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1.0. Introduction 

1.1. Overview of breast cancer 

Cancer is an outcome of abnormal and uncontrolled proliferation of cells having the potential to 

spread or invade to other body parts. The accumulation of abnormalities in the normal cells directly 

or indirectly affect cell cycle regulatory machinery that lead to abnormal growth of the cells, 

reflecting distinguishing behavior from the normal cells. The development of tumor is a multistep 

process involving accumulation of mutations or genetic alternations resulting continuous 

proliferation and abnormal growth (Nordling, 1953; Armitage and Doll, 1954). Globally, cancer 

has become the second most common cause of death. The World Health Organization (WHO) 

estimates that cancer caused 9.6 million deaths worldwide in 2018. This accounts for one in every six 

deaths. According to the American Cancer Society, there will be 1.8 million new cancer cases in 

the United States and 606,520 deaths by 2020. In India, NCRP (India's National Cancer Registry 

Program) expects to grow to 1.73 million new cases and 0.88 million deaths by 2020 (Gandhi et 

al., 2017). Among various cancers, breast cancer remains one of the most common malignancies 

affecting millions of women worldwide, although it exists in man in rare cases (Saunders et al., 

2009; Gandhi et al., 2017). The incidence of breast cancer is lower in rural areas than in urban 

areas of the country due to lifestyle, food habits, increased alcohol consumption, use of 

contraceptives pills, etc. (McTiernan, 2003; Sharma et al., 2010). 

Breast is a mammary gland composed of two primary tissues: glandular tissue and stromal tissue. 

Glandular tissue has grapes like a cluster of glands consisting of hundreds of lobules, which are 

lined by specialized epithelial cells to produce milk. The lobules are interconnected through small 

ducts, which eventually join larger ducts to passage the milk through the nipple. Stroma is the 

supportive tissue comprised of fatty and fibrous connective tissues (Sharma et al., 2010). Breast 
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cancer may be originated from the cells lining the duct (ductal carcinoma) or in the cells lining the 

lobules (lobular carcinoma) or other tissues.  

1.2. Breast cancer classification based on histology, site and invasiveness 

1.2. (a) Ductal Carcinoma In Situ (DCIS) 

DCIS is a non-invasive malignancy of the epithelial cells with clonal proliferation and 

accumulation confined to the basement of the breast ductal system (Allred, 2010; Bane, 2013). It 

is also known as stage 0 breast cancer or intra-ductal breast cancer. It is the most common type, 

constituting 90% of non-invasion breast cancer (Sharma et al., 2010). It is considered as very early 

stage, non-lethal, and highly treatable; however, DCIS is a precursor of invasive breast cancer, 

which is aggressive cancer and lethal if left untreated or undetected in early-stage (Collins et al., 

2005; Sanders et al., 2005). With the advent of new screening technology like mammography, 

uncommon breast lesions are easily detected, accounting for the increasing incidence of DCIS, 

approximately 20% of all new breast cancer cases (Leonard and Swain, 2004; Armed Forces 

Health Surveillance, 2013; Parikh et al., 2018). The DCIS progression to IBC is at least 13% -50% 

of cases; therefore, it required aggressive and effective therapy or treatment, but DCIS-associated 

mortality is very low (Sanders et al., 2005; Erbas et al., 2006; Mahoney et al., 2013). 

1.2. (b) Lobular Carcinoma In Situ (LCIS) 

LCIS is a noninvasive abnormal lobulocentric proliferation or growth of the epithelial cells lining 

the breast's milk-producing multiples glands (lobules), causing to fill and distort lobular units. It 

is considered as a marker for the risk factor, precursor for invasive lobular carcinoma (ILC), and 

evidence suggest that LCIS is a premalignant lesion having potential progression towards invasive 

carcinoma (Haagensen et al., 1978; Dabbs et al., 2007). LCIS has an 8-10 fold higher risk of 

developing into ILC than the general population (Page et al., 1991). The probability of progression 
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to ILC after diagnosed with LCIS was 13%, 26% and 35% by 10, 20 and 35 years, respectively 

(Bodian et al., 1996). 

1.2. (c) Invasive Ductal Carcinoma (IDC) 

Invasive ductal carcinoma is also known as infiltrative ductal carcinoma. It begins in the breast's 

milk ducts and start spreading to the breast's surrounding tissue and further can be metastasized to 

lymph nodes and other body organs. Approximately 75% - 80% of invasive breast cancers (IBC) 

are IDC (Li et al., 2005).  According to the American Cancer Society, it is reported that in the 

USA, every year 180,000 women are finding out with invasive breast cancer and 80% of the IBC 

are DCIS. It is more common to the woman of older age of 55 or more and also affects the man as 

well. 

1.2. (d) Invasive Lobular Carcinoma (ILC) 

The second most common type of IBC is ILC. It is originated from the abnormal proliferation of 

cells lining the lobules and has spread to other parts of the breast tissue. Around 10% of invasive 

breast cancer are ILC and developed commonly in the older age, especially among post 

menopause, of 45 to 50 years old women (Li et al., 2000; Li et al., 2003a; Arpino et al., 2004). 

Based on histology, it can be again divided into different types like medullary carcinoma, papillary 

carcinoma, tubular carcinoma, cribriform carcinoma and mucinous carcinoma. 

1.3. Molecular classification of breast cancer  

Localization-based breast cancer classification is not enough to understand the patients' 

pathological parameters and clinical outcome as it limits targeted therapy. Recent studies on gene 

expression profiling further led to the identification of five major molecular subtypes of breast 

cancer (Sorlie et al., 2001; Dai et al., 2015) that gives more in-depth information to provide the 

best individualized treatment ( Perou et al., 2000; van de Vijver et al., 2002; Paik et al., 2004). 
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1.3. (a) Basal-like breast cancers 

The majority of the basal-like breast cancers are TNBC (triple negative breast cancers) and 

constitute 15-20% of all breast cancers. It lacks the expression of estrogen receptor (ER-), human 

epidermal growth factor receptor 2 (HER2-) and progesterone receptor negative (PR-)  with 

expression of cytokeratin (CK5/6+) and epidermal growth factor receptor (EGFR+) (Badve et al., 

2011). They are very aggressive, high-grade tumor; and associated with frequent mutations in 

BRCA1, BRCA2 and P53 genes (Sorlie et al., 2003). There is no option for therapeutic treatment 

of basal like breast cancers resulting poor survival rate (Carey et al., 2006). Chemotherapy is the 

only option for the treatment of patients TNBC patients (Cancer Genome Atlas, 2012). 

1.3. (b) Luminal A 

They are ER (+), PR (+) or PR (-), HER2 (-), CK5/6 (-) and EGFR (-) constituting (35%-40%) of 

all breast cancers. It has the best prognosis as compared to other subtypes with low mortality as 

well as low recurrence rates (Al Tamimi et al., 2010; Voduc et al., 2010; Arvold et al., 2011). 

1.3. (c) Luminal B 

It has ER+ and low or HER2 negative. About 10%-20% of all breast cancers are Luminal B breast 

cancer (Voduc et al., 2010). They are highly proliferative and have a fairly high survival rate but 

less than Luminal A tumours (Malhotra et al., 2010; Metzger-Filho et al., 2013; McGuire et al., 

2017). 

1.3. (d) HER2 overexpressing 

This is ER-, PR-, EGFR- and HER2+. It comprises 10% of all breast tumours (Carey et al., 2006). 

Her2+ tumors are frequently high-grade, very aggressive and associated with poor prognosis 

(Carey et al., 2006; Parker et al., 2009).  

1.3. (e) Claudin-low 
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This subtype of cancer is characterized by ER-, less expression of genes associated with tight 

junction of the cells or epithelial cell-cell adhesion like Claudins 3/4/7, E-cadherin and Occludin 

(Herschkowitz et al., 2007; Malhotra et al., 2010). It is relatively resistant to conventional 

chemotherapeutic agents and is also linked to poor prognosis (Prat et al., 2010; Prat and Perou, 

2011). 

In recent years, five years relative survival rates are improving because of advanced treatments 

with population wide screening. Around 10% of the breast cancers are due to inherited genetic 

mutation but most of the breast cancer causing factors are associated with reproductive, lifestyle, 

environments etc. (Rojas and Stuckey, 2016). 

1.4. Role of oxygen in diversity and evolution of organisms  

Oxygen plays a pivotal role in the evolution of complex organisms (Catling et al., 2005). In the 

relative absence of oxygen, unicellular organisms relied for their energy on metabolic pathways 

using CO2 and SO4 as electron acceptors (Thannickal, 2009). The most energy-sufficient metabolic 

pathways were evolved with concomitant increase in the concentration of environmental O2, and 

it is the main tipping point for the evolution of complex organisms (Stamati et al., 2011).  Oxygen 

became an integral part of many biochemical pathways replacing anoxic enzymatic reactions in 

the aerobic organisms. Various complex biochemical networks emerged to adapt to the oxic 

environment with subsequent development of multicellular organisms (Raymond and Segre, 

2006). The oxygen-dependent pathways gradually replaced the anaerobic pathways at different 

points of the evolution tree. The metabolic network consists of aerobic, generally irreversible, as 

well as anaerobic counterparts and small molecules called metabolites. The aerobic metabolites 

that are more rigid and hydrophobic, serve as transmembrane factors to modulate the membrane 

function favoring complex cellular organizations (Goldfine, 1965; Jiang et al., 2012). Moreover, 

modifications in the membrane architecture were seen, like extracellular domains of 
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transmembrane proteins became prominently bigger with limited size and numbers than 

intracellular domains. It enhanced cellular compartmentalization with proper communication and 

signaling across the membrane (Acquisti et al., 2007). Thus, many biological events were 

influenced by oxygen evolution, driving to transforming and expansion of complex multicellular 

organisms.  

The atmospheric oxygen concentration has been fluctuating over time in the earth's evolution, 

impacting the natural selection of organisms with phenotypic changes. For instance, the oxygen 

concentration was at its peak during Carboniferous (35%) era with the highest body size, and it 

remains unchanged as at 21% since last 350 million years (M.Lenton, 2003). In response to low 

or high oxygen levels, organisms have developed various defense and regulatory mechanisms to 

adapt and protect the cells. Each era of earth's evolution had various oxygen concentrations with 

spontaneous development of diverse morphology with effective respiratory system to maximize 

the organism's survival (Stamati et al., 2011). High atmospheric pressure implicates the 

development of placenta and maternal atrial diffusion of oxygen. Also, oxygen has a positive effect 

on body size, metabolism and hatching phenotype etc. For instance, hyperoxia (more than 21%) 

leads to increased body size in Drosophila melanogaster and insects (Frazier et al., 2001; Berner 

et al., 2007). The hyperoxia treatment (up to 35%) after ambient oxygen leads to early hatching in 

tree frogs (Warkentin, 2002), 27% of oxygen exposed to alligators resulted in increased body size 

with positive developmental rate and bone composition, but However, exceeding 27% results in a 

reduction in body size and a slower pace of development (Berner et al., 2007). Most mammals and 

birds need optimal oxygen tension and can change the metabolism based on its availability. Many 

vertebrates such as fish, amphibians, turtles, and reptiles can prolong hypoxia by reducing energy-

consuming processes prioritizing essential minimum cellular processes (Berner et al., 2007). 
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Diving animals can store a large quantity of molecular oxygen as they have higher myoglobin with 

a low metabolic rate (Ramirez et al., 2007). 

Oxygen is a vital component for the development, growth, and survival of multicellular organisms 

(Stamati et al., 2011). The multicellular organisms have well-established oxygen delivery systems 

that consist of capturing molecular oxygen and delivery to the target cells (Giaccia et al., 2004). 

They can sense and respond to low-oxygen with well sophisticated physiological networks to 

maintain homeostasis. Every cell in tissues requires a particular range of oxygen to perform and 

maintain proper body function as prolonged exposure to beyond or less oxygen concentration leads 

to cell death. In adult humans, physiological oxygen levels inside the body fall between 1% to 14% 

pO2 (Stamati et al., 2011). Hypoxia is a phenomenon of the non-physiological level of oxygen. 

Still, its effect can be either positive or negative on the tissue or cells depending on the severity, 

duration, and context. In mammals, low oxygen (hypoxia) is sensed by the carotid body (CB) 

(Czyzyk-Krzeska, 1997). The CB comprises clusters of cells (glomeruli) close to blood arteries 

and nerve fibres. Under hypoxia, the O2-sensitive K+ channels of glomus cells are blocked, 

causing Ca2+ entry (depolarization), thereby releasing transmitters that activate sensory fibres 

terminating at the respiratory centre (Lopez-Barneo et al., 2016). Any variation in oxygen 

concentration drives many physiological signaling involving protein cascades that are important 

for normal fetal development, angiogenesis, differentiation of cells, maintaining stem cells, 

pluripotency and embryonic development etc. (Lin et al., 2008; Ivanovic, 2009). However, low-

oxygen tension disturbs the internal cellular metabolism and it is associated with many diseases, 

such as cardiovascular disease, dementia, diabetes and cancer (Eales et al., 2016). Hypoxia 

modulates the tumor microenvironment and is linked with poor prognosis in several cancers (Muz 

et al., 2015). 
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1.5. Development of tumor microenvironment 

Our system has evolved with well-developed mechanisms to protect the cells from cancer and 

other pathological diseases. The niche system of the body system perpetuates a particular range of 

environment to maintain integrity of the tissue or cells to prevent the creation of cancer cell 

hallmarks by limiting, and selective barrier such as food supply, oxygen availability, structure of 

the tissue etc. (Ferraro et al., 2010). Cells are installed with tumor suppressor genes to control an 

appropriate number of cells via regulating cell division and the organs' size. Cellular suicide 

programs such as apoptosis and cellular senescence are inherited phenomena in response to 

aberrant or inappropriate signals among cells (Childs et al., 2014). Effective DNA repair system 

obviates oncogenic mutation to maintain the genomic integrity and function of the cells (Jeggo et 

al., 2016). Also, the telomere shortening programs limit the division of cells to control cell 

population (Victorelli and Passos, 2017). Furthermore, the powerful multifaceted network of 

immune surveillance system monitors to detect neoplastically abnormal cell and destroy it (Swann 

and Smyth, 2007). Even though the host system has sophisticated tumor defense mechanisms, it is 

prone to cancer due to many factors. With the age, the genomic integrity and function deteriorates 

in the body due to the accumulation of mutations over time.  The oxidative damage to DNA by 

reactive oxidative products derived from cell metabolism and radiation also causes cancer 

(Adelman et al., 1988). Exposure to natural or artificial carcinogen causes genetic diversity and 

alteration in cells' population, causing gain or loss of function. For instance, natural carcinogens 

like aflatoxin B1, Sterigmatocystin, Ochratoxin A cause liver cancer. Many artificial carcinogens 

such as vinyl chloride, dioxins also cause cancer. Oncogenic virus like human papillomavirus, 

hepatitis virus B and C and oncogenic bacterium (Helicobacter pylori) are known to cause cervical 

cancer, hepatocellular carcinoma and stomach cancer, respectively (Vandeven and Nghiem, 2014). 
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 The tumor microenvironment (TME) is a heterogeneous milieu that consists of cellular 

components such as immune-inflammatory cells, neuroendocrine cells, adipose cells, fibroblasts 

and a non-cellular player, the extracellular matrix (ECM), which comprises of fibronectin, fibrillar 

collagens, elastin, and laminins (Provenzano et al., 2008; Mammoto et al., 2013).  ECM constitutes 

60% mass of tumors, which are secreted and dictated by tumor cells (Henke et al., 2019). The 

interlink dynamic changes of the ECM with respect to microevolution of the tumor, drives cellular 

functions like cell-cell adhesion, cell migration, cell polarity, and cell proliferation (Paszek et al., 

2005; Gritsenko et al., 2012). Initiation of tumor, followed by its progression, dissemination, and 

colonization to distant organs with acquired cellular traits involve multistep stages with 

complicated inter or intra-tumoral communication and its surrounding tissues (Gonzalez et al., 

2018). The tumor microenvironment is a unique and ambient environment that emerges from the 

orchestrated molecular talks between tumor cells and surrounding tissues with the ultimate 

decisive role in driving tumorigenesis (Whiteside, 2008). 

Most cancers are originated from a single abnormal cell with selective advantages. The progression 

of cancer within an individual can be considered as a rapid micro-evolutionary process. The cancer 

cells' self-proliferating nature jeopardizes the co-ordination among normal cells and escalates a 

sustainable ecosystem to drive tumorigenesis (Wu et al., 2016). The accumulation of mutation with 

cell growth and proliferation over time effectuates a more aggressive cancer phenotype (Takahashi 

et al., 2020). Rapid cancer cell proliferation and simultaneous pushing of cells away from the blood 

vessel leads to a desultory creation of microenvironments, known as normoxia (abundant oxygen 

and nutrients) in the vicinity of the blood vessel, and hypoxia (lack of oxygen and nutrients) distant 

from the blood vessel, across the tumor. Cancer cells encounter selective restriction for space, 

nutrients, oxygen for continuous survival and proliferation during this period (Levayer, 2020). 

Cancer cells prime themselves and acquire hallmarks to dominate via continuous mutational gain 
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over normal cells. They can cope with the metabolic stress by rewiring the metabolic pathways to 

support the fast-growing tumor, transforming to more aggressive phenotypes. Unlike normal cells, 

cancer cell can shunt the glycolysis over TCA cycle (Tricarboxylic acid cycle) for glucose 

metabolism while directing the glutamine-dependent TCA cycle to replenish its intermediates 

(Anderson et al., 2018). The upregulation of high affinity glucose transporter proteins like GLUT1 

and GLUT 3 enhances glucose uptake and its break down to lactate even under normoxia, a 

phenomenon known as Warburg effect (de la Cruz-Lopez et al., 2019) is a hallmark of cancer. 

Lactate is an oncometabolites that alters oncogenic transcription, cell proliferation and drives 

genes involved in metabolic reprogramming in cancer cells (Dang et al., 2008). It enhances cell 

migration/ invasion, immune escape and angiogenesis in mice (Dhup et al., 2012). Further, it 

stabilizes HIF-1α promoting glutamine metabolism via c-MYC dependent upregulation of 

Glutamine transporter (ASCT2) and Glutaminase (GLS1) (Perez-Escuredo et al., 2016). Besides, 

TME initiates angiogenesis to overcome the limitation for nutrients and oxygen and triggers 

metastasis (Makrilia et al., 2009). Thus, cancer cells dominate over normal cells for energy source 

by driving abnormal uptake of glucose and glutamine and enhanced catabolism provoking 

tumorigenesis. 

1.6. Tumor microenvironment drives phenotypic plasticity: Implication in 

tumorigenesis and metastasis  

Survival of the fittest being its mantra, evolution does its selection over time by eliminating 

inadaptable organisms or traits through natural selection   (Beldade et al., 2011). Organisms have 

the potential to cope with the heterogeneous environment by rewiring the cellular and biochemical 

functions. Phenotypic plasticity is the competency of an organism to exhibit different phenotypes 

when exposed to varying environments (Sergio Pimpinelli, 2019). It is a powerful, inherited 

transformation in morphological, physiological, or behavioral traits to adapt, protect themselves 

from predators, and diversify in an ever-changing environment (Fusco and Minelli, 2010; Cohen 
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et al., 2016) For instance, in the hatching plasticity stimulated by predators in the red-eyed tree 

frog, if the eggs sense an anomaly, they hatch almost instantaneously instead of doing so in their 

normal time course (Warkentin, 1995). 

Cancer is the outcome of uncontrolled cell growth independent of the body’s regulatory system. 

The evolution of cancer within an individual is a rapid micro-evolutionary process. Cancer cells 

dominate over systematically fit normal cells through gradual evolution of microenvironment with 

suitable phenotype and constant selection (Casas-Selves and Degregori, 2011). There are two main 

phenotypes of cancer: (1) Cell proliferation, which makes a lump of tumor, and (2) Metastasis, 

where cells break away from tumors and travel through the bloodstream to initiate secondary 

tumors. The rapid cell proliferation creates many random microenvironments (hypoxia/normoxia) 

due to the imbalance in supply and consumption of oxygen across the solid tumor, constituting a 

wide range of pO2 with 50-60% hypoxia and 50-40% normoxia areas in solid tumor (Vaupel and 

Mayer, 2007; Kuschel et al., 2012). These intratumoral subsets of microenvironment with different 

oxygen availability have different patterns of gene expression. Even though TME is often hostile 

due to the limitation of oxygen and nutrients, as a consequence of continued cell proliferation, 

cancer cells adapt to this plethora of abnormal stresses by rewiring the cellular function through 

translational and epigenetic alterations. Hypoxia induces gene amplification, drives progression of 

malignancy (induction of EMT), resistance to radiation therapy, thus lowering the patient survival 

rate (Mimeault and Batra, 2013). Prolonged hypoxia initiates angiogenesis, shifting the hypoxia 

microenvironment back to normoxia following continuous proliferation and so on. This back and 

forth phenotypic switching between the proliferative and metastatic phenotype under a desultory 

microenvironment creates phenotypic heterogeneity and tumor progression (Belisario et al., 2020). 

These phenotypes are mutually exclusive, i.e., having highly proliferative cells with low migration 

or vice versa, is known as migration/proliferation dichotomy (go or grow mechanism) (Giese et 
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al., 1996). The oxygen concentration influences the phenotypic plasticity of the tumor cells 

favoring proliferative phenotype over migration in normoxia and hypoxia trigger transition to 

invasive phenotype (Hatzikirou et al., 2012). 

Hypoxia initiates plasticity and drives heterogeneity in tumors promoting more aggressive and 

invasive phenotypes.  Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcription factor 

with HIF-1α (oxygen-responsive subunit) (Semenza and Wang, 1992) and HIF-1β (constitutively 

expressed subunit) (Ratcliffe et al., 1998; Wang et al., 1995). The HIF-α/β dimer with 

transcriptional coactivator p300/CBP recruits on the hypoxia response element sequence of the 

target gene’s promoter (Majmundar et al., 2010). The activated heterodimeric protein complex 

regulates the expression of genes necessary for hypoxic adaptation such as angiogenesis, pH 

regulation, energy homeostasis, etc. (Semenza and Wang, 1992; Wang et al., 1995). Under normal 

physiological conditions (normoxia), HIF-1α expression diminishes as it undergoes prolyl 

hydroxyl dehydrogenase (PHD) induced hydroxylation followed by pVHL-mediated 

ubiquitination and subsequent 26s proteasome-dependent degradation. The hypoxia-adaptive 

signaling drives pro-survival, EMT, invasive and metastasis in solid tumors (Schito and Semenza, 

2016). Hypoxia promotes EMT in various cancer like prostate, breast, pancreatic, lung, ovarian, 

myeloma, renal and squamous carcinoma (Scortegagna et al., 2009; Mak et al., 2010; Azab et al., 

2012; Salnikov et al., 2012; Huang et al., 2013; Sun et al., 2013b). It is a multifaceted networking 

system consisting of multistep cellular changes, which drive the transition of highly organized, 

polar non motile epithelial cells to non-polar spindle shape mesenchymal cells, which have higher 

motility and aggressive phenotype (Ferrao et al., 2015). Hypoxia-induced EMT has low expression 

of E-Cad, β-catenin and elevated expression of Vimentin, N-Cad, Smooth muscle antigen (SMA), 

and CXCR4 ( Hsu et al., 2000; Kim et al., 2002; Manotham et al., 2004; Azab et al., 2012;). It is 

initiated and executed by an orchestrated set of E-box-binding transcription factors like TWIST, 
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ZEB1/2, SNAIL and SLUG. SNAIL, SLUG and ZEB1/2 transcriptionally represses E-cadherin 

expression by recruiting to its promoter. HIF-1α, a master regulator of hypoxia, directly modulates 

many EMT related transcription factors. It transcriptionally activates TWIST and promotes 

metastasis. High TWIST and HIF-1α expression correlate with the poor prognosis in ovarian 

cancer, and head and neck cancer patients (Kim et al., 2014; Yang et al., 2008). Similarly, HIF-1α 

induces SNAIL, SLUG, and ZEB1 expression and promotes metastasis (Storci et al., 2010; Zhang 

et al., 2013; Zhang et al., 2015). TGF-β which is increased under hypoxia, also regulates EMT by 

activating downstream transcription factors like SMADs, SLUG, SNAIL and TWIST (Tian et al., 

2011). It has been reported that HIF-1α regulates TGF-β-SMAD3 pathway in breast cancer (Peng 

et al., 2018). Additionally, it indirectly regulates EMT transcription factors via FoxM1 signaling 

pathways and PAFAH1B2 gene (Ma et al., 2018; Tang et al., 2019). It also facilitates the regulatory 

loop of integrin-linked kinase (ILK) and promotes EMT in breast and prostate cancer (Chou et al., 

2015). Hypoxia microenvironment sustains EMT regulatory system through other signaling 

pathways like Notch and nuclear factor-κB signaling cascades. The Wnt/β-catenin signaling also 

initiates EMT through GSK3β, which stabilizes SLUG in breast cancer (Wu et al., 2012). 

