibitor that is under phase II clinical 

trials for breast cancer (NCT04176848, NCT03624543) and phase I clinical trials for advanced 

cancer (NCT01954316) and acute myeloid leukemia/myelodysplastic syndromes/relapsed 

cancer/refractory cancer (NCT03187288). Cancer cells treated with CFI-400945 exhibit affects 

that are consistent with PLK-4 kinase inhibition, including dysregulated centriole duplication, 

mitotic defects, and cell death (Mason et al., 2014). CFI-400945 is a potent, orally active 
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inhibitor with IC50 value of 2.8 ± 1.4 nM for inhibition of PLK-4 in the treatment of solid tumors, 

pancreatic, lung and breast cancers (Sampson et al., 2015B; Lohse et al., 2017). CFI-400945 also 

inhibits the activity of other kinases such as, TrkA (6 nM), TrkB (9 nM), Tie-2 (22 nM), Aurora 

B (98 nM) at low concentrations. Interestingly, CFI-400945 does not inhibit PLK-1, PLK-2 and 

PLK-3 even at a concentration of 50 μM (Sampson et al., 2015B) this is proposed to be due to 

the most divergent structure of PLK-4 compared to other PLKs (Yu et al., 2015). However, 

computational studies at atomistic level to reveal the molecular mechanisms of binding between 

PLK-4 and CFI-400945 are not reported so far. 

CADD is a comprehensive and progressively developing research area and plays a crucial 

role in new drug discovery during the initial stages. It incorporates the information on protein 

sequence and structure similarities, homology modeling, virtual screening, molecular docking, 

scoring of lead molecules, MD simulations and estimation of binding free energy calculations. In 

this work I have studied the protein kinases which are in vitro tested and scanned for inhibition 

by CFI-400945 (Sampson et al., 2015B). The primary sequences and 3-D structures of these 

proteins were analysed in order to understand how PLK-4 shares a common inhibitor, CFI-

400945 with TrkA, TrkB, Tie-2, Aurora A, Aurora B and other proteins, based on multiple 

sequence alignments, structure-based sequence alignments and phylogenetic trees, repurposing, 

and by the examination of the 3-D motif in PLK-4 that shares similarity with other protein 

kinases and drug-drug similarity. Due to the growth in the field of computational chemistry and 

recent developments in deep learning, these methods were applied to identify new molecules to 

bind PLK-4 by virtual screening of molecules obtained from pharmacophore-based searches. 

These hit molecules were validated by molecular docking and MD simulations of the best 

docked complexes, followed by binding free energy calculations to compare their stability with 

reference to CFI-400945. These studies provide an effective method in the design of novel hit 

molecules and identify key residues for intermolecular interactions in PLK-4 which would be 

beneficial for further drug discovery studies. 
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3.2 Methods 

 

3.2.1 Data collection and homology modeling 

The primary sequences of PLK-4 and other protein kinases that were tested for inhibition 

by CFI-400945 (Sampson et al., 2015B) were collected in the FASTA format from the human 

kinome database (www.kinase.com). The structures of these proteins where available were 

collected from PBD (Berman et al., 2000). Amino acid mutations were recovered to wild-type 

protein sequences, missing amino acids in the PDB structures were added using Chimera 

(Pettersen et al., 2004). In the crystal structures of PLK-4, the activation loop is not defined from 

X-ray structures. Therefore, the PLK-4 model structure was built using multiple template protein 

homology modelling method in MODELLER (Šali & Blundell, 1993) using the crystal structures 

of PLK-4 (PDB ID: 3COK, unpublished results, 4YUR (Wong et al., 2015), and PLK-3 (4B6L, 

unpublished results). The best model was selected based on the ERRAT score (Colovos & 

Yeates, 1993), Ramachandran plot (Ramachandran et al., 1963) and ProSA Z-Score (Wiederstein 

& Sippl, 2007). In a protein structure, ERRAT assess the non-bonded atom-atom interactions, 

Ramachandran plot validates the stereochemical quality and ProSA indicates the overall model 

quality and measures the deviation of the total energy of the structure with respect to an energy 

distribution derived from random conformations. The validated model structure of PLK-4 was 

used for the purpose of molecular docking and MD simulations studies.  

3.2.2 Sequence alignment and phylogenetic trees 

Amino acid sequence alignment is a technique for comparison of a pair or multiple 

protein sequences. The collected protein kinase sequences from primary and tertiary structures 

were aligned using multiple sequence alignment method Clustal Omega (Madeira et al., 2019). 

Based on the 3-D structures of proteins, the amino acid sequences were separated into the 

outer residues and buried residues by applying the solvent accessibility criteria available in the 

DS 3.5. The number of grid points per atom was set to 240 with a probe radius 1.4 Å, residues 

are considered as exposed if the solvent accessible surface area is greater than 25% and as buried 

if the solvent accessible surface area is less than 10%. The amino acid sequence motifs thus 
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retrieved were analysed using the multiple sequence alignment methods. The Nexus output 

format for the multiple sequence alignment (Maddison et al., 1997) was used to generate a 

circular phylogenetic tree using interactive tree of life (iTOL) server (Letunic & Bork, 2019) and 

the interactions network was generated based on Cytoscape software (Shannon et al., 2003). 

3.2.3 Repurposing  

Repurposing is a technique that leads to search for similar binding sites and side-chain 

arrangements of residues in the ligand binding site of proteins. The identification of interface 

residues in PLK-4 protein 3-D structure permits to decipher the common binding sites in proteins 

that are reported to bind CFI-400945 with high affinity using in vitro studies. To enhance the 

utility of the inhibitor CFI-400945, the Drug ReposER server (Ab Ghani et al., 2019) was used to 

retrieve the proteins that share similar binding site with PLK-4 and their interface residues. 

3.2.4 3-D structural motif  

The 3-D structures of proteins are more conserved than their homology based 

conservation of primary structures at the amino acid sequence level. Therefore, similarity in 3-D 

structures can be exploited to identify the function of an unknown protein, and off-targets that 

are susceptible to bind the same inhibitor so as to design selective ligands that could bind to a 

similar 3-D motif. The 3-D motif which is also called as a structural motif is a space consisting 

of the side-chains of amino acids that arise from different secondary structural regions of a 

protein and come close together in 3-D space. In the absence of high sequence similarity in the 

primary structure of proteins, a search for the 3-D motifs in PLK-4 inhibitor binding site cannot 

be achieved by the use of conventional sequence alignment methods. The GSP4PDB webserver 

(Angles et al., 2020) was used which works based on the distances and gaps between residues, 

the similarity search for structural motifs was limited to four amino acid residues. 

3.2.5 Drug-drug similarity 

The protein kinase inhibitors from Protein Kinase Inhibitor Database (PKIDB) (Carles et 

al., 2018) that comprises 255 inhibitors were retrieved. The molecule CFI-400945 was added to 

this database in order to study its similarity to other inhibitors. The structure coordinates of CFI-
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400945 were converted to .sdf file format and was submitted to ChemBioServer 2.0 server 

(Karatzas et al., 2020) using structural similarity network and similarity metrics parameter set to 

“Hamming” with edge threshold set to 0.2. The obtained results were submitted to Gephi 

(Bastian et al., 2009) to represent the results in a network. 

 

3.2.6 Drug design based on deep learning model 

In the recent times, application of deep learning is growing in the field of drug design, 

where there is an availability of a large number of molecules which are active and inactive to a 

specific receptor. Deep learning based drug design methodology was used to generate a model 

from bioactivity data, and the model generated was used in virtual screening of databases. The 

DeepScreening webserver (Liu et al., 2019) which uses the bioactivity of CHEMBL24 database 

(Gaulton et al., 2017) was used and specified the model type to “Classification” in order to build 

inhibitor model for PLK-4. The generated model with high accuracy was used in virtual 

screening of the library of compounds that were built using Pharmit webserver (Sunseri & Koes, 

2016) based on the non-bonding interactions between PLK-4 and CFI-400945 complex. 

The pharmacophore model covered important pockets with structural motifs in PLK-4 

that were included as receptor and this target focused library of molecules generated was used in 

virtual screening towards deep learning model to search for the best molecules that bind to PLK-

4. The molecules with high score were transferred to molecular docking studies. 

3.2.7 Molecular docking  

Molecular docking is a technique employed to combine and fit a molecule within the 

binding site of a protein, to study the orientation of a molecule inside the receptor binding site 

that is stabilised by the formation of non-bonding interactions. The LibDock (Diller & Merz Jr, 

2001) incorporated into DS3.5 was used to dock CFI-400945 and the hit molecules selected from 

virtual screening into PLK-4 active site. The PLP force field (Gehlhaar et al., 1995) were 

selected for scoring the docking poses in the receptor pocket. 
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3.2.8 Molecular dynamics simulations 

            Conformational plasticity is the characteristic feature of protein 3-D structures. Molecular 

docking is achieved by shape and charge complementarity between the receptor and ligand, but 

this complexation needs to be confirmed for stability of receptor, inhibitor and inter-molecular 

interactions between them during MD simulations. Hence, the PLK-4 kinase domain bound to 

reference and hit molecules were subjected to MD simulations using GROMACS 5.1.2 (Hess et 

al., 2008; Van Der Spoel et al. 2005). Amber ff99SB force field was applied to the protein and 

small molecules using antechamber with ACPYPE, and the charge on the molecules was 

controlled by AM1-BCC (Hornak et al., 2006; Da Silva & Vranken, 2012; Wang et al., 2006). 

The unit cell was set to cubic box with 1.0 nm dimensions and each complex was solvated with 

SPC waters, Cl- and Na+ ions were added to neutralize the system (Berendsen et al., 1981). 

Long-range electrostatic interactions were treated using PME method (Darden et al., 1993; 

Essmann et al., 1995), with a real-space cutoff of 10 Å, PME order of 4, and a relative tolerance 

between long- and short-range energies of 10−6. Short-range interactions were evaluated using a 

neighbor list of 10 Å updated every 10 steps while Lennard-Jones (LJ) interactions and the real-

space electrostatic interactions were truncated at 9 Å.LINCS algorithm was applied to constrain 

the hydrogen bonds (Hess et al.,1997). 

The MD simulations protocol describes three main steps after topology generation, 

solvation and addition of ions; the first step is energy minimization of the system, where 50,000 

steps were run till the system reaches a maximum force lower than 1000 kJ/mol/nm2 and the 

purpose of this step is to discard the steric stress and let the system to become ideal for 

simulations. The next equilibration step is further divided into two stages. The system is set to 

constant number of molecules, volume and temperature (NVT), equilibrated and minimized until 

300 K temperature for 100 ps to allow the solvent and ions to equilibrate around the protein. In 

the next stage, the equilibration was set to constant number of molecules, pressure and 

temperature (NPT) (1 atm pressure and 300 K temperature) for 1 ns until the system reaches 

proper density. The temperature and pressure couplings were stabilised using V-rescale and 

Parrinello-Rahman methods, respectively (Bussi et al., 2007; Parrinello & Rahman, 1981). 

The equilibrated complex was subjected to 100 ns MD simulations and the output 

trajectories were analysed for RMSD and RMSF. The initial structures and the final refined MD 

simulated structures were used in relative binding free energy calculations to CFI-400945 and 

the hit molecules identified from deep learning. 



88 
 

3.3 Results  

3.3.1 Homology modelling 

The homology model of PLK-4 and its superimposition with the multiple template 

structures (3COK, 4YUR, 4B6L) is shown in Figure 3.1A. The structural regions; β1, β2 strands 

including G-rich loop (Asp11-Ile32), αB-and αC-helices (Lys45 to Leu67), and αH-helix 

(Val216 to Ala226) do not superimpose well between the crystal structures, indicating the 

regions of structural variations. Among the generated structure models, the best model was 

selected based on the ERRAT overall quality factor (83.9), Ramachandran plot (94.4% in most 

favoured regions, 4.8% in additional allowed regions) and ProSA Z-score (-6.38). These 

parameters indicate the validity of the PLK-4 homology model and is therefore used for all 

subsequent studies such as structure alignments, active site analyses, molecular docking, MD 

simulations and relative binding free energy calculations. 

 

Figure 3.1: A) Superimposition of the 3-D structures of PLK-4 multiple template model with the 

structural templates 3COK, 4YUR and 4B6L. B) The secondary structural regions are indicated in the 

PLK-4 model. 

3.3.2 Protein sequence alignment, and structure-based sequence alignment 

The amino acid sequences of 215 protein kinases that include PLK-1, PLK-2, PLK-3, 

PLK-4, TrkA, TrkB, Tie-2, Aurora A and Aurora B which were studied for inhibition by CFI-
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400945 using in vitro studies (Sampson et al., 2015B) were collected from the human kinome. 

All sequences were transferred to Clustal Omega server to generate multiple sequence alignment, 

the output format Nexus is accepted by iTOL server to generate circular phylogenetic tree. The 

phylogenetic relationship between 215 protein kinase domain sequences is shown as circular 

phylogenetic tree in Figure 3.2A. As can be seen from the Figure, PLK-1, PLK-2, PLK-3 and 

PLK-4 are present in one clade close to each other, and are also close to Aurora A and Aurora B, 

but these proteins are distant from TrkA, TrkB and Tie-2. This result is compatible with the 

amino acid sequence identities of PLK-4 with TrKA (24.52%), TrkB (26.21%), Tie-2 (27.62%), 

Aurora A (37.76%), Aurora B (35.71%), PLK-1 (40.93%), PLK-2 (40.41%) and PLK-3 

(44.04%). 

In the second step, the amino acid sequences of the kinase domain from the N-terminus 

till the DFG motif were extracted because this region forms the main catalytically active core 

comprising ATP/inhibitor binding site of a kinase domain. From this phylogenetic tree (Figure 

3.2B) the rearrangement of proteins within the clades was observed compared to Figure 3.2A. 

PLK-4 is now located closer to ULK-1 and ULK-2 and far from PLK-1, PLK-2 and PLK-3. 

Aurora A and Aurora B kinases are close to each other, but are distant from PLK-4. However, 

PLK-4 is away from TrkA, TrkB and Tie-2 as can be seen from Figure 3.2B. 

In the next step, in order to reduce the data size, Figures 3.2A and 3.2B; i.e. the 

phylogenetic relationships observed between the full-length kinase domain (Figure 3.2A) and the 

region retained from the first amino acid till the DFG motif (Figure 3.2B) were compared. The 

redundancy in proteins that lie within one clade in both the phylogenetic trees was optimised to 

retain only the representative sequences. For example, only one protein each from the PIM, 

EphA, PKC, FGFR family proteins were taken. As a result, the numbers of proteins were 

reduced from 215 to 132 and this facilitated easy review of the phylogenetic relationships. As 

expected, it was observed that the phylogenetic tree shown in Figure 3.2C is similar to Figure 

3.2A. The 3-D structures are available for 87 proteins and these were collected from PDB IDs as 

shown in the Table 3.1. The missing residues in some these protein structures were built using 

MODELLER and the amino acid mutations were recovered to the wild-type proteins using DS 

3.5. The circular phylogenetic tree of these proteins was built for the full-length kinase domain,  
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Figure 3.2: Phylogenetic trees of A) 215 kinases full-length domain. B) 215 kinases N-terminus till DFG 

motif. C) 132 kinases full-length domain. D) 87 kinases of known 3-D structures full-length domain and 

N-terminus till DFG motif. 
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and shorter kinase domain till the DFG motif, as shown Figure 3.2D. In these phylogenetic trees 

also PLK-4 is in a distinct clade and maintains distance from TrkA, TrkB and Tie-2. 

In the fourth and final set of analyses for generating multiple sequence alignment, the specific 

sequences from the protein 3-D structures were extracted. The structure was separated into outer 

residues and buried residues by using solvent accessibility protocol in DS 3.5 for 87 protein 

kinase domains. The amino acid residues collected from protein sequences represent more than 

50% of the kinase domain in the sequence length and are located on different secondary 

structural regions in the protein structures such as β1-, β2-, β3-, β4- strands, α-helices αB and αC 

in the N-terminal domain, α-helices αD to αK and the loop regions that connect these secondary 

structural elements as shown in Figure 3.3A. 

This exercise of finding the outer residues was carried out for all the 87 kinase structures. The 

PDB IDs of these proteins are shown in Table 3.1.The sequences based on structures were then 

submitted to multiple sequence alignment and the generated circular phylogenetic tree is shown 

Figure 3.3B. From this figure it is clear that PLK-4 is close toTrkA, TrkB, Tie-2 and Aurora 

family proteins, and importantly these proteins are distant from the PLK-1, PLK-2 and PLK-3 

proteins. To represent the result with better clarity, a network of these proteins was generated 

using Cytoscape (Figure 3.3B) to the see location of PLK proteins and it is confirmed that the 

proteins PLK-4, TrkA, TrkB, Tie-2 and Aurora A and B are close to each other. From the figure, 

it is also clear that other proteins such as ABL1 that are inhibited by CFI-400945 (Sampson et 

al., 2015B) lie within the same clade as PLK-4, indicating that this protein also has similar outer 

surface residues. 

