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Spatial distribution of climatological mean sea level pressure (mb)
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Climatology of rainfall (mm/day) over the Indian region for the JJAS
season during the period 1901-2019.

Interannual variability of the Indian summer rainfall over the Indian
region during 1901-2019, provided as example of its temporal
variations.

Spatial distribution of mean sea level pressure and rainfall averaged
over the duration of a break event (01-09 August 200) and
corresponding pre-break conditions (23-31 Jul 2000). The break event
has been identified Based on the Rajeevan et al. (2010) criterion.
Mean JJAS Wind vector and magnitude (m/s) at a height of 200 hPa
for the 1979 - 2019 period.

(a) The black dashed line box denotes 1. North American, 2. African
(northern western parts of the continent) 3. Indian and 4. East Asian
monsoonal regions in the northern hemisphere and the shading
represents the climatology mean sea level pressure of the JJAS season
for the 1979-2007 period. (b) The black dashed line box denotes the 5.
South American, 6. African (middle and southern African countries),

and 7. Australian monsoonal regions in the southern hemisphere, and
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Figure 3.1:

Figure 3.2:

the shading represents the DJF season climatology mean sea level
pressure for the 1979-2007 period.

Composite daily zonal anomalies of Geopotential height (m) over the
monsoon season of 1979-2007 in the Indian region during (a) pre-
break periods, (b) break periods, and (c) post-break periods. The
hatching in the Figures 1 a-c indicates the regions where the composite
Geopotential height is significantly different from zero at 95%
confidence level. Statistical significance has been obtained using a
two-tailed one sample Student’s t test. Note that significance test has
not been applied to negative values. The shaded region varies between
-120 m to 120 m, with an interval of 20 m.

Difference between the composite daily zonal anomalies of
Geopotential height (m) during the 1979-2007 period over the Indian
region between (a) break and pre-break periods (b) break periods and
post-break periods. Difference in composites of zonal anomalies of
daily mean sea level pressure (hPa) over the Indian region during the
1979-2007 period between (c) during-break and pre-break periods, and
(d) during-break and post-break periods. The shaded region in the
panels (a) & (b) vary between -50 m to 50 m, with an interval of 10 m
and those in panels (c) & (d) vary between -2.4 hPa to 2.4 hPa, with an
interval of 0.4 hPa. The hatched regions indicate locations of
significant differences, at 95% confidence level, in daily zonal

anomalies of Geopotential height in panels (a) & (b), and that of daily
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Figure 3.3:

Figure 3.4:

Figure 3.5:

mean sea level pressure in panels (c) & (d). Statistical significance has
been obtained using a two-tailed two sample Student’s t-test with
unequal variances.

Difference between the composite daily zonal anomalies of
Geopotential height at 1000 hPa (m) during the 1979-2007 period over
the Indian region between (a) break and pre-break periods (b) break
periods and post-break periods. The shaded region in panels (a) & (b)
vary between -20 hPa to 20 hPa, with an interval of 5 hPa. The hatched
regions indicate locations of significant differences, at 95% confidence
level.

Figure 3.4a: Daily geopotential height distribution at 200 hPa level
for a pre-break period (23-31 July 2000) over the Indian region.
Figure 3.4b: Daily geopotential height distribution at 200 hPa level
for a break period (01-09 August 2000) over the Indian region.
Figure 3.4c: Daily geopotential height distribution at 200 hPa level for
a post-break period after (10-18 August 2000) over the Indian region.
Figure 3.5a: Daily geopotential height distribution at 1000 hPa level
for a pre-break period (23-31 July 2000) over the Indian region.
Figure 3.5b: Daily geopotential height distribution at 1000 hPa level
for a during-break period (01-09 August 2000) over the Indian region.
Figure 3.5c: Daily geopotential height distribution at 1000 hPa level

for a post-break period (10-18 August 2000) over the Indian region.
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Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.6a: Daily spatial rainfall distribution for a pre-break period
(23-31 July 2000) over the Indian region.

Figure 3.6b: Daily spatial rainfall distribution during (01-09 August
2000) a break period over the Indian region.

Figure 3.6c: Daily spatial rainfall distribution for the post-break
period (10-18 August 2000) over the Indian region.

Composite vertical wind zonal anomalies (x10%) (omega) (Pa/s) over
Indian region and longitudinally averaged along 60°E t0100° E during
the summer monsoon for the 1979-2007 period, (a) pre-break periods
(b) during-break periods, and (c) post-break periods, (d) difference
between the composite break and composite pre-break periods, and (e)
difference between the composite break and composite post-break
periods. The shaded region in panels (a) (b) & (c) vary between -120
hPa to 30 hPa, with an interval of 10 hPa and those in panels (d) & (e)
vary between -6 hPa to 3 hPa, with an interval of 0.5 hPa. The hatched
regions indicate composite omega zonal anomalies are significant at
95% confidence from a two-tailed Student’s t-test.

Composite Rainfall (mm) over Indian region during the Indian summer
monsoon for the 1979-2007 period, (a) pre-break periods (b) during-
break periods, and (c) post-break periods, (d) difference between the
composite break and composite pre-break periods, and (e) difference
between the composite break and composite post-break periods. The

shaded region in the panels (a) (b) & (c) vary between 3 mm/day to 15
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Figure 3.9:

Figure 3.10:

Figure 3.11

mm/day, with an interval of 3 mm/day. The shaded region in panels
(d) &(e) vary between 2 to 6 mm/day & -2 to -6 mm/day, with an
interval of 1 mm/day. The hatched regions indicate composite rainfall
are significant at 95% confidence from a two-tailed Student’s t-test.

Globally zonal averaged U wind (m/s); (a) (upper panel): for the
composite pre-break, composite during-break & composite post-break
periods of ISM (Table 1), cases available during the 1979-2007 period,;
(b) (lower panel): Similarly, for the case study, pre-break 23-31July
2000, during-break: 01-09 Aug 2000 and post-break 10-17 Aug 2000

of ISM.

Wavenumber spectrum using meridional wind (m/s) at 200 hPa level
for; the case study pre-break: 23-31July 2000, composite pre-break
periods during 1979-2007 of the Indian summer monsoon,
climatological mean of month July during the 1979-2018 period at
latitude 45° N & 50° N, and standard deviation for all the ten harmonics
of July at 45° N for the period 1979-2018.

(a): Eliassen-Palm fluxes cross-section of composite during-break
periods of Indian summer monsoon; (b): Climatological Eliassen-
Palm fluxes for the summer season, JJAS during the 1979 — 2007
period. (c): Eliassen-Palm fluxes for the case study during the break

period 01-09 August 2000 of ISM. In all the figures, the contour
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Figure 3.12:

Figure 3.13:

Figure 3.14:

interval is 50 m®. The dashed lines represent convergence and

continuous lines represent divergence.

Vertical-latitude structure of zonal anomalies of daily U wind (m/s)
which are longitudinally averaged between 65°E t0100° E, for (a)
ccomposite pre-break, (b) composite during-break and (c) composite
post-break spells of Indian summer monsoon. The hatched region is
significant at 95% confidence using a two-tailed Student’s t test. In all
the figures, contouring vary between -5 to 5 (m/s) with an interval of

1m/s

Structure of daily zonal wind anomalies which are zonally averaged
between 60°E t0100° E, before a break (a) pre-break (23-31 July 2000);
(b) during-break (01-09 August 2000) and (c) post-break (10-18

August 2000).

(a) Latitudinal variation of zonal wind (m/s), eddy momentum (m?/s?)
transport and condition for the barotropic instability (CBI), which are
zonally averaged between 60° E t0100° E; for composite during-break
periods at 200 hPa during the 1979-2007 period of ISM. (b) Latitudinal
variation of zonal wind (m/s), eddy momentum (m?/s?) transport and
condition for the barotropic instability (CBI) for the case study during

the break period 01-09 August 2000 at 200 hPa height of ISM.
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Figure 4.1:

Figure 4.2:

Figure 4.3:

Composite daily zonal anomalies of Geopotential height (m) over the
monsoon season of 1979-2007 in the North American region during
(a) pre-break periods (b) break periods, and (c) post-break periods.
The hatching in the Figures 10 a-c indicates the regions where the
composite Geopotential height is significantly different from zero at
95% confidence level. Statistical significance has been obtained using
a two-tailed one sample Student’s t test. In all the figures, positive
values are shaded, and negative values are shown in contours. Note
that significance test has not been applied to negative values. Contours
vary between -120 m to 0 m, with an interval of 20 m. Same interval
in shading, as evidenced by the greyscale shown, is used for positive
values.

Figure 4.2: Daily rainfall during dry/break period, 16-24 July 2000

over the North American region.

Difference between the composite daily zonal anomalies of
Geopotential height (m) during the 1979-2007 period over the North
American region between (a) break and pre-break periods (b) break
periods and post-break periods. Difference in composites of zonal
anomalies of daily mean sea level pressure (hPa) over the North
American region during the 1979-2007 period between (c) during-
break and pre-break periods, and (d) during-break and post-break
periods. The hatched regions indicate locations of significant

differences, at 95% confidence level, in daily zonal anomalies of
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Figure 4.4:

Figure 4.5:

Geopotential height in panels (a) & (b), and that of daily mean sea level
pressure in panels (c) & (d). Statistical significance has been obtained
using a two-tailed two sample Student’s t-test with unequal variances.
In all the figures, positive values are shaded, and negative values are
shown in contours. The contours in panels (a) & (b) vary between -120
m to 0 m, with an interval of 20 m and those in panels (¢) & (d) vary
between -10 hPa to 0 hPa, with an interval of 1 hPa. Same intervals as
used for contours are used for the shadings.

Composite vertical wind zonal anomalies (x10) (omega) (Pa/s) over
North American region and longitudinally averaged along 60° W - 125°
W during the summer monsoon for the (a) pre-break periods (b)
during-break periods, and (c) post-break periods, (d) difference
between the composite break and composite pre-break periods, and (e)
difference between the composite break and composite post-break
periods. The contours in panels (a) (b) (c) (d) & (e) vary between -30
Pa/s to 0 Pa/s, with an interval of 10 Pa/s. The hatched regions indicate
composite omega zonal anomalies are significant at 95% confidence
from a two-tailed Student’s t test.