Moreover, the cargo exosomes carry EMT inducers such as TGF-β, TNF-α, HDGF (Hepatoma-

derived growth factor) and EMT effectors like MMPs and enhances tumor growth and metastasis 

(Marimpietri et al., 2013; Vella, 2014). For instance, the exosomes derived from prostate cancer 

promotes differentiation of normal stromal cells into specialized myofibroblasts via TGF-β and 

accelerate angiogenesis and tumor growth (Webber et al., 2015). When the cancer cells are 

disseminated and landed on a distant organ, the invasive mesenchymal phenotype with polar 

spindle-like morphology, changes back to MET, a more proliferative phenotype with apical basal 

polarity, to initiate secondary tumor (Ferrao et al., 2015). 
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The EMT abrupts cell-matrix adhesion and breaks down ECM and basement membrane by 

modulating MMPs (matrix metalloproteinase) activity, and rearrange the intercellular 

communication to exacerbate metastasis (Thiery, 2002). ECM consists of proteoglycans, non-

collagenous glycoproteins, and fibrillar collagens constituting 60% mass of tumors (Hoye and 

Erler, 2016). The physical force mediated re-alignment of ECM creates routes for the cells’ 

passage (Kai et al., 2019; Winkler et al., 2020). The ECM stiffness drives EMT through 

translocolization of TWIST1, YAP, and TAZ into the nucleus (Riesterer et al., 2006; Wei et al., 

2015). Many proteases such as disintegrin, metalloproteinase MMPs cleaves at cysteine, threonine 

or serine residues and degrades ECM (Bonnans et al., 2014). During the metastasis (EMT), cancer 

cells degrade ECM releasing bioactive ECM and ECM-bound factors, which helps in the liberation 

of cellular constraints and the cells’ migration. Total 26 MMPs are known, and they have distinct 

structural organization with different substrate specificities. MMPs are generated as proenzymes 

and their activities are controlled by proteolytic regulation of post-translational modification 

(mature MMPs) and endogenous inhibitors, TIMPs (tissue inhibitor of metalloproteinase) 

(Jablonska-Trypuc et al., 2016; Quintero-Fabian et al., 2019). MMP-2 and MMP-9 are the MMPs 

which can hydrolyze gelatin and enhance metastasis (Raeeszadeh-Sarmazdeh et al., 2020). 

Cancer cells exhibits Warburg effect and accelerate tumor malignancy (Vaupel et al., 2019). It 

converts glucose into lactate even in the presence of oxygen and functioning mitochondria 

(Gatenby and Gillies, 2004). The aerobic glycolysis and lactate formation instigates proliferation, 

which is acquired by the cancer cells in the early oncogenesis even before the creation of hypoxic 

microenvironment. The lactate accumulation resulted from Warburg effect, promotes the 

expression of lactate dehydrogenase and the monocarboxylate transporters (MCT1 and MCT4), 

which facilitate lactate shuttling between the cancer cells and surrounding microenvironment 

(Courtnay et al., 2015). MCT4 acts as a lactate exporter, while MCT1 mediates importing of lactate 
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of cancer cells. Shuttling of lactate between CAFs (cancer associated fibroblasts) and tumor cells 

accelerates tumor cell proliferation and progression (de la Cruz-Lopez et al., 2019). The 

hypoxia/normoxia activation of HIF-1α promotes Warburg effect (Vaupel and Multhoff, 2020). 

The PI3K/Akt/mTOR signaling pathway and HIF-1α are the primary regulators of glycolysis, 

proliferation and metabolism (Courtnay et al., 2015). The PI3K/AKT signaling cascade enhances 

glucose import via GLUT1 and modulates phosphofructokinase activity (DeBerardinis et al., 

2008). While HIF-1α is induced under hypoxia, however in normoxia, HIF-α subunits undergo 

ubiquitin-proteasome (26S) mediated degradation (Marxsen et al., 2004). Notwithstandingly, 

evidence surmounts the existence of non-canonical mechanisms regulating HIF-1α in an oxygen-

independent manner (Iommarini et al., 2017). For instance, oncometabolites such as succinate can 

stabilize HIF-1α in normoxia by inhibiting PHDs (Selak et al., 2005). Also, WSB1 (WB repeat 

and SOX-box containing protein) stabilizes HIF-1α via ubiquitination of pVHL protein and 

promotes metastasis (Kim et al., 2015). mTORC1 and increased ROS also enhances normoxic 

stabilization of HIF-1α (Yan et al., 2014). Oxygen-independent oncogenic signaling such as Mdm2 

(mouse double minute 2 homolog) pathway, PI3K (phosphatidylinositol-3-kinase) activation and 

Hsp90 (heat shock protein 90) also regulate HIF-1α expression (Masoud and Li, 2015).  The HIF-

1α stabilized under normoxia promotes aerobic glycolysis or Warburg effect by transcriptionally 

upregulating GLUT1, LDH, etc., and confers tumor growth (Semenza et al., 1994; Courtnay et al., 

2015; Nagao et al., 2019). 

1.7. Oxygen dependent phenotypic plasticity of cancer cells 

Hypoxia is a consequence of rapid cell proliferation in solid tumor. The O2 concentration in the 

tumor microenvironment causes a range of phenotypes, such as  normoxic cancer cells (proximity 

to the blood vessel), hypoxic cancer cells (distal to the blood vessel), and necrotic cancer cells 

(anoxic, 150 µm away from the blood vessel) (Al Tameemi et al., 2019) (fig. 1). Hypoxia is the 
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prominent feature of most tumors, including breast cancer. Although hypoxia has a cytotoxic effect 

on normal cells, cancer cells rewire their metabolism to survive under this hostile 

microenvironment. The reprogramming of tumor metabolism via direct or indirect activation of 

transcription factors such as HIF-1α, NFkB, CREB, AP1, P53, EGR1, SP1, SP3, etc., enable cells 

to survive under hypoxia and concomitantly acquires hallmarks of cancer (Cummins and Taylor, 

2005). The hypoxic tumor microenvironment facilitates malignancy, metastasis, EMT, 

propagation of cancer stem cells, chemotherapy resistance with less survival rate and a poor 

prognosis (Mimeault and Batra, 2013; Yadav et al., 2020; Zhang et al., 2021). HIF-1α is a well-

studied and well-characterized transcription factor that mediates diverse biological processes like 

cell proliferation, cell survival, migration, angiogenesis, etc. (Cummins and Taylor, 2005). 

 

Fig. 1. Schematic illustration of a solid tumor comprises of normoxia or hypoxia regions.  

As cancer cells proliferate, it creates normoxic cancer cells (proximity to the blood vessel), hypoxic cancer 

cells (away from the blood vessel), and necrotic cancer cells (anoxic, 150 µm away from the blood vessel). 

 

Oxygen-dependent phenotypic plasticity in cancer cells is caused by an imbalance of oxygen 

supply and consumption across the tumor. Solid tumors have a wide range of pO2 levels, including 
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zones of 50-60% hypoxia and 50-40% normoxia (Vaupel and Mayer, 2007; Kuschel et al., 2012). 

There is a dynamic microenvironment shift between hypoxia and normoxia through proliferation 

and angiogenesis or via intratumoral migration of the cells (Fig. 2). The oxygen-dependent cellular 

plasticity or phenotypic plasticity thus generated in response to dynamic changes in tumor 

microenvironments (TMEs) endows solid tumors with heterogeneity (Beca and Polyak, 2016; 

Kong et al., 2020). Under the desultory microenvironment, the two phenotypes, proliferative and 

metastatic phenotypes, switch dynamically and enhance tumor growth. (Belisario et al., 2020). 

These two phenotypes are mutually exclusive, i.e., having highly proliferative cells with low 

migration or vice versa, is known as migration/proliferation dichotomy (go or grow mechanism) 

(Giese et al., 1996). The tumor cells favor proliferative phenotype over migration in normoxia, but 

hypoxia triggers the transition to an invasive phenotype (Hatzikirou et al., 2012). However, the 

molecular mechanisms underlying phenotypic plasticity are largely unknown. 
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Fig. 2. Dynamics of microenvironment (hypoxia to normoxia or vice versa) promotes tumor 

progression.  

Cells proximal to the blood vessel exhibits proliferative phenotype, while cells away from the blood vessel 

enhance EMT and metastasis.  Prolonged hypoxia initiates angiogenesis, shifting the hypoxia 

microenvironment back to normoxia reverts proliferative phenotype on cancer cells. Oxygen dependent 

back and forth phenotypic switching between normoxia and hypoxia may create phenotypic heterogeneity 

and thus tumor progression. 

 

1.7. (a) Invasive phenotype and HIF-1α under hypoxia 

Elevated levels of HIF-1α correlates with tumorigenesis and poor prognosis in a multitude of 

different types of cancers like breast, colon, gastric, skin, lung, ovarian, prostate, pancreatic and 

renal carcinoma (Mabjeesh and Amir, 2007; Keith et al., 2011). Under hypoxia, it binds to 

constitutively expressed, oxygen independent, HIF-1β and forms a heterodimer and modulates 
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target gene expressions via recruiting on to the HIF responsive elements (HRE) harbor on their 

promoters. The coactivators CBP and p300, having lysine acetyl-transferase activity, interacts with 

HIF-1α and enhances the transcriptional activities of the targeted genes like VEGF, EPO 

(erythropoietin), SDF-1 (stromal-derived factor 1), GLUT1/3, and lactate dehydrogenase-A 

(LDH-A) and promotes diverse physiological functions, including angiogenesis, erythropoiesis 

etc. (Bento and Pereira, 2011; Dengler et al., 2014). At normal oxygen levels, prolyl hydroxylase 

domain (PHD) hydroxylates HIF-1α at proline residues and it is then recognized, and degraded via 

ubiquitination by von Hippel Lindau (VHL) protein (Fig. 3). HIFs activate transcription of genes 

that play key roles in critical aspects of cancer biology, including glucose metabolism (Luo et al., 

2011), cell immortalization, stem cell maintenance (Wang et al., 2011), epithelial-mesenchymal 

transition (Mak et al., 2010), vascularization (Liao and Johnson, 2007), genetic instability (Huang 

et al., 2007),  invasion and metastasis (Chan and Giaccia, 2007), pH regulation (Swietach et al., 

2007), radiation resistance (Moeller et al., 2007), regulation of angiogenesis, apoptosis, adhesion 

cell energy, and growth (Esteban et al., 2006; Li et al., 2006; Hirota and Semenza, 2006; Fukuda 

et al., 2007; Kilic et al., 2007). It induces stem cell markers like NANOG, SOX2, OCT4, CD44, 

CD133, CD24, and Krüppel-like factor 4 (KLF4) and resists chemo- and radio-therapy 

(Vermeulen et al., 2008; Zhang et al., 2021). In breast cancer, it is reported that HIF-1α is 

correlated with the elevated expression of CD44 and underexpression of CD24 (CD44+CD24-

/low) and modulates tumor progression and confers poor prognosis of the patients (Oliveira-Costa 

et al., 2011). It also regulates EMT under hypoxia through transcriptional activation of various 

EMT target genes including SNAIL, TWIST, SIP1, SLUG, and ZEB1. Other cellular EMT 

signaling pathways like TGF-β, hedgehog signaling activation, and Wnt/β-catenin pathways are 

also modulated by HIF-1α under hypoxia (Tam et al., 2020). 
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Fig. 3. The fate of HIF-1α.   

Under normoxia, HIF-1α is hydroxylated by PHD. The hydroxylated HIF-1α is further recognized by VHL 

and degraded via ubiquitination. However, in Hypoxia, HIF-1α translocate insides the nucleus and bind 

with constitutively express HIF-1β and activates many genes thereby enhancing tumorigenesis 

 

1.7. (b) Proliferative phenotype and HIF-1α under normoxia  

HIF-1α acts as an oxygen sensor and is degraded under normoxia. Despite, mounting evidence 

indicates the existence of HIF-1α regulation through oxygen-independent non-canonical signaling 

pathways (Iommarini et al., 2017). Mutations in two key enzymes of the tricarboxylic acid cycle, 

SDH (succinate dehydrogenase) and FH (fumarate hydratase) causes accumulation of fumarate 

and succinate oncometabolites. The oncometabolites block PHDs activity and stabilize HIF-1α 

under normoxia (Semenza, 2003; Isaacs et al., 2005; Pollard et al., 2005; Selak et al., 2005). Also, 
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WSB1 (WB repeat and SOX-box containing protein) stabilizes HIF-1α via ubiquitination of pVHL 

protein and promotes metastasis (Kim et al., 2015).  mTORC1 and increased ROS also enhance 

normoxic stabilization of HIF-1α (Yan et al., 2014). The elevated MYC stabilizes HIF-1α by 

partially inhibiting the interaction between HIF-1α and the pVHL complex under normoxia 

(Iommarini et al., 2017). The HIF-1α stabilized under normoxia promotes aerobic glycolysis or 

Warburg effect by transcriptionally upregulating genes such as GLUT1, LDH, etc., and promotes 

tumor growth (Semenza et al., 1994; Courtnay et al., 2015; Nagao et al., 2019). Although HIF-1α 

is upregulated in multiples types of solid tumors and displayed pleiotropic effects (Gladek et al., 

2017), the complexity of HIF-1α regulation and its association with cellular plasticity remains 

elusive. 

1.7. (c) Extracellular matrix (ECM) and cancer secretome 

Extracellular matrix (ECM) comprises of more than 300 proteins, which regulates tissue 

homeostasis and organ development (Tam et al., 2020). Collagens are the most abundant 

components constituting 90% of the ECM (van der Rest and Garrone, 1991) which regulates a 

network of signals creating tumor microenvironment that modulates cancer cell growth, migration 

and invasion (Gilkes et al., 2014). Hypoxia promotes fibrogenesis via over deposition of ECM, 

through HIF-1α and enhances tumorigenesis (Higgins et al., 2007). For instance, HIF-1α regulates 

P4HA1, P4HA2, PLOD1, and PLOD2 expression promoting ECM modification and tumor 

progression (Gilkes et al., 2014). Besides collagen deposition, hypoxia stimulates cellular 

signaling via HIF-1α and degrades ECM to promote cancer cell metastasis. It is associated with 

the elevation of matrix metalloproteinases expressions such as MMP9 and MMP2 (type IV 

collagen-degrading enzymes) (Choi et al., 2011; Krishnamachary et al., 2003). 

Matrix metalloproteinases (MMPs) belong to endopeptidases family, which play a pivotal role in 

ECM modelling and EMT processing under hypoxia. Among MMPs, MMP2 and MMP9 degrade 
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collagen IV, a main component of ECM, enhances cancer cell migration and invasion in various 

cancer types, and often correlates with poor prognosis of the patients (Kessenbrock et al., 2010; 

Al-Alem and Curry, 2015). Expression of MMP9/MMP2 is tightly regulated by many factors like 

cytokines, growth factors, metal ions, oncogenes, and hormones (Van den Steen et al., 2002). It is 

reported that FMRP, an mRNA binding protein, binds to MMP-9 mRNA and form FMRP 

containing granule and inhibits translation in hippocampal neurons. It is then translocated from 

cell body to dendritic synapses where FMRP dissociates from MMP-9 mRNA upon mGluR 

(metabotropic glutamate receptors) activation. Then MMP9 mRNA associates with active 

polyribosomes and undergoes de novo protein synthesis (Dziembowska et al., 2012; Janusz et al., 

2013). MMP-9 is secreted as a proenzyme containing a proregion adjacent to signal peptide. The 

cleavage in the proregion activates enzyme activity (Springman et al., 1990). The secretion of 

MMP9 is linked to its two N-linked glycosylation sites, Asn38 and Asn120 and abrogation of 

glycosylation retains it in the endoplasmic reticulum (Roth, 2002). The secreted MMP9 can form 

a complex with CD44 in the cell surface modulating cancer progression in breast cancer 

(Bourguignon et al., 1998) or can be internalized via interacting with the low-density lipoprotein 

receptor for its catabolism (Hahn-Dantona et al., 2001). Transcriptional regulation of MMP9 

expression is well documented, however, little is known about its post-transcriptional regulation, 

especially in its translational regulation (Yan and Boyd, 2007).  

Secretory proteins have a signal recognition sequence of 6 to 12 amino acids, which is recognized 

by SRP (Signal Recognition Particle) at the initial translation in the cytoplasm and pauses the 

translation. The nascent mRNA-ribosome complex with SRP cotranslationally translocate to the 

rough endoplasmic reticulum’s membrane where it interacts with the SRP receptor and resumes 

the translation (Walter and Blobel, 1981; Saraogi and Shan, 2011). 
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Fig. 4. Classical secretory pathway. 

Nascent signaling peptides are recognized, bind by SRP and pause the translation in cytoplasm. The nascent 

mRNA-ribosome complex with SRP cotranslationally translocated to the rough endoplasmic reticulum’s 

membrane where it interacts with SRP receptor and resume the translation. 

 

The SRP comprises of six proteins (SRP9, SRPP14, SRP68, SRP72, SRP19, and SRP54) and a 

300-nucleotide Alu RNA. SRP9/14 subunit interacts with Alu RNA in order to arrest translational 

elongation while SRP54 subunit interacts with the α-subunit of SRP receptor to resume translation 

(Siegel and Walter, 1986; Strub et al., 1991). The positively charged patch of lysine residues is 

essential for the interaction between SRP14 and the Alu RNA (Fig. 4) (Mary et al., 2010).  The 

amount of SRP receptors present on the ER membrane is the limiting factor to determine the rate 

of translation (Lakkaraju et al., 2008). Despite several reports regarding cancer secretome, the 

classical secretory pathway and role of SRP in cancer progression remains elusive. So far, only a 

single report has shown that SRP14 is one of the targeted genes involved in endometrial cancer 

progression and development (O'Mara et al., 2019). However, the question remains to be addressed 

is whether dysregulated expression of SRP subunits like SRP9 or 14 causes cancer or its expression 
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is a consequence of cancer progression. Understanding cancer secretome through classical 

pathways will dictate a way to explore the molecular mechanistic details to fight cancer.  

1.8. Review of literature on PBXIP1/HPIP 

1.8. (a) Introduction 

Abramovich et al., discovered HPIP as one of the interacting protein partners of PBX1 (pre B cell 

leukemia homeobox 1) and likewise named it as hematopoietic PBX interaction protein (HPIP). It 

is also known as pre B-cell leukemia homeobox interacting protein 1 (PBXIP1) (Abramovich et 

al., 2000). Being an adaptor/scaffold protein, it facilitates physical associations with various 

signaling proteins like ERα/β, Src, microtubules, etc. (Manavathi et al., 2006). Paramount 

investigation revealed that HPIP is elevated in more than a dozen cancers and enhances 

tumorigenesis (Liu et al., 2015; Cao et al., 2017; Wang et al., 2008; Cheng et al., 2019) . Apart 

from its role in cancer, it is also linked with neuronal development, embryogenesis, and 

endometrium decidualization of repeated implantation failure in women (Dhaenens et al., 2019). 

Its expression is elevated in spermatogonial cells and promotes germ cell proliferation. Other 

physiological disorder-related diseases like renal fibrosis, chronic kidney disease, and 

Osteoarthritis (OA) (joint cartilage disorder) are linked with upregulation of HPIP (Ji et al., 2019). 

Two decades have passed since the discovery of HPIP and in unraveling its cellular functions. 

However, there is a dire need of rigorous empirical studies to address its mechanistic cellular 

functions because of the myriad of cellular and physiological processes it is associated with. We 

made a systematic evolutionary tree of HPIP that shows the explorations made so far with respect 

to its aforementioned cellular activities.  HPIP has been investigated for its diverse roles like in 

hematopoiesis, estrogen signaling-related cellular function, reproduction biology, cancers, etc. 
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1.8. (b) Background of Pre-B-cell leukemia homeobox interacting protein 1 

(PBXIP1 or HPIP) 

It was the year 2000 when Abramovich et al., discovered PBXIP1/HPIP. Six years down the line, 

Manavathi et al., had a major breakthrough in elucidating the role of HPIP in tumorigenesis by 

activation of PI3K/AKT pathway via estrogen signaling. Since then, last 20 years saw a myriad of 

novel and exciting findings on this protein, so much that we can dedicate the phrase “HPIP 

biology” to illustrate its significance in the field of life science research (Fig. 5). 

HPIP gene is located on chromosome 1 at position q21.3, which is amplified in lung cancer, 

encoding a protein of 731 amino acid with two functional nuclear localization (485 aa – 505 aa 

and 695 aa – 720 aa), a nuclear export (443 aa – 731 aa) and microtubules binding sequence (190 

aa – 218 aa) (Fig. 6A) (Abramovich et al., 2002; Liu et al., 2015). HPIP predominantly localizes 

to the cytoskeletal fibers and can shuttle between the cytosol and the nucleus (Abramovich et al., 

2002). It was discovered as a PBX1 interacting protein through its PBX1 binding domain sequence 

(562 aa – 633 aa) and interacts with other PBX families like PBX2 and PBX3 (Abramovich et al., 

2000). By consolidating the reported information, we mapped the various domains of HPIP and 

its responsible interaction sites (Fig. 6A); however, crystal structure of HPIP is not available yet. 

It has a LXXLL motif or nuclear receptor-interacting motif (615 aa – 619 aa), which interacts with 

ERα and potentiates estrogen signaling (Manavathi et al., 2006). Also, ERα/β binds on three 

domains of HPIP, 138 aa – 220 aa, 328 aa – 561 aa, and 562 aa – 731 aa (Wang et al., 2008).  It 

has a RGD domain (421 aa- 423 aa), which is known for FAK activation signaling (Schaller, 2010). 



 

26 
 

 

Fig. 5. Evolutionary tree of HPIP/PBXIP1 gene. 

The summary/highlights of HPIP since its discovery in the year 2000 and its significance in the 

field of life science research. 
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However, Bugedi et al., showed that HPIP is activated through direct interaction of its C-terminal 

sequence (583 aa – 731 aa) with the kinase domain of FAK (Bugide et al., 2015). The conserved 

consensus sequence D4 domain (335 aa – 338 aa) of HPIP, a stability domain during mitosis, 

interacts with CDC20 (Khumukcham et al., 2019). Moreover, it interacts with APC3 through 

another conserved consensus sequence, IR domain (282 aa – 283 aa) that regulates mitosis 

(Khumukcham et al., 2019). It is shown that the testis-expressed 11 (TEX11) competes with ERβ 

for binding to the C-terminal region (509 aa – 631 aa) of HPIP (Yu et al., 2012). Recently, one 

more sequence is reported (362 aa – 541 aa), which interacts with lymphoid enhancer-binding 

factor 1 (LEF1) during the pathogenesis of osteoarthritis (Ji et al., 2019). Also, Yeast-two hybrid 

screening shows that HPIP is a interacting partner of AMPK (Moreno et al., 2009). The list of 

HPIP interacting protein partners, along with their source of information, is mentioned in (Fig. 

6B).  
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Fig. 6. Domain architecture of human PBX interacting protein or pre-B-cell leukemia 

homeobox interacting protein 1 (HPIP or PBXIP1). 

A. Analysis of encoded 731 amino acids sequence of HPIP and mapping of its functional domains. 

(ERα/β binding sites (Purple line), 138 aa – 220 aa, 328 aa – 561 aa, and 562 aa – 731 aa; MTBD 

(Microtubule binding domain) (light blue) 190 aa – 218 aa; IR motif (Ile-Arg) 282 aa - 283 aa; D4 

motif 335 aa – 338 aa; Coil-coiled domains (light pink) (CC1, 270 aa – 341 aa);  (green) CC2, 370 

aa – 415 aa); RGD motif (Arg-Gly-Asp) 421 aa - 423 aa; LEF1 (lymphoid enhancer-binding factor 

1) binding site (black line) 362 aa – 541 aa; NLS (Nuclear localization sequence) (light green) 485 

aa – 505 aa and 695 aa – 720 aa; NES (Nuclear export sequence) (brown) 443 aa –731 aa; PBX1 
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binding site (blue line) 562 aa – 633 aa; TEX11 (Testis-expressed 11) interacting site (lime green) 

509 aa – 631 aa; LXXLL motif or nuclear receptor-interacting motif, 615 aa – 619 aa; TID (TEX11 

interacting domain), 509-631 aa; KD (kinase domain) (light green line), 583 aa – 731 aa. B. List 

of interacting protein partners of HPIP/PBXIP1 and its source. 

 

1.8. (c) Role of HPIP in hematopoiesis 

PBX is a transcription factor that plays a vital role in developing hematopoiesis, while its 

deregulated expression links to leukemogenesis (DiMartino et al., 2001; Shimamoto et al., 1998). 

It acts as a coactivator for HOX proteins. PBX-HOX transcription factor complexes are thus 

formed is essential for the development of hematopoietic stem cells (HSC) (Moens and Selleri, 

2006). HPIP is a non-homeoprotein that directly interacts with PBX1 and both are highly expressed 

(co-expressed) in early hematopoietic progenitor cells enriched with CD34+ population and 

regulate the primitive stages of hematopoiesis and leukemic transformation (Abramovich et al., 

2000). Mechanistic details have shown that HPIP not only interacts with PBX1, but also with 

proteins of the same family as PBX2 and PBX3. It blocks the recruitment of PBX-HOX 

heterodimer to the target DNA sequence inhibiting the transcriptional activity of E2A-PBX 

(Abramovich et al., 2000). Manavathi et al., revealed that HPIP is induced in response to erythroid 

differentiation via erythroid lineage-specific transcription factors GATA-1/2 and mediates 

transcriptional activation of HPIP in a CTCF (CCCTC-binding factor) dependent manner (Fig. 

7A) (Manavathi et al., 2012). The induced HPIP activates PI3K/AKT/GSK3β signaling pathway, 

which in turn activates GATA1 transcription in a positive feedforward mechanism and regulates 

erythroid differentiation (Fig. 7A) (Manavathi et al., 2012). The hematopoiesis of sickle cell 

disease (SCD) is associated with reticulocytosis, erythroid hyperplasia, and HSC development 

(Grasso et al., 1975; Wu et al., 2005; Leonard et al., 2019). The downregulation of HPIP expression 

and its inverse correlative expression with miR-1225-3p in SCD further suggests a committed role 

of HPIP in hematopoiesis which needs to be further extrapolated (Jain et al., 2013). 
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Fig. 7. Generalized cellular and physiological roles of HPIP/PBXIP1.  