Further, two sequence regions, K13VGNLLGKG21 which forms β1 strand and G-rich loop, and 

N94GEMNRY100 which forms a part of the hinge region and αD-helix were considered; these 

regions represent a combination of outer and medium buried residues in PLK-4. The multiple 

sequence alignment of equivalent regions from TrkA, TrkB, Tie-2, Aurora A and Aurora-B, 

PLK-1, PLK-2 and PLK-3 and the phylogenetic tree is shown in Figure 3.3C. This result 

demonstrates the similarity between PLK-4 and its non-family member proteins which are active 

towards CFI-400945. It is therefore proposed that the consideration of outer surface residues in 

the design of structure-based models will facilitate the leading part of inhibitors to enter into the 

active site of the protein as in the case of CFI-400945. 
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Table 3.1: The PDB IDs of 87 protein kinase structures which were used to find outer residues to apply 

the solvent accessibility criteria. 

PDB ID Kinase protein PDB ID Kinase protein PDB ID Kinase 

protein  

PDB ID Kinase protein PDB ID Kinase 

protein 

PDB ID Kinase protein 

1K2P BTK_Hsap 2WTK LKB1_Hsap 3GC8 p38b_Hsap 4CRS PKN2_Hsap 4WA9 ABL1_Hsap 5U6B AXL_Hsap 

1K3A IGF1R_Hsap 2X0G DAPK1_Hsap 3LCD FMS_Hsap 4FG7 CaMK1a_Hsap 4Y72 CDK1_Hsap 5U6C MER_Hsap 

1U59 ZAP70_Hsap 2Y7J PHKg2_Hsap 3L8P TIE2_Hsap 4GU6 FAK_Hsap 4ZY4 PAK2_Hsap 5VIL ASK1_Hsap 

1Y57 SRC_Hsap 2YAC PLK-1_Hsap 3LCS ALK_Hsap 4I6H PLK-2_Hsap 5C26 SYK_Hsap 5UU1 VRK2_Hsap 

1YRP DAPK3_Hsap 2YCF CHK2_Hsap 3OMV RAF1_Hsap 4IW0 TBK1_Hsap 5CAV EGFR_Hsap 6BDL PKG1_Hsap 

1ZLT CHK1_Hsap 3A4O LYN_Hsap 3PLS RON_Hsap 4IWD MET_Hsap 5D7V BRK_Hsap 6BFN IRAK1_Hsap 

2BIY PDK1_Hsap 3BHH CaMK2b_Hsap 3Q32 JAK2_Hsap 4IXP MELK_Hsap 5EBZ IKKa_Hsap 6C0U PKACa_Hsap 

2CMW CK1g1_Hsap 3BKB FES_Hsap 3SXR BMX_Hsap 4L3J p70S6K_Hsap 5HVK LIMK1_Hsap 6C9D MARK1_Hsap 

2DQ7 FYN_Hsap 3COK PLK4_Hsap 3T9T ITK_Hsap 4QTB Erk1_Hsap 5KVT TRKA_Hsap 6EIM LOK_Hsap 

2ESM ROCK1_Hsap 3COM MST1_Hsap 3TT0 FGFR1_Hsap 4RA4 PKCa_Hsap 5LXC DYRK2_Hsap 6FDY ULK3_Hsap 

2G01 JNK1_Hsap 3D7U CSK_Hsap 3UO5 AurA_Hsap 4REW AMPKa1_Hsap 5L52 TAK1_Hsap 6FYK CLK2_Hsap 

2HK5 HCK_Hsap 3DLS PASK_Hsap 3ZBF ROS_Hsap 4RPV PIM1_Hsap 5MJA EphB1_Hsap 6GQO KDR_Hsap 

2IVS RET_Hsap 3DLZ Haspin_Hsap 4AF3 AurB_Hsap 4TNB GPRK5_Hsap 5NG0 RIPK2_Hsap 6HMD CK2a2_Hsap 

2OF2 LCK_Hsap 3FZR PYK2_Hsap 4AT3 TRKB_Hsap 4UY9 MLK1_Hsap 5O0Y TLK2_Hsap 6NPZ AKT1_Hsap 

2VD5 DMPK1_Hsap 

  

4B6L PLK3_Hsap 

  

5O26 WNK3_Hsap 
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Figure 3.3: A) Outer and buried regions of PLK-4 based on solvent accessibility surface area. B) 

Phylogenetic tree of outer residues extracted based on solvent accessibility from 87 crystal structures and 

its network. C) Multiple sequence alignment of (13-21 amino acid sequence region) and (94-100 amino 

acid sequence region) active site residues in PLK-4 and matched residues in TrkA, TrkB, Tie-2, Aurora 

A, Aurora B, PLK-1, PLK-2 and PLK-3. 
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3.3.3 Repurposing  

The proteins that have arrangement of 3-D side-chain residues in the ATP binding site 

which are similar to PLK-4 crystal structure (4JXF) were explored using ReposER server. The 

resulting proteins comprised both kinase and non-kinase proteins, and the kinase domain  

complexes that showed  RMSD  lower than 1 Å only were collected. 

From the result of repurposing, one complex for each protein type was selected, the list of 

proteins, their PDB IDs and the list of interface residues is given in Table 3.2. Most of the 

interface residues that are close to the scaffold from ligand represent hydrophobic residues and 

these interface residues in PLK-4 are Leu18, Val26, Ala39 and Leu143 along with the other 

residues Gly19, Arg28, Lys41, Ile72, Leu73, Leu87, Leu89, Cys92, Gly95, Leu127, Ile152, 

Ala153, Asp154 and Phe155 that also contribute to a lesser extent. From this result the kinases 

that have similar 3-D binding site and interface residues as PLK-4 were retrieved. This can help 

to improve the inhibitors selectivity and design novel and more potent inhibitors to PLK-4 by 

exploiting other key residues to achieve selectivity. 

Table 3.2: Binding site similarity of PLK-4(4JXF) with the binding site of other kinases. 

S.No Kinase protein Interface residues 

 

1 Abl1 (1IEP) Leu18, Val 26, Ala39,Gly95, Leu143,Ala153 

2 B-Raf (1UWJ) Val 26, Ala 39, Leu73, Cys 92, Leu127 

3 SYK  (1XBB) Leu 18, Val 26, Ala 39, Met 91,Gly  95,Leu 143 

4 EGFR(1XKK) Leu18,Val26, Lys41, Leu75, Leu87 

5 c-Met (2WGJ) Val 26,  Ala39, Leu73, Leu89, Gly95, Ala153, Asp154 

6 ALK (2XP2) Leu18, Val26, Ala39, Leu89, Gly95, Leu143, Asp154 

7 ErbB4 (3BBT) Val26, Ala39, Lys41, Leu87, Gly95, Leu43, Phe155 

8 Kit (3G0E) Leu18, Val26, Ala39, Cys92, Gly95, Leu143 

9 FLK1 (3WZD) Leu18, Val26, Ala39, Cys92, Gly95, Phe155 

10 ROS1 (3ZBF) Ala39, Leu73, Leu89, Gly95, Leu143 

11 Aurora(4O0U) Val26, Ala39, Leu73, Leu143 

12 FGFR4 (4TYJ) Leu18, Val26, Ile72, Ile152 

13 C-Src (4U5J) Leu18, Val26, Ala39, Gly95, Leu143, Asp154 

14 LOK (5AJQ) Leu18, Gly19, Cys92, Gly95, Leu143, Ala153, Asp154 

15 PTK6 (5H2U) Leu18, Val26, Ala39, Leu73, Gly95, Leu143 
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16 MYT1 (5VCY) Leu18, Val26, Ala39, Lys41, Leu87, Cys92 

17 GAK (5Y7Z) Arg28, Leu18, Val26, Lys41, Cys92, Gly95, Leu143 

 

3.3.4 3-D structural motif  

3-D structural motif comprises the amino acid residues that come close together not 

necessarily because of their arrangement in the linear sequence, but they come spatially close 

together in order to form 3-D space from different regions of secondary structure and share 

similar 3-D space with other proteins and those motifs could be a part of the protein active site or 

outside the active site. 

As per the survey of deposited kinase structures complexed with inhibitors in PDB, most 

of the inhibitors consist of hydrophobic skeletal scaffold (de Freitas & Schapira, 2017) which 

shows that hydrophobic inhibitors represent higher frequency. Since most of the buried amino 

acid residues in the active site are hydrophobic, highly efficient and designed inhibitors do not 

form hydrogen bonds with the hinge region residues and can be stabilized by hydrophobic 

interactions. For instance, one of the recently reported inhibitors, AAPK-25 is designed as a dual 

inhibitor for Aurora/PLK family proteins based on the naphthalene core scaffold (Qi et al., 

2019). The binding of CFI-400945 to PLK-4 involves binding patterns with hydrophobic 

residues, Leu18, Val26, Ala39 and Leu143 from up and down vertically and Leu73 and Leu89 

sideways horizontally as shown in the Figure 3.4A. The structural superimposition of PLK 

family proteins, TrkA, TrkB, Tie-2, Aurora A, Aurora B showed 3-D motif in the ATP binding 

site as indicated in Figure 3.4A.   

The amino acid residues interacting with the core scaffold in PLK-4 are identical to four 

residues in TrkA, TrkB, Aurora A, Aurora B; whereas in Tie-2, two residues are not identical but 

retain the hydrophobic character.  In the case of other PLK family members, only two of these 

residues are identical in PLK-1, PLK-2 and PLK-3. The 3-D motif of the active site residues in 

PLK-4 share greater similarity with TrkA, TrkB, Aurora A, Aurora B and Tie-2 and this further 

explains the nature of outer residues as described in Figure 3.3B. 
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Figure 3.4: A) Interaction pattern of the hydrophobic 3-D motif in PLK-4 for binding to CFI-400945 and 

regions in PLK-4 matched with other important kinases. B) Hypothetical model of 3-D motif, their 

distances and gaps in PLK-4 (4JXF) C) Similarity of CFI-400945 with kinase inhibitors that are FDA 

approved and in clinical trials. 
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To decipher the 3-D motif for all proteins by structure superimposition is not a viable 

methodology, however, searches to discover identical motifs as in Figure 3.4A and to identify 

other proteins that share similar 3-D motif with PLK-4 is a viable strategy to find new drug 

targets that bind to an inhibitor. A hypothetical model based on PLK-4 hydrophobic 3-D motif 

was built, and calculated the distance between the residues Leu18, Val26, Ala39 and Leu143 

using GSP4PDB webserver to reveal the kinase domains with similar hydrophobic cavity. 

GSP4PDB webserver searches for graph-based structural patterns (GSP) in protein-ligand 

complex; protein and ligand atoms are represented by nodes, and edges are used to represent 

distances and gap between nodes. Our searches are based on the distance and gap between 

residues, and distance between the protein and ligand atoms. The hydrophobic 3-D motif model 

for PLK-4 was built, and its distance in the database is shown in Figure 3.4B. The distance 

between amino acid residues and ligand ‘631’ in PDB ID: 4JXF are in the range of 3.4 to 3.7 Å, 

with a gap between residues Leu18 and Val26 (7 residues), Val26 and Ala39 (12 residues), and 

Ala39 and Leu143 (103 residues). In order to search for proteins with similar 3-D motif as in 

PLK-4, the distance between protein and ligand, and the gap between amino acid residues was 

changed as shown in Figure 3.4B.  The ligand was set to ‘ANY’ so as to identify most kinases 

and related protein structures. On the whole, 7,568 protein structures were retrieved, of these the 

kinase structures collected without redundancy are shown in Table 3.3.The second 3-D motif 

which is around the indolinone ring of CFI-400945 that interacts with residues of PLK-4 within 

3 Å are Lys41 (located on β3 strand), Glu96, Ser140 and Asp154 (part of DFG motif).The Lys41 

and Asp154 are involved in ionic interactions and this interaction is most common among the 

kinases. Based on the distance and gaps criteria as shown in Figure 3.4B, 1,069 proteins were 

retrieved and the selected kinases without any redundancy are shown in Table 3.4. Upon 

examining the retrieved structures for similar residues, it was observed that only three residues 

are identical to PLK-4. Glu in Table 3.4 corresponds to the Glu90 in the hinge region of PLK-4 

and does not correspond to Glu96 as desired. Intriguingly, the methoxy substitution on the 

indolinone (molecule 48) is pointing towards Glu96 side-chain and in the absence of this 

methoxy substitution (molecule 47) the inhibitory activity reduced by nearly ~2.6 fold (Sampson 

et al., 2015B). 
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Table 3.3: Hydrophobic 3-D motif (Leu18, Val26, Ala39, Leu143) in PLK-4 for binding to CFI-400945 

and the same sequence motif identified in other kinases. 

S.No Protein 

ID 

Name 3-D motif residues 

1 1MUO Aurora A Leu139, Val147, Ala160, Leu263 

2 1NVQ CHK1 Leu15, Val23, Ala36, Leu137 

3 1NXK MK 2 Leu70, Val78, Ala91, Leu193 

4 1OEC FGFR2 Leu487, Val495, Ala515, Leu633 

5 1OKY PDK1 Leu88, Val96, Ala109, Leu212 

6 1OPL C-ABL Leu267, Val275, Ala288, Leu389 

7 1PKG C-KIT Leu595, Val603, Ala621, Leu799 

8 1S9I MEK2 Leu78, Val86, Ala99, Leu201 

9 1U4D ACK1 Leu132, Val140, Ala156, Leu259 

10 1XBB SYK Leu377, Val385, Ala400, Leu501 

11 1XJD PKC-Theta Leu386, Val394, Ala407, Leu511 

12 1XKK EGFR Leu718, Val726, Ala743, Leu844 

13 1XR1 PIM1 Leu44, Val52, Ala65, Leu174 

14 1YVJ JAK3 Leu828, Val836, Ala853, Leu956 

15 1YWN VEGFR2 Leu838, Val846, Ala864, Leu1017 

16 1Z57 CLK1 Leu167, Val175, Ala189, Leu295 

17 2ACX GRK6 Leu192, Val200, Ala213, Leu318 

18 2B7A JAK2 Leu855, Val863, Ala880, Leu983 

19 2C0I SRC Leu247, Val268, Ala285, Leu381 

21 2CN5 CHK2 Leu226, Val234, Ala247, Leu354 

22 2HW7 MNK2 Leu90, Val98, Ala111, Leu212 

23 2I1M cFMS Leu588, Val596, Ala614, Leu785 

24 2IVS RET LEU730, Val738, Ala756, Leu881 

25 2IWI PIM2 Leu38, Val46, Ala59,Leu170 

26 2J7T STK10 Leu42, Val50, Ala63, Leu164 

27 2JC6 CAMK1 Leu29, Val37, Ala50, Leu151 

28 2OZO ZAP-70 Leu344, Val352, Ala367, Leu468 
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29 2R4B ERBB4 Leu724, Val732, Ala749, Leu850 

30 2W4J DAPK2 Leu19, Val27, Ala40, Leu93 

31 2W4O CAMK2 Leu52, Val60, Ala73, Leu171 

32 2WU7 CLK3 Leu162, Val170, Ala184, Leu290 

33 2X7G SRPK2 Leu98, Val106, Ala119, Leu232 

34 2Z7Q RSK-1 Leu68, Val76, Ala92, Leu194 

35 3AGL PKA Leu49, Val57, Ala70, Leu173 

36 3AQV AMPK Leu22, Val30, Ala43, Leu146 

37 3BEG SRPK1 Leu86, Val94, Ala107, Leu220 

38 3E8N MEK1 Leu74, Val82, Ala95, Leu197 

39 3EYG JAK1 Leu881,Val889, Ala906, Leu1010 

40 3FME MEK6 Leu59, Val67, Ala80, Leu186 

41 3FZP PYK2 Leu431, Val439, Ala455, Leu556 

42 3HMI ABL2 Leu294, Val302, Ala315, Leu416 

43 3MTL CDK16 Leu171, Val179, Ala192, Leu293 

44 3NR9 CLK2 Leu169, Val177, Ala191, Leu297 

45 3NYX TYK2 Leu903, Val911, Ala928, Leu1030 

46 3O23 IGF1-R KINASE Leu1005, Val1013, Ala1031, Leu1126 

47 3OCS BTK Leu408, Val416, Ala428, Leu528 

48 3PP0 ERBB2 Leu726, Val734, Ala751, Leu852 

49 3R1N MK3 Leu50, Val58, Ala71, Leu173 

50 3R22 MMK Leu139, Val147, Ala160, Leu263 

51 3RHX FGFR1 Leu484, Val492, Ala512, Leu630 

52 3TXO PKC Eta Leu361, Val369, Ala382, Leu486 

53 3VRZ HCK  Leu273, Val281, Ala293,Leu393 

54 3VW6 ASK1 Leu686, Val694, Ala707, Leu810 

55 3ZOS DDR1 Leu616, Val624, Ala653,Leu773 

56 3WZE KDR Leu840, Val848, Ala866,Leu1035 

57 3AOJ TRKA  Leu516, Val524, Ala542, Leu657 

58 4AOT LOK Leu42, Val50, Ala63, Leu164 

59 4AT3 TRKB Leu560, Val568, Ala586, Leu699 

60 4C57 GAK Leu46, Val54, Ala67, Leu180 
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61 4C8B RIPK2 Leu24, Val32, Ala45, Leu135 

62 4CRS PKN2 Leu663, Val671, Ala684, Leu789 

63 4DN5 NIK Leu406, Val414, Ala427, Leu522 

64 4K33 FGFR2 Leu478, Val486, Ala506, Leu624 

65 4L3J P70S6K1 Leu74, Val82, Ala98, Leu216 

66 4NUS RSK2 Leu74, Val82, Ala98, Leu200 

67 4OTH PRK1 Leu627, Val635, Ala648, Leu753 

68 4RT7 FLT3 Leu616, Val624, Ala642, Leu818 

69 4USF SLK Leu40, Val48, Ala61, Leu162 

70 4YHJ GRK4 Leu193, Val201, Ala214, Leu319 

71 5FTO ALK Leu1122,Val1130, Ala1148,Leu1256 

72 5GRN PDGFRA Leu599, Val607, Ala625, Leu825 

73 5WVD MNK1 Leu55, Val63, Ala76, Leu177 

74 6FDZ ULK3 Leu20, Val28, Ala42, Leu144 

75 6FYV CLK4 Leu167, Val175, Ala189, Leu295 

76 6G76 RSK4 Leu79, Val87, Ala103, Leu205 

77 6GR8 AURKC Leu49, Val57, Ala70, Leu172 

78 6QAS ULK1 Leu21, Val29, Ala44, Leu145 

79 6QJ7 SGK1 Leu49, Val57, Ala70, Leu173 

80 4AF3 Aurora B Leu83, Val91, Ala104, Leu207 

 

Table 3.4: 3-D motif (Lys41, Glu96, Ser140, Asp154) in PLK-4 for binding to indolinone in CFI-400945 

and the same motif identified in other kinases. 