Wavenumber spectrum using meridional wind (m/s) at 200 hPa level;
for composite pre-break periods of North American monsoon (Table
2.3); case study pre-break period, 10-15 Jul 1995; the climatological

mean of month July during 1979-2018 periods at 45° N and 50° N, and
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Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

standard deviation for all the ten harmonics of July at 45° N for the
period 1979-2007.

(a)Eliassen-Palm fluxes cross-section of composite during-break
periods of NAM; (b): Eliassen-Palm fluxes for the case study during
the break period 16-24 July 2000 of NAM. In all the figures, the
contour interval is 50 m®. The dashed lines represent convergence and
continuous lines represent divergence.

(a)(Top) Composite globally zonal averaged U wind (m/s) of
composite pre-break, composite during-break and composite post-
break periods of North American monsoon; (b)(Bottom) Globally
zonalaveraged U wind of pre-break periods in three different cases:
10-16 July 1981, 20 - 24 July 1995 and 10-15 July 2000 of NAM.
Zonal wind profiles during the break phase for 1981, 1995 and 2000

events.

Composite structure of daily U wind zonal anomalies (m/s) for the
break cases of NAM, 10-16 July 1981, 20 - 24 July 1995 and 10-15
July 2000; which are zonally averaged in between 60° W - 125° W.
The hatched region indicates 95% confidence using a two-tailed
Student’s t test. In this figure positive values are shaded and negative
values are shown in contours. Contouring between -5 to 0 (m/s) with
an interval of 1 m/s

Composite daily zonal anomalies of Geopotential height (m) over the

monsoon season of 1979-2007 in the South American region during
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Figure 4.11:

Figure 4.12:

(a) pre-break periods (b) break periods, and (c) post-break periods.
The hatching in the Figures 17 a-c indicates the regions where the
composite Geopotential height is significantly different from zero at
95% confidence level. Statistical significance has been obtained using
a two-tailed one sample Student’s t test. In all the figures, positive
values are shaded, and negative values are shown in contours. Note
that significance test has not been applied to negative values. Contours
vary between -120 m to 0 m, with an interval of 20 m. Same interval
in shading is used for positive values.

(a) Geopotential Height anomalies (m) at 200 hPa during the break
spell, 21-26 January 1980 over the South American region. (b)
Geopotential Height anomalies (m) at 200 hPa during the break spell,
06-11 January 1981 over the South American region.

Difference between the composite daily zonal anomalies of
Geopotential height (m) during the 1979-2007 period over the South
American region between (@) break and pre-break periods (b) break
periods and post-break periods. Difference in composites of zonal
anomalies of daily mean sea level pressure (hPa) over the South
American region during the 1979-2007 period between (c) during-
break and pre-break periods, and (d) during-break and post-break
periods. The hatched regions indicate locations of significant
differences, at 95% confidence level, in daily zonal anomalies of

Geopotential height in panels (a) & (b), and that of daily mean sea level

100

102

XIX



Figure 4.13:

Figure 4.14:

pressure in panels (c) & (d). Statistical significance has been obtained
using a two-tailed two sample Student’s t-test with unequal variances.
In all the figures, positive values are shaded, and negative values are
shown in contours. The contours in panels (a) & (b) vary between -100
m to 0 m, with an interval of 20 m and those in panels (¢) & (d) vary
between -25 hPa to 0 hPa, with an interval of 5 hPa. Same intervals as
used for contours are used for the shadings.

Composite vertical wind zonal anomalies (x107°) (omega) (Pa/s)
longitudinally averaged along 60° W to 125° W over South American
region during the summer monsoon for the 1979-2007 period, (a) pre-
break periods (b) during-break periods, and (c) post-break periods, (d)
difference between the composite break and composite pre-break
periods, and (e) difference between the composite break and composite
post-break periods. The contours in panels (d) & (e) vary between -30
Pa/s to 0 Pa/s, with an interval of 10 Pa/s. The hatched regions indicate
composite omega zonal anomalies are significant at 95% confidence

from a two-tailed Student’s t-test.

Wavenumber vs. Amplitude spectrum using meridional wind (m/s) at
200 hPa, for an individual case 1981 at 45° N, composite of pre-break
periods of South American monsoon (Table 3), the climatological
mean of month July during 1979-2018 periods at 45° N and 50° N, and
standard deviation for all the ten harmonics of July at 45° N for the

period 1979-2007.
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Figure 4.15

Figure 4.16:

Figure 4.17:

Figure 4.18:

(a@):(Top) Globally zonal averaged U wind (m/s) of composite pre-
break, composite during-break and composite post-break periods of
SAM (b): (Bottom) Globally zonal averaged U wind (m/s) for pre-
break periods of six different cases of SAM: 18-21 January 1980, 01-
04 January 1981, 10-15 January 1988, 16-20 January 1990, 25
December-01 January 1993, 19-24 January 1996.

(@) (Top) Composite of globally zonal averaged U wind (m/s) for
during-break in six different cases. (b) (Bottom) Globally zonal
averaged U wind (m/s) for post-break periods in six different cases:
18-21 January 1980, 01-04 January 1981, 10-15 January 1988, 16-20

January 1990, 25 December-01 January 1993, 19-24 January 1996.

(a)(Top) Pre-break composite structure of U wind zonal anomalies of
South American monsoon (Table 3) (m/s), (b)(Bottom) During-break
composite structure of zonal wind anomalies of South American
monsoon (m/s) (Table 3), which are zonally averaged between 60° W
to 125° W. The hatched region indicates 95% confidence using a two-
tailed Student’s t test. In both the figures positive values are shaded
and negative values are shown in contours. Contouring between -5 to
0 (m/s) with an interval of 1 m/s.

Structure of zonal wind anomaly on 4 January 1981, which is zonally

averaged over 270° E-330° E.
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Figure 4.19:

Figure 4.20:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Eliassen Palm fluxes for (a) 18-26 July 1980 & (b) 05-10 July 1981.
The dotted lines denote convergence and continues lines denote

divergence and contouring at 50 m°>.

Eliassen -Palm flux cross-sections of southern hemisphere(a)
Composite during-break periods (Table 2.4) of SAM; (b) during the
season (austral summer) DJF for the 1979-2007 period. The contour
interval is 50 m3 In both the figures dashed lines represent
convergence and continuous lines represent divergence.

Observed Sea Level Pressure (SLP) distribution on 10 Aug., 2000,
after a break period.

Conversion of Kinetic Energy (J/s) anomaly values of 41 break periods
during the 1979-2007 period.

(a-e): Spatial distriubution of zonal wind at 200 hPa for 41 break
events (Rajeevan et al. 2008) during the 1979-2007 period for the
region 0°-50°N, 20°-120°E.

(a-e): Spatial distribution of zonal wind on a peak days of of 41 break
events (Rajeevan et al. 2008) during the 1979-2007 period for the
region 0°-50°N, 20°-120°E.

(a) Zonal wind at 200hpa on 4august, 2000, a typical break day; (b)
the corresponding Geopotential distribution (in Km). The black line
shows the NE-SW tilt orientation in both the figures.

(a) Eddy momentum flux transfer during a break (1-9 August); before

the break (14-23 July); and after the break (10-15 August), in relation
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to the 1-9 August break in the year 2000. (b) zonal wind profiles (82.5°
E) at 200hpa during a break day (4™ August); on a day in the pre-break
period; (23" July); on a post-break day (11" August), all for the same
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(a) Meridional distribution of the composite absolute vorticity (200
hPa), obtained by compositing it over all the break periods for the
period of 1979-2007. (b) Same as Fig. 5.7(a) but composited over each
break periods during 1979-2007.

Latitudinal distance (degrees) between westerlies and easterlies at 200
hPa for various phases associated with observed break events.
Wavelength anomalies (Km) of the zonal wind at 200 hPa, averaged
over the span of each break event
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ABSTRACT

The summer monsoon Intraseasonal variability is primarily associated with active and
break spells of rainfall. In this thesis, | investigate a few noteworthy aspects of the intraseasonal
variability of the Indian summer monsoon in connection to midlatitude upper level circulation. |
conducted several dynamical and statistical analyses, and sensitivity simulations with a regional
model, to this end. The Indian summer monsoon rainfall (ISMR) is essentially a primary source of
basic human life and a long-standing source of reliance for the Indian economy. My primary focus
in this research is on the initiation and development of a break phase, as well as the revival of
active conditions following a break phase over the Indian subcontinent. Furthermore, I investigated
the break monsoon dynamics of North and South American summer monsoon systems and

explored commonalities to the Indian summer monsoon.

The monsoon breaks in the core monsoon region or central region of India, lasting a few days-
rarely even up to two weeks, are periods of low to no rainfall. Throughout summer monsoon, a
seasonal high pressure region, extending from the Tibetan plateau, prevails over north India at 200
hPa. Our analysis of various observed and reanalyses data sets for the 1979-2007 period shows
that breaks are characteristically preceded by an upper-tropospheric transient blocking high over
north India, which extends to low levels. The formation of this blocking high is found to be due to
the penetration of mid-latitude baroclinic waves into lower latitudes. Importantly, this transient
blocking high is weaker than the seasonal High pressure at this level. The weakening of the high
pressure due to the presence of this transient blocking leads to a sinking motion relative to the

prebreak or after-break period which in turn leads to a filled up surface low, and an eventual

XXVI



reduction in daily rainfall, Importantly, this mechanism is found to be associated with monsoon

breaks in the North America, and South America as well.

The blocking high over the core monsoon region during breaks is associated with the convergence
of Eliassen-Palm fluxes, which causes the upper-level zonal westerlies to decelerate. This holds
the blocking high in place over the core monsoon region without being advected by the zonal wind.
Also, I find that the resonance and amplification of planetary Rossby waves play a vital role in the
block formation over the northwest of India. This sequence of events associated with the Indian
breaks, that is, the initiation due to the formation of upper level blocking high due to resonance of
planetary Rossby waves at mid-latitudes, followed by the break event and a relative sinking over

the core monsoon region, also explains the North and South American summer monsoon breaks.

Following the initiation of a break phase over the Indian region, | observe an anomalous southward
shift of a subtropical westerly jet stream during the peak of a significant break phase, followed by
an anomalous northward shift of a stronger-than-expected tropical easterly jet stream. These major
changes during a break facilitate an instability mechanism, which evidently contributes to the
development of a synoptic disturbance, and subsequent revival of the Indian summer monsoon

into the active phase in about 61% of the cases.