A. HPIP directly interacts with PBX1 and regulates the primitive stages of hematopoiesis. In 

response to erythropoietin (EPO), erythroid differentiation inducers, C/EBPα and GATA1 (in a 

CTCF, CCCTC-binding factor, dependent manner) activate HPIP and regulate erythroid 



 

31 
 

differentiation through PI3K/AKT signaling pathway. B. TEX11 and ERβ compete for HPIP; if 

TEX11 is more, it replaces ERβ and suppresses germ cell proliferation by inhibiting non-genomic 

signaling. C. (I) The estrogen mediates microtubule scaffold (MTs) multiprotein complex 

formation, ERα-HPIP-Src-PI3K, activates rapid non-genomic estrogen signaling cascade thereby 

stimulating AKT/MAPK signaling pathways and promotes tumorigenesis. C. (II) In p53-activated 

epithelial cells, p53 transcriptionally activates HPIP and drives tumorigenesis through HPIP-AKT 

signaling pathway. C. (III) MDM2 degrades HPIP through TBK1 mediated phosphorylation at 

Serine 147 and activates MDM2-mediated AKT signaling pathway and promotes cell 

proliferation. D. (I) HBX interacts with p53 and inhibits its recruitment to mi-R148a promotor 

rendering HPIP-mediated cell proliferation or invasion through the pAKT/mTOR signaling 

pathway. (Red arrow) HPIP interacts with CK1α and modulates renal cell carcinoma cell 

proliferation or EMT via mTOR signaling pathway. D. (II) and (III) TGF-β drives EMT through 

HPIP mediated Smad2 activation or via PI3K/AKT.  D. (IV) HPIP stabilized Snail via PI3K/AKT 

pathway and enhances EMT. The cellular stress response 1 (CSR1) inhibits HPIP-mediated 

PI3K/AKT signaling. D. (V) HPIP stimulates MAPK-mediated Calpain2 activation and promotes 

FA disassembly and turnover, and enhances cell migration. E.  TGF-β1 induces HPIP mediated 

EMT in renal fibrosis. F. Osteoarthritis (OA) is linked with high expression of HPIP. β-catenin 

mediated HPIP interaction with LEF1 enhances transcriptional activation of Wnt signaling 

pathway genes and thus OA pathogenesis. 

 

1.8. (d) Role of HPIP in reproduction and development 

 Yu et al., have shown that mouse spermatogonial stem cells express abundant HPIP that 

modulates germ cell proliferation by inhibiting the functional interaction between TEX11 and ERβ 

(Fig. 7B) (Yu et al., 2012). TEX11 is one of the X-linked spermatogenesis genes that are highly 

expressed in spermatogonia and early spermatocytes (Wang et al., 2001; Adelman and Petrini, 

2008). Detailed study shows that formation of ERβ-HPIP-Src-PI3K complex mediates rapid non-

genomic signaling and activates AKT and MAPK signaling pathways, promoting germ cell 

proliferation (Manavathi et al., 2006; Yu et al., 2012). However, if TEX11 expression is more, it 

replaces ERβ from the complex and suppresses cell proliferation by inhibiting non-genomic 

signaling (AKT/MAPK signaling) (Fig. 7B). ERβ localizes to the nucleus and promotes genomic 

signaling by enhancing the transcriptional activity of the estrogen-responsive genes. This study 

implies that a delicate balance among HPIP, ERβ, and TEX11 levels regulate germ cell 

proliferation (Yu et al., 2012).  
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The endometrium is the inner layer of the uterus, which is made up of epithelial cells. It thickens 

and renews itself periodically every month and sheds during menstruation. However, if a female 

conceives, it undergoes a series of functional and morphological changes forming a decidual lining 

for blastocyst implantation known as endometrium decidualization (Okada et al., 2018). Dhaenens 

et al., recently investigated on the proteomes of in-vitro cultured endometrial stromal cells showing 

that HPIP is down-regulated (7.7-fold) in women with repeated implantation failure compared to 

normal fertile women upon decidualization (Dhaenens et al., 2019). The mechanism is yet to be 

reported, but it can be hypothesized that HPIP may be involved in hormonal regulation during 

endometrium development. The endometrium proliferation and thickening to form a healthy 

endometrium are regulated by estrogen hormone produced from ovarian granulosa cells (Ng et al., 

2020). Further investigation from three independent groups has revealed that HPIP modulates 

estrogen-mediated signaling and promotes cell proliferation, which strongly supports the 

possibility of HPIP mediated estrogen signaling during endometrium development (Manavathi et 

al., 2006; Wang et al., 2008; Yu et al., 2012). Investigating its mechanistic role will be an emerging 

area to understand pregnancy-related complications in reproduction biology in the near future, 

which is yet to be reported. 

Ogaki et al., identified for the first time that HPIP expression is elevated during embryogenesis, 

particularly in E8.5 mouse embryonic definitive endoderm (DE) and pancreatic buds of E14.5 

embryo (pancreatic differentiation) (Ogaki et al., 2011; Shiraki et al., 2014). Also, the chondrocyte 

specific HPIP knockout mice (HPIP - / -) resulted in proportionate dwarfism during embryonic 

development (Ji et al., 2019). Interestingly, it is also shown to be upregulated in the astrocytic 

progenitor cells implying its potential role during human brain development. Besides it being a 

novel protein that is expressed in hippocampal neurons, and its expression is linked with neuronal 

degeneration in post-menopausal women (Murat Karamese, 2013; Selina et al., 2015). Further 
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study shows HPIP as a biomarker for astroglial progenitor cells (Cahoy et al., 2008; van Vuurden 

et al., 2014). These reports point to the essential roles of HPIP in different stages of reproduction 

beginning from germ cell proliferation to embryonic development. 

1.8. (e) Role of HPIP in estrogen signaling 

HPIP is a microtubule binding protein (Abramovich et al., 2000). The endogenous Estrogen 

receptor (ERα) interacts with microtubules through the LXXLL motif of HPIP. HPIP acts as a 

scaffold protein holding and recruiting p85 subunits of PI3K and Src kinase to 17 beta-estradiol 

(E2)-ERα complex (Fig. 7C, I) (Manavathi et al., 2006). The formation of microtubule scaffold 

signaling molecules complex, ERβ-HPIP-Src-PI3K, activates rapid non-genomic estrogen 

signaling cascade, thereby stimulating AKT/MAPK signaling pathways and promoting 

tumorigenesis; however, it negatively regulates transcriptional activity of ERα (genomic estrogen 

signaling) in the breast cancer cell. Interestingly, when the microtubules are depolarized, it 

enhances the transcriptional activity of ERα (Manavathi et al., 2006). It means that the 

microtubules' dynamics have an inherent role in maintaining the homeostasis of estrogen signaling 

cascades under various physiological signals. Akin to this, Yu et al., have reported a mechanism 

in mouse spermatogonial stem cells where TEX11 competes with estrogen (ERβ) to bind HPIP 

(Yu et al., 2012). The formation of the ERβ-HPIP-Src-PI3K complex mediates rapid non-genomic 

signaling and activates AKT/MAPK signaling pathways, promoting germ cell proliferation (Fig. 

7B) (Wang et al., 2008; Yu et al., 2012). However, if TEX11 binds with HPIP, it replaces ERβ 

from the complex, restraining non-genomic signaling but enhancing the estrogen-responsive 

gene's transcriptional activity (Fig. 7B) (Yu et al., 2012).  Moreover, Wang et al., have reported 

that HPIP interacts with ERα or ERβ that compete with each other for binding to HPIP and inhibit 

the ERα dependent expression of its targeted genes (Wang et al., 2008).  However, the effect of 

HPIP mediated ERα signaling pathways remains controversial. Manavathi et al., observed that 

HPIP negatively regulates the transcriptional activity of ERα; in contrast, Wang et al., reported 
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that HPIP enhances ERα targeted gene expression in MCF7 cells. However, both the team reveals 

that HPIP activates MAPK and AKT through estrogen signaling cascades. The discrepancy found 

may be due to the reporter assay experiment with different reporter systems and also the origin of 

the template DNA for cloned reporters. Concurrently, it is reported that HPIP is a substrate for 

MDM2, and it prevents the HPIP dependent over activation of AKT in P53-proficient mammary 

epithelial cells to maintain homeostasis (Fig. 7C, II and III) (Shostak et al., 2014). This study 

further revealed that HPIP over expression confers taxol resistance in breast cancer cells.  

1.8. (f) HPIP is a proto-oncogene 

HPIP is a proto-oncogene, which is overexpressed in more than 15 different types of cancers, 

breast cancer (Manavathi et al., 2006; Wang et al., 2008; Bugide et al., 2015), liver cancer (Xu et 

al., 2013a; Xu et al., 2013b), oral squamous cell carcinoma (Okada et al., 2015), colorectal cancer 

(Feng et al., 2015b), pleomorphic sarcomas and leiomyosarcomas (Silveira et al., 2013), thyroid 

carcinoma (Wang et al., 2015), gastric cancer (Feng et al., 2015a; Chen et al., 2016a), spinal 

glioblastoma (Wang et al., 2016), lung cancer (Liu et al., 2015; Pan et al., 2016; Shi et al., 2017; 

Sayeeram et al., 2020), ovarian cancer (Zhang et al., 2016; Bugide et al., 2017; Wang et al., 2017b; 

Wang et al., 2017c), head and neck cancer (Chen et al., 2016b), renal cell carcinoma (Mai et al., 

2016), cervical cancer (Meng et al., 2017; Wang et al., 2018), endometrial cancer (Cheng et al., 

2019; Coll-de la Rubia et al., 2020), pancreatic cancer (Zhao et al., 2020), and astrocytoma and 

ependymoma (van Vuurden et al., 2014). Also, analysis of data sets which are available through 

Oncomine (Compedia Biosciences, http://www.oncomine.org/) showed a significantly higher 

expression of HPIP in other cancers types, superficial Bladder cancer, glioblastoma, renal 

oncocytoma, acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia (BCALL), 

cutaneous melanoma (CM), prostate adenocarcinoma (Fig. 8). HPIP promotes tumorigenesis 

through various signaling cascades like TGF-β1, PI3K/AKT, Wnt, mTOR, and Sonic hedgehog 

http://www.oncomine.org/
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signaling pathway (Manavathi et al., 2006; Xu et al., 2013a; Pan et al., 2016; Zhang et al., 2016; 

Ji et al., 2019). 

 

Fig. 8. Analysis of HPIP expression in various cancer types. 

Oncomine derived graph showing the high expression of HPIP in various types of cancer. (Pink- 

normal tissue, Blue- cancer tissue. Orange- cancer tissue). (HCC- Hepatocellular Carcinoma, LA- 

Lungs Adenocarcinoma, OSE- Ovarian Surface Epithelium, OC- Ovarian Carcinoma, PA- 

Pancreatic Adenocarcinoma, PBMC- Peripheral Blood Mononuclear Cell, AML- Acute Myeloid 

Leukemia, BCALL- B-Cell Acute Lymphoblastic Leukemia,  SBC- Superficial Bladder Cancer, 

IBUC- Infiltrating Bladder Urothelial Carcinoma, RO- Renal Oncocytoma, CSE- Cervix 

Squamous Epithelium, CSCC- Cervical Squamous Cell Carcinoma, PG- Prostate Gland, PRA- 

Prostate Adenocarcinoma), CA- Colon Adenoma, CM- Cutaneous Melanoma, BMSN- Benign 

Melanocytic Skin Nevus,. Bar represent the mean ± SD (*P < 0.05, **P < 0.01, ***P < 0.001, 

unpaired Student's t-test). 

 

Since its discovery, our research team was the first to identify HPIP as a part of a scaffold signaling 

complex consists of ERα, Src, PI3K and HPIP, which activates MAPK/ERK1/2 and AKT 

signaling pathways in response to estrogen and promotes tumorigenesis (Manavathi et al., 2006). 

The activated AKT and ERK1/2 further stimulates ERα phosphorylation and drives estrogen-

responsive gene expression promoting breast cancer proliferation (Wang et al., 2008). Not only 
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breast cancer, but HPIP can also promotes proliferation of colorectal cancer cells (Feng et al., 

2015b). It activates PI3K/AKT signaling pathway in other cancers such as head and neck squamous 

cell carcinoma, thyroid cancer, colorectal cancer, human hepatocellular carcinoma, ovarian cancer 

and drives cancer cell proliferation (Feng et al., 2015b; Wang et al., 2015; Chen et al., 2016b; 

Bugide et al., 2017; Jiang et al., 2017). In connection with HPIP-mediated AKT signaling, Shostak 

et al., has reported an interesting finding that MDM2 degrades HPIP through TBK1 mediated 

phosphorylation, which activates MDM2-mediated AKT signaling pathway and promotes cell 

proliferation in p53-depleted MCF7 cells (Fig. 7C, III) (Shostak et al., 2014). However, in p53-

activated epithelial cells, p53 mediated transcriptional activation of HPIP enhances PI3K-AKT 

signaling pathway. It conveys two possible ways of AKT signaling based on the activity of p53 to 

drive breast cancer proliferation that needs to be considered during therapeutic administration to 

the patients (Shostak et al., 2014). In hepatocellular carcinoma, miR148a inhibits HPIP-dependent 

mTOR signaling pathway, AKT/ERK/FOXO4/ATF5, which enhances cell proliferation (Xu et al., 

2013a). miR148a is a transcriptional target of p53. HBX interacts with p53 and suppresses its 

recruitment to miR148a promotor, which renders HPIP-mediated cell proliferation through the 

pAKT/pERK/mTOR signaling pathway (Xu et al., 2013a). In most cancers, p53 is frequently 

mutated and loses its function; such cells have a low expression of miR148a as well. So HPIP-

mediated AKT signaling intensifies and promotes cell proliferation; however, this finding 

contradicts Shostak et al., as AKT-mediated signaling happens through MDM2 in p53-mutated 

cells but not HPIP (Fig. 7C, III) (Shostak et al., 2014). This discrepancy may be due to genotypic 

plasticity or different epigenetic alternation between cancers. Furthermore, the overexpression of 

HPIP in HepG2 cells modulates mTOR signaling with elevated Cyclin D1, c-MYC, and promotes 

cell proliferation (Xu et al., 2013a). c-MYC family is an oncoprotein known as a master regulator 

of metabolic reprogramming in a broad spectrum of cancers (Dong et al., 2020b). c-MYC regulates 

15% of the entire genomic transcription (Li et al., 2003b). As c-MYC is known to be elevated 
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during HPIP overexpression, further investigation of possible cross-talk between HPIP and c-Myc 

will be an exciting area to explore in cancer.  

HPIP mediates cap-dependent translation, AKT/mTORC1 signaling pathway and enhances cell 

proliferation in gastric cancer (Chen et al., 2016a). It also regulates cell proliferation and migration 

through Sonic hedgehog signaling pathway in non-small lung cancer cells (Pan et al., 2016). It 

involves in astrocytoma and ependymoma, and chondrocyte proliferation (Ji et al., 2019; van 

Vuurden et al., 2014). Moreover, it modulates renal cell carcinoma cell proliferation through 

interaction with CK1α, which drives mTOR signaling (Fig. 7D, I) (Mai et al., 2016). Qinong Ye 

group showed that HPIP promotes liver cancer cells' proliferation by activating the G2‐M phase 

of the cell‐cycle (Fig. 9) (Xu et al., 2013b). They report that HPIP regulates the G1/S and G2/M 

phase transition of the cell cycle in colorectal cancer. At the G1/S phase, it regulates cyclin D1 and 

cyclin A expression at the transcriptional level; however, at the G2/M phase, post-transcriptionally, 

it regulates cyclin B1 stability and promotes tumor progression (Feng et al., 2015b) (Fig. 9). Their 

further investigation in gastric cancer has revealed a similar mechanism of HPIP mediated cell 

cycle regulation (Feng et al., 2015a) .  “How does HPIP regulates cyclin B1 stability and promotes 

tumor progression?” Cyclin B1 is an essential component that regulates cell cycle progression by 

controlling G2 to M phase and therefore, its accumulation at late G2 phase is a prerequisite for 

timely mitotic entry (Gavet and Pines, 2010; Champion et al., 2017). The Cyclin B1 dependent 

activation of cyclin-dependent kinase 1 (CDK1), and Cdk1–Cyclin B1 complex formation is 

crucial for G2/M transition (Champion et al., 2017). Khumukcham et al., reported that HPIP 

stabilizes Cyclin B1 by precluding it from 
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Fig. 9. HPIP-mediated cell cycle checkpoint regulation. 

HPIP regulates the G0/G1, G1/S, and G2/M phase transition of the cell cycle. At the G2/M phase, 

it stabilized cyclin B1 and promotes tumor progression. The D box and IR domains of HPIP create 

a temporary facultative molecular bridge with APC/C–Cdc20, i.e., I. HPIP-APC, II. APC-HPIP-

CDC20, III. HPIP-CDC20 thereby inhibiting the formation of active APC/CDC20 and facilitates 

temporal and spatial stability of cyclin B1 for timely mitotic entry and cell cycle progression. 
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Active APC-CDC20 degrades HPIP and Cyclin B1 at the G2/M phase of the cell cycle. HPIP acts 

as an inhibitor cum a substrate of APC-CDC20. It also regulates cytokinesis and midbody 

formation. At the G1/S phase, HPIP enhances the expression of cyclin D1 and cyclin A. It promotes 

cap dependent translation of cyclin D1 by inhibiting 4E-BP1 through AKT/mTORC1 signaling 

pathway. 

 

APC/Cdc20-mediated ubiquitination and its subsequent proteasomal degradation. HPIP has two 

domains, the D4 domain which is primarily involved in HPIP stability, and the IR domain which 

acts as an inhibitor of APC–Cdc20 activity. HPIP is ubiquitinated at lysine 274 by CDC20 during 

early mitosis. The D box and IR domains of HPIP create a sort of temporary “facultative molecular 

bridge” with APC/C–Cdc20 and facilitate temporal and spatial stability of cyclin B1 for timely 

mitotic entry and cell cycle progression (Khumukcham et al., 2019) (Fig. 9). The high expression 

of both HPIP and Cyclin B1 showed a possible correlation with the malignant behaviors of the 

cells (Xu et al., 2013b; Chen et al., 2016a). Upon further investigation it was found that HPIP is 

associated with the mitotic spindle and its depletion causes chromosomal breaks and pre-

segregation. Furthermore, HPIP localizes in the midbody and it persists up to abscission formation 

during cytokinesis. Hence, HPIP depleted cells show defective midbody formation (Khumukcham 

et al., 2019). The role of HPIP in chromosomal pre-segregation and cytokinesis needs further 

mechanistic investigation. Besides this, HPIP also promotes cell division in spinal glioblastoma 

tissues (U87 and U251 cell lines) by regulating G1/S transition (Fig. 9) (Wang et al., 2016). It was 

recently reported in pancreatic ductal adenocarcinoma (PDAC) cells that HPIP enhances 

proliferation by promoting G0/G1 to S transition (Fig. 9) (Zhao et al., 2020). Further Chan et al., 

reported that HPIP mediated inactivation of 4E-BP1 through AKT/mTORC1 enhances cap-

dependent translation of Cyclin D1 and promotes G1/S transition of cell cycle in gastric cancer 

cells (Chen et al., 2016a). The discrepancies observed in the role of HPIP-mediated cell cycle 

checkpoint regulation in different cancers might be due to the differences in the nature and origin 

of cancers analyzed and also variant genetic backgrounds with diverse signaling networks 
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associated with each cancer type. Interestingly HPIP suppresses the proliferation of oral squamous 

cell carcinoma (OSCC) cells while enhancing cell invasion. On the other hand, HPIP inhibits 

invasion of normal human epidermal keratinocytes (NHEK) but potentiates its proliferation 

(Okada et al., 2015).  

Manavathi et al., reported, for the first time, the role of HPIP in breast cancer cell migration and 

invasion (Manavathi et al., 2006). The estrogen mediated multiprotein complex formation, ERα-

HPIP-Src-PI3K, drives rapid non-genomic ERα signaling and promotes cell migration and 

invasion (Manavathi et al., 2006). HPIP induces tumor cell migration in astrocytoma and 

ependymoma, oral squamous cell carcinoma (OSCC), cervical cancer and gastric cancer (van 

Vuurden et al., 2014; Okada et al., 2015; ; Feng et al., 2015a; Cao et al., 2017). It can also drive 

cell migration through the Sonic hedgehog signaling pathway in non-small lung cancer cells (Pan 

et al., 2016). By activating MAPK/ERK1/2 and PI3K/AKT signaling pathways, HPIP modulates 

EMT (epithelial-mesenchymal transition) and cancer cell migration in various cancers including 

colorectal cancer, thyroid cancer, head and neck squamous cell carcinoma and ovarian 

cystadenocarcinoma (Feng et al., 2015b; Wang et al., 2015; Chen et al., 2016b) . The elevated 

expression of HPIP suppresses E-cadherin (Epithelial marker) while upregulating N-cadherin and 

Vimentin expression (Mesenchymal markers) (Feng et al., 2015b). Similarly, it regulates EMT in 

glioblastoma cells (U87 and U251) as knockdown of HPIP reduces N-cadherin, Slug, and MMP2 

with high expression of E-cadherin (Wang et al., 2016). Mai et al., identified casein kinase 1α 

(CK1α) as an HPIP-interacting protein. The interaction of CK1α with HPIP promotes EMT via 

mTOR pathway driving cell migration and invasion in renal cell carcinoma (Fig. 3D, I) (Mai et 

al., 2016). Similarly, HPIP mediated mTOR pathway increases hepatocellular carcinoma cells' 

migration and invasion (Figure 7D, I) (Xu et al., 2013a). In ovarian cancer cells, TGF-β also drives 

EMT through HPIP mediated activation of PI3K/AKT Signaling Pathway (Fig. 7D, III) (Zhang et 
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al., 2016). Whereas in lung cancer cells, TGF-β induces EMT through HPIP mediated Smad2 

activation (Fig. 7D, II) (Shi et al., 2017). In human hepatocellular carcinoma (HCC), cellular stress 

response 1 (CSR1) inhibits HPIP-mediated PI3K/AKT signaling and suppresses cancer cell 

migration and invasion (Jiang et al., 2017). Also, in ovarian cancer cells, HPIP modulates 

PI3K/AKT/GSK-3β pathway which results in Snail stabilization that in turn causes EMT and 

cancer cell migration and invasion (Fig. 7D, IV)  (Bugide et al., 2017). Bugedi et al., reported that 

HPIP regulates cell adhesion and dynamics in breast cancer cells by modulating FAK activation, 

focal adhesion disassembly and thus cell migration (Bugide et al., 2015). Focal adhesions (FAs) 

are multiprotein complexes that serve as mechanical link between cells and extracellular matrix 

(ECM). They help to anchor cells to the ECM and so their movement is controlled by the dynamic 

changes in the levels of its component proteins and aids in initiation, maturation and disassembly 

(Rigiracciolo et al., 2021). Calpain2 is calcium-dependent site-specific protease that cleaves the 

protein components of FA leading to its disassembly to promote cellular movement (Carragher et 

al., 2003). Interestingly, HPIP stimulates MAPK-mediated Calpain2 activation and proteolyzes 

Talin, a FA component, which promotes FA disassembly and turnover, and thus cell migration 

(Fig. 7D, V) (Bugide et al., 2015). Various independent studies show that HPIP is involved in 

tumor cell apoptosis. Feng et al., reported that diminished HPIP expression leads to apoptosis with 

elevated apoptosis inducers, PIG3 and BAX along with decrease level of apoptosis inhibitor, 

BCL2. It also inhibits apoptosis by blocking Caspase-3-mediated cleavage of PARP (Feng et al., 

2015b). HPIP inhibits apoptosis in different types of cancers like pancreatic ductal adenocarcinoma 

(PDAC) cells and glioma cells in a similar fashion (van Vuurden et al., 2014; Zhao et al., 2020). 

The high expression of HPIP confers cisplatin resistance to ovarian cancer cells (SKOV3) (Bugide 

et al., 2017), which also has a correlation with platinum resistance in epithelial ovarian cancer 

(Wang et al., 2017b). It modulates tamoxifen resistance in p53-deficient MCF7 cells (Shostak et 

al., 2014). However, it sensitizes breast cancer cells (MCF-7 and MDA-MB-231) to paclitaxel, a 
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hint of clinical value of HPIP as a precision medicine (Yu et al., 2016).  Emerging studies have 

shown that HPIP can be used as a biomarker to predict many cancers' prognoses (Table 1). The 

elevated expression of HPIP correlates with poorer outcome and poor survival in several cancers 

like invasive ductal breast  carcinoma (Bugide et al., 2015), renal cell carcinoma (Mai et al., 2016), 

epithelial ovarian carcinoma (Wang et al., 2017c), lung adenocarcinoma (Sayeeram et al., 2020), 

cervical cancer (Cao et al., 2017), pleomorphic sarcomas and leiomyosarcomas (Silveira et al., 

2013), endometrial cancer (Cheng et al., 2019; Coll-de la Rubia et al., 2020), cervical cancer 

(Meng et al., 2017; Wang et al., 2018) and lung adenocarcinoma (Table 1) (Liu et al., 2015). It is 

now evident that HPIP may be a good potential biomarker for targeted therapy for several cancers. 
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Table 1: PBXIP1/HPIP expression in various cancers.  