S.No Protein 

ID 

Name 3-D motif residues 

1 1WZY ERK2 Lys54, Glu109, Ser153, Asp167 

2 1S9I  MEK2 Lys101, Glu148, Ser198, Asp212 

3 2IN6 Wee1 Lys328, Glu377, Ser430, Asp463 

4 2Y4I MEK1 Lys97, Glu144, Ser194, Asp208 

5 2XS0 JNK Lys55, Glu109, Ser155, Asp169 

6 3ALO MKK4 Lys131, Glu179, Ser233, Asp247 

7 3DA6 JNK3 Lys93, Glu147, Ser193, Asp207 
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8 3DTC MLK1 Lys171, Glu221, Ser272, Asp294 

9 3VN9 MAP2K6 Lys82, Glu130, Ser183, Asp197 

10 3ZIM PI3Kα Lys802, Glu849, Ser919, Asp933 

11 4CXA CDK12-CYCLIN K Lys756, Glu814, Ser863, Asp877 

12 4D9T RSK2 Lys451, Glu494, Ser543, Asp561 

13 4F99 CDC7 Lys90, Glu138, Ser181, Asp196 

14 4Y83 COT Kinase Lys133, Glu208, Ser257, Asp270 

15 5BMS PAK4 Lys350, Glu399, Ser445, Asp458 

16 5BYY ERK5 Lys84, Glu141, Ser186, Asp200 

17 5EFQ CDK13-CYCLIN K Lys734, Glu792, Ser841, Asp855 

18 5UY6 CAMKK2B Lys173, Glu268, Ser316, Asp330 

19 5Z1E MAP2K7 Lys165, Glu213, Ser263, Asp277 

20 6D3K PKR Lys296, Glu367, Ser418, Asp432 

21 6FYO CLK1 Lys191, Glu242, Ser299, Asp325 

22 6CD6 CAMKK1A Lys136, Glu199, Ser279, Asp293 

 

The list of proteins shown in Tables 3.3 and 3.4 indicate the proteins that share similar 

binding cavity as PLK-4 and the drug design studies on PLK-4 could also involve these proteins 

as targets. However, it is interesting to see that the hydrophobic 3-D motif searches identified 

Aurora A, Aurora B, TrkA, TrkB confirming that the hydrophobic regions in the binding pocket 

dictate CFI-400945 binding to PLK-4. Amino acids such as Glu96 and Ser140 dictate the 

specificity of CFI-400945 in binding to PLK-4. This method based on the distance and gap 

between residues in 3-D space appears to be a good strategy to identify structural motifs that are 

otherwise difficult to be discovered based on primary sequence alignments. 

3.3.5 Drug-drug similarity  

The inhibitor similarity studies can resolve the relationship between binding to ‘on’ and 

‘off’ protein targets. Analysis of CFI-400945 for similarity with other kinase inhibitors in clinical 

trials were taken from PKIDB using the webserver ChemBioServer 2.0 with edge weight control. 

The total number of edges for 255 drugs also in clinical trials were 64,770 and was reduced to 

2,207 with an edge weight correlation (0.3,0.3). The inhibitors shown to be similar to CFI-
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400945 along with their protein targets are, Axitinib (Abl), Ponatinib (Abl, PDGFRα, VEGFR2, 

FGFR1 and Src), Glesatinib (c-Met, VEGFR1/2/3, Ron and Tie-2), Vemurafenib (B and C-Raf, 

SRMS, ACK1 and MAP4K5), Varlitinib (EGFR) and others, as shown in Figure 3.4C. 

3.3.6 Molecular docking  

The ligand ‘631’ from the crystal structure of PDB ID: 4JXF was modified to match the 

structure of CFI-400945, followed by energy minimization in DS 3.5. This CFI-400945 was 

docked into the active site of the homology model of PLK-4 using LibDock. The docking pose 

that showed lower RMSD when compared with the ligand bound to PDB ID: 4JXF and a 

conformation that makes hydrogen bonding interactions with amino acid residues Lys41, Glu90 

and Cys92 as observed in the crystal structure was selected. The best docking pose in complex 

with PLK-4 was transferred to MD simulation studies.  

3.3.7 MD simulations 

The best docked pose of CFI-400945 in the PLK-4 model was submitted for 100 ns MD 

simulations and the simulations trajectory was analysed. The RMSD of Cα atoms for protein is 

less than 2.5 Å and is less than 1.5 Å for CFI-400945 as shown in Figure 3.5A. The 

superimposition of the input PLK-4 structure and the conformation from the last frame at 100 ns 

of MD simulations is shown in Figure 3.5B. In the homology model of PLK-4, the αC-helix is 

similar to 4YUR, whereas during the MD simulations, a significant movement of αC-helix was 

observed and it resembles the crystal structure of 3COK. Dynamical movement of αC- helix is 

one of the parameters observed in the conformational flexibility during the ligand binding and 

activation/inactivation of kinases. 

The RMSD of αB and αC-helices for the region (Asp44-Tyr78) as shown in Figure 3.5A 

during MD simulations reached upto 2.5 Å. The region Glu80-Val105 that forms β5 strand, 

hinge region and αE-helix has lower RMSD (1.5 Å) and this region has greater structural 

stability. The RMSF plot of the protein (Gly6 – Ser266 amino acid residues) is shown in the 

Figure 3.5A. It can be seen that most regions in the protein structure have low RMSF indicating 

the structural stability. The regions with RMSF greater than 2.5 Å are Ser31-His33 (β2), Pro164-

His165 and Thr184-Arg185 (activation loop) and Thr213 -Lys217 loop connecting αH-helix and 

αG-helix. 
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Figure 3.5: MD simulations trajectory analyses. A) RMSD plots of PLK-4 bound to CFI-400945, RMSD 

plots of some specific regions in protein, RMSF plots of residues during 100 ns MD simulations. B) 

Superimposition of 100 ns frame with template proteins. 

3.3.8 Deep learning based drug design and pharmacophore models 

The protein target PLK-4, with inhibitor molecule ID: CHEMBL3788 contains 763 

inactive and 420 active molecules in the DeepScreening server. A model with the criteria for 

hyper-parameters set to, learning rate: 0.001, batch size 16, number of neurons 100, number of 

hidden layers 2, activation function ReLU, loss function cross-entropy, features based on CDK 

finger print and model type: classification was selected and submitted to the DeepScreening 

server. The model generated had an accuracy of 0.8 and AUC of 0.87 as shown in the Figure 

3.6A. These parameters suggest high accuracy and therefore suitability of the model to predict 

new lead molecules for PLK-4 inhibition. 
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Figure 3.6: A) Accuracy and AUC of model for PLK-4 generated in DeepScreening webserver using 

“Classification” method. B) Phamacophore model and three aromatic features required for binding 

important pockets in the PLK-4 active site are indicated as spheres. C) 3-D structures of hit molecules 

selected from virtual screening with high score. 
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A focused library of compounds were prepared for PLK-4 using the Pharmit server. In 

the PLK-4 active site sphere, three aromatic ring features in the pharmacophore model were 

selected which are located in the important pockets comprising amino acid residues discussed in 

3-D motif as shown in Figure 3.6B. This pharmacophore model was used for searching ZINC 

database (Irwin et al., 2012) available in the Pharmit webserver. The parameters in Pharmit 

server were set to molecular weight equal to or less than 550 D, one conformation for each 

molecule, receptor with tolerance 1 was selected. Out of the 13,666,888 molecules in the ZINC 

database, 1,303,999 molecules were retrieved from the pharmacophore searches. Of these, only 

25,000 molecules with lower RMSD relative to CFI-400945 were transferred to virtual screening 

by uploading them into DeepScreening webserver. The 15 best molecules which have high score 

were selected and are shown in Figure 3.6C.  

These 15 molecules were validated by molecular docking using LibDock, 100 conformers were 

generated for each molecule and docking was carried out within the active site of PLK-4 defined 

based on CFI-400945 binding site. The best docking conformer for each molecule is assessed 

based on the PLP scoring function and the hydrogen bonding interactions formed with Glu90 and 

Cys92 in the hinge region of PLK-4. The PLP scoring values and DeepScreening scores are 

provided in Table 3.5. Three complexes of PLK-4 when bound to the molecules ZINC21805908, 

ZINC33268158 and ZINC11913358 which form non-bonding interactions with the active site 

residues and that occupy binding pockets similar to CFI-400945 were proceeded for 100ns MD 

simulations. MD simulations studies reveal their structural stability and quantify interactions 

based on binding free energy calculations to compare them with reference inhibitor, CFI-400945. 
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Table 3.5: The list of molecules selected by virtual DeepScreening along with their dock score into PLK-

4. 

S.No Compound ID PLP1 Score after 

docking 

DeepScreening score 

1 CFI-400945 -123.74  

2 ZINC223848977 -96.47 1 

3 ZINC11913358 -102.6 1 

4 ZINC3342922 -87.23 1 

5 ZINC14883927 -106.3 1 

6 ZINC36618891 -102.41 0.9999 

7 ZINC21805908 -94.02 0.9999 

8 ZINC8703986 -99.48 0.9998 

9 ZINC36613202 -87.26 0.9998 

10 ZINC71937887 -111.33 0.9998 

11 ZINC12769652 -104.48 0.9998 

12 ZINC65003470 -90.16 0.9997 

13 ZINC104431163 -109.7 0.9996 

14 ZINC33085806 -100.46 0.9996 

15 ZINC20417679 -96.14 0.9994 

16 ZINC33268158 -109.23 0.9976 

 

The molecules ZINC21805908, ZINC33268158 and ZINC11913358 identified from 

DeepScreening and molecular docking are stabilised in the active site of PLK-4 complexes as 

revealed from the MD simulations studies. The complexes were stabilized in less than 5 ns 

during MD simulations and only ZINC21805908 stabilized at 30 ns and their RMSD is stable 

and comparable with the reference inhibitor CFI-400945. These molecules bind to the cavity 

formed by the residues Leu17, Leu18, Gly19, Lys20, Val26, Ala39, Lys41, Leu73, Leu89, 

Glu90, Met91, His93, Asn94, Gly95, Glu96, Arg99, Tyr100, Asn103, Ser140, Asn141, Leu143, 

Ala153, Asp154 and form hydrogen bonding interactions with Leu18, Glu90, Cys92 as shown in 

Figure 3.7. This study also validated the results obtained from DeepLearning models and 

molecular docking.  
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Figure 3.7:A) The 2-D representation of interactions for hit molecules with PLK-4. B) Superimposition 

of frame at 5 ns (blue) with last frame at 100ns (yellow) and ZINC21805908 stabilized at 30 ns and its 

superimposition at 30 and 100 ns.C) Stable hydrogen bonding during MD simulations for 100ns. D) 

RMSD of CFI-400945 and hits molecules during 100 ns MD simulations. 

The last 10 ns of the MD simulations trajectories comprising 1000 frames for each 

complex and CFI-400945 were transferred to g_mmpbsa calculations (Kumari et al., 2014) and 

their binding free energy was calculated as shown in Table 3.6. 
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Table 3.6: Various contributions to binding free energies (kJ/mol) for CFI-400945 and hit molecules 

when bound to PLK-4. 

Molecules vdW Electrostatic Polar solvation 

energy 

SASA Binding free 

energy 

CFI-400945 -233.996±0.403 -85.309±0.319 222.798±0.416 -23.799±0.030 -120.291±0.408 

ZINC21805908   -239.533 ± 0.390 -36.395± 0.392 179.318±0.975 -22.348±0.034 -118.999± 0.655 

ZINC33268158 -202.835±0.347 -54.765±0.329 187.339±0.468 -19.750±0.029 -90.009± 0.397 

ZINC11913358 -188.134±0.381 -16.319±0.223 117.337   ±0.383 -18.642±0.030 -105.777±0.404 

 

The binding free energies of molecules, CFI-400945 (-120 kJ/mol) and ZINC21805908 is (-119 

kJ/mol) are nearly similar to each other.  The molecule ZINC11913358 has (-106 kJ/mol), and 

binding free energy to ZINC33268158 is (-90 kJ/mol). The energy contribution from non-polar 

term expressed as solvent accessible surface area (SASA) is nearly similar for CFI-400945 and 

the three ligands. Among the polar terms, the major driving force for the binding between PLK-4 

and CFI-400945, and the three ligands is the van der Waals interaction, with highest contribution 

from ZINC21805908 (239.533 ± 0.390 kJ/mol) and contribution from ZINC11913358 is (-

188.134±0.381 kJ/mol). The contribution from electrostatic polar energy of the four molecules 

binding to PLK-4 is variable and ranges between (-16.319±0.223 to -85.309±0.319 kJ/mol). 

As shown in Figure 3.8, the residues that contribute to the binding of CFI-400945 and the 

identified hit molecules are Leu73, Glu74, Glu90-Glu96, Arg99, Tyr100, Ser140-Leu143, 

Ala153 and Asp154 in the negative scale, and contribution in the positive scale from Leu18, 

Gly19-Gly21, Val26 and Ala39. This positive energy values are observed due to the high 

contribution from apolar energy. Further, Lys41 contributes to the binding of CFI-400945 and 

ZINC33268158 by the formation of hydrogen bonding interactions during MD simulations. 
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Figure 3.8: Binding free energy and contribution of amino acid residues in PLK-4 for binding to CFI-

400945 (reference) and hit molecules during the last 10 ns of MD simulations. 
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3.4 Discussion 

Protein kinases represent one of the best drug targets for cancer intervention. There is an increase 

in the number of approved kinase inhibitors and numerous inhibitors are still in various phases of 

clinical trials and some of these inhibitors are cytostatic which leads to cell cycle arrest and 

apoptosis (Gross et al., 2015). Study of selective and multi-kinase inhibitors is still a subject 

great interest because of the high sequence and structural similarity shared between the kinases 

(Bradley et al., 2021; Modi & Dunbrack, 2019). Several studies report the investigation of 

protein kinases, sequences, structures and inhibitor binding, and are provided in easy to access 

formats such as online databases (Bradley & Beltrao, 2019; Miljković & Bajorath, 2018; Krupa 

et al., 2004; Tina et al., 2007). CFI-400945 is one of inhibitors that inhibits PLK-4 and some of 

the other kinases with high affinity at nanomolar concentrations. Due to the developments in the 

field of computational chemistry and bioinformatics, several online tools are available as local 

host software and open source. Hence, the studies on sequence and structure analyses of several 

protein kinases was performed based on multiple sequence alignment and phylogentic trees, 

Repurposing, drug-drug similarity are also exploited to understand interference of bioactivity in 

PLK-4 and with others drug targets as shown in Figure 3.4C. Study of active site 3-D space with 

fewer number of residues that interact with the inhibitor core scaffold and fragments can be 

achieved by a number of protocols to search for 3-D structural motif such as IMAAAGINE 

(Nadzirin et al., 2013) and GSP4PDB. PLK-4 displays 3-D hydrophobic motif and shares a 

similar region with 80 protein kinases which were retrieved using recent protocols based on 

distance between atoms and interacting residues and gap between amino acid residues of protein 

as shown in Figure 3.4B. The 3-D motif around indolinone has four residues of which only 3 

residues are identical with PLK-4, and Glu96is more specific to PLK-4. The other research 

groups have made changes on indolinone which are closer to Glu96 and Ser140 to generate 

molecules such as YLZ-F5 and YLT-11 (Zhu et al., 2020; Lei et al., 2018). 