Our computations of energetics indicate an increase in the eddy kinetic energy at the expense of
the mean Kinetic energy during the breaks, in agreement with the formation of the synoptic
disturbance. This demonstrates that barotropic instability in the presence of a monsoon basic flow
is the primary physical mechanism that controls the subsequent revival of the monsoon. This entire

life cycle of monsoon break formation and reversal to normal monsoon can be seen as the
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barotropic adiabatic cycle, similar to the index cycle of midlatitudes in a barotropic atmosphere. |

propose these oscillations as ‘Monsoon Index Cycles’.

Apart from the above dynamical analysis carried out using NCEP reanalysis 2 data and gridded
Indian summer monsoon rainfall data sets for the 1979-2007 period on the revival phase of
monsoon from the break, I conducted a few sensitivity experiments using WRF regional climate
model in order to ascertain the aforementioned dynamical mechanism for the revival of active
conditions after a break phase of Indian summer monsoon, for one typical break case 01-09 August
2000. The sensitivity experiments essentially examine the role of the break-related circulation,
particularly the role of the horizontal shear at upper level between the subtropical Westerly jet and
tropical Easterly jet, eddy momentum flux and associated energetics. The results from the model

confirm my interpretation of the mechanisms from analysis of observational and reanalysis data.
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Chapter 1

Introduction

Qutline of the chapter:

In this chapter, | discuss the available literature on the intraseasonal variability of the Indian
summer monsoon with main focus on active to break conditions. | also discuss the intraseasonal
variability of South and North American summer monsoonal regions.

Based on the scientific gaps identified during the review of the literature, we developed four
objectives and further discussed the scope of the thesis. It will also be interesting to see if some of
the mechanisms that cause the Indian summer monsoon, North American monsoon, and South

American monsoon breaks have little in common and can be unified into a theory.
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1.1 Pioneering studies of Indian Summer Monsoon

Scientific interest in the monsoon is not new. The earliest theory explaining the monsoons,
which is based on the importance of the differential heating between ocean and land, was espoused
by Edmund Halley (1686). Eliot (1884) has been credited with the identification of “minor
cyclones of the Southwest monsoon season” which we now refer to as monsoon depression. Since
then, there has been tremendous interest in studying the monsoon, its variability, and its relevance

for applications.

Fig 1.1 shows the mean sea level pressure during June, July, August, and September (JJAS)
months, which together comprise the Indian summer monsoon (ISM) season, for the 1979-2007
period. The low-pressure zone across the Indian region is conventionally referred to as a monsoon
trough (MT) (Fig. 1.1.), which is a part of the Inter-tropical convergence zone (ITCZ), and is
associated with the large-scale monsoon flow. To distinguish the presence of the ITCZ at the
equatorial region for a few days and times during the same season, Gadgil (2003) proposed the
nomenclature of convective tropical convergence zone. Fig. 1.2, based on the Indian
Meteorological Department (IMD) observations for the 1901-2019 period, shows the mean
seasonal rainfall over India. It is clear that there is a lot of spatial variability of rainfall distribution
during the Indian summer monsoon. The Indian summer monsoon also varies on different time
scales. Fig. 1.3, for example, shows the interannual variability of rainfall anomalies over the Indian

region, indicating normal, above normal, and below-normal rainfall years.
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477  Figure 1.1: Spatial distribution of climatological mean sea level pressure (mb) during the June

478  through September months (JJAS), over the 1979-2007 period.
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480  Figure 1.2: Climatology of rainfall (mm/day) over the Indian region for the JJAS season during

481  the period 1901-2019.
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Figure 1.3: Interannual variability of the Indian summer rainfall over the Indian region during

1901-2019, provided as example of its temporal variations.

Recent investigations (Gadgil 2008), to be sure, have pointed out that while the summer onset in
India is fundamentally affected by the differential heating of land and ocean, but its evolution is
rather more significantly related to the complex high-frequency atmospheric disturbances, extra-
monsoonal perturbations, and by the teleconnections between various climate drivers and
monsoonal region. Studies suggest that the ISM rainfall varies at interannual, intraseasonal,
decadal and multi-centennial time scales. From the statistical sense, a dominant mode of the Indian
summer monsoon is interannual variability (Fig. 1.3), driven by the well-known El Nifio-Southern
Oscillation (ENSO), etc. The variability is forced by both external and internal drivers (e.g.,

Webster et al., 1998; Pant and Rupa Kumar,1997). In addition to the interannual variability, the



494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

ISM also varies on intraseasonal time scales (e.g., Chatterjee and Goswami, 2004). For example,
there are cycles of active and break episodes. “During the active monsoon spell, the Indian region
receives adequate rainfall over the majority of the Indian region; however, during the break, the
rains are reduced or no none across most of the Indian region, primarily the monsoonal core region
(central parts) of India” (Ramamurthy 1969, Goswami et al. 1998 and Lawrence & Webster 2001).

This is also a major mode of variability of the ISM.

Therefore, in this thesis, my primary focus lies on the intraseasonal variability in the ISM rainfall,
specifically to document the hitherto unexplored potential mechanisms behind the break monsoon
and the consequent revival of the Indian summer monsoon. In the next sub-section, we review the
available literature on the observational and theoretical aspects of break phase initiation and its

development, and those on the subsequent revival of active conditions of ISM rainfall.

1.2 Intraseasonal Variability of rainfall during the Indian summer monsoon

During summer monsoon months, there occur a few low-rainfall periods/spells or void
situations over most of the Indian region. Blanford (1886) named these “intervals of drought”
during July & August, the peak summer monsoon months, as the break periods. These intervals
with low rainfall situations over a major portion of the Indian region are now routinely called
“breaks”. Breaks are typically announced as when the MT shifts northward from its mean position
for at least 3 days. Consequently, the Himalayan foothill region receives high rainfall during this
period, while the rainfall along the climatological MT position decreases drastically. For example,
Fig. 1.4 depicts the mean sea level pressure during the break (01-09 August 2000) and prebreak
period (23-31 July 2000), as well as the corresponding rainfall distribution over India. This break

period was generated using the Rajeeven et al. (2010) criterion. In Fig. 1.4, we see the MT
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weakening or shifting towards the Himalayan foothills during the break period, with massive
rainfall across the Himalayan foothills. This causes a decrease in rainfall in the central parts of
India, as well as the majority of the country. The monsoon revives after the break periods, often

entering into the ‘active’ phase, which is, in a sense, exacerbation of the mean conditions.

Several researchers (e.g., Goswami et al. 2018) suggest that the total rainfall during any summer
monsoon season critically depends on the number and intensity of the breaks. Therefore,
understanding the intraseasonal variability of the ISM and diagnosing the mechanisms is important
to enrich the seasonal prediction of the ISM, which has immense economic value. Thus, it is clear
that the ISM rainfall is irregular in its occurrence and intensity. However, there is a lot of temporal

and spatial variability in the ISM.
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Fig. 1.4: Spatial distribution of mean sea level pressure and rainfall averaged over the duration of
a break event (01-09 August 200) and corresponding prebreak conditions (23-31 Jul 2000). The

break event has been identified Based on the Rajeevan et al. (2010) criterion.
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As per Koteswarm (1950), who studies 19 break events, the 'break phase' begins two days before
or later than the formation of a 'low' at 700 hPa in low latitudes. The movement of such lows
weakens the North-south pressure gradient over the Peninsula. According to Koteswaram (1950),
the monsoon frequently revives after a “break” by the formation of a synoptic low or a depression
in the North Bay of Bengal (BoB) or a shift towards the north of the BoB from lower latitudes,

resulting in the gradual revival of the MT to its normal position.

Using IMD observations, Ramamurthy (1969) classified active and 'break’ periods based on MT
fluctuations in the apex monsoon months of July and August from 1888 to 1967. Ramamurthy
(1969) adopted the criteria of the movement of the MT moving northward from its mean position,
i.e., close to the foot hills of Himalayas for more than two days as a 'break’, and a southward shift
from its mean position as an active event. He also claims that August is slightly more prone to
longer 'break’ periods. Later, Ramaswamy (1971) observed a trough (active) and ridge (break)
pattern of westerly waves in the lower troposphere at 500 hPa near the Himalayas in a case study
during the 1965 summer monsoon using satellite data. Raghavan (1973) suggests that the beak and
active phase of ISM are associated with the fluctuation of MT, and with the tropical synoptic low-
pressure systems developing in the Bay of Bengal region. Then the normal/active monsoon
conditions of rainfall are re-established when the monsoon trough returns and intensifies over
India. When a synoptic low-pressure system moves in the northerly direction towards the
Himalayas, then the monsoon trough of low pressure also moves from the plains to Himalayan

foothills. This weakens rainfall over the plains of northern India brings about the break-monsoon.

Ramanadham et al. (1973), studying a single case study 1967 summer monsoon, suggested that
the break monsoon situation sets in over the Indian region in association with the eastward

movement of the high amplitude 500 hPa middle-latitude westerly trough, that extends into
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western parts of Pakistan and northern India. At the same time, Ramanadham et al. (1973) observed
the subtropical anticyclonic ridge over Arabian region extends into central and peninsular India.
At this particular time, the monsoon trough moves northward from its normal location over the

Gangetic plains to the foothills of Himalayan region triggering break monsoon conditions.

The Monsoon Experiment was conducted during 1979 as a regional sub-program of the First
GARRP (Global Atmospheric Research Programme) Global Experiment (FGGE). This program has
sourced valuable first time data related to the ISM and led to further investigation in different
aspects. Studies from the project suggest that during the boreal summer monsoon, the intraseasonal
variability of Asian Summer Monsoon (ASM) is dominated by the quasi-periodic intraseasonal
oscillations (ISO) on time scales longer than 10 days but shorter than a season (Krishnamurti and
Bhalme 1976; Krishnamurti and Ardunay 1980; Yasunari 1980 and Goswami & Ajaya Mohan
2001). Apart from the important 30-60 day oscillations, some of the experiments were carried out
to explore the 10-20 day oscillation of the Indian monsoon as the intraseasonal variability is
extremely important for rainfall predictions and their socioeconomic applications (Murakami

1979; Das 1979 and Goswami 1997).