Cancer types 

PBXIP1/HPIP 

expression 

level 

Sample type (number of 

patients) 
Method Prognosis Reference 

Liver Upregulated 

Liver cancer patients- 328 

WB, IHC n/a 

Xu et al., 

2013b (Xu et 

al., 2013b) 

Breast Upregulated Invasive ductal carcinoma 

patients- 35 

IHC Poor 

Bugide et al., 

2015 (Bugide 

et al., 2015) 

Oral Upregulated 
Oral squamous cell carcinoma 

patients- 27 
IHC n/a 

Okada et al., 

2015 (Okada et 

al., 2015) 

Colorectal Upregulated Colorectal cancer patients- 63 IHC Poor 

Feng et al., 

2015b (Feng et 

al., 2015b) 

Undifferentiated 

Pleomorphic 

sarcomas (UPS) 

and 

leiomyosarcomas 

(LMS) 

Upregulated 
UPS patients- 20; LMS 

patients- 17 

Array-based 

comparative 

genomic 

hybridization 

(Array-

CGH), qRT-

PCR 

Poor 

Silveira et al., 

2013 (Silveira 

et al., 2013) 

Thyroid Upregulated Cell lines- K1 and FTC-133 
qRT-PCR, 

WB 
n/a 

Wang et al., 

2015 (Wang et 

al., 2015) 

Gastric Upregulated Gastric cancer patients- 103 IHC n/a 

Feng et al., 

2015a (Feng et 

al., 2015a) 

Spinal 

glioblastoma 
Upregulated Intramedullary glioblastoma 

patients- 5 

IHC, qRT-

PCR, WB 
n/a 

Wang et al., 

2016 (Wang et 

al., 2016) 

Lung Upregulated 

Lung adenocarcinoma 

patients (LAP)- 7 for Whole 

genome sequencing (WGS); 

LAP- 114 for validation by 

qRT-PCR; LAP- 313 for 

disease prognosis assessments 

WGS, qRT-

PCR 

Poor 

Liu et al., 2015 

(Liu et al., 

2015) 

RNA sequencing data sets of 

Lung adenocarcinoma 

(TCGA; cBioPortal)  

Differential 

mRNA 

expression 

analysis 

Sayeeram et 

al., 2020 

(Sayeeram et 

al., 2020) 

Non-small cell lung cancer 

(NSCLC)- 11 

qRT-PCR  
Pan et al., 2016 

(Pan et al., 

2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 

 

 

 

 

 

 

 

 

 

 

 

Ovary 

 

 

 

 

 

Upregulated 

Ovarian cancer patients- 70 IHC  

 

 

 

Poor 

Bugide et al., 

2017 (Bugide 

et al., 2017) 

Epithelial ovarian cancer 

(EOC) patients- 145  

IHC 

Wang et al., 

2017a (Wang 

et al., 2017c) 

EOC patients- 248 

IHC 

Wang et al., 

2017b (Wang 

et al., 2017b) 

Ovarian cancer cell lines- 

CAOV3, SKOV3 and HO-

8910 

qRT-PCR, 

WB 
n/a 

Zhang et al., 

2016 (Zhang et 

al., 2016) 

Head and Neck Upregulated 

Head-and-neck squamous cell 

carcinoma cell lines- OSC-20, 

SNU-1076, HSC-3, and Ca9 -

22 

qRT-

PCR/WB 
n/a 

Chen et al., 

2016b (Chen 

et al., 2016b) 

Renal Upregulated Renal cell carcinoma patients- 

119 

IHC Poor 

Mai et al., 

2016 (Mai et 

al., 2016) 

Cervical Upregulated 

Cervical cancer patients- 129 

IHC 

Poor 

Meng et al., 

2017 (Meng 

et al., 2017) 

Cervical carcinoma patients- 

167 

IHC 

Wang et al., 

2018 (Wang 

et al., 2018) 

Cervical cancer patients- 119 

IHC 

Cao et al., 

2017 (Cao et 

al., 2017) 

Endometrial Upregulated Endometrial cancer patients- 

113 

IHC Poor 

Cheng et al., 

2019 (Cheng 

et al., 2019) 

Pancreatic Upregulated Pancreatic ductal 

adenocarcinoma patients- 30 

IHC n/a 

Zhao et al., 

2020 (Zhao et 

al., 2020) 

Glioma and 

Astrocytoma 
Upregulated 

Glial cancer patients (WHO 

grade I, II, III and IV)- 114 

IHC n/a 

van Vuurden 

et al., 2014 

(van Vuurden 

et al., 2014) 
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1.8. (g) Role of HPIP in other cellular functions 

HPIP expression is elevated in renal fibrosis, a chronic kidney disease, due to lower expression of 

its inhibitor miR152. In tubular epithelial cell line, HK‑2, TGF-β1 induces EMT through HPIP, 

while miR-152 inhibits it. It implies that HPIP suppression or overexpression of miR-152 could 

serve as a useful strategy for the treatment of renal fibrosis (Fig. 7E) (Ning et al., 2018).  

Osteoarthritis (OA) is a joint cartilage disorder (Chen et al., 2017). A recent report by Ji et al., 

revealed that HPIP is implicated in osteoarthritis. HPIP is upregulated in OA and its ablation 

prevents OA development. Furthermore, they unravel an interesting novel mechanism that 

underlies HPIP causes OA development. They show that β-catenin mediated HPIP interaction with 

LEF1 involves transcriptional activation of Wnt signaling pathway genes and thus OA 

pathogenesis (Fig. 7F) (Ji et al., 2019). “How is HPIP elevated in OA?” Addressing this question 

will be another input in understanding the physiology of OA and will be an interesting area to 

explore further. Our lab has reported that CCAAT/enhancer-binding protein-β (C/EBP-α) recruits 

on HPIPs' promoter, enhancing HPIP gene transcription (Manavathi et al., 2012). Also, C/EBPβ 

is one of the key transactivators in chondrocytes (Hirata et al., 2009). It is expressed in synovial 

tissues and chondrocytes of rheumatoid arthritis (Pope et al., 1999; Nishioka et al., 2000). It plays 

a vital role in cartilage degradation by targeting matrix metalloproteinase (MMPs) like MMP-13 

in OA. Also, TNF-α and IL-1β activate C/EBP-α (Hirata et al., 2012). Interestingly, knockdown 

of HPIP diminishes MMP13, TNFα and IL-1β expression (Ji et al., 2019). Based on the literature, 

we can hypothesize that C/EBP-α may mediate HPIP elevation in OA (Fig. 7, A and F). 
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1.9. Analysis of HPIP’s Isoform proteins and its possible regulation 

1.9. (a) Methodology:  

HPIP isoform proteins and their respective RNA sequences are downloaded from NCBI websites 

and analyzed the promoter sequence of respective isoform proteins to identify the peculiar 

transcription factors recruited on each transcript using Transcription Factor Information System 

(TFIS) (Narad et al., 2017). We consider 1.5 kb nucleotide sequence upstream from the starting 

codon for promotor study.  

The expression of HPIP in different cancer types are derived from the different data sets: Dyrskjot 

bladder 3, Sun Brain, Scotto cervix 2, Skrzpczak colorectal 2, Kimchi Esophagus, Jones Renal, 

Haferlach leukemia, Warmbach liver, Beer lung, Talantov melanoma, Bonome ovarian, Logsdon 

pancreas, Wallace prostate, and Detwiller sarcoma which are available in Oncomine (Compedia 

Biosciences, http://www.oncomine.org/). 

1.9. (b) Results and discussion  

HPIP has three transcript variants (three isoform proteins). Protein isoform 1 has 1 aa – 731 aa, 

isoform 2 has 1 aa – 702 aa, and isoform 3 has 1 aa – 576 aa. Twenty-nine (29) and one hundred 

fifty-six (126) amino acids from N- terminal side of isoform 1 are absent in isoform 2 and isoform 

3, respectively (Fig. 10A). All the three transcripts 1, 2, and 3 have distinct and separate starting 

codon with different 5’ UTR but the same 3’ UTR sequence. So, we analyzed the immediate 

upstream sequence of three transcript variants (1.5 kb each) to understand the peculiar transcription 

factors recruited on each transcript. Using the Transcription Factor Information System (TFIS) 

(Narad et al., 2017), we found multitudes arrays of motif sequences of different transcription 

factors (TFs) (Fig. 10B). All three promoters, TP1 (Transcript variant 1 promoter), TP2 (Transcript 

variant 2 promoter), and TP3 (Transcript variant 3 promoter) have a few  

http://www.oncomine.org/
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Fig. 10. Three isoforms of HPIP.  

A. Location of HPIP gene on chromosome 1 at position q21.3. HPIP has three transcript variants 

(three isoform proteins). All the three transcripts 1, 2, and 3 have distinct and separate starting 

codons with different 5’ UTR but the same 3’ UTR sequence. The immediate upstream sequence 

of three transcript variants (1.5 kb each), transcription variant 1 promoter (TP1), transcription 

variant 2 promoter (TP2), transcription variant 3 promoter (TP3). The distance between the starting 

codon of TP1 and TP2, TP2 and TP3 are 1836 nt and 3575 nt respectively. Transcript variant 1/2/3 

(TV1/2/3) has coding sequence 2196 bp, 2109 bp, and 1731 bp.  Protein isoform 1 has 1 aa – 731 

aa, isoform 2 has 1 aa – 702 aa, and isoform 3 has 1 aa – 576 aa. B. Identification, using 

Transcription Factor Information System (TFIS), and categorization of peculiar transcription 

factors (TFs) recruited onto each transcript's promoter, i.e., TFs exclusive only to each 

transcription variant promoter, TFs common to both TP1 and TP2, TFs common to both TP2 and 

TP3, TFs common to all three TP1, TP2, and TP3. 

 

common TFs; TFs MYF6, UBIP1, and VDR (Fig. 10B). Certain TFs are exclusively recruiting to 

only one promoter (Fig. 10B). For example, Zinc finger protein SNAI1 which is specific to TP1, 

promotes epithelial to mesenchymal transition (EMT) in many cancers, and enhances 

tumorigenesis (Kalluri and Weinberg, 2009). The other transcription factor ZIC1, plays a vital role 

in early neural development, and it is specific to TP2 (Aruga et al., 1994). Similarly, CDX2, which 

binds only TP3 is crucial for developing intestinal epithelial cells (Saad et al., 2011). To deal with 

changes in the physiological or cellular environment, TFs drive a cascade of cellular network to 

maintain homeostasis (Edwards and Myers, 2007; Lambert et al., 2018). Since, three promoters 

TP1, TP2 and TP3 have different TFs binding sites, characterization and categorization of TFs 

which are constitutively expressed or conditionally expressed will be interesting to study. The 

question, “how do these TFs respond to various physiological conditions and regulate the 

expression of transcripts variants of HPIP?” needs investigation. The investigation and analysis of 

the expression profile of transcript variants of HPIP in the context of cellular function, and 

development of an orchestrated signaling network pertaining to each transcript variant will 

potentially unveil various mechanistic cellular activities. 
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1.10. Conclusions and future perspectives 

It is evident that HPIP can be used as a biomarker for different cancer types and also as a potential 

biomarker for targeted cancer therapy (Table 1). It plays a vital role in hematopoietic stem cells 

(HSC) development and erythroid differentiation.  HPIP is elevated in rapidly proliferating cells 

and regulates the cell cycle checkpoint regulation; concurrently, it may be used as a novel 

proliferation marker. Although comparatively fewer study reports are available on the role of HPIP 

in germ cell proliferation, endometrium decidualization, and embryogenesis, they have a strong 

and concrete foundation which can be explored. As HPIP plays a role in estrogen-mediated 

hormonal signaling and cell proliferation, it may regulate women's menstrual cycles and 

endometrium cell proliferation. Apparently, HPIP may be linked with conception and pregnancy 

related complications. Cumulative evidence shows that HPIP may be a promising candidate for 

neuronal disorder-related diseases, expressed in hippocampal neurons and a marker for astroglial 

progenitor cells. Further investigation of its role in neuronal development is warranted to be a 

promising field. Its elevated levels modulate OA pathogenesis and renal fibrosis. Besides, we 

revealed that HPIP has three transcript variants 1, 2, and 3, with distinct starting codon, different 

5’ UTR but same 3’ UTR sequence. The transcript variants promotors' (TP1, TP2, and TP3) have 

separate sets of TFs, which are common to all (TP1/2/3) or in between two (TP1/2, TP1/3, TP2/3) 

or exclusively specific to only one promotor. The TFs respond to various physiological conditions 

and their regulation of different transcript variants of HPIP will enable in understanding the novel 

cellular and physiological functions of HPIP. Research on HPIP over two decades has uncovered 

a wide range of roles for HPIP from germ proliferation to cancer, with the advent of new findings 

every now and then, in disease state and normal cellular activity or physiology (Fig. 5). Now, we 

can build up a generalized overview of HPIP biology in the context of cancer, neuronal 

development, embryogenesis, estrogen-related signaling, osteoarthritis, initiation and 

development of the endometrium, renal fibrosis, and germ cell proliferation (Fig. 7). Nevertheless, 
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further extensive investigation studies are required to divulge its link with various cellular and 

physiological functions. 

1.11. Rationale, hypothesis and objectives 

HIF-1 interacts with the hypoxia response element (HRE, 5’-[R]CGTG- 3’ where R is 

either A or G) harbor on its target genes and promotes their transcription (Bardos and Ashcroft, 

2005) and, enhances the adaptive response of cancer cells to oxygen deprivation (Ratcliffe et al., 

1998). Since HREs are located on the promoter of HPIP and SRP14, we assumed that a 

trimolecular cross-talk among HIF-1α, HPIP, and SRP14 may be linked with the potentiality of 

cancer cells to adapt in a hostile, low-oxygen environment, thereby modulating malignancy and 

aggressiveness phenotype of cancer cells. It is well documented that HPIP potentiates proliferative 

phenotype via modulating checkpoints of cell cycle under normoxia (Feng et al., 2015a; Feng et 

al., 2015b; Khumukcham et al., 2019; Xu et al., 2013b; Zhao et al., 2020). Therefore, we framed 

the following objectives to characterize the roles of HPIP in cancer cell progression under different 

microenvironment conditions i.e., hypoxia and normoxia using breast cancer (BC) as a model 

system.  

Objectives: 

1. To determine the role of HPIP in hypoxia induced cancer phenotype in BC cells 

2. To investigate the role of HPIP in tumorigenesis under normoxia in BC cells, and 

3. To evaluate the role of HPIP signalling in microenvironment dependent phenotypic plasticity 

in BC cells.  

Herein, we report a hitherto unknown reciprocal positive feedback mechanism between HPIP and 

HIF-1α that coordinately controls oxygen dependent phenotypic plasticity in breast cancer cells. 

Upon hypoxia, HIF-1α induces HPIP expression that drives metastatic phenotype in breast cancer 

cells. Furthermore, for the first time we reported that involvement of SRP14 in cancer cell invasion. 
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HIF-1α transcriptionally activates SRP14 and its interaction with HPIP enhances MMP9 synthesis 

thereby promoting tumor cell migration and metastasis. Conversely, in normoxia, HPIP mediates 

PI3K/AKT dependent stabilization of HIF-1α, which confers tumor growth phenotype. This is 

further validated by mathematical formulation of HPIP-HIF-1α feedback loop dynamics. 

Additionally, we provide clinical evidence supporting the claim that elevated expression of both 

the proteins, HIF-1α and HPIP, are associated with worse patient survival. 
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2.0. Materials and methods 

2.1. Collection of patient’s (Breast cancer) tumor samples  

We collected fresh breast tumor tissues or tissue blocks, non-tumor tissues or tissue block with 

informed consent after acquiring ethics board approval from the MNJ Institute of Oncology & 

Regional Cancer Centre, Hyderabad, India. Subsequently, we also obtained IEC, UOH approval 

to process the samples at University of Hyderabad (UOH) UH/IEC/2016/190. Tissue samples were 

further processed for IHC and western blotting at the UOH, Telangana. 

2.2. Cell culture 

 HEK293T (Human embryonic kidney cell line), human breast cancer cell lines including MCF7, 

MDA-MB-231, T47D, MDA-MB-468, ZR-75-1, SKBR-3 and BT-549 cell lines were obtained 

from NCCS, Pune, India. 4T1 cells are kind gifts by Prof. Ratna Vadlamudi, UT Health Science 

Center, San Antonio, USA. Cells were maintained in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Gibco Life Technologies, USA) containing 10% heat-inactivated fetal bovine serum 

(FBS, Gibco Life Technologies), 100 U/ml penicillin, and 100 μg/ml streptomycin in a humidified 

incubator of 5% CO2 at 37 °C. The other important reagents used in the study were mentioned in 

Table 1. 
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2.3. Hypoxia induction 

For the hypoxic stress, cells were placed in the airtight modular incubator chamber (#5352414 

Billups-Rothenberg, USA) with a gas mixture containing 94% nitrogen, 5% carbon dioxide and 

1% oxygen for 4 min at the flow rate of 20 liters per min. The chamber was kept inside the 

incubator used for normoxia conditions (21% O2, 5% CO2) to maintain the same temperature. The 

cells were treated with HIF-1α inhibitor, 30 µM, (SCBT #sc-205346) to inhibit HIF-1α expression 

when necessary. 
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2.4. Plasmid cloning 

Genomic DNA (MCF7 cells) was isolated and different deletion constructs of HPIP (pGL3- 2.7 

HPIP-luc, pGL3- 2.1 HPIP-luc, pGL3- 0.9 HPIP-luc, pGL3- 0.4 HPIP-luc) promoter were 
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amplified using Phusion® HF DNA polymerase (BioLabs, #M0530) by PCR using specific primer 

pairs and digested with HindIII and XhoI enzymes and then ligated to pGL3 basic vector (Promega, 

USA). SRP14 gene was amplified using the specific primers and digest with XhoI and BamHI 

enzymes and ligated to pGEFP-C1 vector. The plasmid constructs pGFH14A6-12 or GFP-SRP14-

∆K5 (del 101-113) and pGFH14A5 or GFP-SRP14-A5 (K→A, 96-100) are a gift from Dr. 

Katharina Strub, Department of Cell Biology, University of Geneva, Switzerland. (Addgene 

plasmid #39542; Addgene Plasmid #39543). The wild type GSK3β (c-Myc-GSK-3β wt) and 

kinase-dead mutant of GSK3β (c-Myc-GSK-3β KD) are a gift from Prof. Mien-Chie Hung, 

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer 

Center in Houston, Texas. The details of the primers and source of the plasmids used in the study 

are listed in Tables, 2 and 3. 

2.5. Lentivirus production and infection 

Lentivirus was prepared in HEK293T cells (packaging cells) by transfecting lentiviral packaging 

plasmids along with either pGIPz, pGIPz-shHPIP or pGIPz-shSRP14 plasmids (Table 2) as 

described previously (Manavathi et al., 2006; Khumukcham et al., 2019). Virus particles were 

harvested at every 24 h, for three days by changing with fresh DMEM medium. 4T1 or MDA-MB-

231 cells were infected with lentivirus using Polybrene (0.8 µg/ml) or Protamine sulfate salt (5 

µg/ml). The viral transduced stable clones (shCtrl or shHPIP or shSRP14) were selected with 

puromycin (Sigma Aldrich, USA). The efficiency of the RNA interference was verified by WB. 

2.6. Plasmids and siRNA transfection 

Cells were transfected with siRNA or a specific plasmid construct (overexpression study) using 

Lipofectamine 2000 (Invitrogen, USA) in optiMEM serum-free media in accordance to 

manufacturer’s protocol. After 6 h of transfection, cells were fed with serum containing media for 

24 h and cells were cultured in hypoxia at different time points. All the plasmids or shRNA used 
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in the study are mention in Table 2. Small interference RNA (siRNA) targeting HPIP (Cat No. # 

M-015428-01), HIF-1α (Cat No. # M-004018-05) and its negative control (mock) used in 

knockdown experiments were obtained from Dharmacon™ - Horizon Discovery, USA. 

 

2.7. Immunoblotting 

Total cell extracts were prepared in NP40 lysis buffer (2 mM EDTA , 20 mM Tris pH 8.0, 137 

mM NaCl, 10% glycerol, 1% Nonidet P-40, 1X protease inhibitor cocktail) supplemented with 

1 mM PMSF, 2 mM NaF, 2 mM Na3VO4. To lyse the cancer tissues, samples were snap-frozen in 

liquid nitrogen and crushed with pestle and mortar and dissolved in lysis buffer. Protein 

concentration was determined using RC reagent kit method (Bio-Rad, USA) and 100-120 µg of 

protein lysates were loaded, resolved by SDS-PAGE and transferred to nitrocellulose membrane 

(Pall Corporation, USA). Western blotting (WB) was performed according to the standard protocol 

using protein-specific primary antibodies mentioned in Table 4. After incubation with HRP-

conjugated secondary antibodies (GE Healthcare, USA), blots were developed using ECL 

detection reagents (GE Healthcare, USA) in a Chemidoc imaging system (BIO-RAD, USA) or 

Fusion FX, Vilber Lourmat. The band intensities were measured using Fiji-ImageJ and normalized 

to the band intensity of β-actin and plotted the graph. 
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2.8. Co-Immunoprecipitation (CO-IP) analysis 

CO-IP was performed as described previously (Khumukcham et al., 2019). Briefly, cell extracts 

were incubated with primary antibody overnight at 4 oC and the protein-antibody complexes were 

pulled down by adding and incubating with agarose A/G beads for an additional 1 h. The beads 

were washed and subjected to SDS-PAGE, then transferred to nitrocellulose membrane and 

immunoblotted with antibodies mentioned in Table 4. 

2.9. Immunofluorescence assay 

MDA-MB-231 cells were cultured and incubated under hypoxia on coverslips in six-well plates 

(1 × 104 cells/well).  The cells were fixed (2% paraformaldehyde), permeabilized using pre-chilled 

acetone and methanol (1:3) and cells were blocked with 3% BSA. The cells were incubated with 

antibodies overnight at 4 °C, washed and incubated 1 h with fluorescent-labeled secondary 

antibodies at RT. The coverslips were mounted on slides with DAPI (Thermo-scientific, USA) and 

observed using confocal microscope (Model -NLO710, Carl Zeiss, Germany). To quantify the 

colocalization of HPIP with SRP14, pixel intensity correlation measurement was performed using 

Fiji software (Image J/Fiji-Coloc2 plugin). 
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2.10. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) 

Total RNA was extracted from cells by TRIzol® Reagent (Life Technologies, USA) following the 

manufacturer’s instruction. The cDNA was synthesized from 1 μg of total RNA using a reverse 

reaction kit (TaKaRa cDNA synthesis kit, Da-Liang, China) and subjected to qRT-PCR using 

SYBR Green PCR master mix (Bio-Rad, USA) on Light Cycler@ Roche system, USA. Primer 

sequences are listed in Table 5. The relative gene expression was calculated after normalization to 

β-actin as an internal control using 2− ΔΔCT (difference between cycle thresholds) method. Three 

biological replicates were performed.  

 

2.11. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) 

assay 

MTT assay was performed in 96-well plates in 4T1 or MDA-MB-231 cells following 

manufacturer’s protocol. Cells were treated with MTT (500 µg/ml) for 2 h; media were discarded 

and dissolved the cells in DMSO. The optical density (OD) was measured at 570 nm and reference 

wavelength at 650 nm in scanning multi-well spectrophotometer (iMARKTM microplate reader, 

BIO-RAD, USA) and the percentage of cell proliferation was quantified. 
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2.12. Acridine Orange (AO) and Propidium Iodide (PI) Staining 

MDA-MB-231 or 4T1 cells (shCtrl or shHPIP) were grown under hypoxia or normoxia for 24 h.  

The cells were trypsinized, washed with PBS and double-stained with PI (10 µg/ml) (Sigma 

Aldrich, USA) and AO (10 µg/ml) (Sigma Aldrich, USA). Freshly stained cells were observed and 

analyzed on LUNA-FL™ Dual Fluorescence Cell Counter and calculated the percentage of dead 

cells from three replicate experiments. 

2.13. Trypan Blue assay 

Trypan Blue assay was performed using previously reported protocols (Strober, 2015). Briefly, 

cells were washed, suspended in PBS and mixed with 0.4% trypan blue in 1:1 ratio. After 

incubation for 3 min, cell viability was monitored using microscope. 

2.14. Chromatin immunoprecipitation (ChIP) assay 

ChIP assay was performed as described previously (Gajulapalli et al., 2016). Briefly, after 

exposing the cells to 1% or 21% of oxygen, they were cross-linked, quenched and sonicated. The 

protein-DNA complexes were immunoprecipitated with respective antibodies and pulled down 

with protein A/G beads at 4°C for 1 h. Beads were washed, eluted, reversed cross-linked and DNA 

was extracted by using phenol: chloroform: isoamyl alcohol method. DNA was analyzed by qRT-

PCR using the primer mention in Table 6. Using 2−ΔCt method, the occupancy to DNA fragments 

was calculated as a percent of input. 
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2.15. Scratch wound assay 

Scratch wound healing assay was performed as described previously (Bugide et al., 2015). Briefly, 

scraped wounds were created using 10 µl pipette tip in a straight line on confluent monolayer 

MDA-MB-231 or 4T1 cells (shCtrl or shHPIP). The plates were washed with PBS and the scratch 

closure was monitored by capturing at 0 h and 24 h under 10X magnification using a bright field 

microscope (Model IX81, Olympus Singapore). Wound closure was measured in pixel and the 

graph was plotted as a percentage of wound closure. 