SBDD studies using pharmacophore and QSAR can be exploited to select more potent 

molecules by identification of the best features in an inhibitor which binds to key amino acid 

residues in the protein active site. 
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Based on the PLK-4-CFI-400945 interactions pattern, three important pharmacophore 

features were selected as shown in Figure 3.6B, and were used to perform searches via virtual 

screening. The library of molecules prepared using Pharmit Screening was used as input to 

DeepScreening webserver. 

CFI-400945 is a PLK-4 inhibitor which is in clinical trials, and other inhibitors modified from 

CFI-400945 are (E)-4-(3-arylvinyl-1H-indazol-6-yl) pyrimidin-2-amine derivatives, YLZ-F5,  

YLT-11, and indolin-2-one derivatives were designed  based on computational methods (Liu et 

al., 2017; Zhu et al., 2020; Lei et al., 2018; Shiri et al., 2016). Further, centrinone is reported as 

selective PLK-4 inhibitors (Wong et al., 2015). The reported inhibitors to PLK-4 are limited and 

are mostly designed as a part of analogue-based drug design. Hence, CFI-400945 PLK-4 

complex 3-D structure and motifs have been studied based on computational methods and the 

retrieved information was used to design new inhibitors. Based on active and inactive molecules 

from ChEMBL database examined towards PLK-4 inhibition, a model was built using deep 

learning classification method. CFI-400945 analogs represent 10% of molecules which were 

used to build model based on deep learning and model accuracy as shown in Figure 3.6A. The 

model has high accuracy and was used to screen library of molecules. Fifteen molecules that are 

more diversified from reported molecules were selected, and three of them which were 

transferred to validation studies were found to be stable and bind to PLK-4 based on binding free 

energies shown in Figure 3.7 and Table 3.6. 
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3.5 Conclusions 

The similarities of PLK-4 with other kinases such as TrkA, TrkB, Tie-2, Aurora A, 

Aurora B, PLK-1, PLK-2, PLK-3 and other proteins that were reported to be inhibited by CFI-

400945 were studied in many different ways such as sequence and structure comparisons, by 

considering the full kinase domain, N-terminal till the DFG motif, outer residues extracted from 

crystal structure of kinases which involve 3-D motifs comprising the active site. The sequence 

comparison based on structures show better correlation to understand how multiple targets are 

affected by the inhibitor. Searches based on 3-D structural motif is also an efficient method to 

reveal similar binding pockets in the reported crystal structures of proteins that would have 

implications in the drug repurposing. Pharmacophore features based design of inhibitor libraries 

and virtual screening based on deep learning models aid in the selection of hit molecules for a 

receptor target. Methodologies in molecular docking and molecular dynamics reveal the stability 

of the complexes and identify the key residues that contribute to their binding. 
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Structural insights into the inhibitor binding and new inhibitor 

design to PLK-1 Polo-box domain using computational studies 
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4.1 Introduction 

 

Cancer has been one of the biggest challenges to the medical research community and is 

considered as the second leading cause of death globally (Ames et al., 1995). The unifying theme 

among the various types of cancers is the rapid cell division accompanied by abnormal cell 

growth. Several cell cycle-regulated kinases have been implicated to play a major role during 

these processes. Defects in cell cycle leads to apoptosis or diseases such as cancer. CDKs, PLKs 

and Aurora kinases are some of the important kinase families in the cell cycle regulation (Fu et 

al., 2010). 

PLK was first identified in drosophila, its mutation causes the formation of monopolar 

and multipolar mitotic spindles, and abnormal segregation of chromosomes (Sunkel & Glover, 

1988). The first polo kinase homolog in humans, PLK-1 has been identified and cloned (Clay et 

al., 1993; Golsteyn et al., 1994) and it has been shown that during the G2 to M phase transition, 

PLK-1 is phosphorylated on serine and its kinase function is stimulated (Hamanaka et al., 1995). 

In humans, five PLKs-1 to 5 have been identified, these Ser/Thr kinases are key regulators for 

various cellular events during cell division.  PLK-1 efficiently participates in mitotic entry, 

spindle assembly, anaphase entry and cytokinesis in mitotic phase, and DNA checkpoint, 

chromosome condensation and centrosome maturation in interphase during the cell division. The 

PLK-2 and PLK-4 promote centriole duplication in G1 phase (Cizmecioglu et al., 2008; 

Cizmecioglu et al., 2012), PLK-3 regulates DNA replication in S phase (Iida et al., 2008). PLK-5 

has been reported to play a role in neuronal differentiation (de Cárcer et al., 2011A; de Cárcer et 

al., 2011B). Among all PLKs, PLK-1 has gained greater importance due to its role in 

tumorigenesis in various cancers. 

The evolutionarily conserved PLKs have a common domain architecture with a N-

terminal kinase domain and a C-terminal PBD, however, PLK-5 lacks the functional kinase 

domain (de Cárcer et al., 2011B). In the C-terminus, two PB motifs that share high sequence 

similarity form the non-catalytic PB domain (PBD) and are present in all PLKs excepting PLK-

4, which has only one PB motif. Based on the controlled regulation of cell cycle in normal cells 

orchestrated by several enzymes and regulatory proteins, and the importance of PLKs in 

regulating cell division, these kinases have been proposed as important drug targets. However, 

there are over 500 kinases in the human genome and several of these have been targeted for drug 
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design studies (Manning et al., 2002). Because of the high similarity in the sequences and 

structures of kinases, there is less selectivity that makes the drugs promiscuous. For example, 

preventing the activity of PLK-1 with ATP-competitive inhibitors commonly inhibit all PLKs 

and a single mutation in the catalytic residues of PLK-1 leads to dramatic resistance to the ATP-

competitive inhibitors (Burkard et al., 2012). Therefore, it would be sensible to also explore the 

other regulatory domains that control the kinase activity, in order to design drugs for cancer 

therapy. In PLK-1, PBD comprises the PB1 (residues 407–494) and PB2 (residues 509–598) 

regions, and a polo cap consisting of 33 amino acids towards its N-terminus. PBD is also 

involved in the subcellular localization and substrate interaction of PLK-1 (Lee et al., 1998; Park 

et al., 2010), through interactions with a phosphorylated Ser/Thr motif it brings the enzyme in 

close proximity to its binding targets or substrates localized at these sites (Cheng et al., 2003; 

Elia et al., 2003). A large number of PBD binding proteins required for various PLK-1 dependent 

mitotic functions have been identified, indicating that PBD directly mediates various PLK-1 

dependent biochemical steps and cellular processes in specific subcellular structures (Park et al., 

2010).  

The crystal structure of PBD bound to phosphopeptide (PLHSpT) (Yun et al., 2009) has 

been reported, it binds within a positively charged pocket at the inter-domain interface. This 

pocket plays a role in substrate recognition and regulates PLK-1 function. Site-directed 

mutagenesis of the positively charged cleft causes disruption of phospho-dependent interaction 

and subcellular localization of PLK-1, indicating that PBD-phosphopeptide binding is essential 

for PLK-1 targeting to recognize the substrate and also regulate the PLK-1 activity. It has been 

reported that the kinase activity of PLK-1 is stimulated by the binding of phosphopeptide to 

PBD, the targeting of PBD in PLK-1 results in cell cycle arrest, inducing apoptosis (Elia et al., 

2003). The inhibition of PBD induced a monopolar spindle appearance that exactly resembles 

catalytic inhibition of PLK-1 (Lee et al., 1998).  Several reports suggest that PLK-1 can also be 

inhibited by interfering with its regulatory domain, PBD because both the domains have mutual 

cooperative effect on each other. A natural product thymoquinone and its synthetic derivative 

Poloxin bind to the PLK-1 PBD. These compounds inhibit the in vitro and in vivo functions thus 

validating PLK-1 PBD as an anticancer target (Reindl et al., 2008). It has recently been shown 

that inhibitors of PBD can be employed to interfere with functions of PLK-1 and targeted 

towards cancer therapy (Archambault & Normandin, 2017).  In fact, PBD can be described as a 
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second drug target in PLK-1 as it is present only in PLK family of proteins and therefore 

inhibition of PBD is sufficient to disrupt the activity of PLK-1. These reports validate PBD as a 

good target for drug design studies for cancer treatment.   

Some inhibitors such as phosphopeptides, poloxin, vinyl sulfone derivatives, 

thymoquinone, have been shown to bind PBD with millimolar to micromolar affinities and 

inhibit the PLK-1 activity (Yun et al., 2009; Reindl et al., 2008; Scharow et al., 2015; Qin et al., 

2016; Normandin et al., 2016). Hence, there is a need to find more potent inhibitors of PBD. The 

acylthiourea analog inhibitors for PLK-1 PBD have shown structure activity relationships and 

micromolar binding affinities (Yun et al., 2016).  

In this work, the PLHSpT inhibitor bound to PBD has been used as a structure-based 

pharmacophore to screen ZINC database. Similarly, ligand-based pharmacophore has been 

generated to screen small molecule ZINC Lead-Like database. The best molecules based on 

pharmacophore screening were docked into the PBD active site. The stability of complex 

formation and molecular basis for their inhibition was studied using MD simulations and binding 

free energy calculations.  
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4.2 Materials and methods 

 

4.2.1 Protein structure and preparation 

In the PDB (Berman et al., 2002) among the crystal structures of PLK-1 PBD, PDB ID: 

3HIK (Yun et al., 2009) with the highest resolution (1.77 Å) was used for computational studies. 

The missing Nz atom of Lys388 was added using MODELLER (Šali & Blundell, 1993) 

incorporated into the Chimera UCSF and was accessed using the web service (Pettersen et al., 

2004).  

4.2.2 Ligand preparation and molecular docking 

The acylthiourea analog inhibitors of PLK-1 PBD (Yun et al., 2016) were drawn by DS 

2.5and energy minimization was performed using CHARMM force field and MMFF94 charges 

(Brooks et al., 1983; Halgren et al., 1996). The active site of the protein was defined in the 

PLHSpT binding pocket, the molecular docking of energy minimized inhibitors into the active 

site was performed using CDOCKER (Wu et al., 2003) integrated with the DS 2.5. The number 

of docking poses was set to 50, CHARMM force field was used with Grid extension set to 8.0 

and simulated annealing was used in the docking process. To validate the docking methodology, 

PLHSpT was docked into the active site of PDB ID: 3HIK. The best docking pose of 

acylthiourea derivatives and the new molecules identified in this work were selected based on 

their docking score, followed by visual inspection on graphics to estimate the non-bonding 

interactions in the protein-inhibitor complexes.  

4.2.3 Pharmacophore generation and virtual screening 

The crystal structure of PDB ID: 3HIK was used to generate a ligand-based 

pharmacophore of peptide inhibitor using Pharmit (Sunseri & Koes, 2016). Pharmit is an online 

server to generate an editable pharmacophore-based on protein-ligand complex and virtual 

screening of small molecule libraries. Protein-inhibitor complementarity is enhanced by several 

non-bonding interactions. Pharmit has been successfully used for the identification of potential 

inhibitors for acetylcholinesterase (Shiri et al., 2018). Among the non-bonding interactions, the 

pharmacophore features (hydrogen bond acceptor, hydrogen bond donor, ring aromatic, 

hydrophobic, ionic interaction) in PBD-PLHSpT complex were manually edited and were further 

used for virtual screening of ZINC database (Irwin et al, 2012) comprising of 11,494,056 

molecules. The obtained hits were analyzed to rank the molecules that had low RMSD and fewer 
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rotatable bonds. The top 10 hits were considered as probable hit molecules. The PBD 

pharmacophore was validated using a decoy set which consists of 1000 molecules downloaded 

from (http://www.schrodinger.com/glidedecoyset). The pharmacophore identified hit molecules 

were combined with 1000 molecules decoy set and virtual screening was once again carried out. 

The top 10 hit molecules from pharmacophore screen were docked into the active site of PBD 

using CDOCKER as described above. The best four PBD-molecule complexes were further 

validated by using MD simulations. 

4.2.4 Ligand-based virtual screening 

The SwissSimilarity web server (http://www.swisssimilarity.ch) was used for ligand-

based virtual screening to exploit the binding features in the acylthiourea derivative (molecule 3e, 

Yun et al., 2016). SwissSimilarity is an online webserver for LBDD that uses 3-D similarity 

searching method. This method is based on the combined score 2-D/3-D screening which utilizes 

the principle of FP2 Tanimoto coefficient and Electroshape-5D Manhattan distance (Zoete et al., 

2016). The molecules identified from ZINC Lead-Like database (4,328,000 molecules) search 

were docked into the PLK-1 PBD active site using CDOCKER. The best two PBD-molecule 

complexes were further validated by MD simulations. 

4.2.5 Molecular dynamics simulations 

The crystal structure of a protein is rigid and the binding of inhibitors to form the protein-

inhibitor complex requires to be stabilized owing to the induced fit mechanism. The inherent 

flexibility in proteins needs to be studied to explain their function at an atomic level. Hence, MD 

simulations studies is a recommended method to investigate the stability of the protein-inhibitor 

complex (Saxena et al., 2017). The MD simulations were carried out using GROMACS 5.1.4 

(Hess et al, 2008; Van Der Spoel et al., 2005) to study 25 ns MD simulations of PBD – 

complexed with PLHSpT, acylthiourea derivatives and the new inhibitors identified in this work. 

The MD simulations of apo-protein (in the absence of inhibitors) was also studied to understand 

the effect of inhibitor binding in stabilizing the structure of PBD. The Amber ff99SB (Hornak et 

al., 2006) force field was applied to the proteins and inhibitors. For the inhibitors, force fields 

were assigned using ACPYPE script (da Silva &Vranken, 2012) with AM1-BCC charges in 

Antechamber (Wang et al., 2006).  All systems were immersed in a cubic box, three-point model 

(SPC) was used for solvation, and Na+ and Cl-ions were added to neutralise the system 

(Berendsen et al., 1981).   
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Energy minimization using steepest descent algorithm as an integrator was initially run to reach 

stable potential energy. Position restraint was applied to equilibrate the system in two steps; NVT 

to ensure even solvent orientation around the system at 300 K for 100 ps, followed by NPT for 

1ns at 300 K to reach proper density. The final MD simulations were performed at 300 K for 25 

ns using 0.002 ps time step, updated the energy and log files after every 10 ps.  The Parrinello–

Rahman method was used to control pressure (Parrinello & Rahman, 1981) and the temperature 

was maintained using V-rescale thermostat (Bussi et al., 2007). The long-range electrostatics 

were applied using Particle Mesh Ewald (PME) method (Darden et al., 1993; Essmann et al., 

1995) and space cut-off of 10 Å, the relative tolerance between long and short range energies 

were found to be 10−6 and with PME order of 4.Short-range interactions were evaluated using a 

neighbor list of 10 Å and updated after every 10 steps; while the Lennard-Jones (LJ) interactions 

and real space electrostatic interactions have been regarded with cut off of 9 Å. LINCS algorithm 

was used to constrain hydrogen bonds (Hess et al., 1997). The final models were evaluated by 

the average snapshots from the trajectory files generated by MD simulations after the structure 

stabilization was achieved (15-25 ns).  

The RMSD of the Cα atoms with respect to their starting structures were calculated by 

using gmx rms of GROMACS, to study the conformational variations in the PBD-inhibitor 

complexes. The convergence of MD simulations was analyzed in terms of the potential energy 

and RMSD plots. The RMSF was calculated using gmx rmsf to study the stability of frames 

relative to the initial frame during MD simulations. The last 10 ns trajectory files were used for 

MM-PBSA calculations, to estimate the binding free energy and residue-wise contributions to 

the inhibitor binding in the protein active site. 

4.2.6 Binding free energy calculations 

MM-PBSA is used to calculate the binding free energy from initial and final states of an 

ensemble of structures generated from MD simulations (Baker et al., 2001).  This parameter is 

used to assess the interactions in protein-ligand complexes (Homeyer & Gohlke, 2012). The 

g_mmpbsa (Kumari et al., 2014) is a tool compatible with GROMACS output MD trajectories. 

From the last 10 ns of each complex that contains 1000 frames, the binding free energy was 

estimated. 
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4.3 Results  

 

4.3.1 Three-dimensional structure of PLK-1 PBD  

The crystal structure of PLK-1 PBD (PDB ID: 3HIK) is a monomer, with two PBs related 

by a 2-fold symmetry axis. Each PB contains a continuous six-stranded anti-parallel β-sheet and 

an α-helix. The phosphopeptide inhibitor PLHSpTlies at the interface between the two 

homologous PBs made by the anti-parallel β-sheets as shown in Figure 4.1A.  

 

Figure 4.1: A) 3-D representation of PLK-1 PBD (PDB ID: 3HIK). Phosphopeptide PLHSpT from 

crystal structure (blue) and docked pose (yellow) are shown in stick. B) Docking conformation and 

location of acylthiourea analogs in the active site of PBD. C) 2-D representation of acylthiourea inhibitor 

(3a) in the PLK-1 PBD active site, various non-bonding interactions are indicated. 