Krishnamurti and Ardanuy (1980) suggest that the break spells of ISM are accompanied by
westward propagating trough-ridge systems of surface pressure with a periodicity of about 10-20
days, which have a steady quasi-linear propagation of phase. From a power spectral density
analysis, they revealed that zonal wavenumbers 3—6 made a significant contribution to this quasi-
biweekly mode. Krishnamurti and Ardanuy (1980) also suggest that the extrapolation of the phase
information of the steady westward propagating quasi-biweekly mode predicts monsoon breaks
moderately well. Sikka & Gadgil (1980) showed that there are two favourable and important

locations for maximum cloud zone (MCZ) during JJAS for 1973-1977 period over the Indian

8



576

S77

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

region, i.e., over the longitudes 70° - 90°E and in the monsoon zone north of 15° at 700 hPa, and
the secondary MCZ in the equatorial region, i.e., between 0-10°N. In monsoon months JJIAS, a
break phase develops just before the temporary disappearance of the MCZ from the mean summer
monsoon location, i.e., over the latitudes 15° - 28°N, and the active monsoon is established again

by the northward shift of the secondary MCZ over the monsoon zone.

Results from Pant (1983) suggest that Tibetan Plateau cooling (warming) leads to break (active)
periods over the Indian region. He showed that a ‘break’ period is associated with a zonally
oriented trough between 10° - 15°N at 700 hPa over south Indian region and the adjoining seas;
there is also a sharp decline in the temperature over the Tibetan Plateau region at 500 hPa level.
Subsequently, as the plateau warms, the trough shifts northward over the North Indian region and
leads to normal/active monsoon around 20°N. As per Pant, the Hadley cell has its upward limb in
the trough at 10°-15°N over south India and descent further north during the break monsoon
conditions. Whereas during the active phase of the monsoon, the Hadley cell is associated with a

rising limb at ~20°N, and southward descent is prominent.

Yasunari (1986) demonstrated the inter-correlations between ISM active/break cycles and westerly
circulation changes in the middle and high latitude, which are relevant to the low frequency 30—
50 day oscillations. The oscillation of the monsoon system of this 30-50 day period is closely
related with the east-west oscillation of the geopotential height with the node over Tibet. The lag
correlations between the northern hemisphere monsoon trough and the 500 hPa geopotential
height, suggested that this east-west oscillation is part of the response of the middle and high
latitude westerly waves to the northward moving monsoon heat source. Yasunari (1986) suggest

that the transition from the active to break phase of ISM, may be regarded as the transformation in
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the thermodynamical process from the "diabatic limit" to the "advective limit" (Webster, 1981)

and vice versa.

Using atmospheric models, in a case study of the 1994 monsoon, Rodwell (1997) proposed a
mechanism that includes the infusion of dry, high negative potential vorticity air from the Southern
Hemisphere midlatitudes into the low-level monsoon inflow. Rodwell (1997) even suggests that
altering moisture fluxes in South Asia and the perturbation activity of Southern Hemisphere
midlatitudes associated with the cross-equatorial flow of monsoon can trigger monsoon breaks.
Furthermore, De et al. (1998) discovered a few more additional features of the monsoon basic
flow, which in turn leads to the monsoon break conditions during the 1968-1997 period, such as,
a) The movement of cyclonic circulation or a trough over low latitudes, b) existence of a trough in
mid-tropospheric westerlies over northern India, ¢) weak pressure gradient over the west coast of

India, and d) strong westerly winds over the northern India.

Krishnan et al. (2000) defined break. The study, using both observations and modelling
experiments, suggests that a quick northwest movement of anomalous Rossby waves from the Bay
of Bengal into northwest and central India initiates break conditions over Indian region.
Importantly, the intensification of “convective stable anomalies” over the Bay of Bengal triggers
these anomalous Rossby waves. Goswami and Ajaymohan (2001) using dynamical climate
models, that both the intraseasonal and interannual variability is governed by the mode of spatial
variability. As a result, if the frequency of occurrence of active (break) phases of Intraseasonal
oscillations (1SO) is larger than that of the opposite phases in a season, the seasonal mean monsoon
could be strong (weak). In further analysis, they have shown that the strong (weak) monsoon years
are indeed characterized by a higher frequency of occurrence of active (break) conditions and vice-

versa. Gadgil and Joseph (2003) obtained a significant negative correlation between all India
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summer monsoon rainfall and the number of rain break days between 1901-1989 (i.e., r = -0.56).
They also obtained a significant positive relationship between active days and monsoon rainfall
between 1901-1989 (r = 0.47). Gadgil and Joseph's (2003) rainfall break composite is very similar
to Ramamurthy's (1969) rainfall break composite, as they have identified positive rainfall

anomalies over the Himalayan foothills and southeastern peninsular region.

AS per Joseph and Sijikumar (2004), when the strong cross-equatorial low-level Jetstream (LLJ)
oriented southeastwards with its core at 850 hPa changes its direction towards east between Sri
Lanka and the equatorial region, it triggers a break monsoon condition. During active monsoon
conditions, the LLJ axis passes from the central Arabian Sea eastwards through peninsular India
and it provides moisture for increased convection in the Bay of Bengal and the formation of a
monsoon depression. Ramesh Kumar & Dessai (2004) analyzed break monsoon cases during the
1901-2002 period. They find that during the breaks, the overall daily Indian rainfall is <9 mm/day
and this condition lasts at least three days during July and August. The majority of the breaks lasted
for 3—4 days duration (49%) in the July and August months. Furthermore, the correlation between

the JJAS rainfall and break (active) days is —0.80 (0.38).

In a case study by Rao et al (2004), the authors suggest that the upper troposphere relative humidity
reduces between 600 hPa and 200 hPa by ~30% at least ~3days before the break period over the
ITCZ along with a weakening of the low-level convergence by ~50%. These lead to the drying of
the middle troposphere and trigger break monsoon conditions over the Indian region. Wang et al,
(2005) suggest that 1ISO of the Indian monsoon is associated with western equatorial Indian ocean
warming. As the beginning of the rain, conditions in the western equatorial Indian Ocean is

preceded by local surface wind convergence and central equatorial Indian Ocean warming. a “self-
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induction mechanism” of eastern Indian ocean warming appears to be operating in the maintenance

of the active-break cycle of monsoon.

Mandke et al (2007) suggested a criterion for identifying active and break days based on the rainfall
anomalies over the Indian core region (73°-82°E, 18°-28°N). The periods were acknowledged as
active (break) events, when the standardized rainfall anomaly over the Indian core/central region
exceeds (below) 0.7 (—0.7) for at least three uninterrupted days between 15 June - 15 September.
Using observations of daily gridded rainfall datasets from 3700 stations, Krishnamurthy and
Shukla (2000) shown the above normal rain over central India and below normal rain across
Himalayan foothills (North India) and southern peninsular India, and that this pattern is transposed
during the break phase. The authors also suggest that the largescale droughts are associated with
huge negative rainfall anomalies across the central Indian region. Krishnamurthy and Shukla also
pointed out that the success in long-range forecasting will essentially depend on precise
quantitative estimates of the external factors affecting ISM due to high nonlinearity in the

intraseasonal prediction of ISM.

Krishnamurthy and Shukla (2007) found two dominant intraseasonal oscillations with periods of
45 and 20 days in the seasonal rainfall of ISM, using multichannel singular spectrum analysis of
the daily rainfall anomalies. Interestingly, they suggest that the active and break monsoon events
contribute very little to the seasonal mean rainfall of 45-day and 20-day oscillations. They
discovered that the lows and depressions formed during these active and break periods are
consistent, and that the number of depressions formed during the active phase is approximately
seven times that of the break phase. Rajeevan et al. (2010) suggest the active and break events are

the normalized anomaly of the rainfall over a critical area, called the monsoon core zone (18°-28°
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N & 65°-85° E), which exceeds 1.0 or is less than —1.0 respectively, provided that this criterion is

satisfied for at least three consecutive days.

The Madden Julian Oscillation (MJO) is a dominant mode of tropical intraseasonal variability in
the tropics. While it is relatively during the boreal summer, studies suggest that it is associated
with northward propagation of cloud-bands over the Indian monsoon region. The work by Joseph
et al. (2009) indicates that very long break periods can be deemed as a divergent Rossby response
due to a dry phase of equatorial convection which can be due to a prevailing MJO signal. Pai et
al., (2011) claim that 83% of the break cases are coincident with Phases 7, 8, 1, and 2 of the MJO.
They also suggest an association between the active phase obf the ISM with certain phases of the
MJO. Madhu and Bhatla (2020) suggest a stronger association of the MJ with breaks than with
active monsoon conditions over the Indian region. However, despite the aforementioned apparent
association between the active-break cycle and MJO, it is possible that a particular phase of MJO
in the equatorial Indian Ocean is actually triggered by the intraseasonal phase of the ISM itself, or

that both of these are part of an encompassing phenomenon of the same periodicity.

Umakanth et al. (2014) suggested a new criterion for breaks during the ISM, primarily based on
the threshold of area-averaged rainfall over each grid considered. They also suggest a strong
association between breaks and total seasonal summer monsoon rainfall in India. Umakanth et al.
(2019) suggest that the development of a mid tropospheric cyclonic circulation anomaly stretching
over the sub-tropical/mid-latitude Asian continent may trigger break conditions over the Indian

region.
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Interestingly, they propose a strong association between El Nifio and below-average monsoon
rainfall. Pai et al. (2014)’s analysis of long term trends in lows, also suggests, in agreement with

Raghavan (1969) the importance of the lows and depressions for revival after a break phase.

The spatial and temporal variability of ISM is unique throughout the world, owing to all of the
complex features of the monsoon basic flow. Apart from the theories of the break phase discussed
above, the Indian northern boundary is also associated with midlatitude interactions during ISM.
In this context, the following subsection discussed the interactions between midlatitudes and ISM,

prominently the role of upper tropospheric Jet streams and Blocking high.