2.16. Density gradient ultracentrifugation 

MDA-MB-231 cells were cultured to hypoxia for 24 h and lysed the cells in a buffer containing 

150 mM KOAc; 5 mM MgOAc; 20 mM Tris-HCL pH 7.5; 0.01% of Triton 100x; peptide inhibitor 

cocktail (Sigma-Aldrich) and RNAse inhibitor (Sigma-Aldrich) and centrifuged for 7 min in 3,000 

rpm followed by 10,000 xg for 5 min. The cell extract (2 mg of protein) was aliquoted and loaded 

on 10%-40% of sucrose gradients and centrifuged for 254 min at 38,000 rpm. Twenty fractions 

were collected from the top of the tube to bottom and each fraction was analyzed by WB. 
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2.17. Yeast Two-Hybrid assay 

HPIP gene was cloned into pGBK-7 vector to express as Gal4-DBD and used as bait, while human 

mammary gland library prepared in pACT2 vector from Takara Bio, USA was used as prey in 

Y2H genetic screen.  As per the manufacturer’s instructions we mixed 0.5 ml of Y2HGOLD 

(PGBK7-HPIP) culture with equal volume of yeast Y187 culture transformed with MATE AND 

PLATE human mammary cDNA library. After mating, the culture was spread on SD/-Trp (SD-

single dropout), SD/-Leu, and SD/-LT/X-aGal/Aerobasidin plates at various dilutions such as 1/10, 

1/100, 1/1000 and 1/10000 and incubated at 30oC for 3-5 days. We then calculated the number of 

screened colonies by counting the colonies from DDO Plates (double dropout). Then we patched 

out all the blue colonies that grew on DDO/X/A plate onto high stringency QDO/X/A plates 

(AHLT-Adenine, histidine, Leucine and Tryptophan). All the positive interactions (colonies) were 

further analyzed by one-one interaction assay. The plasmids were further analyzed by DNA 

sequencing. 

2.18. Luciferase reporter gene assay 

Luciferase reporter gene assay was performed as described previously (Gajulapalli et al., 2016). 

Briefly, cells were transfected with either pGL3-HPIP-promoter-Luc or various pGL3-HPIP-

promoter-Luc (deleted constructs) and pLX313-Renilla-Luc plasmids (internal control) using 

Lipofectamine 2000 (Invitrogen, USA) reagent. Twenty-four-hour post-transfection, cells were 

incubated under normoxia or hypoxia for 24 h and luciferase activity was determined using dual 

luciferase reporter assay kit (Promega, Madison, WI, USA) on a luminometer (ModulusTM single 

tube multimode reader, Turner BioSystems, Sunnyvale, USA). The Firefly and Renilla luciferase 

activities were measured and Renilla luc activity was used to normalize Firefly luciferase activity 

for each sample. 
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2.19. Flow Cytometry 

Apoptosis assay: APC Annexin V apoptosis detection kit with 7-AAD (Biolegend, #640930) was 

used as per the recommended manufacturer’s protocol. Briefly, cells were washed with Biolegend 

cell staining buffer, resuspended in Annexin V Binding buffer (1x106 cells/ml) and incubated with 

APC Annexin V and 7-AAD for 15 min at RT and analyzed by flow cytometer (FACS-Aria; 

Becton Dickinson). 

CD44/CD22 expression: MDA-MB-231 cells were cultured under hypoxia for 24 h. Cells were 

harvested, fixed (1% paraformaldehyde), blocked (3% BSA) and incubated with PerCP/Cy5.5 

anti-human CD24 (Biolegend, San Diego, California, USA) and PE anti-human CD44 (Biolegend, 

San Diego, California, USA) for 1 h. Samples were acquired on a flow cytometer (FACS-Aria; 

Becton Dickinson) and data were analyzed using FlowJo software (FlowJo LLC, Ashland, OR, 

USA). 

2.20. Pulse chase experiment 

Stably generated (shCtrl or shHPIP) MDA-MB-231 cells (6 x105) were grown on 35 mm dishes. 

Next day, cells were culture for 2 h in methionine-free DMEM medium (Sigma  Aldrich, USA). 

The radioactive Methionine (35S-Methionine, 10 µCi/ml) was added and incubated for 24 h at 37 

ºC under hypoxia. The cells were lysed in NP40 lysis buffer (137 mM NaCl, 20 mM Tris pH 8.0, 

2 mM EDTA, 1% Nonidet P-40, 10% glycerol, 1X protease inhibitor cocktail) and performed pull-

down assay with MMP9 antibody using 300 µg of protein lysate for 1 h. The protein AG beads 

(30 µl) were added and further incubated for 1 h. After four washes with NP40 lysis buffer for 10 

minutes each, beads were loaded with 2xSDS loading dye. Samples were further subjected to WB 

and blot was exposed to autoradiography film (GE Healthcare), and scanned (Typhon scanner, GE 

Healthcare). 
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2.21. In-vivo tumor growth and experimental metastasis 

The CrTac: NCr-Foxn1nu (NCRNU-F) mice were purchased from Vivo BioTech Ltd., Hyderabad. 

The animal experiments described in this study were approved by the Institutional Animal Ethics 

Committee (IAEC), University of Hyderabad (approval no. IAEC/UH/151/2017/12/BM). For in 

vivo metastasis assay, 4T1 cells (shCtrl or shHPIP) were primed under hypoxia for 24 h or grown 

under normoxia. Five female mice (4-5 week) for each group were injected with 4T1 cells (1×106) 

via tail vein in 100 µl of sterile HBSS buffer. After 20 days of injection, animals were sacrificed, 

dissected and harvested for lungs. Lungs were weighed, incubated with Bouin’s solution and 

counted the metastatic nodules for each lung. Metastasis nodules were also evaluated by ex vivo 

imaging as cells are GFP positive. The number of metastatic nodules, intensity (fluorescence unit) 

of the lungs was quantified and plotted.  

For in vivo tumor growth or tumorigenesis, female mice (4-5 week) were injected subcutaneously 

to the lower left and right quadrant with 4T1 cells 2×106 (shCtrl or shHPIP or siHIF-1α or siHIF-

1α plus HPIP) with 100 µL of sterile HBSS buffer with Matrigel (2:1). Tumor sizes (diameter) 

were measured with a digital caliper. After 15 days of injection, animals were sacrificed, dissected 

and weighed the tumor tissues. The tumor volume (mm3) was calculated by the formula: (Wide)2 

x Length/2. Tissues and lungs nodules were prepared for histopathology study (paraffin 

preparation, sectioning, hematoxylin and eosin staining) and analyzed through subsequent 

microscopic evaluation. All animals were maintained and executed experiments following IAEC 

guidelines at the University of Hyderabad, India. 

2.22. 3D migration assay 

As described previously, 3D migration assays were performed (Vinci et al., 2013; Nandi and 

Brown, 2017). Briefly, 20 µl of MDA-MB-231 or 4T1 cells (shCtrl or shHPIP) consisting of 1x103 

cells were grown as hanging drop culture in Petri dishes by inverting the lid for 48 h with proper 
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humidification inside the incubator. In pre-chilled 96 well-plates, 200 µl of Matrigel was poured 

and above that, hanging-drop spheroids were carefully embedded. The cellular dissemination was 

monitor by capturing images at 0 h and 24 h (hypoxia or normoxia) using a bright field microscope 

(Model IX81, Olympus Singapore). Using Fiji/ImageJ, the out-growth area was determined in 

each well by subtracting the area at 0 h from the area of 24 h. 

2.23. Soft agar assay 

A layer of 0.5% base agarose (0.5% agarose in DMEM with 10% FBS) in 35 mm plates were 

prepared. After solidification, cells (104) were mixed with 1 ml of 0.3% agarose (DMEM with 

10% FBS) and immediately poured above the bottom layer. The cells were cultured with DMEM 

(10% FBS along with 100 µM of CoCl2) and incubated in 5% CO2 incubator at 37 ºC for 2 weeks. 

The cell colonies were stained with crystal violet (0.005%) and images were acquired and counted 

with a bright field microscope (Model IX81, Olympus Singapore). Triplicate culture plates were 

used for each experiment and plotted graph as the percentage of colony number. 

2.24. Boyden Chamber assay (cell invasion assay) 

The cell invasion assay was performed, as per the manufacturer's protocol, using Corning BioCoat 

Matrigel invasion chambers (8.0 µm pore size). MDA-MB-231 or 4T1 cells were serum starved 

for 12 h prior to preceding for the experiment. The cells (2.5x105) were added to the insert along 

with serum free media (DMEM) and serum containing media (10% DMEM) with 5 µg/ml of 

fibronectin was added in the lower compartment of the chamber. After 24 h of incubation under 

hypoxia or normoxia, cells were fixed with formaldehyde and stained with Giemsa’s stain 

(HIMEDIA, India). The inner side of the insert was swabbed to remove un-invaded cells. The 

images were captured with a bright field microscope (Model IX81, Olympus Singapore) and the 

total number of invaded cells was counted and plotted graph as the percentage of invaded cells. 
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2.25. Lactate secretion assay 

The extracellular lactate was measured by spectrophotometric based determination of lactic acid 

as described previously (L. N. Borshchevskaya, 2016). Briefly, cells were grown in 24 well-plates 

under hypoxia for 24 h and the culture media were collected by centrifugation to remove the cell 

debris. The media (50 μl) and 2 ml of 0.2% solution of ferric chloride were mixed and stirred. The 

absorbance of the developed colored was measured at 390 nm and the solution containing 2 ml of 

0.2% solution of ferric chloride was used as a reference. Based on the standard curve of the known 

lactic acid concentration, the culture media's lactic acid concentration was quantified as micro 

molar per milligram of protein. 

2.26. Immunohistochemistry (IHC) 

IHC was performed with the prescribed protocol using Mouse/Rabbit PolyDetector DAB HRP 

Brown Detection System (catalog# BSB0203). Briefly, 4 µm thick tissues (TNBC) or experimental 

mouse-derived slides were deparaffinized using xylene and rehydrated in a series of decreasing 

concentration of ethanol solutions. Epitope retrieval was carried out using citrate buffer in a 

microwave and slides were blocked with PolyDetector Peroxidase Blocker for 5 min following an 

additional 1 h blocking with 5% BSA. The slides were incubated with primary antibodies overnight 

at 4ºC (Table 4), washed and incubated with PolyDetector HRP labels for 45 min. The slides were 

incubated with DAB substrate-chromogen solution and counterstained with hematoxylin, then 

dehydrated and mounted (PX Mountant, SRL, #042848). These images were digitally captured 

using microscope (Model IX81, Olympus Singapore). The IHC profiler plugin for ImageJ 

(software) was used to digitally score IHC slides as described previously. The scores are given 1 

(negative staining), 2 (low positive), 3 (positive) or 4 (high positive) (Varghese et al., 2014) and 

the data was plotted using violin plot. 
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2.27. Cycloheximide chasing experiment 

Chasing assay was performed as described previously (Khumukcham et al., 2019). Stably 

expressed shCtrl or shHPIP#1 or shHPIP#2 MDA-MB-231 cells were treated with cycloheximide 

(25 µg/ml) for the indicated time prior to cell lysis and the extracts were subjected to WB. The 

band intensities were measured using Fiji-ImageJ and normalized to the band intensity of Actin 

and plotted graph as percentage of relative protein. 

2.28. Ubiquitination assay 

Thirty-six hours of post-transfected MDA-MB-231 cells with T7 Vector or T7-HPIP were treated 

with MG132 (20 µM) for 30 min, harvested and the cell extracts were immunoprecipitated with 

HIF-1α-specific antibody. Samples were then resolved on SDS-PAGE and immunoblotted using 

protein-specific antibodies. 

2.29. In-vitro glucose uptake (Fluorescence microscopic analysis) assay 

MDA-MB-231 cells (siCtrl or siHPIP or siHIF-1α or siHIF-1 α plus HPIP) were grown for 24 h 

in 48 well-plate. Cells were glucose starved for 2 h and then incubated with 2-NBDG (2-(N-(7-

Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose) (200 µM) for an additional 30 min at 

37 ºC. Plates were rinsed thoroughly with PBS and the intensity of the cells was examined with a 

fluorescence microscope (Model IX81, Olympus Singapore). From each plate, 5 to 10 random 

images were taken with the same exposer time and quantified the mean intensity of each field and 

plotted graph.  

2.30. Breast cancer patient data analysis 

MMP9 protein sequence was analyzed for signal peptide using SignalP4.1 Server and SecretomeP 

2.0a Server (Bendtsen et al., 2004; Petersen et al., 2011). To study the patient's survival for both 

high and low expression of either HPIP/HIF-1α or SRP14/HIF-1α was performed using cBioPortal 

for cancer genomics (https://www.cbioportal.org/) (Gao et al., 2013). In cBioPortal, high or low 

https://www.cbioportal.org/
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mRNA expression of a gene is determined by the number of standard deviations (SD) from the 

mean. The Kaplan Meier survival curve for co-gene expression was plotted using Breast Invasive 

Carcinoma (TGCA Nature 2012) as (high expression, HPIP:  E>0.6, HIF-1α: E>0.6) verse (low 

expression, HPIP:  E<0.6, HIF-1α: E<0.6) and (high expression, SRP14:  E>0.5, HIF-1α: E>0.5) 

verse (low expression, SRP14:  E<0.5, HIF-1α: E<0.5). The comparative expression of HPIP, 

SRP14 and HIF-1α in invasive ductal breast carcinoma (IDBC) with normal tissue samples (N) 

were analyzed using Curtis data sets from Oncomine 

(https://www.oncomine.org/resource/login.html). The co-expression study of CD44/CD24 with 

HPIP expression was performed using Bos Breast and Ivshina Breast data sets from Oncomine. 

High, medium and low expression of HPIP is defined based on the mean values. For Bos Breast 

data set, we classified as high (>2.218), medium (2.599 -1.79) and low (<1.79), while the mean 

expression value is 2.218 on the other hand for Ivshina Breast data set, high (>0.01), medium (0.09 

- -0.2489) and low (< -0.25), while the mean expression value is -0.23167. 

2.31. Mathematical formulation of HPIP-HIF-1α dynamics 

Our results show that that HIF-1α transcriptionally activates HPIP (Fig. 11) while HPIP increases 

the stability of HIF-1α under normoxic conditions, increasing its half-life by about 4 times (Fig. 

22, C-D). Thus, HPIP and HIF-1α form an indirect positive feedback loop. The dynamics of this 

loop can be described by the following equations: 

𝑑[𝐻𝑃𝐼𝑃]

𝑑𝑡
= 𝑔𝐻𝑃𝐼𝑃𝐻𝑆+(𝐻𝐼𝐹1α, λ𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃 , n𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃, 𝐻𝐼𝐹1α0) − 𝑘𝐻𝑃𝐼𝑃[𝐻𝑃𝐼𝑃] 

𝑑[𝐻𝐼𝐹1α]

𝑑𝑡
= 𝑔𝐻𝐼𝐹1α − 𝑘𝐻𝐼𝐹1α𝐻𝑆−(𝐻𝑃𝐼𝑃, λ𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α, n𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α, 𝐻𝑃𝐼𝑃0)[𝐻𝐼𝐹1α]  

where [𝐻𝑃𝐼𝑃] and [𝐻𝐼𝐹1𝛼] denote the levels of HPIP and HIF-1α respectively; 𝑔𝐻𝑃𝐼𝑃 ,

𝑔𝐻𝐼𝐹1α, 𝑘𝐻𝑃𝐼𝑃 and   𝑘𝐻𝐼𝐹1α denote the production and degradation rates of HPIP and HIF-1α 

https://www.oncomine.org/resource/login.html
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respectively. 𝐻𝑆+(𝐻𝐼𝐹1α, λ𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃, n𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃) denotes transcriptional activation of HPIP by 

HIF-1α, and 𝐻𝑆−(𝐻𝑃𝐼𝑃, λ𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α, n𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α) denotes the decreased degradation rate (i.e., 

larger half-life) of HIF-1α due to HPIP. 𝐻𝑆+(𝐻𝐼𝐹1α, λ𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃, n𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃) and 

𝐻𝑆−(𝐻𝑃𝐼𝑃, λ𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α, n𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α) are shifted Hill functions; shifted Hill functions denoting the 

effect of X on Y are defined as (a): 

𝐻𝑆(𝑋, λ𝑋,𝑌, 𝑛𝑋,𝑌, 𝑋0) = 𝐻−(𝑋, 𝑛𝑋,𝑌, 𝑋0) + λ𝑋,𝑌 (1 − 𝐻−(𝑋, 𝑛𝑋,𝑌, 𝑋0)) 

 where 𝐻−(𝑋, 𝑛𝑋,𝑌) is the inhibitory Hill function, given as (b): 

𝐻−(𝑋, 𝑛𝑋,𝑌, 𝑋0) =
𝑋0

𝑛𝑋,𝑌

𝑋𝑛𝑋,𝑌 + 𝑋0

𝑛𝑋,𝑌
 

 where λ𝑋,𝑌 denotes the fold-change in production/degradation rate of Y due to X. For λ𝑋,𝑌 > 1, 

the shifted Hill functions are represented as 𝐻𝑆+, and for λ𝑋,𝑌 < 1, these functions are represented 

as 𝐻𝑆−. 𝑛𝑋,𝑌, the Hill coefficient represents the non-linearity of the interaction between X and Y. 

𝑋0, the threshold, is the concentration of X at which the value of inhibitory Hill function is 0.5.  

The degradation rates for both HPIP and HIF-1α have been estimated based on first-order kinetics. 

Our experiments denoted a half-life of 7.5 mins for HIF-1α, thus, the basal degradation rate of 

HIF-1α,  𝑘𝐻𝐼𝐹1α, is estimated as ln(2)/7.5 mins = 5.54/h. The half-life of HPIP is estimated based 

on typical half-life of mammalian proteins, approximately 20 h (Lu et al., 2013). Thus, the basal 

degradation rate of HPIP 𝑘𝐻𝑃𝐼𝑃 is ln(2)/20 h = 0.035/h. The production rates for both proteins have 

been estimated based on characteristic concentrations/levels of signaling proteins in a mammalian 

cell, i.e. roughly a million molecules (Lu et al., 2013); thus, 𝑔𝐻𝑃𝐼𝑃 = 10*103 molecules/h, and 

𝑔𝐻𝐼𝐹1α = 300*103 molecules/h. Fold-changes have been estimated based on our experimental data 

– a 3-fold increase in HPIP levels due to HIF-1α (Fig. 11), and a four-fold increase in half-life of 

(b) 
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HIF-1α due to HPIP (Fig. 22, C-D); thus, λ𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃 = 3; λ𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α = ¼ = 0.25 (considered in 

terms of fold-change in degradation rate). The Hill coefficient values are n𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃 = n𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α 

= 6. The threshold of HIF-1α affecting HPIP (𝐻𝐼𝐹1α0) is considered to be 120*103 molecules, 

and that for HPIP modulating HIF-1α (𝐻𝑃𝐼𝑃0) is considered to be 450*103 molecules. The 

nullcline and stochastic perturbation analysis for the network was carried out in R and the 

corresponding figures were generated using MATLAB. Bifurcation diagrams were generated 

using MATCONT (A. Dhooge, 2003). Stochastic simulations involve perturbing the expression 

levels with normally distributed noise. 

We also conducted a sensitivity analysis where we varied the parameters in the model one at a 

time and re-plotted the bifurcation diagrams (Fig. 23, E-J). Expect for the case of n𝐻𝐼𝐹1α,𝐻𝑃𝐼𝑃 = 

1,2 and n𝐻𝑃𝐼𝑃,𝐻𝐼𝐹1α = 1, 2; bistability is retained in all cases, suggesting a very robust behavior. 

2.32. Statistical analysis 

Statistical difference between control samples and test samples were determined by paired or 

unpaired student’s t-test. Significance difference analyses in tumor metastasis, as well as tumor 

formation (growth), were determined by Mann-Whitney U test or unpaired t test. Statistical 

analyses were performed using GraphPad Prism. For the Kaplan–Meier curves, Prism software 

was used, and log-rank analysis was performed. All the experiments were repeated at least twice 

with triplicate technical replicates. All the data are presented as mean ± SD.  P value <0.05 was 

considered to be statistically significant. 
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3.0. Results 

3.1. Effect of hypoxia on HPIP gene expression and its functional implications 

in tumor metastasis 

3.1. (a) HPIP expression is induced under hypoxia 

HPIP and HIF-1α over expression in various cancers have been reported (Zhong et al., 1999; 

Bugide et al., 2015; Chen et al., 2016b; Pan et al., 2016; Gladek et al., 2017), however the 

correlative expression between these proteins and its associated possible risk in breast cancer has 

not been fully elucidated. Considering the overlapping functions of HPIP and HIF-1α, we analyzed 

its expression in two breast cancer cell lines (MDA-MB-231 or 4T1) cultured in hypoxia. 4T1 or 

MDA-MB-231 cells were exposed to hypoxia (1% O2) for various time points (0 h to 24 h) and 

HPIP expression was analyzed. A marked increase of HPIP both at protein as well as mRNA levels 

was observed in these cell lines (Fig. 11, A-F). HIF-1 is a transcriptional regulator that involves 

in cellular adaptation to hypoxic stress (Hirota and Semenza, 2006). To explore whether HIF-1α 

mediates hypoxia-induced upregulation of HPIP expression, MDA-MB-231 cells were treated 

with either Methyl 3-[[2-[4-(2-adamantyl) phenoxy] acetyl] amino]-4-hydroxybenzoate, a HIF-1 

inhibitor, or silenced endogenous HIF-1α expression by transfecting HIF-1-specific siRNA. As 

expected, downregulation of HIF-1α expression significantly decreased hypoxia-induced HPIP 

expression (Fig. 11G). HIF-1α regulates the expression of several genes essential for hypoxic 

adaptation such as invasion, angiogenesis and tumor progression (Semenza and Wang, 1992; Pugh 

and Ratcliffe, 2003) by directly interacting with hypoxia response elements (HREs) (Bardos and 

Ashcroft, 2005). We found three such putative HREs that share homology with HIF-1α consensus 

binding sequence XCGDG (X=G/C, D=A/T) (HRE1: +392 5’ACGTG3’ +398, HRE2: -1394 

5’CCGTG3’ -1388 and HRE3: -2104 5’GCGAG3’ -2099) in HPIP promoter (Fig. 11H). To 

check the functional activity of these HREs, chromatin immunoprecipitation assay (ChIP) was  
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Fig. 11. HPIP is a hypoxic response gene. MDA-MB-231 (A, B, C) or 4T1 (D, E, F) cells were 

exposed to hypoxia at indicated time points and cell lysates were analyzed by western blotting 

(WB) (A, D) and HPIP quantification graph from 3 independent experiments (B, E) and qRT-PCR 

(C, F). (G) MDA-MB-231 cells, transfected with siCtrl, siHIF-1α or treated with HI+ (HIF-1α 

inhibitor), were cultured in hypoxia for 24 h and cell lysates were analyzed by WB. β-actin was 

used as an internal control. (H) A schematic representation of HPIP promoter (2.76 kb) indicating 

the location of hypoxia response elements (HRE1, HRE2, HRE3; NS-nonspecific). (I, J, K, L, M) 

MDA-MB-231 cells were incubated under hypoxia or normoxia for 24 h and subjected to various 

analysis. (I) ChIP assay was performed using indicated antibody and co-precipitated DNA samples 

were subjected to qRT-PCR using HRE1, HRE2, HRE3 and NS (nonspecific) specific primers. (J) 

Luciferase activity was determined in MDA-MB-231 cells using different deleted constructs of 

human HPIP promoter with HRE1, HRE2 and HRE3 and, are fused to Luc gene. (K, L, M) ChIP 

assays were performed using indicated antibodies and co-precipitated DNA samples were 

subjected to qRT-PCR using HRE1, HRE3 and NS (nonspecific) specific primers. The relative 

protein enrichment at specific HRE’s was quantified and normalized with normoxia condition. Bar 

represents the mean ± SD (*P<0.05, **P<0.01, ***P<0.001, unpaired Student’s t-test, n=3). 

 

performed using HIF-1α antibody. As shown in Fig. 11I, HIF-1α was enriched onto HRE1 and 

HRE3 under hypoxia as compared to normoxia. To validate the ChIP data, a series of HPIP 

promoter deletions containing HRE1, HRE2, and HRE3 were cloned into pGL3-Luc vector and 

assayed the reporter activity.  Concomitantly, reporter assay revealed that HPIP promoter which 

harbors both HRE’s 1&3, but not HRE2, are active in response to hypoxia as loss of these HRE’s 

abrogated it (Fig. 11J). 

It has been reported that histone acetylation occurs on HIF-1α-dependent gene promoters by the 

recruitment of p300/CBP, which acts as a coactivator for HIF-1α (Johnson et al., 2008; Ruas et al., 

2005). So, we next investigated the association of p300 as well as histone modifications in HPIP 

promoter. p300 binding was strongly augmented onto HRE’s 1 and 3, but not onto HRE 2, in 

response to hypoxia as compared to normoxia (Fig. 11K). In accordance with the binding of p300, 

relative histone acetylation at H3K9 is increased at HRE’s 1 and 3, while histone dimethylation at 

H3K9, an inactive chromatin marker, decreases in HRE’s 1 and 3 (Fig. 11, L and M). Together 
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these findings indicated that HPIP is a hypoxia response gene, and its expression is HIF-1α-

dependent. 

3.1. (b) HPIP expression is required for the survival of breast cancer cells in 

response to hypoxia  

 

In solid tumors like breast tumors, increased tumor size led to deprivation of oxygen and nutrients 

in cancer cells. Furthermore, it has been well established that hypoxia in solid tumors facilitates 

survival advantage to cancer cells to escape from this hostile microenvironment (Wang et al., 

2017a). Since HPIP is a hypoxia response gene with a proto-oncogene activity, we ascertained that 

HPIP might promote cancer cell survival by antagonizing apoptosis under hypoxic stress. 