The inhibitor proline-1 carbonyl oxygen main-chain forms hydrogen bonding interactions with 

the side-chain guanidine group of Arg516 and the carbonyl oxygen of leucine-2 main-chain 

(from peptide) forms hydrogen bonding interactions with the main-chain NH of Asp416. The 

serine-4 main-chain NH and carbonyl oxygen atoms form hydrogen bonds with main-chain 

carbonyl oxygen and NH atoms of Trp414. The CH2 group of serine-4 side-chain also forms pi-

sigma interactions with Trp414 side-chain indole ring. The terminal phosphorylated threonine-5 

carboxylate group forms hydrogen bond with main-chain NH of Leu491 and the phosphate 

oxygen forms hydrogen bond with side-chain NH of Lys540 and His538.   
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4.3.2 Molecular docking of acylthiourea analogs 

 

The docking of the peptide PLHSpT into the active site of PBD domain resulted in a 

conformation that has low RMSD with the crystal structure as shown in Figure 4.1A. This 

validated CDOCKER as a useful methodology for docking of inhibitors in the active site of 

PBD.The binding conformations of acylthiourea derivatives were ranked based on the docking 

scores (Table 4.1).  

 

 

 

 

Table 4.1: Structures, docking scores and binding free energies of acylthiourea analogs when bound to 

PLK-1 PBD. 

 

 

 

 

 

 

 

 

 

The best docking conformation and their location in the active site of PBD is shown in Figure 

4.1B. The docking pose of a representative acylthiourea molecule (3a) into the PBD active site is 

shown in Figure 4.1C. These molecules bind at the shallow interface between PB1 and PB2 

regions, the amino group of sulfonamide binds the main-chain oxygen of Trp414, while the 

iminonitrogens of thiourea form hydrogen bonds with the main-chain carbonyl oxygen of 

Leu491, the adjacent carbonyl oxygen forms hydrogen bond with Nζ side-chain of Lys540. Most 

of these interactions are also reported in the molecular docking of acylthiourea in PLK-1 PBD 

Compounds R R1 R2 Kd (µM) 

Dock Score   

PMF04 

ΔGbinding(kJ/mol) 

(15 -25 ns) 

3a CH3 H H 73.7±6.3 -17.81 -15.247±0.479 

3b -CH2CH3 H H 64.3±3.8 -30.52 -23.099±0.424 

3e -CH2 Ph H H 68.8±3.7 -30.83 -15.213±0.533 

3u -CH2Ph Cl Cl 5.1±0.3 -30.78 -31.040±0.418 

3v -CH2Ph Br Br 2.3±0.1 -38.01 -52.496±0.526 

3w -CH2Ph H Br 6.9±0.6 -43.10 -36.919±0.389 

3x -CH2Ph H I 5.6±0.3 -38.03 -50.433± 0.409 
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(Yun et al., 2016). The phenyl ring in 3e and subsequent molecules fit into a compact cavity 

formed by Leu491, Lys492, Ala493, Ile553, His538, Lys540 and Arg557. One of the halogens in 

3u (Yun et al., 2016) and subsequent molecules is in the proximity of Leu490 and Leu491 and is 

partially solvent exposed. The second halogen is directed towards the deep cavity alongside β1-

strand in the PB1 region.  

4.3.3 Pharmacophore-based identification and docking of new inhibitors toPBD 

The pharmacophore-based new inhibitor identification is based on two principles, SBDD 

and LBDD. The Pharmit webserver, a structure-based pharmacophore generation method was 

used to find geometrical and electrostatic features in PLHSpT. Virtual screening of ZINC 

database using all features in this pharmacophore (Figure 4.2A) could not identify new 

molecules, hence the pharmacophore features were reduced and retained only the essential 

features that are responsible for protein-ligand complementarity. In this process, pharmacophore 

features (one hydrogen bond donor and three hydrogen bond acceptors) that interact with Trp414, 

Asp416 and Lys540 were retained as shown in Figure 4.2A.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: A) Intermolecular interactions between phoshopeptide inhibitor PLHSpT and PLK-1 PBD. 

The interactions used for pharmacophore screening are indicated in green. B-G) 2-D representation of 

Pharmit and SwissSimilarity molecules in the PLK-1 PBD active site, various non-bonding interactions 

are indicated. 
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The screening of ZINC database using these features identified 1,510 molecules that were ranked 

based on the RMSD and number of rotatable bonds. The screened molecules were combined 

with 1000 molecules decoy set and virtual screening was carried out using the pharmacophore 

model. The pharmacophore model identified only the screened molecules, indicating that, this 

pharmacophore model is good in order to distinguish between active screened molecules and 

inactive decoy molecules. The top 10 molecules were docked into the active site of PBD. The 

best four molecules (ZINC000102928116, ZINC000036144951, ZINC000244933073 and 

ZINC00012984727) interacted in the binding pocket of PBD similar to PLHSpT. The structures 

and docking scores of these molecules are shown in Table 4.2. These results were further 

validated by MD simulations of protein-hit molecule complexes. 

 

4.3.4 Ligand-based virtual screening 

The SwissSimilarity web server was used for ligand-based virtual screening of ZINC 

Lead-Like library molecules on the basis of the molecule 3e, an acylthiourea analog. The top 40 

hits mostly comprised acylthiourea, thiourea and urea moieties and were therefore omitted. The 

remaining  molecules with a score greater than 0.75 were docked into the active site of PBD. The 

CDOCKER docking identified two molecules (ZINC00178367 and ZINC01040802) in the PLK-

1 PBD active site that reproduced the binding mode similar to acylthiourea analogs. The 

structures, docking scores of these molecules are shown in Table 4.2. These PBD-hit molecule 

complexes were further studied using MD simulations.  

 

4.3.5 MD simulations of PLK1- PBD- inhibitor complexes 

The crystal structure of apo-PBD, PBD-PLHSpT (PDB ID: 3HIK), PBD-acylthiourea 

complexes, and PBD-complexed with new inhibitors identified in this work were subjected to 

MD simulations for 25 ns using GROMACS. The stability of the systems as visualized from 

RMSD plots indicated that their structural stability was attained after 10 ns of MD simulations. 

All the molecular systems when bound to known inhibitors (PLHSpT and acylthiourea analogs) 

appeared to be stable (Figure 4.3A-I), the proteins were stable with less than 2 Å deviation and 

the inhibitor deviation was often less than 1 Å, indicative of the high stability of protein-inhibitor 

complexes.  
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Table 4.2: Docking scores and binding free energies (kJ/mol) of molecules from ZINC database 

identified from pharmacophore screening. The molecules (p1-p4) are identified by Pharmit, (s1-s2) are 

identified from SwissSimilarity. 

 
Compounds ZINC Id Molecules structure Dock 

score 

PMF04 

ΔGbinding 

(15 -25 ns) 

     

 

p1 

 

ZINC000102928116 

 

 

-85.91 

 

 

-84.846±0.697 

 

p2 

 

ZINC000036144951 

 

 

-53.69 

 

 

-66.578±0.417 

 

p3 

 

 

ZINC000244933073 

 

 

 

-64.77 

 

 

-83.393±0.386 

 

p4 

 

 

ZINC000012984727 

 

 

 

-59.08 

 

 

 

-31.371±0.530 

 

s1 

 

 

ZINC00178367 

 

 

 

-42.11 

 

 

-19.860±0.543 

 

s2 

 

 

ZINC01040802 

 

 

 

 

-37.1 

 

 

-41.377±0.342 
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Figure 4.3: A-I) RMSD of PLK1-PBD-inhibitor complexes. A-G) acylthiourea derivatives, H) PLHSpT, 

I: Apo-PLK-1 PBD. Protein- maroon, inhibitor- green. 

The location of the known inhibitors remain stable (Figure 4.4A-H) and most of the non-bonding 

interactions between PBD and inhibitors were also retained during MD simulations. Based on 

mutagenesis studies, it has been identified that Trp414, His538 and Lys540 in the PLK-1 PBD 

active site are the essential residues for inhibitor binding (Qin et al., 2016). 

In this work, it has been shown that hydrogen bonding interactions between Nζ of Lys540 and 

carbonyl oxygen of acylthiourea analogues are retained throughout the MD simulations as shown 

in (Figure 4.5A). From the MD simulations of the best-docked complexes of the Pharmit and 

SwissSimilarity molecules (Figure 4.2B-G) and as indicated in the (Figure4.5A), Lys540 always 

forms hydrogen bonding interactions with the inhibitors. The indole side-chain of Trp414 forms 

Π-Π stacking interaction with the inhibitor aromatic ring. It is observed that the new molecules 

from the ZINC database bind PBD active site in the same location (Figure 4.6A-F) similar to that 

of the known inhibitors.  



127 
 

 

 

Figure 4.4: A-H) Superimposition of PLK-1 PBD initial and average structures from MD simulations. 

Initial (brown) and average (cyan); and inhibitors input (blue), average (green). 

 

Figure 4.5: A) Hydrogen bonding distance of carbonyl oxygen (inhibitor) and Nζ of Lys540 .B) RMSF 

of apo and inhibitor bound PLK-1 PBD. 
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Figure 4.6: A-F) Superimposition of PLK-1 PBD initial and final snapshot structures of MD simulations. 

Initial (brown) and final snapshot (cyan); and inhibitors input (blue), snapshot (green). 

The structures were stable as estimated from the RMSD plots (Figure 4.7A-F) with less than 2.5 

Å RMSD for protein and ligands.  

The RMSF plot is indicative of the regions that have deviations in protein structure during the 

MD simulations that is an indicative of the flexible regions in the protein. Comparison of the 

RMSF plots (Figure 4.5B) indicated that the apo-protein and PBD-known inhibitor complexes 

have fluctuations in similar regions in the protein. RMSF plots of PBD complexed with Pharmit 

and SwissSimilarity molecules are shown in Figure 4.8A-B.  
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Figure 4.7: A-F) RMSD plots of PLK-1 PBD-inhibitor complexes identified from structure and ligand 

pharmacophore-based virtual screening. Identity of the molecules in ZINC database is indicated. Protein 

(maroon), inhibitor (green). 

 

 

Figure 4.8: A-B) RMSF plots of molecules identified using Pharmit and SwisSimilarity bound to PLK-1 

PBD. 

These plots are superimposable for all inhibitors (acylthiourea, Pharmit and SwissSimilarity 

molecules). It has been observed that the 495-508 amino acid region connecting the PB1 and 

PB2 structural motifs has higher amplitude of fluctuations.  Similarly, 447-449 (beta-hairpin 

connecting 2nd and 3rd β-strands in PB1 and   466-469, a region connecting the α-helix and the 
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1st β-strand in PB1 show reasonable fluctuations irrespective of inhibitor binding. This indicates 

the compact and highly stable PLK-1 PBD domain structure.   

4.3.6 Binding free energies of PBD-inhibitor complexes 

The experimental binding affinities of acylthiourea to PLK-1 PBD were measured using 

microscale thermophoresis (MST) (Yun et al., 2016) and are shown in Table 4.1. MST method 

measures the protein-ligand binding by detecting the mobility of molecules in temperature 

gradients (Rudolph et al., 2009). The binding affinity of the protein-inhibitor complex is a 

measure of the strength of the binding interactions between protein and its inhibitor. It is 

typically measured as the equilibrium dissociation constant (Kd), the smaller the Kd value, the 

greater is the binding affinity of the inhibitor and hence its inhibition. In this work, the binding 

free energies for all complexes were calculated using g_mmpbsa for the last 10 ns of the MD 

simulations and the values are shown in Table 4.1.  

The dissociation constant (Kd) is lower (14 µM) for the reference peptide inhibitor (PLHSpT). 

These corresponding values for the acylthiourea analogs (Table 4.1) with methyl, ethyl and 

phenyl groups (73.7-64.3 µM), the binding affinities indeed improved by 10 to 30 times by 

halogen substitution on the sulfamoylphenyl group (2.3 -6.9 µM) (Yun et al., 2016). The effect 

of halogens on binding free energies has been reviewed (Mendez et al., 2017) by analyzing the 

halogen bonding in protein-ligand complexes. A halogen bond is measured by the sum of van der 

Waals radii between the participating atoms in the complex. Analyses of the crystal structure 

complexes in two independent studies (Kortagere et al., 2008; Sirimulla et al., 2013) revealed 

that Leu backbone carbonyl and amino groups have the highest propensity (next to Gly) to form 

halogen bonds despite the bulky side-chain. These halogen bond interactions are found in the 

current study with Leu490 and Leu491. Further, it has been reported that the aromatic bulky 

side-chains of proteins are involved in halogen bonds with ligands. Interestingly, the donor-

acceptor bond angles are rarely linear. Also, in this work, it is observed from molecular docking 

studies, an important role of Trp414 in positioning the halogen atom. 

 Based on the g_mmpbsa calculations, peptide inhibitor with lower Kd (14 µM) shows 

highest binding free energy (-115 kJ/mol) (Table 4.1) compared to all the acylthiourea 

derivatives. This observation could be because of the large size of the peptide inhibitor that spans 



131 
 

over the entire PBD active site and makes several non-bonding interactions with PBD. Binding 

free energy is indeed an estimate of the intermolecular interactions in the complex. As shown in 

Table 4.1, the molecules 3a, 3b and 3e with modest binding affinities showed lowest binding free 

energies (-15 to -23 kJ/mol). Comparison among the acylthiourea derivatives showed that the 

halogen substitution on the sulfamoylphenyl increased the binding free energies (-31 to -52 

kJ/mol); these observations are in correspondence with the experimental binding affinities 

measured using MST (Yun et al., 2016).  

 Table 4.3 shows the contribution from van der Waals, Coulomb, polar and non-polar 

solvation energies to the binding free energy of the protein-ligand complexes.  It is possible that 

both van der Waals and Coulomb interactions are important for protein-inhibitor recognition. In 

addition, the non-polar contribution to the solvation free energy also has an essential role in the 

binding. The contribution from polar solvation free energy is however unfavorable for 

acylthiourea derivatives. It is indeed interesting that the extent of unfavorable contribution from 

polar solvation free energy is reduced significantly, alongside a significant decrease in the 

contribution from electrostatic energy for 3u and 3v molecules that are di-halogen compounds.   

Table 4.3: Various contributions to the binding energies (kJ/mol) of phosphopeptide and acylthiourea 

analogs when bound to PLK-1 PBD.  

 

An aspect of molecular docking conformations that was resolved from MD simulations is the 

orientation of halogen in 3x and 3w (mono-halogen) molecules. One possibility is that halogen is 

buried in the deep cavity between PB1 and PB2 motifs (I) or the other conformation in which 

Compounds     vdW 

 

Electrostatic 

energy  

Polar solvation  Non-polar 

solvation 

ΔGbinding 

        (15 -25 ns) 

PLHSpT -178.600±0.617 -714.185±1.810 797.637±2.036 -20.228±0.041 -115.438±1.533 

3a -91.209±0.312 -115.561±0.508  204.237 ±0.596 -12.685± 0.028  -15.247±0.479 

3b -104.335±0.424 -130.294± 0.485 225.126±0.641 -13.583±0.032 -23.099±0.424 

3e -117.089±0.338  -126.939±0.508 243.516±0.821 -14.680±0.032 -15.213±0.533  

3u -108.911±0.445 -51.676±0.651 144.706±0.704 -15.159±0.041 -31.040± 0.418 

3v -115.727±0.536 -58.967±0.802 135.250±1.280 -12.997± 0.038 -52.496± 0.526 

3w -131.498±0.451 -103.451±0.609 213.008±0.873 -14.983±0.040 -36.919±0.389 

3x -121.582±0.349 -125.161±0.478 211.540±0.610 -15.246±0.030 -50.433± 0.409 
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halogen is exposed and interacts with Leu490 and Leu491 (II). PLK-1 PBD when bound to each 

of these conformations were subjected to MD simulations. It is observed that only the II 

conformation retained the hydrogen bonding interaction between Nζ of Lys540 and carbonyl 

oxygen throughout the MD simulations, and the binding free energies also followed a trend 

similar to other acylthiourea analogs. From this, the docking conformations of mono-bromo and 

mono-iodo molecules were assigned. This is in line with the observations made by Kortagere et 

al., 2008 and Sirimulla et al., 2013 in the orientation of halogens in the protein-ligand complexes. 

Table 4.4 shows the contribution from van der Waals, Coulomb, polar and non-polar solvation 

energies to the binding free energy of the protein-new hit molecule complexes identified in this 

work.  Similar to the acylthiourea derivatives, it is possible that for these inhibitors too, van der 

Waals and Coulomb interactions, and polar contribution to the solvation free energy are 

important for protein-inhibitor recognition.  

Table 4.4: Various contributions to binding free energies (kJ/mol) of molecules from ZINC database 

identified from pharmacophore screening. p1-p4 molecules are identified by Pharmit. s1 and s2 are 

identified from SwissSimilarity. 