1.3 Interactions between Indian summer monsoon and Midlatitudes

1.3.1 The impact of Jet streams on the Indian summer monsoon

Essentially, Jet streams are formed by the thermal contrast between the equator & the polar
regions as a result of differential solar insolation and role of Coriolis force acting on the moving
masses. These are characteristically continuous over long distances, but a discontinuity is also
common. The pathway of the jet is normally meandering, and these meanders propagate eastward
at slower speeds than the actual wind within the flow. These large meanders of waves within the
Jetstream are known as long or ultralong Rossby waves or planetary waves. In the Northern
hemisphere, the intraseasonal variability of ISM is associated with the upper-level Subtropical
Westerly Jet (SWJ) and the Tropical Easterly Jet (TEJ). The SWJ core sustains at 200 hPa at 42°
N, while the TEJ core is found at 150 hPa at 9° N during summer months i.e., June, July, August,
and September (JJAS). For example, Fig. 1.5 shows the climatological wind vectors at 200 hPa
for the season JJAS during the period 1979-2019. From Fig. 1.5, | observe a large anticyclonic

circulation over the Indian region during climatological JJAS season, which is normally called
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South Asian High (SAH). The SAH intensity depends on the distribution of heterogeneous diabatic
heating over the Tibetan Plateau region and the summer monsoon regional area (Wu and Liu 2003;
Wu et al. 2007). The SAH is another typical synoptic system over the Asian continent during
boreal summer (Mason and Anderson 1963), which indeed forms near the tropopause over the
Indo-Chinese peninsular region before the BoB monsoon onset (He et al. 2006; Liu et al. 20009,
2012). Figure 1.5 depicts the climatology of SWJ ranging from 30° to 40° N, as well as TEJ ranging
from 0° to 20° N. Large meanders of Rossby waves, however, extend beyond 50° N, accompanied
by a spatial shift of the jet core in day-to-day SWJ and TEJ beyond 20° N, due to diurnal variation,
seasonal shift, climate change, and so on. The detailed discussion of SAH and its influence over

the Indian region during the summer monsoon is detailed in the next subchapter.

Climatology JJAS; Z200; 1979-2019
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Figure 1.5: Climatological mean JJAS wind vector and magnitude (m/s) at a height of 200 hPa
for the 1979 - 2019 period.
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According to Rao et al. (1970) the changes in SWJ and TEJ flow result in four kinds of
manifestations: a) intensifying or developing lower tropospheric lows or troughs, b) enhancing
rainfall in pre-existing systems, c) re-curvature of depressions and lows and d) the onset of break
conditions. Furthermore, even when the break is traced to westerly troughs, rainfall is increased
by mid-latitude troughs before the break occurs over Indian region. During breaks, the subtropical
ridge becomes more prominent and swings southwards. As a result, whether or not a break occurs
after the passage of a westerly trough may be determined by the intensity of the ridge in the rear
rather than the passage of the trough itself. Even after a break burst of rain along the Himalayas
moving eastwards appear to be associated with the passage of subsequent troughs in westerlies,
which are perhaps unable to break up the warm high that had formed earlier. A warm high forming
and strengthening the seasonal subtropical ridge may explain 'breaks' that last for one to two weeks
at times. The passage of a trough cannot account for the subsequent lengthy break. However, it is

consistent with the behaviour of warm highs.

The STJ is a narrow band of fast-moving air that flows from west to east. Wind magnitude in a
westerly jet stream typically varies between 40~60 m/s. Malurkar (1950) demonstrated that during
ISM, the southward extension of an extratropical westerly trough into northern India results in a
break condition. Later, Ramaswamy (1962) discovered that during a summer 'break' monsoon over
India, large amplitude troughs in the middle latitude westerlies protrude into the Indo—Pakistan
area based on break phase case studies during ISM. These eastward moving Rossby waves get
retarded and elongated meridionally during movement across Tibetan Plateau and weakening
Tibetan high at 500 hPa. Ramaswamy (1962) also showed that the ridge in the rear of the trough
causes the extension of the anticyclone from the Tibetan plateau over to the northwest and central

India. The associated upperlevel divergence causes heavy rainfall over and near the Himalayas. In
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a few case studies, Ramaswamy (1962) also observed that the large amplitude trough remains
quasi-stationary over the northern India same as the 'break’ lasts for a week or more. Thus, during
break conditions, | witness the remarkable spectacle of two jets of completely different types - the
Easterly and sub-tropical Westerly jets - passing within a short latitudinal distance of each other

and dynamically interacting with each other.

Bedi et al. (1981) noticed that a strong monsoon is associated with strong westerlies and weak
monsoon is associated with weak westerlies and westerly systems of middle-latitude are more
active during a weak monsoon. Sikka and Grossman (1981) found that a large amplitude trough in
the regime of subtropical westerlies was present during the break period of monsoon during the
year 1979. Further, very weak spells of the ISM are associated with the signature of what is called
as a low-index Rossby regime in the atmospheric general circulation over northern as well as

southern hemispheres (Ramaswamy and Pareek,1978).

The TEJ is a critical feature of the ISM circulation (Koteswaram 1958; Alaka 1958; Krishnamurti
and Bhalme, 1976) with the strongest winds of ~ 0— 50 m/s positioned just to the west of the
southern tip of India and adjoining Arabian Sea (Reiter, 1961). The first detailed study on the TEJ
was carried out by Koteswaram et al. (1958), who showed that the TEJ is sourced due to the large-
scale arrangement of landmasses, the ocean, and the elevated heat source of the Tibetan Plateau.
Chen and Yen (1991) noticed that the interannual variability of TEJ follows the interannual
variability of stationary eddies over the summer monsoon region. Earlier studies also explained
that the interannual variation of TEJ can be related to the interannual variation of summer rainfall
(Chen and Yen 1991; Chen and Van Loon 1987; Kobayashi 1974). According to these studies,
TEJ is found to be weaker (stronger) during the deficient (excess) summer monsoon rainfall over

India.
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The TEJ has a distinct intraseasonal oscillation south of its core, according to Chen and Van Loon
(1987). The systematic shifting of locations caused by convection, low-level monsoon flow, and
TEJ during different phases of the monsoon suggests that they all possibly related (Sathiyamoorthy
et al., 2007). During the weak (strong) monsoon season of 1987 (1988), the middle and upper
tropospheric meridional temperature gradient between the Tibetan High and the Indian Ocean
region decreased (increased) (Pattanaik and Satyan 2000). There have been few studies on the
relationship between the long-term trend of TEJ and the Indian summer monsoon due to a lack of

persistent long-term data over the upper troposphere.

Sathiyamoorthy, et. al. (2007) has shown that the 30-60 day ISO of the TEJ reported in individual
case studies occurs during the 1979-1990 period of study. The Axis of the TEJ, at the east of ~70°
E, and at 200 hPa is found along the near-equatorial latitudes during monsoon onset/revivals and
the axis of TEJ propagates northward as the monsoon basic inflow advances across India. Also,
they have found the axis is along ~5° N and ~15°N during active and break monsoon situations,

respectively.

The next sub-chapter discusses extratropical systems, such as Blocking high and its interaction

with ISM, particularly from the context of intraseasonal variability.

1.3.2 Relevance of Midlatitude Blocking High with Indian summer monsoon

The extratropical systems are associated with (a) troughs and (b) ridges of the SWJ. It may
be presumed that the ridges can sometimes develop into a Blocking and the northern Indian region
is just at the periphery of this system. Atmospheric blocking (hereafter as blocking) is a large-scale
quasi-stationary low-frequency circulation pattern occurring in midlatitudes with a lifetime of ~10
to 20 days (Berggren et al. 1949; Rex 1950; Shukla and Mo 1983).
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Blocking is defined as a continuous occurrence of high geopotential height for a relatively
persistent time in a confined region or a quasi-stationary form (Hartmann & Ghan 1980). Early
investigators (Berggren et al., 1949; Elliott and Smith, 1949 and Rex, 1950a, b) ascertained the
synoptic behaviour and blocking climatology. Berggren et al. (1949) demonstrated that the
formation of a blocking ridge is associated with the deepening of some extratropical wave cyclones
over central Europe. This quasi-stationary blocking ‘wave' disrupts the zonal flow of fast-moving
frontal waves approaching from North America, resulting in extreme weather events. According
to Rex (1950a), blocking occurs when the basic westerly current at upper level splits into two
branches, each of which transports a significant amount of mass. The double-jet system must cover
at least 45° of longitude. Across the current split, a sharp transition from zonal type flow upstream
to meridional flow downstream must be observed, and this pattern must persist for at least ten

days.

Rex (1950b) noted that blocking most frequently occurs over the North eastern portions of the
Atlantic Ocean at 10° W and Pacific Ocean at 150° W (their Fig. 1), and normally this blocking
persists for 12 — 16 days and relatively stable in position. According to Rex (1950b), the
climatological mean position of the block is just downstream from the normal position of the major
mid-latitude jet streams, with noticeable warming occurring in the northern part of the blocked
zone and cooling occurring in the southern parts. During recent years it has also been shown that
planetary-scale waves influence atmospheric blocking (Lejenas and Madden, 1989). Using the
barotropic channel model, Egger (1978) showed that blocking could result from the nonlinear
interactions between the forced stationary waves and the slowly moving free waves. Using the
equation of motion, Hasanean and Hafez (2003) explained how the main westerly air current splits

into two branches leading to the formation of a blocking high. Later, Shutts (1983) conducted a
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few numerical experiments to confirm a hypothesis that barotropic eddies reinforced blocking flow
patterns mostly through Reynolds stresses. This propagation of barotropic eddies into the split

Jetstream amplifies vorticity fields, resulting in blocking enhancement.

Tanaka (1998) defines atmospheric blocking as an abnormally persistent, quasi-stationary
anticyclone that blocks the mid-latitude jet stream and the onset of blocking is generated by Rossby
wave breaking. A blocking anticyclone forms at latitudes higher than where the normal sub-
tropical high forms and is frequently accompanied by a cutoff low in low latitudes. However, in
the Southern Hemisphere (SH), blocking highs tend to have a shorter lifetime than in the Northern
Hemisphere (NH) and form at somewhat lower latitudes in general (Van Loon, 1956; Taljaard,

1972).

Another characteristic feature widely recognized is that even when a blocking high does break
down or move away, there is a strong tendency for another high to form and intensify in the same
location (Taljaard, 1972; Wright, 1974). Blocking phenomenon in a barotropic atmosphere can
result due to resonant enhancement of Rossby lee waves forced by two stationary sources of
potential vorticity (Kalney and Merkine 1981). Resonant interactions among planetary-scale
waves may be an important physical mechanism in generating certain atmospheric blocking
(Colliucci et al., 1981). A block may be initiated by a deep cyclonic storm development, which
locks the flow pattern into a blocking equilibrium, or vice-versa when it drives the flow out of a
blocking equilibrium (Charney et al., 1981). All the above discussion gives a detailed idea of

blocking high genesis and its implications with the surrounding areas.