Accordingly, AO/PI or trypan blue assay revealed that silencing of endogenous HPIP markedly 

decreases the cell viability upon hypoxia but no significant difference in normoxia (Fig. 12, A-D). 

Similar results were also observed in 4T1 cells, a mouse adenocarcinoma cell line that exhibits 

TNBC (Triple negative breast cancer) like properties similar to MDA-MB-231 cells (Fig. 12, E-

H). Furthermore, HPIP silencing (stable clones using shRNA) significantly reduced anchorage-

independent growth ability of MDA-MB-231 cells, under hypoxia (Fig. 13, A and B) or 4T1 cells 

(Fig. 13, C and D). Consistent with these results, FACS based Annexin V assay showed increased 

apoptosis upon HPIP silencing by these clones cultured under hypoxia but not in normoxia (Fig. 

13, E-G). Moreover, western blot analysis of HPIP silenced MDA-MB-231 or 4T1 cells showed 

an elevated level of apoptosis markers such as cleaved PARP as well as cleaved Caspase 3/9 in 

hypoxia but not in normoxia (Fig. 13, H and I). Together these data suggest that HPIP confers 

breast cancer cell survival and anchorage independent growth under hypoxic stress by 

antagonizing apoptosis. 
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Fig. 12. HPIP expression is required for survival of breast cancer cells in hypoxia.  

MDA-MB-231 cells (A, B, C, D) or 4T1 cells (E, F, G, H) transfected with either si/shCtrl or 

si/shHPIP were exposed to hypoxia for 24 h and were subjected to various functional analyses. (A, 

E) WB confirming knockdown of HPIP. (B, F) Post transfected (24 h) MDA-MB-231 or 4T1 cells 

with siCtrl or siHPIP were cultured in hypoxia for an additional 24 h. Trypan blue assay was 

performed and plotted as percentage of viable cells. Cells were exposed to hypoxia (C, G) or 

normoxia (D, H) and performed cell viability assay by staining with AO/PI and quantified. Bar 

represents the mean ± SD (Scale bar: 100 µm. *P<0.05, **P<0.01, ***P<0.001, ***P<0.001, 

unpaired Student’s t-test. n=3). 
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Fig. 13. HPIP expression is required for survival of breast cancer cells in hypoxia. MDA-MB-

231 cells (A, B, E, F, G, H) or 4T1 cells (C, D, I,) transfected with either si/shCtrl or si/shHPIP 

were exposed to hypoxia or normoxia for 24 h and were subjected to various functional analysis. 

(A-D) Anchorage independent growth was assessed, stained and imaged, and (B, D) colonies were 

counted. (E) Apoptosis assay by FACS using Annexin V APC and 7AAD. (F, G) Stained samples 

were analyzed and data were plotted, (n=2) (H, I) WB analysis of expression of apoptotic markers. 

β-actin was used as an internal control. Bar represents the mean ± SD (Scale bar: 100 µm. *P<0.05, 

**P<0.01, ***P<0.001, ***P<0.001, unpaired Student’s t-test. n=3). 
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3.1. (c) HPIP promotes invasion, EMT, cancer stem cell features and 

metastasis of breast cancer cells in response to hypoxia 

In addition to modulating cell survival, hypoxic microenvironment is also known to increase the 

aggressiveness of cancer cells by enhancing metastatic potential (Hirota and Semenza, 2006; Chan 

and Giaccia, 2007). We therefore investigated whether HPIP has any role in hypoxia induced 

cancer cell migration, invasion, EMT and metastasis. First our 3D migration assay or scratch 

wound assay demonstrated a significant decrease in cell migration activity upon HPIP silencing in 

MDA-MB-231 (Fig. 14, A - D) or 4T1 cells (Fig. 14, E - H) cultured in hypoxia. Furthermore, 

under hypoxia, HPIP silencing significantly reduced invasion capacity of MDA-MB-231 (Fig. 14, 

I and J) or 4T1 cells (Fig. 14, K and L) cultured in hypoxia. In concordance, HPIP silencing 

decreased EMT, which is characterized by elevated levels of E-Cadherin while decreased 

expression of Vimentin and Snail (Fig. 14, M and N). MDA-MB-231 cells also have been shown 

to display EMT (Huang et al., 2020). Since CD44+/CD24- enriched population of mammary cancer 

stem cells (MaCSCs) represent as one of the characteristic features of TNBC cells, we evaluated 

the effect of HPIP silencing on CD44+/CD24- MaCSCs in response to hypoxia. We found a 

significant loss of CD44+/CD24- population upon HPIP silencing in MDA-MB-231 cells (Fig. 15, 

A and B). The co-expression study of CD44/CD24 with HPIP expression from Oncomine using 

Bos Breast data sets also showed a significant correlative expression of HPIP with CD44 but not 

CD24 (Fig. 15C). 
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Fig. 14. HPIP promotes invasion, EMT, cancer stem cell features and metastasis in TNBC 

cells under hypoxic stress.  

HPIP silenced cells of MDA-MB-231 (A, B) or 4T1(E, F) were assessed for 3D migration assay. 

The disseminated cells from the spheroids following 24 h of exposure to hypoxia (A, E) (scale: 

100 µm) and invading areas were measured (B, F). (C, D, G, H) A straight line was scraped in 

fully confluent monolayer cells (shCtrl or shHPIP), incubated under hypoxia, and the percentage 

of migrated cells was calculated. Representative microscopy images (fluorescent or phase-
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contrast) were taken after wound was created at the indicated time points and the percentage of 

wound closure was quantified (C, D) MDA-MB-231 and (G, H) 4T1 cells. MDA-MB-231 (I, J, 

M) or 4T1 (K, L, N) cells were transfected with siCtrl or siHPIP and cultured in hypoxia for 24 h. 

(I, K) Invaded cells through Boyden’s chambers were fixed, permeabilized and stained, scale: 100 

µm, and (J, L) determined the percentage of invaded cells. (M, N) EMT marker proteins were 

analyzed by WB using β-actin as an internal control. Data represents mean ± SD, N=3 (*P<0.05, 

**P<0.01, ***P<0.001, unpaired Student’s t-test). 

 

To further confirm the in vivo involvement of HPIP in tumor invasion, we utilized HPIP stably 

knocked down 4T1 clones. After exposure to hypoxia for 48 h, ~ 1x106 cells (shCtrl or shHPIP) 

were injected intravenously into nude mice via tail vein. After 21 days, we monitored the lung 

metastasis by counting the number of metastatic nodules and quantified the relative fluorescence 

units (RFU). Mice injected with control shRNA transfected 4T1 cells displayed prominent lung 

metastasis, whereas the lung metastatic ability was significantly suppressed in shHPIP-treated cells 

(Fig. 15, D-G). Interestingly, hypoxia derived metastatic nodules are significantly more than 

normoxia (Fig. 15, E and F; P<0.05). Histological analysis of lung sections further showed 

metastatic nodules of shCtrl-4T1 injected nude mice had more compact, highly dense and larger 

in size as compare to shHPIP-4T1 injected nude mice (Fig. 15, G-H). Taken together our data 

suggest that HPIP is required to potentiate cell migration, invasion and also in vivo lung metastasis 

of breast cancer cells under hypoxia. 
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Fig. 15. HPIP promotes invasion, EMT, cancer stem cell features and metastasis in breast 

cancer cells in response to hypoxic stress.  

HPIP silenced cells (MDA-MB-231) were cultured under hypoxia for 24 h. (A) Flow cytometry 

analysis of expression of CD24 and CD44 and (B) measured the percentages of population 

fractions, (*P<0.05, ****P<0.0001, Two-way ANOVA test). (C) Oncomine derived correlative 

expression of HPIP with CD24 or CD44 using Bos Breast data set. (D-H) 4T1 cells (shCtrl or 

shHPIP) were exposed to normoxia or hypoxia for 24 h and injected via tail vein of nude mice. 

(D) Upper, gross picture of fluorescence green tumors (shCtrl or shHPIP) (D), lower, Pictorial 

representation of lungs with metastatic nodules, scale bar: 1 cm. (E) metastatic nodules were 

counted and (F) Quantified and compared the net fluorescence unit. (G) H and E staining showing 

more compact and highly dense lung nodules in control (shCtrl) as compared to shHPIP. (H) 

Paraffin lung tissue derived from tail vein injected animals (shCtrl or shHPIP or PBS) was 

subjected to immunohistochemical staining of HPIP. Scale bar: 100 µm. Number of mice used per 
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group, N = 5. Data represents mean ± SD (*P<0.05, **P<0.01, ***P<0.001, unpaired Student’s t-

test). 

 

3.1. (d) HPIP modulates MMP2/9 protein synthesis in response to hypoxia via 

SRP14-dependent pathway     

Overwhelming evidence support that matrix metalloproteinases (MMPs) regulate cancer cell 

migration, invasion and metastasis (Deryugina and Quigley, 2006). Furthermore, elevated MMP 

levels have been shown to be associated with metastasis and poor prognosis in several types of 

cancer (Nelson et al., 2000). We ascertained whether HPIP-induced invasive and metastasis 

phenotypes in breast cancer cells were due to matrix metalloproteinases (MMPs). Interestingly, 

HPIP silencing significantly decreased MMP9 expression at protein level, yet no significant 

changes at RNA level indicating that, MMP9 might be subjected to either proteasomal degradation 

or translational defects (Fig. 16, A and B). Treatment of cells with MG132, a proteasomal inhibitor, 

did not restore MMP9 expression and also TIM2 and TIM3, inhibitors of MMPs, in HPIP depleted 

cells, which ruled out the possibility of involvement of proteasomal pathway in HPIP regulated 

MMP9 synthesis (Fig. 16C). We next analyzed MMP9 synthesis by pulse chase experiment using 

[S35] methionine. As compared to control cells, HPIP depleted cells showed a marked decrease in 

MMP9 synthesis (Fig. 16D). SignalP4.1 and SecretomeP 2.0a analysis of MMP9 suggested that it 

carries a signal peptide and, after protein synthesis on endoplasmic reticulum (ER) by ribosomes, 

it follows the classical secretory pathway for its secretion (Fig. 16E). Since majority of the 

biological functions are carried out by protein complexes rather as individual components (Spirin 

and Mirny, 2003), we followed yeast to hybrid (Y2H) genetic approach to identify HPIP 

interacting partners. We found SRP14 (signal recognition particle) as one of the interacting 

partners of HPIP (Fig. 16F). SRP14 is a part of signal recognition particle (SRP)-ribonucleoprotein 

(RNP) complex that involves in protein synthesis on ER membrane (Akopian et al., 2013).  
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Fig. 16. HPIP modulates MMP2/9 protein synthesis in response to hypoxia via SRP14-

dependent pathway.  

Cells were cultured in hypoxia for 24 h and performed the indicated experiments. (A, B) MDA-

MB-231 cells transfected with shCtrl or shHPIP were analyzed by (A) WB (B) qRT-PCR. (C) 

siCtrl or siHPIP, were subjected to MG132 (25 µM) treatment for 8 h and lysates were analyzed 

by WB. (D) Pulse-chase experiment: MDA-MB-231 cells (shCtrl or shHPIP) cultured under 

hypoxia for 24 h were chased with 35S-methionine and extracts were preceded for 

Immunoprecipitation with MMP9 antibody followed by WB and autoradiography. (E) Analysis of 

MMP9 protein sequence to identify signal peptide using SignalP 4.1 Server and SecretomeP 1.0 

Server. (F) Y2H analysis shows interaction of HPIP and SRP14. (G) MDA-MB-231 cells exposed 

to hypoxia or normoxia for 24 h were subjected to WB. (H) Post transfected (24 h) cells with siCtrl 

or siHIF-1α were exposed to hypoxia (24 h), then cell lysates were analyzed by WB. (I) Upper, 

A schematic representation of SRP14 promoter indicating the location of HIF-1α binding sites 

(HRE1, HRE2). (I) Lower, ChIP assay with HIF-1α antibody. Co-precipitated DNA samples were 

subjected to qRT-PCR using HRE1, HRE2 and NS (nonspecific) specific primers. The relative 

binding capacity of HIF-1α is quantified and normalized with normoxic samples. Bar represents 

the mean ± SD, N=3 (**P<0.01, unpaired Student’s t-test).  

 

Generally, proteins synthesized by ER ribosomes are destined for secretion (Karamyshev et al., 

2020).  Given these premises, we hypothesized that HPIP might regulate MMP9 synthesis by 

modulating SRP14 function. First, we studied SRP14 expression in breast cancer cells in response 

to hypoxia. Interestingly, we found that SRP14 expression is also induced by hypoxia stress and 

depletion of HIF-1α markedly downregulated its expression in MDA-MB-231 cells (Fig. 16, G 

and H). Careful perusal of SRP14 gene promoter revealed that it harbors two HRE elements in it 

(Fig. 16I). Concomitantly, chromatin immunoprecipitation assay (ChIP) confirmed HIF-1α 

recruitment onto SRP14 promoter (Fig. 16I). Next, CoIP analysis confirmed the in vivo interaction 

of HPIP with SRP14 (endogenous) in MDA-MB-231 cells (Fig. 17A). Similarly, HPIP and SRP14 

also interacts in transiently co-transfected MDA-MB-231 cells with pMNDUS-HPIP and GFP-

SRP14 (Fig. 17B). Further analysis of cellular fractions by sucrose gradient centrifugation revealed 

the enrichment of HPIP and SRP14 in ribosomal fraction (14th and 17th fractions, which are 

enriched with L9 ribosomal protein) (Fig. 17C). Additionally, protein domain mapping analysis 

identified lysine rich region located between 96-113 aa in SRP14 is required for interacting with 
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HPIP as wtSRP14 could interact with HPIP but not SRP14A5 or SRP14-ΔK5 (Fig. 17D). CoIP 

analysis further demonstrated an increased interaction of HPIP with SRP14 in MDA-MB-231 cells 

cultured in hypoxia as compared to normoxia (Fig. 17, E and F). Earlier studies reported the 

localization of SRP14 into stress granules along with 40s ribosomes in response to certain 

physiological stresses (Berger et al., 2014). Despite HPIP is predominantly a cytoplasmic protein, 

confocal imaging showed a significant colocalization of HPIP with SRP14 in the stress granules 

of MDA-MB-231 cells (Fig. 17, G and H).  

After establishing the physical interaction and cellular colocalization of HPIP and SRP14 in MDA-

MB-231 cells, we next focused on their functional interaction in the context of cancer cell invasion 

and MMP9 synthesis. While HPIP knockdown suppressed MMP9 expression and invasion of cells, 

the ectopic expression of GFP-SRP14 failed to restore it (Fig. 18, A-C). Likewise, the ectopic 

expression of T7-HPIP in depleted SRP14 cells could not restore the invasion ability of the cells 

(Fig. 18, D-F).  Further, in agreement with our domain mapping studies, C-terminal mutants of 

SRP14 were defective in stimulating MMP9 synthesis (Fig. 18G). Together these data suggested 

the physical interaction of HPIP with SRP14 is essential for MMP9 synthesis and thus, breast 

cancer cell invasion in response to hypoxia. 
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Fig. 17. HPIP modulates MMP2/9 protein synthesis in response to hypoxia via SRP14-

dependent pathway.   

(A) MDA-MB-231 cells extracts derive from hypoxia were subjected to CoIP using HPIP antibody 

and analyzed by WB. (B) Post co-transfection (36 h) of MDA-MB-231 cells with Flag-HPIP and 

GFP-SRP14 or Flag and GFP vectors were lysed following co-immunoprecipitation with anti-Flag 

antibody and analyzed by WB. (C) Cellular extracts of MDA-MB-231 cells were subjected to 

sucrose gradient centrifugation and collected fractions were analyzed by WB. (D) Post co-

transfection (36 h) of MDA-MB-231 cells with Flag-HPIP and GFP-SRP14, GFP-SRP14-A15, 

GFP-SRP14-∆K5 or pEGFP-C1 plasmid constructs were harvested, co-immunoprecipitated with 

anti-Flag antibody and analyzed by WB. (E) MDA-MB-231 cells cultured in hypoxia or normoxia 

for 24 h were lysed following co-immunoprecipitation with HPIP antibody and analyzed by WB 

and (F) The relative interaction between HPIP and SRP14 was quantified (ratio between the 

intensities of SRP14 and HPIP protein bands). (G) MDA-MB-231 cells cultured in hypoxia or 

normoxia for 24 h were immune-stained and imaged, scale bar: 10 μm, and (H) localization 

(Pearson coefficient) of SRP14 and HPIP between hypoxia and normoxia was measured. Data 

represents mean ± SD (*P<0.05, **P<0.01, unpaired Student’s t-test). 

 

3.2. Role of HPIP in tumor development under normoxia 

3.2. (a) HPIP enhances Warburg effect under normoxia 

We next focused on the functional interaction between HIF-1α and HPIP in normoxia. In normoxia 

HIF-1α promotes aerobic glycolysis or Warburg effect, which is characterized by enhanced 

glucose uptake, increased expression of glycolytic enzymes and lactate synthesis etc. and thus 

confers tumor growth (Semenza et al., 1994; Courtnay et al., 2015; Nagao et al., 2019). Several 

independent reports showed that HPIP also involves not only in the cellular invasion and 

migration, but also in cell growth (Chen et al., 2016b; Pan et al., 2016; Khumukcham et al., 2019). 

This raised the possible existence of a crosstalk between the two proteins in cell growth regulation 

by controlling Warburg effect. To test this hypothesis, we first measured the rate of cell 

proliferation and colony forming ability of either HPIP or HIF-1α depleted MDA-MB-231 cells. 

As shown in Fig. 19, A-C, depletion of either HPIP or HIF-1α significantly reduced cell 
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Fig. 18. HPIP modulates MMP2/9 protein synthesis in response to hypoxia via SRP14-

dependent pathway.  (A-F) MDA-MB-231 cells transfected with (A, B, C) siCtrl, siHPIP or 

siHPIP+GFP-SRP14 or (D, E, F) shCtrl, shSRP14 or shSRP14+T7-HPIP were cultured under 

hypoxia for 24 h and perform WB (A, D) and invasion assay (B-F). The invaded cells were fixed, 

permeabilized and stained (B, E) and (C, F) percentage of invaded cells was quantified. (G) Post 

co-transfection (36 h) of MDA-MB-231 cells with Flag-HPIP and GFP-SRP14, GFP-SRP14-A15, 

GFP-SRP14-∆K5 or pEGFP-C1 plasmid constructs were harvested and analyzed by WB. β-actin 

was used as an internal control in all WB. Data represents mean ± SD (*P<0.05, **P<0.01, 

unpaired Student’s t-test), scale bar: 100 μm. 
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Fig. 19. HPIP promotes Warburg effect and confers cell growth on TNBC cells under 

normoxia.  

(A-G) MDA-MB-231 cells were transfected with siCtrl, siHPIP, siHIF-1α or siHIF-1α plus HPIP. 

(A) Proliferation assay (MTT assay), and (B) Colony formation assay was performed, and 

representative images were shown, and (C) colony numbers were quantified. (D) Glucose uptake 

assay was performed by incubating with 2-NBDG (200 µM) for 30 min and imaged, scale bar: 100 

μm, and (E) The mean intensity was quantified. (F) Cell’s lysates were subjected to WB using 

following antibodies: anti-HPIP, -HIF-1α, and -GLUT1. β-actin was used as an internal control. 

(G) qRT-PCR analysis of few glycolytic genes (GLUT1, LADH, and PFKP). (H) Post transfected 

(36 h) MDA-MB-231 cells with T7 or T7-HPIP were analyzed by qRT-PCR. β-actin was used as 
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an internal control. (I) Standard graph derived from a spectrophotometrically measured known 

concentration of lactate. (J) Lactate released was measured from cultured media of MDA-MB-231 

cells (shCtrl or shHPIP) that are exposed to hypoxia and analyzed by the spectrophotometric 

method and normalized by total protein. Data represents mean ± SD, N=3 (*P<0.05, **P<0.01, 

***P<0.001, unpaired Student’s t-test), ns-not significant. 

 

proliferation as well as colony number, but not able to rescue the effect even after the ectopic 

overexpression of HPIP in HIF-1α depleted cells. We next measured the Warburg effect under 

similar experimental conditions. While silencing of either HPIP or HIF-1α significantly decreased 

glucose uptake by MDA-MB-231 cells (Fig. 19, D-F) and also expression of GLUT1, LDHA and 

PFKP (Fig. 19G), but could not rescue the effect even after the ectopic overexpression of HPIP in 

HIF-1α depleted cells. 

In contrast to normal cells, cancer cells are mainly dependent on the substrate label 

phosphorylation, aerobic glycolysis, converting the glucose to lactate to meet the energy required 

for uncontrolled cell proliferation (de Souza et al., 2011; Pinheiro et al., 2012). Since lactate 

accumulation induces apoptosis, cancer cells move the lactate out of the cancer cells by MCT4 for 

continuous conversion of pyruvate to lactate to maintain the uninterrupted flow of glycolysis 

(Pinheiro et al., 2012). As expected, while ectopic expression of HPIP enhanced MCT4 expression 

(Fig. 19H), its depletion significantly reduced the lactate secretion (Fig. 19, I and J).  

To further confirm the overlapping functions of HPIP and HIF-1α in the context of oncogenesis, 

we performed tumor xenograft studies in nude mouse model using 4T1 cells. In support of the in 

vitro data, mice injected with shCtrl-4T1 clones displayed prominent tumor growth; the other mice 

injected with either shHPIP or siHIF-1α had significantly smaller tumors. Moreover, the mice 

injected with 4T1 cells that are transfected with HIF-1α and T7-HPIP could not restore the tumor 

growth (Fig. 20, A-D). In vivo imaging of the dissected tumors from the mice showed GFP 

autofluorescence emerging out of the cells (Fig. 20, E and F). Further, histological analysis of 
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tumor sections showed higher cell density in shCtrl-4T1/nude mice as compare to the rest of the 

groups (Fig. 20G). In support of the in vitro data, GLUT1 expression in tumor samples also shown 

its reduced expression in HPIP or HIF-1α knocked down condition and also HPIP ectopic 

expression failed to restore it in HIF-1α depleted cells (Fig. 20H). Taken together our data 

suggested that HPIP enhances Warburg effect through HIF-1α under normoxia. 

3.2. (b) HPIP stabilizes HIF-1α under normoxia in breast cancer cells 

We next investigated the mechanism underlying the dependence of HIF-1α on HPIP in normoxic 

regulation of cell growth and tumorigenesis. Under normoxia conditions PHD hydroxylates HIF-

1α and, hydroxylated protein is subsequently recognized by pVHL leading to the ubiquitination 

and then proteasome-dependent degradation (Jaakkola et al., 2001). Intriguingly, few reports pitch 

in regarding the stability of HIF-1α under normoxia (Yoo et al., 2006; Doe et al., 2012; Kim et al., 

2015; Iommarini et al., 2017). We ascertained if HPIP could regulate HIF-1α under normoxia and 

evaluated the endogenous HIF-1α expression by altering the expression of HPIP. The depletion of 

HPIP expression in MDA-MB-231 cells profoundly decreases HIF-1α protein, but not it’s mRNA 

suggesting the possible role of ubiquitination in the regulation of HIF-1α (Fig. 21, A and B). 

Analysis of the expression of HPIP and HIF-1α in a panel of breast cancer cells cultured in 

normoxia showed a positive correlation, except in T47D and ZR75 (Figure 21, C and D). This 

raised the possibility of regulation of HIF-1α by HPIP in these cells. We therefore evaluated the 

endogenous HIF-1α expression by altering the expression of HPIP in MCF-7 cells. The ectopic 

overexpression of HPIP in MCF-7 cells (HPIP low/HIF-1α low) enhanced HIF-1α expression (Fig. 

21E). Additionally, under normoxia, ectopic expression of T7-HPIP in HEK239T cells 

(endogenous abundance of both HPIP and HIF-1α proteins is very low) elevated HIF-1α protein, 

while its mRNA levels were unaltered (Fig. 21, F and G). Interestingly, HIF-1α is readily 
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ubiquitinated in control cells, while T7-HPIP ectopic expression markedly reduced it (Fig. 21H; 

lane’s 2 vs 3).  
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Fig. 20. HPIP promotes Warburg effect and confer cell growth on TNBC cells under 

normoxia.  

(A-H) Stably generated 4T1 cells (shCtrl or shHPIP) were transfected with siCtrl, siHIF-1α or 

siHIF-1α plus Flag-HPIP as indicated, injected subcutaneously in nude mice along with Matrigel 

and kept for 15 days monitoring up to 15 days and (A) measured the diameter of tumors.  Animals 

were sacrificed and excised the tumors. (B) Upper panel, physical appearance of nude mice, (B) 

Lower panel, image of excised tumors. Scale bar: 1 cm. Quantification of (C) Tumor volumes 

and (D) excised tumor’s weight. (E) Quantification and comparison of net fluorescence unit 

derived from In-vivo imaging of the tumor tissue, upper, fluorescence image of the tumors, lower, 

a preview of the tumors. Scale bar: 1 cm (F) net fluorescence was measured (n= 3 per group on 

both planks). (G) Image of H and E staining. Scale bar: 100 cm (H) Tumor tissues were subjected 

to WB using β-actin as an internal control. Data represents mean ± SD (*P<0.05, **P<0.01, 

***P<0.001, unpaired Student’s t-test), ns-not significant. 

 

We next measured the half-life of endogenous HIF-1α in HPIP silencing MDA-MB-231 cells 

following cycloheximide, a protein translation inhibitor, treatment. As expected, the half-life of 

HIF-1α was substantially longer in control cells (30 min) as compared to HPIP silencing clones 

#shHPIP1 or #shHPIP2 (7.5 min), but MG132, a proteasomal inhibitor, treatment abrogated HIF-

1α degradation suggesting that HPIP inhibits proteasome-mediated degradation of HIF-1α (Fig. 