  

Compounds     vdW 

 

Electrostatic 

energy  

Polar 

solvation  

Non-polar 

solvation 

ΔGbinding 

 (15 -25 ns) 

p1 -161.397±0.369 -59.992±0.311 153.645±0.894 -17.089±0.048 -84.846±0.697 

p2 -109.770±0.552 -11.022±0.319 66.002±0.456 -11.810±0.056 -66.578±0.417 

p3 -135.880±0.388 -31.448±0.211 100.503±0.486 -16.567±0.031 -83.393±0.386 

p4 -120.523±0.425 -51.847±0.278 156.178±0.525 -15.226±0.032 -31.371±0.530 

s1 -90.525±0.295 -48.247±0.408 130.863±0.647 -11.920±0.037 -19.860±0.543 

s2 -89.459±0.503 -26.593±0.393 86.957±0.896 -12.281±0.061 -41.377±0.342 

 

 As shown in Tables 4.2 and 4.4, the binding free energies of PBD-new inhibitor 

complexes identified from Pharmit and SwissSimilarity were higher compared to the 

acylthiourea analogs that is indicative of their better binding efficiency and are therefore 

potentially better inhibitors of PBD. 
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4.3.7 Residue-wise decomposition to binding free energies 

To estimate the residue-wise contribution to the binding of inhibitors to PBD and hence 

understand the molecular basis for inhibition, the MM_PBSA analyses for the last 10 ns MD 

simulations data was utilized. The individual contribution of amino acids for PLHSpT peptide 

inhibitor binding to PBD is shown in Figure 4.9A.  

 

Figure 4.9: A) Energy contribution of residues to the binding of PLHSpT-protein complex. B)   

Contribution from individual residues to the binding of acylthiourea derivatives and inhibitors identified 

from structure and ligand virtual screening. p1-p4 molecules are identified by Pharmit,s1 and s2 

molecules are identified from SwissSimilarity. 

As seen in the Figure 4.9, several residues make positive and negative contributions to the 

binding free energies. The contribution from active site amino acids (Trp410, Lys413, Trp414, 

Val415, Ile416, Trp417, Ser418, Tyr485, Leu490, Leu491, Lys492, Ala493, Gly494, Ala495, 

Asn496, Asp516, Asp520, Gln531, Asn533, Phe535, Gln536, His538, Lys540 and Arg557) are 

responsible for the binding of PLHSpT to PBD. Among these, significant contributions from the 

amino acids Trp414, Leu491, Asp516, Lys540 and Arg557 are noteworthy. The contributions 
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from these residues are responsible for the better binding energy of these inhibitors. The residue-

wise contribution to the binding of acylthiourea analogs to PBD is shown in Figure 4.9B.  

Similarly, the amino acid residues in the protein active site that contribute to the binding of the 

Pharmit and SwissSimilarity molecules is also shown in Figure 4.9B. Table 4.4 shows the 

contribution from various components to the binding free energies and this is in concurrence 

with the acylthiourea analogs.  

Since the new molecules identified in this work are from ZINC Lead-Like database, there is a 

possibility to improve their binding by suitable modifications for better binding to PLK-1 PBD.  
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4.4 Discussion  

 

Protein kinases play an important role in biological events such as cell signaling, cell 

division, metabolism, transcription, proliferation and survival (Lodish et al., 2001). Structurally 

kinase domains are more similar to each other and therefore inhibition of a kinase leads to severe 

side effects also due to the binding to normal healthy cells (Brinkworth et al., 2002). In the recent 

years, studies are targeted towards understanding the biological function of a kinase and rationale 

intervention of its activity, increased selectivity of current drugs by design analogs or new ATP 

competitive inhibitors. Some kinase inhibitors are non-ATP competitive inhibitors which bind to 

allosteric site, bivalent inhibitors, covalent inhibitors and all these inhibitors are directly targeted 

towards the kinase domain (Martinez et al., 2020). PLK proteins comprise a kinase domain as the 

catalytic unit and also a C-terminal regulation unit, PBD. Based on biological studies of PBD it 

is considered as an indirect mechanism to inhibit kinase domain of PLKs. PLK-1 PBD inhibition 

leads to inhibit kinase domain of PLK-1, hence PLK-1 PBD is considered as a promised target to 

play role in cancer disease. The acylthiourea derivatives are shown as good inhibitors of PLK-1 

PBD, and these are validated based molecular docking, MD simulations and binding free energy 

calculations. The results of this work gives a perception to enhance the activity of acylthiourea 

inhibitors, halo-acylthiourea for mono-substituted and halo atom orientation that is towards outer 

residues based computational studies. 

4.4.1 Design of molecules based on pharmacophore and ligand based virtual screening 

Pharmacophore and QSAR based virtual screening of small molecules followed by molecular 

docking to search for hit molecules in the drug design studies has been in practice in the recent 

years (Mercader et al., 2016). Pharmacophore-based virtual screening selects the best features 

which may be hydrogen bond donor, hydrogen bond acceptor, benzene ring, hydrophobic and 

hydrophilic features and etc. The PLK-1 PBD pharmacophore was generated based on PLHSpT 

phosphopeptide by assigning four important pharmacophore features as shown in (Figure 4.2A) 

which make non-bonding interactions with PLK-1 PBD residues. Molecules were screened and 

selected based ligand based virtual screening which depend on 2-D/3-D screening using FP2 

Tanimoto coefficient and Electroshape-5D Manhattan distance. These molecules were validated 

using molecular dynamics simulations. The molecules selected from pharmacophore and ligand 

based virtual screening studies show high binding free energy as indicated in the Table 4.4. 
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4.5 Conclusions  

 

From previous literature, the role of PLK-1 PBD in cell cycle regulation has been 

established and therefore the PBD domain has been considered as a viable cancer drug target. 

The discovery of small molecule inhibitors to this essential drug target is an ongoing quest. 

Therefore, computational methods were used to understand the binding of reported acylthiourea 

analogs to PBD using molecular docking and MD simulations methods and compared with the 

reported crystal structure bound to phosphopeptide PLHSpT. The PBD structure is stable and has 

fewer fluctuations from the MD simulations studies, the binding free energies calculated are in 

correlation with the reported experimental binding affinities. Among all the active site amino 

acids, Trp414, His538 and Lys540 have been shown to be essential for inhibitor binding. Based 

on the structure and ligand-based pharmacophore generation and screening methods, new 

molecules have been identified that bind PLK-1 PBD with better binding as estimated from 

molecular docking scores and binding free energy calculations. In this study, the molecular basis 

for the acylthiourea inhibitor binding to PBD are explained and new inhibitors that would have 

better binding and therefore improved inhibition are proposed. 
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5.1 Introduction 

Cell division is characterized by complex biological processes that result in the 

generation of new daughter cells identical to the parent cell during a cell cycle. Eukaryotic cell 

cycle passes through different phases, G1 to S (DNA replication) to G2 to mitosis (chromosome 

separation) to cytokinesis (cell division). The timings of each of these phases is coordinated by 

the expression of cyclins, which bind and activate CDKs (Jeggo et al., 2016), that in turn 

phosphorylate several proteins which play important roles in various phases of the cell cycle. 

Each of these directed stages in cell division are confirmed so as to ensure the correct formation 

of new cells and these events are known as cell cycle checkpoints (Nigg, 1995; Alberts et 

al.,2004). The cell cycle checkpoints are surveillance mechanisms that monitor the order, 

integrity, and fidelity of major events in the cell cycle. The cell cycle checkpoints occur in three 

stages G1-S, G2-M, and mitotic phase (Otto & Sicinski, 2017). Prior to cell division, the cells 

depend upon cell cycle checkpoints to allow time for repair of DNA damage, since any 

irregularities in the cell cycle events lead to diseases such as cancer (Lindahl, 1993). Several 

factors lead to the destruction of DNA; the external factors such as exposure to radiation and 

internal factors such as toxic metabolites from chemical and biochemical processes and their by-

products could have hazardous effects on the genome resulting in genetic mutation that often 

manifests as cancer (Lindahl & Bernes, 2000). The regulation of cell cycle checkpoints and DNA 

damage repair for genomic stability has been the prime focus of cancer therapy. One of the 

essential families of proteins in cell cycle regulation is the protein kinases; these are mainly 

classified as Tyr kinases and Ser/Thr kinases. Kinases such asataxia-telangiectasia mutated 

(ATM), ataxia-telangiectasia-related (ATR), checkpoint kinase 1 (CHK1), checkpoint kinase 

2(CHK2), and Wee1 play a key role in the DNA damage repair and are therefore good drug 

targets for cancer (Ronco et al.,2017). 

Wee1 belongs to a family of protein Tyr kinases and is highly expressed and active in 

several cancer types such as lung, ovarian, solid tumor, adenocarcinoma, esophageal, breast 

cancer, cervical cancer, diffuse intrinsic pontine glioma, leukemia, melanoma, glioblastoma,  and 

medulloblastoma (Iorns, et al., 2009, Mir et al., 2010; Yang et al., 2020). Wee1 kinase is the 

gatekeeper of the G2-M cell cycle checkpoint that allows DNA repair before mitotic entry (Do et 

al., 2013). This protein is involved in the terminal phosphorylation of CDK1 to inactivate the 
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CDK1-cyclin B complex resulting in G2 cell cycle arrest in response to DNA damage. 

Therefore, inhibition of Wee1 kinase activity prevents the phosphorylation of CDK1 and impairs 

the G2 DNA damage checkpoint. This may lead to apoptosis when treated with DNA damaging 

chemotherapeutic agents. Therefore, inhibition of Wee1 kinase is expected to evade the G2-M 

phase arrest and drive cancer cells into premature mitosis. It has been reported that Wee1 

inhibition by either small molecule inhibitors or small interference RNA leads to premature entry 

of cells into mitosis that results in cell death. Further, Wee1 plays a role during S-phase by 

inhibiting CDK2 which leads to slow cell cycle progression and maintains DNA from breakage 

with stabilizing replication fork (Leijen et al., 2016).Targeting Wee1 for inhibition and 

compromising the G2-M checkpoint presents an opportunity to potentiate cancer treatment 

(Matheson et al.,2016). 

The Wee1 kinase has an N-terminal regulatory region with phosphorylation sites on 

serine; the C-terminal region spans the kinase domain (299–569). Similar to the 3-D structure of 

all kinases, the Wee1 kinase also accommodates the N- and C-terminal domains with the active 

site located at the inter-domain interface. Some ATP competitive inhibitors to Wee1 kinase are 

validated and entered into clinical trials. AZD1775 (MK-1775) (Hirai et al., 2009) has been 

shown as a selective inhibitor of Wee1 kinase and preclinical results report its anti-tumor activity 

in multiple cancer cell lines. Few small molecule inhibitors of Wee1 kinase have been reviewed 

(Matheson et al.,2016) and phase II clinical data report potent and selective inhibitor of Wee1 in 

p53-deficient tumors (ineffective G1 DNA damage checkpoint) in combination with cisplatin, 

Docetaxel, gemcitabine and carboplatin (Mendez et al, 2018; Leijen et al., 2016). However, 

given the essential role of Wee1 in G2 DNA repair checkpoint, more potent and selective 

inhibitors for this important drug target are required. SBDD is an important component in 

computer-aided development of new drugs (Hassan Baig et al., 2016). In the current study, based 

on the structure of Wee1 kinase-inhibitor complex, the fragment-based de novo methods for the 

design of Wee1 kinase inhibitors were used; the proposed inhibitors were validated using 

molecular docking, MD simulations of the best protein-inhibitor complexes, and the binding free 

energy calculations of the complexes. 
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5.2 Materials and methods 

5.2.1 Wee1 structure and preparation 

The crystal structure of Wee1 kinase domain was solved at 1.81 Å resolution (Squire et 

al., 2005), and its 3-D coordinates complexed with inhibitor PD0407824 are available (PDB ID: 

1X8B) in the PDB (Berman et al., 2002). The missing amino acids in the activation loop region 

were built using MODELLER (Šali & Blundell, 1993) from chimera UCSF (Pettersen et al., 

2004). Hydrogens were added at pH 7.5, and the complex was energy minimized to optimize the 

location of hydrogens. 

5.2.2 Design of inhibitors 

5.2.2.1Selection of core scaffold 

AZD1775, a Wee1 kinase inhibitor (PDB ID: 5V5Y) (Zhu et al., 2017) and in the second 

phase of clinical trials, was initially used to find the core scaffold of proposed inhibitors using 

Pharmit (Sunseri & Koes, 2016). Based on the query inhibitor structure, Pharmit an online server 

specifies a pharmacophore that describes a set of spatial steric and electrostatic features required 

for the activity of the molecule. The features that make non-bonding interactions with the hinge 

region of Wee1 kinase were selected, and these pharmacophore features were used for virtual 

screening of ZINC database (Irwin et al., 2012) of small molecules. ZINC database in Pharmit 

server had 11,494,056 molecules with 165,282,714 conformations. The filters for screening the 

hits were set to three aromatic rings with a molecular weight less than 300. The molecules 

obtained from virtual screening were selected based on low RMSD with AZD1775. The best 

core scaffolds with fused ring systems and the presence of possible sites for substitution to 

extend the core into kinase sub-pockets were selected. Three 6-6-5 core scaffolds with different 

locations of nitrogens were considered based on their ability for further growth, such that their 

locations can be optimized in the kinase sub-pockets. Such core scaffolds are already reported in 

the previous crystal structures as shown in Figure 5.1A-C (Hiruma et al., 2017; Miller et al., 

2010; Glatthar et al., 2016). 
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Figure 5.1: The binding mode of hetero-tricyclic 6-6-5 core scaffolds to the hinge region of kinases from 

crystal structures. A) PDB ID: 5O91. B) PDB ID: 2X6I. C) PDB ID: 5IU2. 

5.2.2.2 Fragment library preparation and fragment selection 

The software for breaking up of compounds to get series of fragments is based on the 

principle of retrosynthesis (Bemis & Murcko, 1996; Kolb & Caflisch, 2006). The fragment 

libraries are available as commercial and open access such as Asinex, eMolecules, and ZINC 

databases. As shown in Figure 5.2A, the active site of Wee1 kinase has two sub-pockets in the 

direction of which the core scaffold can be extended. One is a front binding pocket, and the other 

is targeted towards DFG motif (DLG in Wee1) and back sub-pockets in the kinase domain. The 

fragment libraries were selected based on Ludi (Böhm, 1992) and Pharmit searches. The Pharmit 

server was used to search for the fragments by applying the pharmacophore hit screening 

parameters; rule of three (Congreve et al., 2003) by assigning important filters such as molecular 

weight less than 200, three hydrogen bond donors, three hydrogen bond acceptors, polar 

solvation area (60 Å2), three rotational bonds, and up to two aromatic rings, from PubChem (Kim 

et al., 2016) and ZINC databases. The PubChem database had 74,334,235 molecules with 

1,028,851,902 conformations. 

The extracted fragments using Pharmit server were prepared by the addition of 

hydrogens, CHARMM force field was applied, energy minimization was carried out, and the 

fragments were saved in the .str format for use in the de novo link library generation. Ludi 
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library integrated in the DS 2.5 contains 900 one linkage entries in the de novo link protocols. 

All the desired fragments from Pharmit and Ludi library were proceeded for the de novo linking 

step to the core scaffolds selected. 

 

Figure 5.2: A) Pharmacophore features used for searching core scaffold. B) Solvent exposed fragment.C) 

Fragments oriented towards DLG motif, based on template molecule AZD1775. 

5.2.3 Fragment linking and molecular docking 

5.2.3.1 Fragment linking 

The binding of the three tricyclic 6-6-5 core scaffolds to the Wee1 kinase (PDB ID: 

1X8B) was obtained by molecular docking. A 5 Å cavity was defined around the hinge region 

amino acid Cys379, and CDOCKER was used to dock the core scaffolds. The best docking pose 

was assessed based on docking score and the presence of hydrogen bond with Cys379. The best 

docked scaffold bound to Wee1 kinase was opened in the de novo link of DS 2.5 protocol. In the 

protein preparation steps, the binding site was defined around the scaffold and the cavity was 

expanded to cover key residues responsible for binding PD0407824 and AZD1775 that include 

(Glu303, Ile305, Gly306, Ser307, Val313, Ala326, Ile327, Lys328, Glu346, Val360, Ile374, 

Asn376, Glu377, Tyr378, Cys379, Asn380, Gly381, Gly382, Ser383, Asp386, Ser430, Phe433, 

and Asp463). The link points on the core scaffold are defined as shown in Figure 5.3, a single 

hydrogen atom was selected at a time at the desired position to allow the fragment to grow by 

searching the fragment libraries described above. A maximum of 100 atoms in each fragment 

were chosen, the bond rotation was set to “One at a time,” with maximum fit attempts of 5000 

and up to 1 Å RMSD. This de novo linking was carried out for all the three core scaffolds. The 
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fragments that are mainly hydrophobic in character are discarded at this stage from fragment 

library. 

This protocol ranks the fragments based on the Ludi score which is a function of the non-

bonding interactions. The highest ranked fragments were selected, and in the subsequent step, the 

binder fragment was linked to the core scaffold and the geometry of the molecule was optimized 

by energy minimization. 

 

Figure 5.3: Possible tricyclic systems 6-6-5 and their binding to Wee1 kinase domain. R, R1, and R2 are 

the sites of extension of fragments. 

5.2.3.2 Molecular docking 

To understand the mechanism of protein-inhibitor binding, the key amino acid residues in 

the chemical space that effectively contribute to the binding of inhibitor needs to be deciphered. 