The blocking during the summer months is critical to the monsoonal regions, affecting the

monsoon basic flow directly or indirectly. This blocking is also known as SAH over the Asian
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region. Wei et al. (2015) demonstrated a diagnostic analysis on the interannual time scale of SAH
and its movement southeast-northwest, which is closely related to the Indian and East Asian
summer monsoon rainfall. The SAH's reallocating towards southeast (northwest) is closely related
to weak (more) Indian summer monsoon rainfall and high (less) rainfall in the Yangtze River
valley of the East Asian summer monsoon region. There have only been a few studies that look at

the relationship between ISM blocking and intraseasonal variability. They are as follows:

Unninayar and Murakami (1978) found that during weak monsoon situation anticyclonic
circulation (at 200 hPa) over Himalaya bifurcates into two cells due to penetration of the
midlatitude trough into sub-tropics, and at lowerlevel 700 hPa, they found that the easterlies around
20° N and 30° N over India are replaced by westerlies and north-westerlies intensified in the
Arabian Sea. Keshvamurty et al. (1980) noticed a shift in the quasi-stationary large-scale features,
i.e., Tibetan anticyclone and other monsoon disturbances of extratropical regions at 300 hPa and
200 hPa of tropospheric circulation in active-break monsoon situations. They also suggest that
such shifts of quasi-stationary flow features and the associated changes in meridional and vertical
shears may have a significant effect on summer monsoon circulation with the interactions of

midlatitude westerly regime.

Raman and Rao (1981) suggested that the prolonged breaks causing severe summer monsoon
droughts over the Indian sub-continent are due to upper tropospheric blocking high over East India
(90° to 120°E) associated with baroclinic waves. Thus, this blocking high is considered as the
initiator of the monsoon break. Recent studies have shown, the extreme cold spells during winter
(Buehler et al. 2011), European temperature extremes during spring (Brunner et al. 2017), and
heatwaves during summer (Della-Marta et al. 2007; Schaller et al. 2018) are often related to the

formation and maintenance of mid-high latitude blocking, this has been an important research topic
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in past decades (for example, Yeh 1949; Shutts 1983; Colucci 1985; Haines and Marshall 1987,
Holopainen and Fortelius 1987; Luo 2000, 2005; Luo et al. 2014, 2019; Zhang and Luo 2020;

Nakamura and Huang 2017, 2018; Aikawa et al. 2019; Paradise et al. 2019).

All these studies indicate that the Indian monsoon is more than a local phenomenon and interacts
significantly with midlatitude circulation. We see a potential impact of upper-level jet streams and
blocking high on the monsoonal circulation over the Indian region based on the literature reviewed
above. In a similar vein, in the following sub-chapter 1.3, we will discuss whether the intraseasonal

variability of North and South American monsoons has few similarities with ISM.

1.3.3 Quasi-Resonant Amplification

Another important aspect of the atmospheric upper level midlatitude phenomenon is Quasi-
Resonant Amplification (QRA). In general, large-scale midlatitude atmospheric circulation is
associated with free and forced Rossby waves (Charney and Drazin, 1961; Hoskins and Karoly
1981; Dickinson 1970; Held et al., 2002 and Branstator 2002). Petoukhov et al. (2013)
hypothesized the effect of QRA of planetary waves and recent occurring weather extremes. A brief

explanation of QRA hypothesis as follows

Assume, k and m are the zonal wave numbers of free synoptic waves and forced/quasi-stationary
planetary-scale Rossby waves. The upperlevel atmospheric circulation is characterized as per

Petoukhov et al. (2013)

= free synoptic-scale Rossby waves with zonal wave numbers k> 6 propagate mainly

in the longitudinal direction with a phase speed ¢ ~ 0, and
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= forced/quasi-stationary planetary-scale Rossby waves with zonal wave numbers m,
with a phase speed ¢ ~ 0, and frequency o ~ 0, are response of quasi-stationary

spatially inhomogeneous diabatic sources/sinks and orography.

The midlatitude free synoptic-scale waves with zonal wavenumbers k ~ 6 - 8 are normally weak,
with the meridional velocity less than 1.5 — 2 m/s (Eliasen and Machenhauer (1965); Fraedrich

and Bottger (1978); Whitham (1960)).

Charney and DeVore (1979) shown that there is a “low-index” flow with a relatively weaker zonal
component and a strong wave component which is intertwined close to linear resonance; the other
is a “high-index” flow with a weak wave component and a relatively stronger zonal component
which is much distant from linear response of resonance using a barotropic channel model with
topographical forcing to study the planetary-scale circulations. It is suggested that the phenomenon

of blocking is a metastable equilibrium state of the low-index near-resonant character.

Later, Petoukhov et al. (2013) proposed that the extreme summer events occur due to the certain
persistent high-amplitude wave structures evolved in the field of the large-scale midlatitude
atmospheric meridional velocity to which the quasi-stationary component of free synoptic waves
with k = 6 - 8 made an exceptionally large contribution. These structures may arise from changes
in the midlatitude zonal mean state. When the aforementioned changes result in latitudinal trapping
within the midlatitude waveguides of quasi-stationary free synoptic waves with zonal
wavenumbers k = 6 - 8, the typically weak midlatitude response of wave numbers m 6 - 8 to quasi-

stationary thermal and orographic sources/sinks may be strongly amplified via quasi-resonance.

Hence the QRA plays an important role in extreme weather events. In recent years, the Northern

Hemisphere has experienced several regional weather extremes during summer, such as the
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heatwave in the United States in 2011, the Russian heatwave and the Indus River flood in Pakistan
in 2010, and the European heatwave in 2003. In this regard, | began to investigate the genesis of
quasi-stationary anticyclones (blocking highs) as a result of the QRA, followed by the break phase

development during the summer monsoon.

Kornhuber et al. (2016) showed that QRA explains roughly a third of all high-amplitude events
with wave numbers 6 to 8 and that amplitudes of quasi-stationary waves of that wave number
range are significantly higher when resonance conditions are met. They also showed that planetary
waves amplified by QRA exhibit specific preferred phases due to the characteristic stationary
orographic forcing of the Northern Hemisphere midlatitudinal orographic profile. Their analysis
shows that the central United States and western Europe are specifically susceptible to persistent
heat waves during QRA episodes (Kornhuber et al., 2017). Later Mann et al. (2018) have shown
that the zonally averaged surface temperature field can be used to define a signature for the
occurrence of QRA by examining the Coupled Model Intercomparison Project Phase 5 climate
model projections. Mann et al. (2018) also suggest that QRA events are likely to increase by 50%
this century under business-as-usual carbon emissions, but there is significant variation among

climate models. The following subchapter discusses the importance of NAM & SAM.

1.4 Intraseasonal variability of North and South American monsoon regions

The classical monsoon definition was solely based on the annual reversal of prevailing
surface winds (Ramage 1971). Monsoons are not the same throughout the tropics because they are
influenced by the specific locations of continents, oceans, and regional wind and rain patterns.
Figure 1.6, for example, depicts the climatology mean sea level pressure across global tropical

regions. The black dashed line box in Fig. 1.6 (a) represents the North American, North African,
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Indian, and East Asian monsoonal regions during the JJAS season, and in Fig. 1.6 (b) represents
the South American, South African, and Australian monsoonal region during the DJF season. In
this section, we discuss the monsoons of both Americas in comparison to ISM. Even though the
geographical characteristics of specific monsoon regions significantly differ due to the vast
continental region and much larger ocean basins that are adjacent to the monsoonal regions. In Fig.
1.6, we see a high on both sides of the American continent in the mean sea level pressure field,
which is not seen in the Indian, East Asian, or African summer monsoons. In this regard, the
environments of the monsoon systems are not comparable, but nonetheless have. Of course, they

also have a few general similarities.

North American Monsoon (NAM) and South American Monsoon (SAM) circulation systems have
a few similarities to other monsoons around the globe, which develop in response to thermal
contrast between the continent and adjacent oceanic regions and provide a major component of
continental warm season precipitation regime. Similar to other tropical monsoons, the evolution
of the NAM and SAM system can be characterized in terms of onset, mature/peak, and subsidence
phases. Importantly, A similar characteristic of intraseasonal variability in different American
regions reveals a considerable commonality in the events occurring in ISM, despite the monsoons'
distinct climatic conditions. Several examinations support the idea that intraseasonal rainfall
within the NAM and SAM regions shows oscillatory behavior, though the specification of the
preferred periodicities remains uncertain, the monsoon season consists of irregular burst and break
periods and that the length (and number) of these periods is an important factor concluding the
overall quality of the monsoon season. The goal of this research is to better understand the
similarities between ISM, NAM, and SAM, in the genesis of a break phase during the summer

monsoon.
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Fig. 1.6: (a) The black dashed line box denotes 1. North American, 2. African (northern western
parts of the continent) 3. Indian and 4. East Asian monsoonal regions in the northern hemisphere
and the shading represents the climatology mean sea level pressure of the JJAS season for the
1979-2007 period. (b) The black dashed line box denotes the 5. South American, 6. African
(middle and southern African countries), and 7. Australian monsoonal regions in the southern
hemisphere, and the shading represents the DJF season climatology mean sea level pressure for

the 1979-2007 period.

1.4.1 Intraseasonal variability of North American summer monsoon

Importantly, the NAM exhibits substantial interannual variability, which is also connected

with intraseasonal variability. For example, a good (poor) monsoon is often associated with an
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early (late) start (Douglas and Englehart 1996; Higgins et al. 1999). The intaseasonal variability
(V) of the NAM is also of great importance, as New Mexico and the Southwestern states of the
United States of America (USA) still depend on the summer rainfall and as well as human basic

needs.

Douglas et al. (1993) showed that the onset of the Mexican monsoon, which is part of the NAM is
characterized by heavy rainfall over southern Mexico, which quickly spreads northward along the
western slopes of the Sierra Madre Occidental (hereafter SMO) and into Arizona and New Mexico
by early July. Higgins et al. (1996) and Wallace (1975) have shown that there are increases in the
amplitude of the diurnal precipitation cycles during the summer monsoon. Mo & Berbery (2004)
shown the inverse relationship between the low-level jet (LLJ) over Great Plains and NAM, i.e., a
strong jet with diurnal variations during summer between the mountains and the Great Plains at
925 hPa (e.g., Bonner 1968; Higgins et al. 1997). The NAM is accompanied by a decrease in
midlatitude synoptic-scale transient activity over the adjacent United States of America (USA) and
northern Mexico as the extratropical storm track weakens and migrates poleward close to the

Canadian border by late June (Whittaker and Horn 1981; Parker et al. 1989).