22, A-D). HPIP is predominantly a cytoplasmic protein that is known to regulate PI3K/AKT 

pathway (Manavathi et al., 2006) and also reported that PI3K/AKT activation is required for HIF-

1α stabilization (Joshi et al., 2014). Given these premises, we rationalized that HPIP may regulate 

HIF-1α stabilization via PI3K/AKT pathway. Accordingly, ectopic expression of HPIP activated 

AKT, measured by pAKT at T308, and enhanced HIF-1α protein levels, either in HEK293T or 

MDA-MB-231 cells (Fig. 22, E and F). Consistent with this data, specific inhibition of PI3K by 

LY290002 results in marked decrease in HIF-1α levels (Fig. 22G). We did not observe any 

significant change in HIF-1α hydroxylation after HPIP depletion suggesting that HPIP-mediated 

HIF-1α stability is VHL-independent (Fig. 22H). Since GSK3β, one of the downstream targets of 

AKT, is known to destabilize HIF-1α via direct phosphorylation (Mennerich et al., 2014), we 

ascertained if HPIP enhances HIF-1α stability by inhibiting GSK3β. Consistent with earlier 
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reports, we also observed a marked decrease in HIF-1α levels upon ectopic expression of GSK3β-

wt but not with GSK3β-KD (kinase dead) (Fig. 22I, lane 3 and 5). As expected, HIF-1α levels 

were restored upon ectopic expression of HPIP in GSK3β (wt/KD) transfected cells (Fig. 22I, lane 

2 and 4). Together, these data suggest that HPIP regulates normoxic stabilization of HIF-1α in 

breast cancer cells via PI3K/AKT/GSK3β axis. 
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Fig. 21. HPIP stabilizes HIF-1α under normoxia in TNBC cells.  

(A, B) MDA-MB-231 with shCtrl or shHPIP were harvested and analyzed by (A) WB and (B) 

qRT-PCR, left, relative expression (R.E.) of HIF-1α, right, relative expression (R.E.) of HPIP. β-

actin was used as an internal control. (C) WB analysis of various breast cancer cell lines as 

indicated with HPIP and HIF-1α antibodies and β-Tubulin as an internal control. (D) The band 

intensities were measured and the correlative expression (Pearson R) between HPIP and HIF-1α 

was quantified (excluding T47D and ZR75) (**P<0.01). (E) Post transfection (36 h) of MCF-7 

cells with T7 or T7-HPIP plasmids were harvested and analyzed by WB (F, G) Post transfection 

(36 h) of HEK293T cells with T7 or T7-HPIP plasmid were harvested and analyzed by (F) WB 

and qRT-PCR (G) left, HIF-1α, right, HPIP. β-actin was used as an internal control. (H) MDA-

MB-231 cells were transfected (24 h) with T7 or T7-HPIP plasmids followed by 

immunoprecipitation with HIF-1α antibody and then analyzed by WB. Data represent mean ± SD, 

N=3 (**P<0.01, unpaired Student’s t-test). 
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Fig. 22. HPIP stabilizes HIF-1α under normoxia in TNBC cells.  

(A, B) Representative images of stably generated MDA-MB-231 cells (shCtrl, shHPIP#1 or 

shHPIP#2) by lentiviral transduction method, scale bar: 100 µm. (B) Cell lysates were analyzed 

by WB using Tubulin as an internal control. (C) Cycloheximide chase assay, MDA-MB-231 

(shCtrl and shHPIP) cells were treated with or without MG132 at indicated time points and cell 

extracts were analyzed by WB as indicated. (D) Quantification and measurement of half-life (t½ 

min) of HIF-1α. (E-F) Cells were transfected with T7 or T7-HPIP plasmids and WB was 
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performed using extracts of (E) MDA-MB-231 and (F) HEK293T. (G) Transfected MDA-MB-

231 cells with T7 or T7-HPIP plasmids were treated with or without LY294002 (PI3K inhibitor) 

and performed WB. (H) Cells transfected with shCtrl, shHPIP or shHPIP plus T7-HPIP were 

analyzed by WB using β-actin as an internal control. (I) Effect of co-transfection of pcDNA vector 

(T7) or pcDNA-HPIP (T7-HPIP) and c-Myc-GSK-3β wt (wild type) or c-Myc-GSK-3β KD 

(Kinase dead) on HIF-1α in MDA-MB-231 cells as demonstrated by WB. β-actin is used as an 

internal control. Data represent mean ± SD (**P<0.01, unpaired Student’s t-test, n=3). 

 

3.3. Role of HPIP in oxygen-dependent plasticity of breast cancer cells 

3.3. (a) Mathematical modeling in concert with cell proliferation/invasion index 

studies suggest phenotypic plasticity between HPIPlow/ HIF-1αlow and 

HPIPhigh/HIF-1αhigh cell states in breast cancer cells 

Integrating our quantitative experimental data of HIF-1α (Western blot, RT-PCR and half-life 

analysis), we constructed a quantitative mathematical model to characterize the dynamics of the 

feedback loop by HPIP and HIF-1α. HIF-1α can transcriptionally activate HPIP (Fig. 11), while 

HPIP stabilizes HIF-1α by modulating its half-life (Fig. 22). This feedback loop can give rise to 

bistability in the system, i.e., cells can attain HPIPlow/ HIF-1αlow or HPIPhigh/HIF-1αhigh states 

(shown by two solid circles in Fig. 23A, left), and can switch between these states stochastically 

(Fig. 23A, right) once cells cross a specific ‘tipping point’ or threshold (shown by hollow circle in 

Fig. 23A, left). These simulations suggest that mutual reinforcement between HPIP and HIF-1α 

can stabilize the HPIPhigh/ HIF-1αhigh state. In support of these predictions, we also observed cells 

expressing HPIPhigh/ HIF-1αhigh while transitioning from epithelial to mesenchymal phenotype 

upon switching the microenvironment gradually from normoxia to hypoxia (O2 %: 21 to 1) (Fig. 

23B).  Interestingly, we also observed that switch from a HPIPlow/ HIF-1αlow to a HPIPhigh/ HIF-

1αhigh state can be driven by increasing the abundance of either HPIP or HIF-1α (Fig 23, C and D). 

This observation suggests that cells can maintain high levels of HIF-1α even under normoxic 

conditions, when HPIP stabilizes HIF-1α. Also, in hypoxic conditions when HIF-1α is 

upregulated, HPIP levels can be upregulated and maintained. Sensitivity analysis shows the 
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robustness of these predictions upon parameter variation, indicating that this phenotypic switching 

emerges from the topology of the HPIP/HIF-1α feedback loop (Fig. 23, E-J).  
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Fig. 23. Mathematical modeling in concert with proliferation/invasion index studies suggest 

phenotypic plasticity between (HPIPlow/ HIF-1αlow) and (HPIPhigh/ HIF-1αhigh) cell 

states. (A) (left) Nullcline simulations for the mathematical model, where red curve represents the 

change in HPIP levels upon changing HIF-1α, and blue curve represents the change in HIF-1α 

levels upon changing HPIP. The solid green circles represent the two possible stable steady states 

(phenotypes) – (HPIPlow/ HIF-1αlow), (HPIPhigh/ HIF-1αhigh). The hollow circle indicates an 

unstable state. (right) stochastic simulations showing cells switching between these states 

(indicated by dotted blue lines). (B) MCF7 cells were incubated for 24 h at different concentrations 

of O2 as indicated and performed WB using β-actin as an internal control. (C) Bifurcation diagram 

showing how cells in (HPIPlow/ HIF-1αlow) state can switch to (HPIPhigh/ HIF-1αhigh) state upon 

increasing HPIP production rate. Solid curves reflect stable states; dotted red lines indicate 

unstable states. (D) Same as (C) but with varying HIF-1α production rate. (E-J) Effect of variation 

in different parameters on the bistability in the system. (E)  and (F) are varied from 6 (black) to 1; 

decreasing bistable region with decreasing n is seen. (G), (H), (I) and (J) are varied from the model 

values (black) by +10%, +20% (blue) and -10%, -20% (red). Bistability is retained in all cases. 

 

Based on these predictions, we further argued that HPIP may display functional preference toward 

cancer cells to establish the cellular plasticity in response to switching of microenvironments i.e., 

from normoxia to hypoxia or vice-versa. To test this hypothesis, we measured cell proliferative 

index at normoxia (PIN) or hypoxia (PIH) and cell invasion index at normoxia (ININ) or hypoxia 

(INIH) as well as cell migration index at normoxia (MIN) or hypoxia (MIH) by culturing MDA-

MB-231 cells at respective condition following HPIP knockdown. Indeed, as compared to control, 

HPIP silencing results in a significant loss of proliferative index by these cells when switched from 

hypoxic to normoxic microenvironment (PIH=0.95±0.1 vs. PIN=0.72±0.1) (p<0.001) (Fig. 24, A 

and B). On the other hand, regarding cell migration and invasion indices, we observed an inverse 

effect by these cells under similar stress conditions. Upon HPIP silencing, MDA-MB-231 cells 

exhibited a significant loss of invasion index (ININ=0.50±0.0 vs. INIH=0.37±0.0) as well as 

migration index (MIN=0.33±0.0 vs. MIH=0.14±0.0) when switching from normoxic to hypoxic 

microenvironment (p<0.01) (Fig. 24, C-F). Similarly, depletion of HPIP expression in 4T1 cells 

shows a significant loss of migration index (MIN =0.53±0.02 vs. MIH=0.32±0.01) (Fig. 24, G and 

H). In supporting these data, we also observed a correlative spatial expression of HIF-1α and HPIP  
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Fig. 24. Mathematical modeling in concert with proliferation/invasion index studies suggest 

phenotypic plasticity between (HPIPlow/ HIF-1αlow) and (HPIPhigh/ HIF-1αhigh) cell 

states. (A-B) MDA-MB-231 cells were exposed to hypoxia or normoxia (siCtrl or siHPIP) for 24 

h and performed Immunofluorescence assay using Ki-67 and measured the Ki-67 positive cells 

and plotted as the relative percentage of cell proliferation. (C) The Invaded cells were fixed, 

permeabilized, stained and imaged, scale bar: 100 µm, and (D) measured the relative percentage 

of invaded cells and invasion index (INI) (siCtrl vs siHPIP) in hypoxia or normoxia. (E-H) 

Disseminated cells (shCtrl or shHPIP) from the spheroids cultured under hypoxia or normoxia, 

scale bar: 50 µm, were evaluated for migration index (MI) and quantified (D, E) MDA-MB-231 

(G, H) 4T1. (I) Spatial protein expression of HIF-1α and HPIP in tumor by IHC in orthotopically 

derived tumor with 4T1 cells and Human breast tumor samples, scale bar: 100 μm. Data represents 

mean ± SD (**P<0.01, ***P<0.001, ****P<0.0001, unpaired Student’s t-test). 

 

in subcutaneously transplanted mouse derived cancer tissue (upper panel) as well as human TNBC 

patient’s tissue sample (lower panel) (Fig. 24I). Collectively, our results suggest the existence of 

phenotypic plasticity behavior between HPIPlow/ HIF-1αlow and HPIPhigh/ HIF-1αhigh states that can 

happen in normoxic or hypoxic condition. 

3.4. Correlative expression of HPIP, SRP14 and HIF-1α in breast cancer 

patient's tumor tissues 

In order to correlate the reciprocal regulation of HPIP and HIF-1α with clinical samples, we 

analyzed their expression in TNBC samples by western blotting (N=10). The data revealed a 

significantly higher expression of HPIP and HIF-1α in TNBC samples than adjacent breast tissue 

(Fig. 25, A and B). Similarly, SRP14 expression was also elevated in TNBC samples. Consistent 

with this data, immunohistochemical (IHC) analysis also revealed a significantly elevated level of 

HPIP, SRP14 and HIF-1α in TNBC samples over adjacent breast tissue (Fig. 25, C and D). 

Supporting this data, analysis of TCGA database showed a significantly higher expression of 

HPIP, SRP14 and HIF-1α in invasive ductal breast carcinomas (IDBC) (N=1556) over normal 

breast tissue (N=144) (p<0.0001) (Fig. 25E).  
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Fig. 25. Expression of HPIP/SRP14 correlate with HIF-1α in TNBC patients.  

(A, B) Patient’s tumor samples (TNBC) (denoted as C) along with corresponding adjacent normal 

tissue (ANT) (denoted as N) were lysed and subjected to WB as indicated. (B) Expression of HPIP, 

HIF-1α or SRP14 was quantified and the expression between tumor samples with adjacent normal 

tissue was compared. [n= 10 (C) and (N) each, paired Student’s t-test, *P<0.05, **P<0.01) (C) 

Paraffin TNBC and ANT were subjected to H and E staining or immunohistochemical staining 

with indicated antibodies, scale bar: 100 μm and (D) IHC score for each sample were determined 

and compared between TNBC and ANT for all three proteins as indicated. (TNBC= 30 and ANT= 

20, unpaired Student’s t-test, ****P<0.0001). (E) Oncomine derived expression analysis of HPIP, 

SRP14 and HIF-1α in invasive ductal breast carcinoma (IDBC) as compared to normal tissue (N). 

(IDBC= 1556 and N=144, unpaired Student’s t-test, *P<0.05, **P<0.01, ****P<0.0001). Data 

represent mean ± SD. (F, G) IHC score derives from TNBC samples (D) were used to analyze the 

correlative expression (Pearson R) between (F) HPIP and HIF-1α (G) SRP14 and HIF-1α. 

(****P<0.0001, Two-tailed test). (H, I) The Kaplan Meier survival curve for high and low co-

gene expression, (H) between high HPIP/HIF-1α and low HPIP/HIF-1α (I) between high 

SRP14/HIF-1α and low SRP14/HIF-1α. (**P<0.001, Log-rank (Mantel-Cox) test). 

 

Furthermore, we found a significant correlative expression of HPIP or SRP14 with HIF-1α in 

TNBC samples (N=30) (R=0.70 and 0.71, respectively) (Fig. 25, F and G). Patient survival 

analysis by Kepler-Meier plot further indicated a significant loss of survival in patients with high 

HPIP or SRP14 and high HIF-1α vs. low HPIP or SRP14 and low HIF-1α (p<0.1 and 0.005, 

respectively) (Fig. 25, H and I). Together these compelling data suggest that expression of HPIP 

or SRP14 correlates with HIF-1α in TNBC samples and confers poor survival rate of breast cancer 

patients.  

3.5. Discussion 

In this study, we show that breast cancer cells display phenotypic plasticity upon switching from 

hypoxic to normoxic microenvironments or vice-versa by employing a reciprocal positive 

feedback regulation of HPIP and HIF-1α. We propose a model wherein, under hypoxia, HIF-1α 

induces HPIP expression which ensures cancer cell survival and metastasis; conversely, in 

normoxia, HPIP stabilizes HIF-1α and confers Warburg effect and cell growth on breast cancer 
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cells (Fig. 27). HPIP has been shown to play pleiotropic roles as it is involved in cell proliferation, 

differentiation, migration and invasion that are coupled with cell cycle regulation, EMT or anti-

apoptosis processes (Manavathi et al., 2012; Bugide et al., 2015; Pan et al., 2016; Wang et al., 

2016; Chen et al., 2016b; Khumukcham et al., 2019). Despite HPIP playing these diverse 

functions, it remains largely unknown whether HPIP influences phenotype plasticity in cancer 

cells in response to changing microenvironments from hypoxia to normoxia or vice-versa, which 

prevail in solid tumors. Although hypoxia causes cytotoxicity in normal cells, it provides selective 

advantage to the cancer cells in solid tumors via HIF-1 to become more aggressive clones that 

acquire features like metastatic ability, chemo-resistance, tumor recurrence etc. (Semenza, 2000; 

Melillo, 2007). Our study shows that HPIP is induced in response to hypoxia in a HIF-1-

dependent manner and is implicated in cell survival, migration, invasion, EMT and stemness in 

breast cancer cells. The EMT and cancer stem cell (CSC) phenotype represents the characteristic 

feature of an epithelial to mesenchyme plasticity (EMP), which drives tumor metastasis and 

chemoresistance (Tsai and Yang, 2013; Elshamy and Duhe, 2013; Jia et al., 2019; Lu and Kang, 

2019; Williams et al., 2019; Dong et al., 2020a;). We observed that HPIP is required for the 

expression of EMT markers and cancer stem cell phenotype under hypoxia. In support of this, in 

vivo tumor xenograft studies further demonstrated that HPIP is required for lung metastasis in 

breast cancer cells. These observations support the point that HPIP confers EMT and CSC 

phenotype, thereby increasing metastatic potential on breast cancer cells under hypoxia by 

controlling EMP. Under normoxia our findings revealed that HPIP foster Warburg effect and cell 

growth on breast cancer cells. Decreased lactate synthesis and down regulation of glucose importer 

GLUT1, LDH etc. upon HPIP silencing is an indication of suppressed Warburg effect. Moreover, 

in vivo tumor xenograft studies further demonstrated that HPIP facilitates tumor growth 

progression in normoxia. Our very recent findings showed an induced expression of HPIP under 

energy (glucose) stress in breast cancer cells (Penugurti et al., 2019). HPIP promotes breast cancer 
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cell survival under acute glucose stress by modulating glutaminolysis through interaction with 

MYC oncogene. In contrast, cancer cells undergo apoptosis in chronic glucose stress by RNF2-

mediated ubiquitination of HPIP and concomitant proteolysis by the 26-proteasome pathway. The 

present study revealed that HPIP is induced under hypoxia and contributes to cancer cell survival. 

Moreover, the HPIP gene is first appeared in Danio rerio (Zebrafish) (Fig. 26). It implies that HPIP 

has been evolved as a stress response gene in the higher eukaryotes as it doesn’t express in lower 

organisms.  In support of these findings proliferative and invasive index studies revealed that HPIP 

drives cell growth over invasion of breast cancer cells cultured in normoxia and an inverse effect 

in hypoxia. These microenvironment-dependent dual functional natures of HPIP allows cancer 

cells to display cellular plasticity in regulating diverse cellular functions and thus phenotypic 

heterogeneity in solid tumors. Mechanistically we found that HPIP executes two distinct 

mechanisms to establish phenotypic plasticity in breast cancer cells. In hypoxia, HPIP potentiates 

MMP9 protein expression by interacting with SRP14 dependent protein translation. SRP14 is an 

integral part of signal recognition particle (SRP) that is essential for targeting of nascent 

polypeptide containing ribosomes onto endoplasmic reticulum (Akopian et al., 2013). SRP 

consists of SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72 and a single 300 nucleotide 7S RNA. 

Among these, SRP9/14 are complexed with Alu RNA. Under certain physiological stresses, SPR14 

localizes to stress granules that are enriched with mRNA, ribosomal machinery and signaling 

proteins and, promotes cell survival (Berger et al., 2014). We found that HPIP interacts with C-

terminal region of SRP14 and colocalizes to stress granules in hypoxia. It is very intriguing as it 

provided the molecular clue for HPIP-mediated MMPs expression under hypoxia. Loss of 

expression of MMP by C-terminal defective mutant of SRP14 in presence of HPIP further implies 

physical interaction of HPIP with SRP14 is essential for MMPs expression. 

 



 

107 
 

 

 Fig. 26. HPIP (PBXIP1) gene map on chromosome 1q21.3. Comparison of HPIP gene among various 

species, including money, mouse, dog, elephant, chicken, frog and zebrafish. 
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Fig. 26. Proposed model depicting reciprocal positive feedback regulation between HPIP and 

HIF-1α which controls phenotypic plasticity of breast cancer cells in response to 

microenvironment switch from hypoxia to normoxia or vice-versa.  

(A) In solid tumors, cancer cells display phenotypic plasticity by regulating epithelial to 

mesenchymal plasticity (EMP) in response to microenvironment switch, i.e., normoxia to hypoxia. 

In aerobic cell, proximal to the blood vessel, HPIP stabilizes HIF-1α through PI3K/AKT-GSK3β 

signaling axis and promotes tumor growth. Vice-versa in anaerobic cell, away from the blood 

vessel, HIF-1α upregulates HPIP (also SRP14), which in turn causes cell migration/invasion and 

metastasis. HPIP promotes EMT, CSC (cancer stem cell) features while antagonizing apoptosis. 

(B) Flowchart depicts HIF-1α-HPIP loop regulating phenotypic plasticity in breast cancer cells. 

Under normoxia, HPIP stabilizes HIF-1α and promotes Warburg effect thereby enhancing rapid 

cancer cell proliferation. As cancer cells proliferate the cells distant from blood vessel become 

hypoxic cells. The transition from normoxia to hypoxia drives hypoxia induced HPIP upregulation 

via HIF-1α and promotes cancer cell invasion and metastasis.  

 

In addition to this mechanistic evidence, clinical studies further implied an elevated expression of 

both HPIP and SRP14 positively correlating with HIF-1α in breast cancer patients. Furthermore, 

their expression indicates an unfavorable prognosis and poor survival of breast cancer patients. 

Together, these findings point that HIF-1α-HPIP-SRP pathway attributes metastatic potential on 

breast cancer cells in hypoxia.  

Interestingly, our findings revealed that in normoxia HPIP confers cell growth via Warburg effect 

on breast cancer cells by enhancing HIF-1α stability. In normoxia, HIF-1α undergoes PHD 

dependent hydroxylation and subsequent ubiquitination by pVHL followed by proteasome-

mediated degradation (Jaakkola et al., 2001). Various proteins like NQO1, MTA1, and TRAF6 

have been reported to stabilize HIF-1α via direct interaction with it ( Yoo et al., 2006; Sun et al., 

2013a; Oh et al., 2016). Unlike these proteins, PI3K/AKT pathway regulates HIF-1α stability by 

inhibiting GSK3β-mediated phosphorylation. In support of the earlier reports combined with the 

present investigation that HPIP activates PI3K/AKT pathway (Manavathi et al., 2006; Wang et al., 

2008; Chen et al., 2016b; Bugide et al., 2017), our findings imply that HPIP stabilizes HIF-1α by 

inhibiting GSK3β via PI3K/AKT activation. Cancer cells prefer glycolysis for its energy 
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generation and synthesis of cellular building blocks in aerobic conditions, Warburg effect, which 

is potentiated by HIF-1α and promotes cell growth and tumorigenesis  (Vander Heiden et al., 2009; 

Doherty and Cleveland, 2013). Our findings indeed demonstrate HPIP dependent HIF-1α mediated 

expression of GLUT1, LDH, PFPK and lactate synthesis thereby increasing tumor growth 

progression in breast cancer cells.    

In the tumor microenvironment, tumor cells might switch its cellular states dynamically from 

quiescence to proliferative, stem cells to non-stem cells and proliferative to invasive, and vice 

versa, while maintaining a dynamic equilibrium (Gupta et al., 2011). The cellular plasticity has 

been a conserved property in living systems as the regulation of cell-state decisions is critical for 

the survival (Gupta et al., 2011; Zellmer and Zhang, 2014). Emerging studies report that within 

individual tumors, cancer cells frequently exist in several possible phenotypic states and often 

exhibit diverse functional properties such as tumor-seeding ability, drug resistance etc., (Lapidot 

et al., 1994; Smalley and Ashworth, 2003; Singh et al., 2004; Li et al., 2007; Stingl and Caldas, 

2007). Additionally, these cellular states of cancer cells are also found to be related to both tumor 

type and grade, and therefore impact on the treatment outcomes (Woodward et al., 2007; Li et al., 

2008; Gupta et al., 2009). In support of the earlier reports our findings, revealed that breast cancer 

cells display phenotypic plasticity in response to varied environmental stresses. We provide the 

evidence that breast cancer cells show transition from proliferationhigh-invasionlow to invasionhigh-

proliferationlow state as they switch from normoxia to hypoxia microenvironment or vice versa in 

a HPIP-HIF-1α dependent manner. In concordance with our experimental data, mathematical 

modeling predictions also support that in hypoxic conditions, when HIF-1α is upregulated, HPIP 

levels can be upregulated and maintained. Sensitivity analysis shows the robustness of these 

predictions upon parameter variation, indicating that this phenotypic switching emerges from the 

topology of HPIP/HIF-1α feedback loop (Figure 23, E-J). In unstable environments, organisms 

constantly change their behavior as part of the adaptation in order to survive. Moreover, bet-
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hedging strategies appeared to prevail in order to ensure the survival of clonal populations under 

unfavorable environments via phenotypic switching or diversity (Kussell et al., 2005; Kussell and 

Leibler, 2005). Our results indeed suggest a phenotypic plasticity between HPIPlow/HIF-1αlow and 

HPIPhigh/HIF-1αhigh states that can happen in normoxic or hypoxic conditions. 

3.6. Conclusion 

Our findings highlight HPIP-HIF-1α loop in control of phenotypic plasticity displayed by breast 

cancer cells in response to varied microenvironment stresses such as normoxia and hypoxia. 