The complete molecules after fragment ligation to the core scaffold were docked into the active 

site of Wee1 kinase. The new de novo designed molecules were drawn in DS 2.5, hydrogens 

were added, and the molecules were energy minimized with CHARMM force field (Brooks et 

al., 1983). CDOCKER (Wu et al., 2003) was used to dock the new inhibitors within a 5-Å cavity 

defined around PD0407824. The binding of molecules to the ATP binding site of Wee1 kinase 

was analyzed using “score ligand poses” available in the receptor-ligand interaction protocol in 

DS 2.5, and the scoring functions, PLP1, PLP2, PMF, and PMF04 (Gehlhaar et al., 1995; 

Gelhaar et al., 1999; Muegge & Martin, 1999; Muegge, 2006), were applied in the docking 

analyses. The criteria for inhibitor selection were, low RMSD between the initial and docked 

orientations and when the intermolecular interactions with Wee1 kinase were retained. The 

selected molecules were subjected to ADME calculations. 
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5.2.4 ADME parameter calculations 

The ADME properties are one of the most effective parameters to relate the ability of 

drug permeation, distribution, metabolism, and retention in the host for reasonable time. Reliable 

software tools to calculate the molecular properties such as physico-chemical properties, 

solubility, lipophilicity, pharmacokinetics, and drug-likeness are available (Lipinski et al., 1997). 

The in silico designed molecules would be characterized to assess their drug-like properties 

before the chemical synthesis (Tian et al., 2015). Further, one of the challenges in the design of 

new molecules is the possibility of the proposed molecules to be actually synthesized (Ertl & 

Schuffenhauer, 2009). The drug-like properties of a candidate molecule from de novo design are 

calculated using the SwissADME server (http://www.swissadme.ch/index.php); this web server 

also supports the calculation of the synthetic accessibility of the molecule. The molecules that 

qualify the ADME properties were proceeded to MD simulations in complex with Wee1 kinase. 

5.2.5 Molecular dynamics simulations 

The reference molecules AZD1775, PHA-848125, and the molecules designed using 

pharmacophore-based de novo design in this work, in complex with Wee1 kinase obtained from 

molecular docking, were further studied using MD simulations. GROMACS 5.1.4 (Hess et al., 

2008; Van Der Spoel et al., 2005) was used to run the MD simulations for 25 ns. The MD 

simulations of the complexes were studied to understand the contribution from inhibitor binding 

to the protein stability. Amber ff99SB force field (Hornak et al., 2006) was applied to the protein 

as well as small molecules; force fields were assigned to molecules using ACPYPE script (da 

Silva &Vranken, 2012) with AM1-BCC charges in Antechamber (Wang et al., 2006). 

All the molecular systems were immersed in a cubic box, three-point model (SPC) was used for 

solvation, and to obtain a neutral molecular system Na+ and Cl- ions were added (Berendsen et 

al., 1981). For energy minimization to remove the steric stress and let the system to relax, 

steepest descent algorithm was used. The number of steps was set to a maximum of 50,000 with 

step size of 0.01 and maximum force was set to less than 1000 kJ/mol/nm2. This was followed by 

position restraint to equilibrate the system and maintain the solvent and ions around the protein. 

This system was heated until 300 K for 100 ps; in the subsequent step, the system was 
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equilibrated at 1 atm and 300 K for 1000 ps until it reaches proper density. The final MD 

simulations were performed at 300 K for 25 ns using 0.002 ps time step. The known reference 

molecule AZD1775 bound to Wee1 kinase was studied for 100 ns MD simulations. The 

Parrinello–Rahman method was used to control the pressure (Parrinello & Rahman, 1981), and 

temperature was maintained using V-rescale thermostat (Bussi et al., 2007). The long-range 

electrostatics were handled using the PME method (Darden et al., 1993; Essmann et al., 1995) 

with a real-space cut-off of 10 Å, PME order of 4, and a relative tolerance between long- and 

short-range energies of 10−6. Short-range interactions were evaluated using a neighbour list of 

10 Å updated every 10 steps while Lennard-Jones (LJ) interactions and the real-space 

electrostatic interactions were truncated at 9 Å. Hydrogen bonds were constrained using LINCS 

algorithm (Hess et al., 1997). The final models in all the systems were obtained by averaging the 

snapshots from the trajectory generated by MD simulations after the structure stabilization was 

achieved (15–25 ns). 

RMSD of the Cα atoms with respect to their starting structures were calculated by using gmx 

rms of GROMACS to study the conformational variations in the protein-inhibitor complexes. 

The convergence of MD simulations was analyzed in terms of RMSD plots. The RMSF were 

calculated using gmx rmsf to study the stability of frames relative to the initial frame. 

5.2.6 Binding free energy calculations 

To estimate the strength of the small molecules binding to Wee1 kinase, the stabilized 

regions of the MD simulations trajectories based on the RMSD results (15–25 ns) were analyzed. 

Binding free energy was calculated on a number of snapshots in the stabilized region of the 

protein-inhibitor complex from the last 10 ns of MD simulations of each complex. The 

g_mmpbsa (Kumari et al., 2014) tools which were designed to work with GROMACS output 

trajectories were used to calculate the binding free energy of each complex. The total energies 

were calculated using MM-PBSA (Homeyer & Gohlke, 2012) to understand the effective 

contribution of reference molecules and de novo designed molecules identified in this work. The 

effective participation due to the contribution from van der Waals, electrostatic, polar and apolar 

solvation energy terms is estimated from the binding free energy calculations. 
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5.3 Results 

5.3.1 Protein structure 

In the crystal structure of Wee1 kinase (PDB ID: 1X8B) bound to phenylpyrrolo[3,4-

C]carbazole-based inhibitor (PD0407824), the missing 20 amino acid activation loop [amino 

acids 436–455] was modeled using MODELLER in UCSF Chimera. 

5.3.2 Core scaffold and fragments identification 

The crystal structure of Wee1 kinase bound to the inhibitor AZD1775 (PDB ID: 5V5Y) 

comprises three hydrogen bonding interactions: Cys379 NH with N14 (2.16 Å), Cys379 O with 

H121 (2.061 Å), and Asn376 H with O18 (2.223 Å). The Pharmit pharmacophore search using 

AZD1775 identified several features such as hydrophobic, aromatic, and hydrogen bond donor 

and acceptors. In order to identify new core scaffolds that bind to the hinge region, the 

pharmacophore features, two aromatic rings, and four hydrogen bond acceptors were retained as 

shown in Figure 5.2A. These pharmacophore features with defined filters in Pharmit when used 

to search ZINC database identified several molecules with low RMSD. The top hits were docked 

into the active site of Wee1 kinase. The possibility of these hit molecules having more than one 

position for forming intermolecular hydrogen bonding with hinge region residues, proper 

position and orientation to extend the core while building the fragments towards unoccupied 

active site space was assessed. Among the top 10 hits, tricyclic scaffolds had higher probability 

of possessing these characteristics and hence the molecules selected ZINC40388002, 

ZINC05605098, and ZINC95922878 as core scaffolds comprise tricyclic 6-6-5 systems. These 

scaffolds show different binding modes at the hinge region as shown in the Figure 5.3. As 

anticipated and required to bind the hinge region, they make hydrogen bonding interactions with 

hinge region Cys379 main-chain NH. To extend the core scaffold, the fragments obtained from 

Pharmit searches based on pharmacophore features and fragments from Ludi library were used. 

The pharmacophore features for fragments that accommodate solvent exposed front binding cleft 

(Figure 5.2B) and back binding pocket (Figure 5.2C) are taken from PDB ID: 5V5Y. 
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5.3.3 Fragment selection based on diverse hits 

The ATP competitive inhibitors bind at the inter-domain interface of kinases. While the 

core scaffold binds the hinge region, the fragment moieties would bind the front solvent exposed 

and back binding (close to DFG/DLG) pockets in the active site. 

After the binding of core scaffold to the hinge region, the remaining space in the active site is 

available for different fragments to occupy. The position of extension at the chosen atoms on the 

three core scaffolds showed different sizes and numbers of fragments. The number of fragments 

at each position is shown in the Venn diagram (Figure 5.4A-B). However, the number of 

common fragment hits represented by their union is much smaller as indicated in the Figure 

5.4A-B. This is indicative of the diversity of the fragments and therefore the residence of the 

fragments in the chemical space of Wee1 kinase. The list of fragments from Ludi, ZINC, and 

PubChem databases are shown in Table 5.1. 

 

Figure 5.4: Bar graph indicating numbers of fragments on each scaffold. “R” indicates the site of 

fragment linking. Venn diagram indicates the number of fragments residing in (A) back pockets and (B) 

solvent exposed region. 

 

 

 

 



149 
 

Table 5.1: List of fragments oriented towards various pockets in the kinase 

List of fragments in the DLG binding pocket  List of fragments towards solvent exposed front binding pocket  List of Ludi 

fragments 

towards DLG 

binding pocket 

 

Scaffold 1  Scaffold 2 Scaffold 3  Scaffold 1 Scaffold 2 Scaffold 3 Scaffold 3  

T01 

T04 

T09 

T10 

T12 

T14 

U13 

U15 

U22 

U28 

U33 

U45 

U46 

U80 

U88 

UA6 

UB3 

UD7 

UE0 

UE2 

UE3 

UG9 

ZINC000002576728 

ZINC000026545977 

ZINC000002559430 

ZINC000082522346 

ZINC000083571373 

ZINC000082522345 

ZINC000004519995 

ZINC000084287157 

T01, T02 

T03, T04 

T08, T09 

T12, T14 

T16, T17 

S09, S18 

S37, S62 

S81, S84 

S87, S88 

S99, SB4 

SF0, SF3 

SF8, SJ2 

SJ4, SK4 

SK9, SO0 

SP1 

SP5 

SP6 

SP7 

SS7 

SS8 

ST4 

ST8 

ST9 

SU9 

SX6 

SX9 

SY1 

U29 

U37 

U45 

UB3 

UB9 

D07 

D21 

D50 

D61 

D69 

D76 

M64 

MI5 

SP0 

U01 

U02 

U03 

U04 

U05 

U12 

U16 

U17 

U19 

U20 

U22 

U41 

U42 

U44 

U50 

U51 

U52 

U53 

U55 

U56 

U57 

U65 

U66 

U67 

U69 

U71 

U83 

U85 

U86 

UA6 

UA8 

UC3 

UD0 

UD1 

UD7 

UE6 

UE7 

UG7 

PubChem-67147731 

ZINC000091365519 

ZINC000019881985 

ZINC000002527894 

T03, T04, S69, 

S93, SP0, SP4, 

SP6, SP8, SQ2, 

SS1, ST0, ST3, 

U04, U05,U06, 

U10, U11, U13 

U15, U16, U17 

U19, U22, U23 

U24, U33, U36 

U37, U40, U47 

U52, U53, U54 

U60, U64, U71 

U75, U78, U80 

U84, U89, U97 

UA6, UC0, UC2 

UC3, UC5, UC7 

UD6, UD7, UE1, UE2 

UE3, UE6 

UE7, UF2 

UF4, UF5 

UH1, UH3 

UH5, UH6 

UH8, UH9 

M55, M61 

M80, M86 

MG1, MG3 

ZINC000005138367 

ZINC000020523314 

ZINC000062796818 

ZINC000019476234 

ZINC000000153945 

ZINC000536953667 

ZINC000032174397 

ZINC000021954100 

ZINC000035037193 

ZINC000002527894 

ZINC000019476232 

ZINC000091365519 

ZINC000032174397 

T01 

T10 

S14 

S94 

SF1 

SS9 

U01 

U05 

U09 

U52 

UA4 

UA5 

UF5 

M46 

M91 

MC0 

T01 

T18 

S02 

S05 

S08 

S18 

S25 

S35 

SJ4 

SL0 

SP5 

SQ7 

U13 

UE0 

D50 

D51 

M37 

M39 

M44 

M49 

M79 

MC2 

MC4 

MC6 

ME1 

ME5 

MH4 
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5.3.4 Core and fragment linking, and molecular docking of de novo designed molecules 

The crystal structure of a protein is required to understand its molecular mechanism of 

function and the design of small molecules that inhibit its activity. The molecular docking 

studies guide in the expectation of the pose and orientation of the molecules in the receptor 

active site. The docked core scaffolds should have accurate orientation, and the fragments should 

reside in the favored environment of the protein active site. The crystal structure of a kinase 

complexed with inhibitors guides us to understand which position in the core scaffold is suitable 

for growing the linker, size of the linker, and the type of fragments in the proximity of active site 

residues and their preferences. In this study, all crystal structures of kinases were scanned which 

have more than 4000 molecules and few of them exploit the tricyclic core scaffold systems 6-6-

5. As shown in Figure 5.3, variable distribution of hetero atoms shows a unique binding mode at 

the hinge region of Wee1 kinase for the design of new inhibitors. The core scaffold binds only 

the hinge region and there is a need to extend it by linking the fragments so as to fill the larger 

binding pocket in Wee1 kinase. The fragments selected based on the “Rule of three” from 

Pharmit and Ludi database were used for de novo link to the core scaffold. A 5-Å sphere around 

the inhibitor binding in PDB ID: 1X8B was defined to select the fragments. The selected 

fragments for front and back binding pockets of Wee1 kinase from de novo link protocol are 

shown in Table 5.1. 

The first scaffold could bind 30 fragments in the DLG pocket and 74 in the front binding pocket. 

The second scaffold binds 54 and 11 fragments in the DLG and front binding pockets, 

respectively. Likewise, the third scaffold binds 39 and 18 fragments in the DLG and front 

binding pockets, respectively. For this scaffold, fragments from Ludi library were also selected 

to fill a back sub-pocket (Table 5.1). The location of these fragments is shown in the bar graph of 

Figure 5.4. 

The molecules obtained by linking the fragments to the core scaffolds were drawn in DS 2.5, 

energy minimized after adding hydrogens using CHARMM force field. These molecules were 

docked into the active site of Wee1 kinase using CDOCKER. The criteria for shortlisting these 

molecules are that they show minimum RMSD with the core scaffold docked, and the de novo 
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linked fragments are in suitable orientations to fit into the back and front pockets of protein 

active site. The molecules that have good superimposition and low RMSD with the PD0407824 

and high docking scores were selected as probable inhibitors of Wee1 kinase. The selected 

molecules were proceeded for the next stage of ADME calculations. 

The synthetic accessibility of the proposed molecules is scored from 1 to 10 based on the 

complexity of the molecules, number of stereo-centers, etc. The lower the score, the greater is 

the synthetic accessibility of the molecule. In this work, the synthetic accessibility scores are less 

than 4.75, which is indicative of the ease in their synthesis. The calculation of ADME properties 

using SwissADME server shows acceptable values within the range. The topological polar 

surface area (TPSA) is between 20 and 130 Å2, lipophilicity; expressed as cLogP is less than 5, 

and water solubility expressed as Log S shows that most molecules are soluble or moderately 

soluble in water. The skin permeation possibility expressed as Log Kp is also reasonable 

indicating the possibility of skin permeation. Further, all the ADME properties of the de novo 

designed molecules in this work possess ADME properties similar to the reference molecules 

AZD1775 and PHA-848125 (Daina et al., 2017) as shown in Table 5.2. 

Table 5.2: ADME, TPSA, lipophilicity, water solubility, and skin permeation of reference and de novo 

designed molecules. 

Compounds  TPSA 

(Å²) 

Consensus 

LogPo/W 

Log S 

(ESOL) 

Log Kp Synthetic 

Accessibility 

AZD1775 104.34  2.76 -4.85 -7.15 cm/s  4.23 

PHA-848125 91.21 2.39 -4.50 -7.12 cm/s  4.07 

2A 107.17                  2.66 -3.69 -7.67 cm/s  3.59 

2B 114.95 1.81 -2.87 -8.40 cm/s  4.74 

2C 103.82 3.68 -5.74 -6.75 cm/s  4.34 

2D 85.65 2.18 -3.03 -7.99 cm/s  3.67 

2E 91.37 2.65 -3.70 -7.17 cm/s 3.75 

2F 97.97  2.09 -3.67 -6.99 cm/s  2.70 

2G 113.16 1.36 -2.74 -8.09 cm/s  2.88 

2H 93.79 1.79 -3.00 -7.52 cm/s  2.75 
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Based on the above criteria, eight molecules were finally chosen from the three core scaffolds, 

based on the first core (2A, 2B, and 2C), the second core (2D and 2E), and the third core (2F, 

2G, and 2H) and the structures of these molecules are shown in the Figure 5.5. The molecular 

docking scores of de novo designed molecules are similar to the reference molecules. The 

docking score of the reference crystal structures AZD1775 and PHA-848125 and the new 

molecules proposed in this work are shown in the Table 5.3. These results show that the new 

molecule binding pose is similar to the location of the reference molecules; further, all the 

molecules form hydrogen bonding interactions with the hinge region residue Cys379. 

 

Figure 5.5: Molecules (2A–2H) generated using fragment-based de novo design of inhibitors. 

Table 5.3:  Ligand score PLP1, PLP2, PMF, PMF04 of references inhibitors (AZD1775, PHA-848125 

and the molecules generated using de novo fragment link (2A-2H)) and hydrogen bond distance. 