In the case of NAM, the 1V is associated with various factors such as a weak monsoon circulation,
blocking high, intrusion of LLJ’s, and moisture subsidence in the monsoon basic flow. The NAMS
fully develops during the mature phase of boreal summer, and can be related to the seasonal
evolution of the precipitation regime. Surges of maritime tropical air northward over the Gulf of
California are linked to active and break periods of the monsoon rains over the deserts of Arizona
and California (Hales 1972). Among others, Bryson and Lowry (1955), Carleton (1986), and
Cavazos et al. (2002) shows the northward shifts in the subtropical ridge axis incline to promote

active monsoon convection (bursts) with southward shifts inducing drying (break) periods.
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Mullen et al. (1998) suggest a dominant 12-18 day oscillation in the precipitation over South
eastern Arizona, which was later ascertained by Cavazos (2002), who, through a detailed analysis,
also identified a secondary peak at 40-60 days in the region. Mo (2000) identified a 22-day mode
in the summer rainfall over New Mexico and Arizona. Higgins and Shi (2001) define the NAM
rainfall as the rainfall over the 5°-35°N, 125°-80°W region. They claim that a major portion of
the intraseasonal variability in this area is due to a 30-60 day signal connected to the Madden—
Julian oscillation. Similarly, used wavelet analysis to study monsoon rainfall in Arizona and New
Mexico. While a wavelet analysis on the monsoonal rainfall in 1990 over southeast Arizona, which
was above average, isolated strong periodicities in the 10-20 and 20-40 day ranges, but no such
dominant periodic variations were observed for the monsoonal rains in 1993 over the region (Hall-

McKim et al., 2002)

1.4.2 Intraseasonal variability of South American summer monsoon

The South American monsoon system (SAM) is distinguished by the seasonal change in
precipitation and moisture caused by alterations in the trade winds, and associated processes such
as surface pressure, convection, thermodynamic instability, etc. The SAM summer seasonal cycle
is essentially due to a variance in heating between South American land mass and the Atlantic
Ocean, analogous to the Indian monsoon scenario. In the pre-monsoon season, the insolation
amplifies the diabatic heating over the central-western tropical South America, and the ensuing
thermal gradient between the land and ocean facilitate the setup of the monsoonal circulations,
enhances the moisture advection across the equator by trade winds towards the continent centre.
Just as the ISM, the diabatic processes trigger convective instabilities. A combination of large scale
and small scale processes make sure that the monsoon persists throughout the wet season (Fu et

al. 1999; Fu and Li 2004, Fisch et al. 2004).
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The South Atlantic Convergence Zone (SACZ) is a critical feature of the SAM during the wet
season. It is distinguished by a quasi-permanent cloud band, oriented north-west to south-east,
and associated with low level wind and moisture convergence (Kodama 1992; Carvalho et al.
2002; 2004). It has an impact on densely populated areas throughout tropical and subtropical South
America. Heavy rain begins in late August in north western South America and moves south
eastward until it reaches the Brazilian highlands. The wet season in the Amazon core peaks during

austral summer (December—February).

Other than interannual, decadal time scales, SAM exhibits persistent “active” and “break”
periods/events in the intensity of rainfall, commonly known as Intraseasonal oscillations. Deep
convection over the Amazon begins to weaken in early March, and the dry season lasts for the
majority of the austral winter (Horel et al. 1989; Jones 1990). The SAM is a feature that has become
increasingly popular to describe the strong summertime convective activity, intense precipitation,
and large-scale atmospheric circulation features. The study of Zhou and Lau (1998) reviewed the
early definitions of monsoon systems, originally formulated to account for reversals in the large-
scale circulation that are driven by differential heating between landmasses and oceans. In
addition, the analysis by Zhou and Lau (1998), which was based on monthly averaged data, indeed
demonstrated that the summer season in South America contains the main ingredients to be
characterized as a monsoon system. Zhou and Lau (1998) also suggest that the easterly winds
prevail in the tropical Atlantic and eastern South America throughout the entire year, and seasonal
reversal of surface winds is not immediately apparent. However, when the annual mean is removed
from summer (January) and winter (July) composites of surface winds, the characteristic reversal
in anomalous low-level circulation becomes evident (see Zhou and Lau 1998, their Fig. 9 and

Grimm et al., 2021). In the context of monsoon systems, an important characteristic observed in
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the Asian—Australian region relates to the persistent “active” and inactive (or “break”) periods in
the intensity of rainfall amounts. In this respect, tropical intraseasonal oscillations have been found
to strongly modulate these “active” and “break” periods of the Asian—Australian monsoon system
(Vernekar et al. 1993). Thus, the Madden—Julian oscillation (MJO; Madden and Julian 1994) is
key in the occurrence of active and break phases of the Asian—Australian monsoon. Paegle et al.,
(2020) suggest that 1V of rainfall over South America is examined using singular spectrum
analysis. The dipole convection pattern with centres of action over the SACZ and the subtropical
plains is modulated by modes of different timescales. Both oscillatory modes with periods of 36—
40 days (mode 40) and 22-28 days (mode 22) influence convection over the SACZ with the faster

mode (mode 22) leading the variability over the subtropical plains.

In the recent Large-Scale Biosphere Atmosphere (LBA) experiment of the intensive field
campaign in January—March 1999, some limited observational evidence of variations in the
structure of convection and different large-scale circulation regimes was gathered. This experiment
took place in the Brazilian state of Ronddnia over the southwest part of the Amazon as part of the
Wet Season Atmospheric Mesoscale Campaign (WETAMC) and LBA Tropical Rainfall
Measuring Mission (TRMM) validation experiment (Silva Dias et al. 2000). Periods of easterly
and westerly 850-hPa winds in several Rondo6nia locations appear to be associated with different
physical and structural characteristics of mesoscale convective systems (Cifelli et al. 2002;

Petersen et al. 2001; Carvalho et al. 2002).

The MJO is a key tropical intraseasonal process, which controls and varies convection and winds
over the tropical and sub-tropical regions of South America (Carvalho et al. 2004; Jones and
Carvalho 2002; Liebmann et al. 2004a & b). Circulation Changes due to intraseasonal variations,

notwithstanding whether they are due to the MJO or otherwise, influence the moisture transport in
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the monsoon region (Herdies et al. 2002; Carvalho et al. 2010b). Over central Brazil, active phases
of the SAM are seen to co-occur with westerly wind anomalies, and break phases with easterly
wind anomalies (Jones and Carvalho 2002). Such changes in circulation are noted in association
with changes in the vertical distribution of moist static stability, which changes the 24-hour cycle
of convection, and thereby, the characteristics of mesoscale convective systems (Petersen et al.
2002; Cifelli et al. 2002; Rickenbach et al. 2002; Carvalho et al. 2002b). The synoptic scale activity
is associated with the active and break phases of the SAM regime, as well as variations in
circulation and thermodynamic properties. Propagating frontal systems facilitate convection in the
SACZ during active phase over central and eastern South America, (Garreaud 2000; Rickenbach

2002; Vera et al. 2006; Marengo et al. 2010; Cunningham and Cavalcanti 2006).

With all of these similarities in the three summer monsoons, | discuss the research objectives and

scope in the following sub-chapter.

1.5 Objectives and Scope of the study

1.5.1 Objectives

From the review of literature carried out in the previous sections, it is clear that there are certain
gaps in understanding the midlatitude interactions with the tropics during monsoons in India as
well as Americas from the context of monsoonal intraseasonal variations. and in. Based on these

gaps, | have framed four objectives. These are as follows:

1. To Delineate dynamic interactions between mid-latitudes and ISM from the context of the
initiation and development of a break phase over the Indian region, through analysis of

multiple cases.
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2. Examine if the mid-latitude-tropical interactions are also seen for the North and South
American summer monsoons as well.

3. Diagnosing the dynamical mechanisms behind the revival of ISM after a typical break
phase through analysis of multiple cases

4. To ascertain dynamical mechanism for revival of active conditions of ISM after a break

phase using WRF model.

1.5.2 Scope of the present study

The next section describes the datasets used in this study and the methodology adopted in this
study is discussed. In chapters 3 & 4, a detailed analysis establishes a similar evolution of the
breaks in the ISM, NAM, and SAM, and proposes a uniform mechanism based on the QRA and
blocking that causes these breaks. In chapter 5, | propose a mechanism for the revival of summer
monsoon rainfall after a break phase over the Indian region. In chapter 6, using the WRF regional
model, we diagnose the mechanism proposed for the revival of active conditions after a break
phase during ISM. In the final chapter 7, I discuss the conclusion of this research and the future

scope of the study.
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Chapter 2

Data & Methodology

Outline of the chapter

In this chapter, | discuss the source of the datasets used for the analysis. | also discuss the
methodology followed to analyse the genesis of the Blocking high, the sustenance of the break
phase in all three monsoonal regions and the mechanism for the revival of active conditions after
a break phase during Indian summer monsoon. In addition, | briefly discuss about the Weather

Research & Forecasting model and its importance.
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2.1 Data used

2.1.1 Observational data

| use gridded daily rainfall data (Pai et al., 2014) of 0.25° X 0.25° resolution, derived from the
observations of the India Meteorological Department (IMD) to observe the rainfall over the Indian
during break situations for the 1979-2007 period. IMD (Cyclone eAtlas- IMD) data is also used to

identify the dates of formation of Lows at the Head of the Bay of Bengal during the above period.

In addition, I have also used Daily gridded precipitation data derived from the Global Precipitation
Climatology Centre (GPCC) Full Data Reanalysis V.7 version (Schamm et al., 2016) to see the
spatial distribution of rainfall over North American and South American regions during summer
monsoon. This product is developed using weather stations data on a regular grid with a spatial

resolution of 1.0° latitude X 1.0° longitude. This dataset is based on data provided by NCEP-PSL.