Phenotypic plasticity endows with cancer cells to procure tumorigenic adaptation in response to 

tumor microenvironment. Upon hypoxia, HIF-1 induces HPIP expression that drives metastatic 

phenotype in breast cancer cells, however under normoxia; HPIP stabilizes HIF1α, which confers 

tumor growth phenotype. The novel target genes of HIF-1, HPIP and SRP14, interact and 

enhance MMP9 translation thereby promoting invasion and metastasis under hypoxia. On the other 

hand, HPIP stabilizes HIF-1α through PI3K/AKT/GSK3β signaling axis and promotes Warburg 

effect to support breast cancer cell growth. Thus, HIF-1α -HPIP loop drives suitable micro-

environment dependent phenotype of the cancer cells which is conducive for proliferation 

(Warburg effect) or metastasis and intensifies tumor progression in breast cancer. Therefore, the 

HIF-1α-HPIP pathway may be a therapeutic target for breast cancer. 
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A B S T R A C T   

Hematopoietic PBX interacting protein (HPIP or pre-B-cell leukemia transcription factor interacting protein 
(PBXIP1) was discovered two decades ago as a corepressor of pre-B-cell leukemia homeobox (PBX) 1 with a vital 
functional role in hematopoiesis. Later it emerged as a potential biomarker of poor prognosis and tumorigenesis 
for more than a dozen different cancers. It regulates aggressive cancer phenotypes, cell proliferation, metastasis, 
EMT, etc. The anomaly in the regulation of HPIP is linked with physiological disorders like renal fibrosis, chronic 
kidney disease and osteoarthritis. Scientists have unraveled more than twenty interacting proteins of HPIP and its 
functional role in various physiological and cellular processes that involves normal neuronal development, 
embryogenesis, endometrium decidualization, and germ cell proliferation. Over the past 20 years, we have 
witnessed the emerging role of HPIP and its association with a myriad of cellular activities ranging from germ 
cell proliferation to cancer aggressiveness, modulating multitude of signaling cascades like TGF-β1, PI3K/AKT, 
Wnt, mTOR, and Sonic hedgehog signaling pathways. This review will give the current understanding of HPIP, in 
terms of its diverse functions, theoretical ideas, and further explore cellular links and promising areas that need 
to be investigated. We also provide a comprehensive overview of the transcript variants of HPIP and distinct sets 
of transcription factors regulating their expression, which may help to understand the role of HPIP in various 
cellular or physiological conditions.   

1. Introduction 

Abramovich et al., discovered HPIP as one of the interacting protein 
partners of PBX1 (pre B cell leukemia homeobox 1) and likewise named 
it as hematopoietic PBX interaction protein (HPIP). It is also known as 
pre B-cell leukemia homeobox interacting protein 1 (PBXIP1) [1]. Being 
an adaptor/scaffold protein, it facilitates physical associations with 
various signaling proteins like ERα/β, Src, microtubules, etc. [2]. Para
mount investigation reveals that HPIP is elevated in more than a dozen 
cancers and enhances tumorigenesis [3–6]. Apart from its role in cancer, 
it is also linked with neuronal development, embryogenesis, and endo
metrium decidualization of repeated implantation failure in women [7]. 
Its expression is elevated in spermatogonial cells and promotes germ cell 
proliferation. Other physiological disorder-related diseases like renal 
fibrosis, chronic kidney disease, and Osteoarthritis (OA) (joint cartilage 
disorder) are linked with upregulation of HPIP [8]. Two decades have 
passed since the discovery of HPIP and in unraveling its cellular func
tions. However, there is a dire need of rigorous empirical study to 
address its mechanistic cellular functions because of the myriad of 

cellular and physiological processes it is associated with. We made a 
systematic evolutionary tree of HPIP that shows the explorations made 
so far with respect to its aforementioned cellular activities. HPIP has 
been investigated for its diverse roles like in hematopoiesis, estrogen 
signaling-related cellular function, reproduction biology, cancers, etc. In 
this review we intend to throw lights on the research done so far on HPIP 
and its functions, discuss further on theoretical ideas and touch upon the 
promising areas that need to be investigated. We also reveal a compre
hensive overview of the transcript variants of HPIP promoter and its 
distinct sets of transcription factor binding sites, which may help to 
understand the role of HPIP in various cellular or physiological 
conditions. 

2. Background of Pre-B-cell leukemia homeobox interacting 
protein 1 (PBXIP1 or HPIP) 

It was the year 2000 when Abramovich et al., discovered PBXIP1/ 
HPIP. Six years down the line, Manavathi et al., had a major break
through in elucidating the role of HPIP in tumorigenesis by activation of 
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Abstract  

While phenotypic plasticity is a critical factor contributing to tumor heterogeneity, molecular 

mechanisms underlying this process are largely unknown. Here we report that breast cancer cells 

display phenotypic diversity in response to hypoxia or normoxia microenvironments by operating 

a reciprocal positive feedback regulation of HPIP and HIF-1α. We show that under hypoxia, HIF-

1α induces HPIP expression that establishes cell survival, and also promotes cell 

migration/invasion, EMT and metastatic phenotypes in breast cancer cells. Mechanistic studies 

revealed that HPIP interacts with SRP14, a component of signal recognition particle, and 

stimulates MMP9 synthesis under hypoxic stress. Whereas, in normoxia, HPIP stabilizes HIF-1α, 

causing the Warburg effect to support cell growth. Concurrently, mathematical modelling 

corroborates this reciprocal feedback loop in enabling cell-state transitions in cancer cells. Clinical 

data indicate that elevated levels of HPIP and HIF-1α correlate with unfavorable prognosis and 

shorter survival rates in breast cancer subjects. Together, this data shows a reciprocal positive 

feedback loop between HPIP and HIF-1α that was unknown hitherto. It unveils how the tumor 

microenvironment influences phenotypic plasticity that has an impact on tumor growth and 

metastasis and, further signifies considering this pathway as a potential therapeutic target in breast 

cancer. 
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Proper cell division relies on the coordinated regulation
between a structural component, the mitotic spindle, and a reg-
ulatory component, anaphase-promoting complex/cyclosome
(APC/C). Hematopoietic PBX-interacting protein (HPIP) is a
microtubule-associated protein that plays a pivotal role in cell
proliferation, cell migration, and tumor metastasis. Here, using
HEK293T and HeLa cells, along with immunoprecipitation and
immunoblotting, live-cell imaging, and protein-stability assays,
we report that HPIP expression oscillates throughout the cell
cycle and that its depletion delays cell division. We noted that by
utilizing its D box and IR domain, HPIP plays a dual role both as
a substrate and inhibitor, respectively, of the APC/C complex.
We observed that HPIP enhances the G2/M transition of the cell
cycle by transiently stabilizing cyclin B1 by preventing APC/C–
Cdc20–mediated degradation, thereby ensuring timely mitotic
entry. We also uncovered that HPIP associates with the mitotic
spindle and that its depletion leads to the formation of multiple
mitotic spindles and chromosomal abnormalities, results in defects
in cytokinesis, and delays mitotic exit. Our findings uncover HPIP
as both a substrate and an inhibitor of APC/C–Cdc20 that main-
tains the temporal stability of cyclin B1 during the G2/M transition
and thereby controls mitosis and cell division.

Accurate chromosome segregation is essential for proper cell
division in normal cells. Two important post-translational
modifications, phosphorylation, and ubiquitin-mediated prote-
olysis during mitosis, play crucial roles in this process (1). The
anaphase promoting complex/cyclosome (APC/C),3 a ubiqui-

tin ligase, controls the cell division by regulating mitosis
through ubiquitin-directed proteolysis of key substrates in an
ordered fashion to direct progression through the mitotic exit,
chromosome segregation, and cytokinesis (2–4). The activity of
APC/C is coordinated by two regulatory proteins, Cdc20 and
Cdh1, through phase-specific interactions during the cell cycle
and promotes cell division with precision and accuracy (5). For
example, APC/C–Cdc20 degrades Securin and cyclin B1 at ana-
phase onset. This ensures Separase activation and proteolysis of
Cohesin, which holds pair of sister chromatids together during
early mitosis. The spindle assembly checkpoint, which depends
on multiprotein complexes including Mad2, BubR1, and Bub3,
delays APC/C–Cdc20 activation until all chromosomes are
properly aligned at the metaphase plate (6, 7). Perturbation of
this checkpoint results in chromosomal abnormality (8).

Entry into mitosis is coordinated by cyclin B1– dependent
activation of cyclin-dependent kinase 1 (CDK1) during G2
phase and form a Cdk1– cyclin B1 complex also known as mat-
uration-promoting factor, which is crucial for G2/M transition
(9). Cyclin B1 accumulates in the nucleus as the cells progress to
mitosis, although the activation of CDK1– cyclin B1 is initiated
at the cytoplasm (10). Cyclin B1 binding triggers a conforma-
tional change in Wee1 phosphorylated and inactive CDK1,
restoring the activity in CDK1 (11). The activated CDK1–
cyclin B1 complex triggers initiation of chromosome con-
densation, nuclear envelope breakdown, and mitotic spindle
assembly through phosphorylation of its substrates (10). It also
phosphorylates APC/C–Cdc20 for its complete activation, but
later during mitosis cyclin B1 is degraded by APC/C–Cdc20
(12, 13). Abolishing the degradation of cyclin B1 leads to arrest
of cells in mitosis, suggesting timely degradation of cyclin B1 by
APC/C, is important for proper cell cycle progression (14, 15).
Although transcriptional up-regulation of cyclin B1 and its
increased stability of mRNA during the G2 phase has been
described before (16), the role of proteasomal pathway in
increased cyclin B1 levels is largely unknown.

Hematopoietic PBX-interacting protein (HPIP, also known as
PBXIP1) is a protooncoprotein that has been shown to be overex-
pressed in several cancer types including infiltrative ductal carci-
noma (17), hepatocellular carcinoma (18), glioma (19), and ovarian
cancer (20). Previous reports have shown that HPIP promotes cell
proliferation by modulating the expression of cyclins during the
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Effective in vitro delivery of paclitaxel by nanocargo
of mesoporous polycaprolactone against triple
negative breast cancer cells by minimalizing drug
dose†

Himadri Medhi,‡a Saratchandra Singh Khumukcham,‡b Bramanandam Manavathi*b

and Pradip Paik *ac

Among the breast cancers, triple negative breast cancer (TNBC) has relatively poor outcomes with a lower

survival rate and personalised chemotherapy is the only option available for treatment. Currently in the

biomedical domain, nanomaterials with porous morphology have revealed their tremendous possibilities

to be used as a nanocarrier in treating cancer by offering void space to encapsulate/entrap biological

agents. However, the development of nanocarrier-based targeted therapy with high therapeutic efficacy

and fewer side effects to normal cells is always a challenge. Here, we have developed nanocargos based

on biodegradable mesoporous PCL (polycaprolactone) of approx. diameter of 75 nm by template

removal synthesis techniques. Succeeding the comparative analysis of the nanocarriers, the efficiencies

of core shell PCL-mZnO (PZ) and mesoporous PCL (HPZ) to deliver paclitaxel (Taxol/T) into breast

cancer cells, is investigated. We found that HPZ nanocapsules have less cytotoxicity and drug loading

efficiency of about 600 mg mg�1. The Taxol-loaded nanoparticles (T-HPZ) have exhibited more

cytotoxicity than Taxol alone treated cancer cells. Furthermore, T-HPZ treated MDA-MB231 cells are

accumulated at G2/M phase of the cell cycle and eventually undergo apoptosis. In support of this,

anchorage independent growth of MDA-MB231 cells are significantly inhibited by T-HPZ treatment.

Together, our findings suggest that T-HPZ-based paclitaxel (Taxol/T) loaded nanoparticles provide

a novel therapeutic option in the treatment of TNBC.

Introduction

Breast cancer is one of the most frequently arising cancers
among women with a transience rate of �15%. Among the
breast cancer types, triple negative breast cancer (TNBC) is
highly invasive in nature and has a lower survival rate.1 TNBC is
characterized by the lack of expression of three main receptors
such as estrogen receptor (ER), progesterone receptor (PR), and
the human epidermal growth factor receptor 2 (HER2).1 Due to
this, TNBC is resistant to the conventional therapies such as
trastuzumab, tamoxifen and aromatase inhibitors, which are
routinely used in breast cancer treatment. TNBC accounts for
15–20% of all breast cancers with a poor prognosis and high

mortality of over 50% as compared to the other subtype of
breast cancers.2,3 Chemotherapy is the only principle treatment
and effective option for TNBC.4,5 However, treatment associated
with this mode is accompanied with myriad side effects as the
accessible anticancer drugs not only affect the malignant cells
but also damage the healthy cells surrounding the malignant
cells. Therefore, continuous efforts are being made in this eld
to improve the therapeutic efficiency of drugs carrying fewer
side effects.6–8 The biodegradable ‘polymer based nano-sized
capsules’ are becoming more promising as a drug delivery
cargo9–13 because of their advantages over the other nano-
materials used for delivery applications.14 The polymer nano-
capsules are engineered by encapsulating the drugs or other
biomolecules on the surface or inside of the nanoparticle by
chemical or physical approaches.15,16 The engineered nano-
drugs formulation thus designed are delivered to the site of
interest, and aer delivery, these nanocarriers effortlessly
degrade in the physiological environment.17

Polycaprolactone (PCL) is one of the dexterous polymers that
exhibits amalgamation of biodegradable and biocompatible
properties, which makes it complimentary for all the biological
applications.6,7 Moreover, it is approved by the FDA (Food and
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HPIP protooncogene differentially regulates metabolic adaptation and cell 
fate in breast cancer cells under glucose stress via AMPK and RNF2 
dependent pathways 

Vasudevarao Penugurti a, Saratchandra Singh Khumukcham a, Chiranjeevi Padala a, 
Anju Dwivedi a, Karthik Reddy Kamireddy b,d, Srinivasulu Mukta c, Triveni Bhopal c, 
Bramanandam Manavathi a,* 
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A R T I C L E  I N F O   
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A B S T R A C T   

While cancer cells rewire metabolic pathways to sustain growth and survival under metabolic stress in solid 
tumors, the molecular mechanisms underlying these processes remain largely unknown. In this study, cancer 
cells switched from survival to death during the early to late phases of metabolic stress by employing a novel 
signaling switch from AMP activated protein kinase (AMPK)-Forkhead box O3 (FOXO3a)-hematopoietic PBX1- 
interacting protein (HPIP) to the ring finger protein 2 (RNF2)-HPIP-ubiquitin (Ub) pathway. Acute metabolic 
stress induced proto-oncogene HPIP expression in an AMPK-FOXO3a-dependent manner in breast cancer (BC) 
cells. HPIP depletion reduced cell survival and tumor formation in mouse xenografts, which was accompanied by 
diminished intracellular ATP levels and increased apoptosis in BC cells in response to metabolic (glucose) stress. 
Glutamine flux (13C-labeled) analysis further suggested that HPIP rewired glutamine metabolism by controlling 
the expression of the solute carrier family 1 member 5 (SLC1A5) and glutaminase (GLS) genes by acting as a 
coactivator of MYC to ensure cell survival upon glucose deprivation. However, in response to chronic glucose 
stress, HPIP was ubiquitinated by the E3-Ub ligase, RNF2, and was concomitantly degraded by the proteasome- 
mediated pathway, ensuring apoptosis. In support of these data, clinical analyses further indicated that elevated 
levels of HPIP correlated with AMPK activation in BC. Taken together, these data suggest that HPIP is a signal 
coordinator during metabolic stress and thus serves as a potential therapeutic target in BC.   

1. Introduction 

For rapidly dividing cells, such as cancer cells, there is a huge de
mand for metabolic energy to synthesize various biomolecules. To 
accomplish this, cancer cells often rewire metabolic pathways to suit 
their needs [1–3]. As glucose is the main energy and carbon source for 
rapidly dividing cells, cancer cells rely on glycolysis to generate energy; 
however, under glucose stress, glutamine is utilized as an anaplerotic 
substance for ATP generation and to control redox homeostasis, thus 
ensuring cell survival [1,4,5]. Typically, reduced expression of tumor 
suppressor genes and increased oncogenic gene expression is observed 
in cancer cells during metabolic stress as a part of cellular adaptation 

[6]. For example, oncogenes, such as protein kinase B (AKT), c-MYC 
(hereafter referred to as MYC), and Ras are overexpressed under meta
bolic stress to support cancer cell survival [7]. 

A balance between energy production and consumption dictates cell 
survival under metabolic stress [8]. Accordingly, in such situations, 
tumor cells acquire certain adaptations for their survival by suppressing 
energy-consuming pathways and promoting energy-producing path
ways [9]. One such adaptation is the expression of AMP activated pro
tein kinase (AMPK), a metabolic sensor, which is activated in response to 
a low ATP:AMP ratio in cells [10,11]. For example, AMPK-mediated 
pyruvate kinase M1 expression is essential for cell survival under hy
poglycemic conditions [12] and modulates the expression of 
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Hematopoietic PBX-interacting protein (HPIP, also known as PBXIP1) is

an estrogen receptor (ER) interacting protein that regulates estrogen-

mediated breast cancer cell proliferation and tumorigenesis. However, its

functional significance in the context of mammary gland development is

unexplored. Here, we report that HPIP is required for prolactin (PRL)-

induced lactogenic differentiation in vitro. Molecular analysis of HPIP

expression in mice revealed its induced expression at pregnancy and lacta-

tion stages of mammary gland. Moreover, PRL is a lactogenic hormone

that controls pregnancy as well as lactation and induces Hpip/Pbxip1 ex-

pression in a signal transducer and activator of transcription 5a-dependent

manner. Using mammary epithelial and lactogenic-competent cell lines, we

further show that HPIP plays a regulatory role in PRL-mediated mam-

mary epithelial cell differentiation, which is measured by acini formation, b-
casein synthesis, and lipid droplet formation. Further mechanistic studies

using pharmacological inhibitors revealed that HPIP modulates PRL-

induced b-casein synthesis via phosphoinositide 3-kinase (PI3K)/protein

kinase B (AKT) activation. This study also identified HPIP as a critical reg-

ulator of autocrine PRL signaling as treatment with the PRL receptor antag-

onist D1-9-G129R-hPRL restrained HPIP-mediated PRL synthesis, AKT

activation, and b-casein synthesis in cultured HC11 cells. Interestingly, we

also uncovered that microRNA-148a (miR-148a) antagonizes HPIP-

mediated mammary epithelial cell differentiation. Together, our study identi-

fied HPIP as a critical regulator of PRL signaling and revealed a novel

molecular circuitry involving PRL, HPIP, PI3K/AKT, and miR-148a that

controls mammary epithelial cell differentiation in vitro.

Introduction

Mammary glands are highly evolved, specialized exo-

crine glands made up of lobes, and ducts [1]. The alve-

oli (hollow cavities) in mammary glands are lined with

milk-secreting cuboidal cells and are surrounded by

myoepithelial cells. The alveolus undergoes develop-

ment and differentiation under the control of

Abbreviations

AKT, protein kinase B; bPRL, bovine prolactin; HPIP, hematopoietic PBX-interacting protein; JAK2, Janus kinase 2; miR-148a, microRNA-

148a; PI3K, phosphoinositide 3-kinase; PRL, Prolactin; PRLR, prolactin receptor; PTEN, phosphatase and tensin homolog deleted on

chromosome 10; STAT5, signal transducer and activator of transcription 5.
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Amino acid starvation sensing dampens IL-1β
production by activating riboclustering and
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Abstract

Activation of the amino acid starvation response (AAR) increases lifespan and acute stress

resistance as well as regulates inflammation. However, the underlying mechanisms remain

unclear. Here, we show that activation of AAR pharmacologically by Halofuginone (HF) sig-

nificantly inhibits production of the proinflammatory cytokine interleukin 1β (IL-1β) and pro-

vides protection from intestinal inflammation in mice. HF inhibits IL-1β through general

control nonderepressible 2 kinase (GCN2)–dependent activation of the cytoprotective inte-

grated stress response (ISR) pathway, resulting in rerouting of IL-1β mRNA from transla-

tionally active polysomes to inactive ribocluster complexes—such as stress granules (SGs)

—via recruitment of RNA-binding proteins (RBPs) T cell–restricted intracellular antigen-1

(TIA-1)/TIA-1–related (TIAR), which are further cleared through induction of autophagy.

GCN2 ablation resulted in reduced autophagy and SG formation, which is inversely corre-

lated with IL-1β production. Furthermore, HF diminishes inflammasome activation through

suppression of reactive oxygen species (ROS) production. Our study unveils a novel mech-

anism by which IL-1β is regulated by AAR and further suggests that administration of HF

might offer an effective therapeutic intervention against inflammatory diseases.

Author summary

Reduced intake of food (also known as dietary restriction) without malnutrition has been

shown to benefit health in humans and animals, including an increase in life expectancy,

metabolic fitness, and resistance to acute stress. Recent studies have attributed the benefits

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005317 April 5, 2018 1 / 26
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A transcriptional repressive role for epithelial-specific ETS factor ELF3 on
oestrogen receptor alpha in breast cancer cells
Vijaya Narasihma Reddy Gajulapalli*, Venkata Subramanyam Kumar Samanthapudi*, Madhusudana Pulaganti†,
Saratchandra Singh Khumukcham*, Vijaya Lakhsmi Malisetty‡, Lalitha Guruprasad§, Suresh Kumar Chitta† and
Bramanandam Manavathi*1

*Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
†Department of Biochemistry, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
‡Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
§School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India

Oestrogen receptor-α (ERα) is a ligand-dependent transcription
factor that primarily mediates oestrogen (E2)-dependent gene
transcription required for mammary gland development.
Coregulators critically regulate ERα transcription functions by
directly interacting with it. In the present study, we report that
ELF3, an epithelial-specific ETS transcription factor, acts as a
transcriptional repressor of ERα. Co-immunoprecipitation (Co-
IP) analysis demonstrated that ELF3 strongly binds to ERα in the
absence of E2, but ELF3 dissociation occurs upon E2 treatment in
a dose- and time-dependent manner suggesting that E2 negatively
influences such interaction. Domain mapping studies further
revealed that the ETS (E-twenty six) domain of ELF3 interacts
with the DNA binding domain of ERα. Accordingly, ELF3
inhibited ERα’s DNA binding activity by preventing receptor
dimerization, partly explaining the mechanism by which ELF3
represses ERα transcriptional activity. Ectopic expression of
ELF3 decreases ERα transcriptional activity as demonstrated by
oestrogen response elements (ERE)-luciferase reporter assay or

by endogenous ERα target genes. Conversely ELF3 knockdown
increases ERα transcriptional activity. Consistent with these
results, ELF3 ectopic expression decreases E2-dependent MCF7
cell proliferation whereas ELF3 knockdown increases it. We also
found that E2 induces ELF3 expression in MCF7 cells suggesting
a negative feedback regulation of ERα signalling in breast
cancer cells. A small peptide sequence of ELF3 derived through
functional interaction between ERα and ELF3 could inhibit DNA
binding activity of ERα and breast cancer cell growth. These
findings demonstrate that ELF3 is a novel transcriptional repressor
of ERα in breast cancer cells. Peptide interaction studies further
represent a novel therapeutic option in breast cancer therapy.

Key words: breast cancer, epithelial-specific ETS transcription
factor-1 (ESE1/ELF3), oestrogen receptor alpha, transcriptional
repression.

INTRODUCTION

The oestrogen receptor alpha (ERα) belongs to a large family
of nuclear hormone receptors that mediate oestrogen (17β-
oestradiol)-induced mammary epithelial cell proliferation and
ductal formation required for mammary gland development [1–
4]. Deregulated expression of ERα is therefore implicated in the
development of ER-positive breast cancer [5,6]. Approximately
70% of breast tumours are ER-positive and respond well
to anti-oestrogen therapy, whereas ER-negative breast tumours
are poorly differentiated and display a worse prognosis [7–9].
Although selective ER modulators (SERMs) and anti-oestrogens
are effective against ER-positive breast tumours, in many cases
metastatic breast tumours eventually become resistant to this
treatment [10].

ERα, a ligand-inducible transcription factor, contains three
discrete domains namely, a core DNA binding domain (DBD), a
hinge region and two activation function (AF1 and AF2) domains.
The DBD is involved in recognizing oestrogen response elements
(ERE) on ER target genes [1]. The hinge region is a flexible
coil that connects DBD and AF2 domain (also known as ligand

binding domain, LBD), and is also shown to be involved in
ERα dimerization [11,12]. Activation function 1 (AF-1) acts
as hormone-independent, whereas activation function 2 (AF2)
binds to oestrogen and mediates oestrogen-dependent actions [1].
Upon ligand binding, ERα dimerizes and translocates into nucleus
where it binds to EREs on target genes, and elicits transcriptional
response [1,13]. However, ERα requires coregulators for
its optimal activity [14,15]. Coregulators modulate oestrogen
receptor transcriptional activity by modulating the chromatin
structure [16–19]. Additional mechanisms also exist for regulating
ER transcriptional activity. For instance, transcription factors like
activator protein 1 (AP1), Sp1, nuclear factor-κB (NF-κB) and
E2F1 can influence ERα-dependent gene transcription through
their physical interactions with the receptor [20]. We identified
that ELF3, also a transcription factor, is an ERα interacting
protein. However, the mechanism by which ELF3 influences ERα
action remains largely unknown.

Epithelial-specific ETS transcription factor-1 (ELF3, also
known as ESE-1) belongs to a family of ETS (E-twenty
six) transcription factors which play a crucial role in various
physiological processes [21]. ELF3 is expressed in organs

Abbreviations: AF-1, activation function 1; Co-IP, co-immunoprecipitation; DAPI, 4′,6-diamidino-2-phenylindole; DBD, DNA binding domain; ELF3/ESE1,
epithelial-specific ETS transcription factor-1/E74 like ETS transcription factor-3; ERα, oestrogen receptor alpha; ERE, oestrogen response element; ERIPE,
ERα-interacting peptide of ELF3; ETS, E-twenty six; GFP, green fluorescent protein; LBD, ligand binding domain; qRT-PCR, quantitative real-time reverse
transcription PCR; SERM, selective oestrogen receptor modulator.
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