Compound PLP1 PLP2 PMF PMF04 H bond distance 

Cys379:NH--- N of core 

scaffold 

AZD1775 -134.78 -124.01 -166.69 -80.16 2.164Å 

PHA-848125 -126.45 -114.6 -160.36 -86.01 2.252Å 

2A -111.57 -100.91 -125.44 -61.49 2.389Å 

2B -102.45 -94.9 -137.25 -75.75 2.75Å 

2C -101.12 -93.59 -139.99 -73.45 2.295Å 
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2D -100.95 -93.5 -129.71 -67.11 2.497Å 

2E -104.72 -96.71 -102.96 -56.33 2.491Å 

2F -97.67 -92.34 -126.39 -60.82 2.348Å 

2G -109.38 -102.67 -143.19 -72.62 2.409Å 

2H -95.99 -89.24 -123.82 -69.13 2.241Å 

5.3.5 MD simulations and binding free energy calculations 

The binding of de novo designed molecules to Wee1 kinase was further assessed using 

MD simulations studies. The RMSD plot of AZD1775 bound to Wee1 kinase and the hydrogen 

bond distance with hinge region during 100 ns is shown in Figure 5.6. 

 

Figure 5.6: Wee1-AZD1775 complex. A) Three hydrogen bonds are shown as green dotted lines. B) The 

RMSD of protein (green) AZD1775 (turquoise) are obtained from MD simulations studies. C) Hydrogen 

bonding distances between Cys379 NH with N14 (green), Cys379 O with H121 (maroon) and Asn376 H 

with O18 (black) during 100 ns MD simulations. 

The last 1 ns of MD simulations trajectory was used to calculate the average structure. 

Comparison of the initial and average structures by structure superimposition shows that the core 

scaffold shows good stability and low RMSD confirmed by conserved hydrogen bonding 

interaction with hinge region indicating the suitability of these core scaffolds in the design of 

Wee1 kinase inhibitors. The fragments of back-pocket for molecules 2A and 2B show minor 

deviation from docking pose as indicated in the superimposition of the docked pose and average 

structure from MD simulations trajectory shown in the Figure 5.7. Likewise, for the front 
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binding pocket, the fragments in the molecules 2B and 2D show minor deviations. The 

superimposition of structures is reasonably good for other molecules (2C, 2E, 2F, 2G, 2H). 

 

Figure 5.7: Superimposition of docked (blue) with the average structures (tan) of the molecules (2A–2H) 

after MD simulations. 

The resulting RMSD plots of the protein-inhibitor complexes indicate that the protein RMSD is 

lower than 3 Å and is lower than 2 Å for inhibitor as shown in Figure 5.8. The analysis of the 

trajectories of the three molecules with the hinge region residues of Wee1 kinase as shown in 

Figure 5.9 is less than 3 Å distance, which clearly indicates that the essential hydrogen bond is 

retained during MD simulations. 
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Figure 5.8: Schematic representation of RMSD plots for Wee1 kinase complexed with PHA-848125 and 

the de novo designed molecules from MD simulations(2A–2H), proteins (green), and inhibitors 

(turquoise)  

 

 

Figure 5.9: Intermolecular hydrogen bonding distance between Cys379 main-chain NH and reference 

molecules, and the de novo designed molecules (2A–2H) 
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The RMSF plots (Figure 5.10) indicated that for most part of the protein, amino acid residues 

have lower fluctuations, less than 2 Å, and only the activation loops from 436 to 455 display 

high fluctuations and reach up to 5 Å. The reference molecules also display similar regions of 

fluctuations. 

 

Figure 5.10: RMSF of Wee1 kinase when bound to reference inhibitors, AZD1775 and PHA848125, and 

de novo designed molecules (2A–2H) 

The binding free energies of the protein-de novo designed complexes and the crystal structure 

complexes of Wee1 with AZD1775 and PHA-848125 were calculated using MM_PBSA and are 

shown in Table 5.4. The energy contributions from van der Waals, electrostatic, and polar 

solvations show compatibility with each other and reference molecules. Comparison of these 

data indicates that the binding free energies of these molecules are comparable to the molecules 

already approved. T 

he contribution of the active site amino acids in Wee1 kinase to the binding of de novo designed 

molecules is shown in Table 5.5. As shown in Figure 5.11, the amino acid residues responsible 

for inhibitor binding are preceding the α-C helix (Val360), hinge region residues (Asn376, 

Tyr378, Cys379, Asn380, Gly381, Gly382, Ser383), α-D helix (Asp386), β-7 strand (Ser430, 

Phe433), and activation loop (Asp463). Similar contributions are also made by the reference 

molecules. 
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Table 5.4: The van der Waals (vdW), electrostatic, polar and apolar solvation and binding free energies 

in kJ/mol 

Compounds    vdW Electrostatic Polar solvation Apolar solvation ΔG Binding(15-25 ns) 

AZD1775 -237.809± 0.440 -25.201 ±0.314 171.063± 0.669 -22.325± 0.036 -114.308 ± 0.658 

PHA-848125 -235.517± 0.301 -45.786 ± 0.404 178.697 ± 0.506 -21.901 ±0.027 -124.516±0.407 

2A 199.019±0.385 -28.359 ±0.304 142.155± 0.506 -19.146± 0.030 -104.395± 0.426 

2B -192.167± 0.309 -30.942±0.343 132.808 ± 0.427 -18.190 ±0.032 -108.489 ±0.475 

2C -205.051 ±0.534 -33.550 ±0.373 144.653± 0.692 -19.769± 0.045 -113.696 ± 0.597 

2D -203.704 ±0.448 -55.390 ± 0.499 188.298± 0.787 -19.858 ± 0.035 -90.627± 0.515 

2E -210.400± 0.389 -38.033± 0.435 146.818± 0.592 -19.393 ±0.028 -121.014±0.450 

2F -211.261 ±0.353 -32.433 ±0.217 161.718 ±0.360 -18.813±0.025 -100.773 ±0.445 

2G -210.526 ±0.318 -38.147 ±0.318 162.140 ±0.534  -19.301 ±0.027 -105.846 ± 0.401 

2H -202.313±0.306 -25.680 ±0.249 132.609± 0.381 -18.027 ±0.023 -113.419 ±0.403 

 

Table 5.5: Contribution of Wee1 kinase active site residues to the bindingof reference and de novo 

designed molecules in kJ/mol. 

Residue 

No 

AZD1775 PHA-

848125 

2A 2B 2C        2D 2E    2F     2G      2H 

Val360 -4.4043 -6.2899 -5.3351 -5.0964 -4.0304 -7.166 -5.2443 -5.7521 -5.2906 -4.9821 

Asn376 -4.2291 2.7704 -1.638 -1.2088 -1.4464 -2.0873 -1.0156 -0.8625 -1.395 -0.8883 

Tyr378 -3.2064 -6.7231 -4.825 -3.757 -6.3315 -2.0394 -3.0336 -3.7572 -4.4612 -0.2006 

Cys379 -12.812 -10.819 -11.092 -10.468 -13.706 -5.9121 -5.8695 -9.8591 -10.854 -11.332 

Asn380 -3.8554 -5.8956 -14.732 -5.1546 -20.206 -0.6542 -0.798 -1.1531 -5.3197 -4.0323 

Gly381 -5.8275 -9.8001 -29.336 -4.542 -22.624 -0.6185 -2.481 -1.4702 -7.1967 -2.3166 

Gly382 -21.185 -26.363 -30.076 -23.566 -26.761 -6.3956 -10.641 -17.915 -25.186 -19.786 

Ser383 -7.0413 -4.9643 -10.121 -4.2959 -14.537 -24.064 -25.772 -13.944 -10.639 -7.3816 

Asp386 -7.486 -32.882 -11.129 -2.9525 -8.6823 -18.913 -6.8308 -8.7208 -8.3344 -0.2155 

Ser430 -8.6743 -0.7531 -13.741 -11.475 -17.221 -10.655 -15.152 -3.1613 -2.3612 -2.7182 

Phe433 -44.543 -44.087 -41.512 -44.495 -36.664 -38.200 -43.205 -41.138 -41.207 -38.061 

Asp463 -12.912 -33.262 -24.403 -19.018 -19.934 -30.313 -11.884 -22.329 -24.464 -23.444 
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Figure 5.11: Contribution from amino acid residues in the Wee1 kinase to the binding of reference 

inhibitors (AZD1775 and PHA848125) and the de novo designed molecules (2A-2H). The amino acid 

residues with higher contribution are indicated. 

All inhibitors make hydrogen bonding interactions with Cys379; pi-pi stacking interactions 

between the 6-6-5 core scaffold and side-chains of aromatic amino acids of Tyr378 and Phe433 

are also present in all the eight molecules. Further, sigma-pi stacking interactions between 

inhibitors and Ile305, Val313, and Phe433 are also present. Some additional hydrogen bonding 

interactions with Glu303, Glu346, Asn376, Tyr378, Ser383, Asn431, and Asp463 are observed. 

These hydrogen bonding and hydrophobic interactions stabilize the Wee1 kinase-de novo 

designed inhibitor complexes. 
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5.4 Discussion 

During the last two decades, in the field of drug discovery, fragment-based design for 

new molecule identification has emerged successfully. The key features are the identification of 

core scaffold, low molecular weight fragments, and their appropriate linkage so as to design new 

small molecules that would fit into the active site of receptor chemical space. Further, the 

binding affinity of the new molecule is estimated to be more than the sum affinities of each 

individual fragment and form intermolecular interactions with the receptor to stabilize the 

complex (Fink et al., 2005; Jencks, 1981; Erlanson et al., 2016; Scott et al., 2012). Earlier, the 

screening of the core scaffold and fragments to identify the best binders was carried out using 

experimental methods such as X-ray crystallography, nuclear magnetic resonance, and surface 

plasmon resonance (Murray & Blundell, 2010). These techniques examine the affinity of some 

fragments from a mixture of fragments and report the binding conformation of a hit molecule to 

the active site of protein and therefore guide the discovery of more efficient fragments. In the 

recent times, computational chemistry approaches have been applied in the rational drug design. 

The search for new fragments by using pharmacophore models followed by virtual screening of 

database methods or destruction of approved drugs and high potent molecules has been in 

practice (Teague, 2011). More recently, machine learning methods are applied to produce 

relationships between available data of small molecules and their physico-chemical properties; 

the results are further extrapolated to predict the chemo-informatic properties of new molecules 

and therefore their application for in silico drug design studies (Mitchell, 2014). 

Scaffold hopping is one of the methods to introduce more favorable core building blocks 

of a molecule based on the reported inhibitors; this can be achieved by the addition of 

heteroatoms to scaffold rings or addition of new rings and in some cases to replace the core by a 

substructure with a different topology (Hu et al., 2016). In the de novo design of fragments 

protocol, a prepared fragment library is searched to return all the fragments that can covalently 

link with the core scaffold and make interactions with the neighboring residues in the protein 

active site. The designed fragments should adhere to the rule of three (Kolb & Caflisch, 2006). 

The quality of the fragments identified is further studied to confirm their binding efficiency by 

molecular docking, RMSD, energy strain, MD simulations, and energy decomposition studies 

(Verdonk et al., 2011; Ichihara et al., 2011). The crystal structure of a protein-inhibitor complex 
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guides us to find the location and exact position of fragment substitution on the core as against a 

mere random selection of fragments. The crystal structure provides guidance to know the size of 

linkers based on the space that remained unoccupied; they also indicate how a substitution causes 

steric hindrance to atoms on the core scaffold and hence reduce their chance to reach an energy 

minimum conformation. 

Fragment-based design of novel lead molecules is now a validated method, and some molecules 

from these studies have entered clinical trials. For example, Astex Pharmaceuticals designed, 

AT7519 (Squires et al., 2009), a cyclin-dependent kinase inhibitor is in clinical trials and was 

reported to be effective in overcoming chemo-resistance in colon and cervical cancer (Chen et 

al., 2014). AT9283 (Howard et al., 2008), an Aurora kinase inhibitor is in clinical trials(Vormoor 

et al., 2017; Hay et al., 2016).The first FDA-approved drug designed using fragment-based drug 

discovery is PLX4032 and produced by Plexxikon Inc. and Hoffmann-La Roche Ltd. (Tsai et al., 

2008). BI-2852 designed by Boehringer Ingelheim, Vanderbilt University as inhibitor of K-Ras 

target (Kessler et al., 2019), eFT508 inhibitor for MNK1, MNK2 and developed by eFFECTOR 

Therapeutics for advanced castrate-resistant prostate cancer as ATP-competitive inhibitor (Reich 

et al., 2018) are taking lead in the drug discovery pipeline. Some of the recent literature also 

provide advances in cancer and other disease drug discovery based on fragment-based 

technology (Mortenson et al., 2018; Erlanson et al., 2020; Jahnke et al., 2020)  

5.4.1 Kinase pockets and hinge region scaffold 

More than 500 kinase genes have been identified in the human genome. A typical kinase 

domain which is often the catalytic part of a larger protein comprises between 240 and 300 

amino acid residues (Manning et al., 2002), the N-terminal β-sheet domain and the C-terminal α-

helix domain are connected by a hinge region, the glycine rich loop interacts with the 

phosphodiester of ATP, a highly flexible activation loop and conserved motifs such as 

DFG/DLG and HRD/HMD are essential for the enzyme activity. Most of the kinase inhibitors 

are ATP competitive inhibitors, which mainly bind the hinge region of a kinase domain and are 

extended into sub-pockets or clefts. The inhibitors are classified based on their orientation inside 

active site into three regions, front cleft which has residence for pyrimidine of ATP, DFG motif 

region, and a third region with back cleft of multiple sub-pockets. The 3-D structure of a kinase 
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has an inherent conformational switch for active and inactive forms in the active site pocket with 

DFG motif flipping between “in” or “out” conformational states (van Linden et al., 2013). 

Scanning of kinase structures in the PDB revealed that the hinge region in the active site is 

occupied by a core scaffold; the back and front binding pockets are occupied by aromatic rings 

holding some functional groups. 

In vitro studies reported Milciclib (PHA-848125), a pyrimidine-based tricyclic scaffold as a 

potent Wee1 kinase inhibitor that shows good dissociation constant and inhibition of cell growth 

(Zhu et al., 2017); crystal structure of this complex has also been reported [PDB ID: 5VC6]. 

Another pyrimidine-based tricyclic scaffold as Wee1 inhibitor has been reported with sub-

micromolar affinities (Tong et al., 2015). Scanning of kinase structures in the PDB revealed such 

tricyclic core scaffolds with heteroatoms as kinase inhibitors and is shown to form 

intermolecular hydrogen bonding with hinge region residues. The PDB IDs for different types of 

core scaffolds with the tricyclic system are 5-6-5 [4E6Q], 6-5-6 [3RVG], 6-6-6-6 [2R7B], 6-7-6 

[4IWD], and 5-7-6 [5T8F] (Kulagowski et al., 2012; Lim et al., 2011; Gopalsamy et al., 2007; 

Northrup et al., 2013; Castanedo et al., 2017). In our study, the 6-6-5 system was used as the core 

scaffold (ZINC40388002, ZINC05605098, and ZINC95922878) with different positions of 

heteroatoms (nitrogens) as shown in Figure 5.3. These core scaffolds show three different 

binding modes at the hinge region and form hydrogen bonds as shown in the Figure 5.3. 

The large numbers of fragments retrieved from the virtual screening when linked to each 

scaffold generate hundreds of molecules, and this will generate a combinatorial library. Based on 

the molecular docking into the Wee1 kinase active site, eight molecules represented by 6-6-5 

system were chosen that fit into active site and form hydrogen bonding interactions with Cys379 

and with high docking score. 

The ADME properties calculated for the de novo designed molecules showed suitable physico-

chemical properties, lipophilicity, water solubility, drug-likeness, and synthetic accessibility, and 

these parameters are equivalent to the reference Wee1 kinase inhibitors. 

From the molecular docking and MD simulations studies, it was observed that these fragment-

based de novo designed molecules bind the ATP binding site of Wee1 kinase and are therefore 
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ATP competitive inhibitors. The newly designed inhibitors show high intermolecular interactions 

and structural stability of the protein-inhibitor complexes as indicated by the high docking scores 

and binding free energies. The fragments linked to the core scaffold generated new molecules, 

and importantly, these new scaffolds circumvent the existing patents of reported kinase 

inhibitors. 
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5.5 Conclusions 

 

The 3-D structure of a protein inhibitor complex guides us to predict new molecules 

using computational de novo drug design methods. The crystal structure of Wee1 kinase 

complexed with pyrimidine-based inhibitor was utilized to identify three tricyclic [6-6-5] core 

scaffolds from ZINC library that form hydrogen bonding interactions with the Cys379 main-

chain NH in the hinge region. Pharmacophore-based searches of ZINC and PubChem databases 

and Ludi library identified several fragments that were linked to the core scaffold using de novo 

linking protocols. From the molecular docking, it was observed that the extended molecules are 

located in the ATP binding site of Wee1 kinase and fit well in the chemical space of the protein 

active site. These molecules display desirable ADME properties. MD simulations studies 

revealed stability of the Wee1 kinase-inhibitor complexes and significant contribution from the 

active site residues in the complex formation. The new molecules identified in this work are 

comparable in terms of binding location, docking scores, and binding free energies to the 

reference Wee1 kinase inhibitors. 
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