2.1.2 Reanalysis data

| use reanalysed daily data sets of globally gridded Zonal wind (U), Meridional wind (V) and
Geopotential (@) from the NCEP-DOE Reanalysis 1l (Kanamitsu et al., 2002) of 2.5° latitude x
2.5° longitude resolution for the period 1979-2007. NCEP-II reanalysis datasets are developed
using available large data from Physical Sciences Laboratory, satellite data from 1979 to the
present and uses an updated forecast model, updated data assimilation system, improved diagnostic

outputs.
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Table 2.1: A list of source/weblinks of datasets used in the present study.

Sr. No. Dataset Source Weblink
1 Rainfall IMD http://www.imd.gov.in/
2 Rainfall GPCC https://www.esrl.noaa.gov/psd/data/qgridded/
3 Zonal wind, NCEP-II https://www.esrl.noaa.gov/
Meridional
wind, Sea
level pressure,
Geopotential
height
4 Lows RMC, IMD http://14.139.191.203/Login.aspX ;
http://www.imdchennai.gov.in/

2.2 Dates of break periods, and study region

Rajeevan and co-authors (2010) identified active and break events of ISM, and are defined as
periods during the peak monsoon months of July and August in which the normalized anomaly of

the rainfall over the core monsoon region (CMR) (18° N-28° N & 65° E- 88° E), exceeds 1 or is
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less than —1.0, respectively, provided the criterion is satisfied for at least three consecutive days.

They have shown the CMR is almost the same as that of the average all-India rainfall, and also

shown that the interannual variation of the all-India summer monsoon rainfall is highly correlated

with a correlation coefficient of 0.91 with that of the summer monsoon rainfall over the CMR and

suggesting that it is a critical region for the interannual variation.

Following this identification method by Rajeevan et al. (2010), 41 break events have been

identified through the 1979-2007 period. Various datasets over these breaks are used to generate

the weather and climate statistics for the break phases during the summer monsoon months over

India as tabulated below (Table 2.2).

Table 2.2: A list of break days based on Rajeevan et al., 2010 for the period 1979-2007 (J-July &

A-August)
Sr. No. Break Monsoon days (< 3mm/day) Year
1 2-6J, 14-29A 1979
2 17-20J, 13-15A 1980
3 24-27A 1981
4 1-8J 1982
5 23-25A 1983
6 27-29] 1984
7 23-25A 1985
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8 22-31A 1986
9 23-25], 30J4A, 8-13A, 16-18A 1987
10 14-17A 1988
11 18-20J, 30J-3A 1989
12 - 1990
13 - 1991
14 4-11J 1992
15 20-23J, 7-13A, 22-28A 1993
16 - 1994
17 3-7J, 11-16A 1995
18 10-12A 1996
19 11-15J, 9-14A 1997
20 20-26J, 16-21A 1998
21 1-5J, 12-16A, 22-25A 1999
22 1-9A 2000
23 31J-2A, 26-30A 2001
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25 - 2003
26 10-13J, 19-21J, 26-31A 2004
27 7-14A, 24-31A 2005
28 - 2006
29 18-22J, 15-17A 2007

Mo (2000) has shown the 7-day running mean precipitation (mm/day) averaged over Arizona and

New Mexico, i.e., 107.5°-112.5°W, 32°-36°N based on daily precipitation analysis by Higgins et

al. (1996). Based on this study, we have chosen (from their Fig.6) three cases of North American

break monsoon (Table 2).

Table 2.3: List of North American break monsoon days

Sr. No. Break Monsoon days (< 3mm/day) Year
1 17-25 July 1981
2 25 July -02 August 1995
3 16-24 July 2000

Gan et al. (2004) have shown the daily precipitation (mm/day) of west-central Brazil (primary

region of South American monsoon), i.e., 10°-20° S, 60°-50° W, during month of January for the
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1979-1996 period. Following Gan et al. (2004), six break spells are chosen (from their Fig. 19)

using the daily rainfall (Table 3) with less than 3mm rainfall of the west-central Brazil region.

Table 2.4: List of South American break monsoon days

Sr. No. Break Monsoon days (< 3mm/day) Year
1 22-24 Jan 1980
2 05-10 Jan 1981
3 16-19 Jan 1988
4 21-26 Jan 1990
5 02-05 Jan 1993
6 25-27 Jan 1996

2.3 Methodology applied

Atmospheric waves transport moisture, energy and momentum from their source. Atmospheric
waves extending large spatial extent are called planetary waves, and are a type of inertial waves
naturally occurring in rotating fluids. These waves are associated with pressure systems and the
Jet streams. Planetary waves play a major role in bringing the atmosphere to balance by
transferring heat, moisture and momentum from equator towards the poles and vice-versa. For
example, it is well known (e.g., Palmen 1951) that planetary waves in the subtropical westerly Jet
streams play a primary role in the maintenance of weather in mid-latitudes, and therefore seasonal

climate as well.
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Hide (1953), based on his laboratory experiments noted periodic changes in the shape of
propagating of planetary atmospheric waves. He named this kind of flow with regular periodic
change in the shape as a vacillating flow. Lorenz (1963) classified these waves into four categories
based on their progression and shape as a) a steady symmetric regime, b) a steady-wave regime,
c) a vacillating wave regime and d) an irregular wave regime. For example, Hadley circulation can
be seen as a steady symmetric regime; and a steady-wave regime & a vacillating wave regime
together form a Rossby regime. A Rossby regime is a group of waves such as steady waves as
well as steady waves with periodical change in the shape during progression. For example, SWJ
is a typical example of the vacillating flow in a barotropic atmosphere. The westerly waves
propagate from west to east and are associated with trough and ridges due to various factors such

as, for example, earth’s rotation, thermal gradient between equator and poles, etc.

Later, Charney and Devore (1979) found three equilibrium states for orographically-forced Rosshy
waves in a simple barotropic channel model, of which two were stable: a high index (resonant)
type state of blocking with strong waves, and a low index (non-resonant) zonal state. Most of the
subsequent observational studies identified quasi-stationary resonant waves in winter. In this
context, the subtropical westerly Jetstream undergo meridional changes along with the zonal
changes, such as low-index flow (LIF) and high-index flow (HIF) (Charney and DeVore 1979).
During LIF, the jet is weakened and tends to develop elongated troughs and ridges. In the case of
HIF, however, the jet is stronger than normal and narrower. As the jet weakens, the associated
troughs and ridges have considerable effect on the nearby regions. During southwest monsoon of
India, middle latitude westerlies exercise considerable influence on the monsoon weather over

northern India, essentially during breaks (for relevant studies, see subsection 1.3.2) In this context,
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it will be interesting to examine the relevance of vacillating flows in facilitating break monsoon

conditions.

2.3.1 Dynamical analysis carried out

2.3.1.1 Eliassen—Palm fluxes

From the view point of understanding the midlatitude interactions with the tropics at the upper
level, it’s important to observe the changes in the planetary baroclinic waves. To study the
maintenance of blocking high episodes, computation of the Eliassen—Palm (1961) (EP) fluxes will
be very useful as they represent the effect of transient and stationary eddy fluxes on the zonal-
mean circulation. The properties and application of EP fluxes have been discussed by several other
authors as well (Andrews and Mclintyre, 1976a; 1978a; Edmon et al., 1980; Tung, 1986) in detail

in previous studies.

We summarize them here in the Quasi-Geostrophic ambit for simplicity. Briefly, the EP flux is a
useful diagnostic of the propagation of waves (both magnitude and direction) in the meridional
plane. In the case of small amplitude waves, it represents the flux of wave activity, and its
divergence is zero for steady conservative waves. EP fluxes are also an important diagnostic for
wave propagation, so we try to figure out the Rossby wave propagation and its importance in the
formation of blocking high and its maintenance. Meridionally propagating eddies transport

momentum towards their generation region (Held, 1975; 2000).

The EP flux in pressure coordinates on the sphere is given, following Andrews et al., (1983), by

Fym =L OS@-UV), fVF) /0] s (2.1)
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Where ¢ is the latitude, P is the pressure, 0 is the potential temperature, 1o i the radius of the earth.

Bars () and primes (*) denote zonal means and deviations respectively, and u, v are zonal and

meridional velocities.

2.3.1.2 Energetics computations

Lorenz (1955) and Oort et al., (1962) defined the importance and consequences of the growth of
perturbations through the expense of the mean available potential energy and the mean kinetic
energy in a baroclinic and barotropic atmosphere respectively. They also have given mathematical
expressions for the spatial and temporal variations of the energetics. In our case, during break
phase of ISM, gquantifying the energy exchange between the SWJ and TEJ (e.g., Rao 1971) is

important.

The rate of conversion of mean kinetic energy to eddy kinetic energy is expressed as

Where m is the mass, K is the Mean kinetic energy (Joule/sec), K' is the Eddy kinetic energy, U
is the zonal wind (m/s) and V is the meridional wind (m/s). The u' and v’ have been obtained as
the daily anomalies from the zonal mean of the U averaged over 20° E and 120° E, and V', similarly
from the zonal mean of V. Equation 2 means that if there is divergence (convergence) of eddy
momentum transport in region of westerlies, Kgets converted into K'(K' gets converted into K),

that is, the disturbance is barotropically unstable (stable).
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The eddy momentum flux u'v' controls the structure of the mean zonal surface wind and of
meridional cells. This flux is significant for global circulation because it fulfils the global
momentum balance equation. The equatorial region's zonal momentum is transported to the
midlatitudes, where a flux convergence zone can be found. This is due to the global wind pattern,
which consists of easterlies in the equatorial region and westerlies in the midlatitudes. Whereas

the atmospheric waves are responsible for the transfer of zonal momentum.

Hence, the structure of the eddy momentum flux is fundamental to the mean state of Earth’s

atmosphere.
Assuming the stream function v as a function of latitude and longitude,
Given,

w =R, (y)sin[Kx +5(y)]

leads to

a—V/=V=KRCOS(KX +0)
OX

Therefore, u= _ov _ —[@sin(Kx + ) +@ Rcos(Kx +9)]
o oy oy

and wu :—KR%sin(Kx +5)cos(Kx+5)—%i KR? cos® (Kx + &)

In the above, () represents the zonal mean. From the above equation, the mean zonal momentum

can be expressed as
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2
1246 T
K oy

1247 1. If 2—5 IS negative, the wave tilts Northeast to Southwest (NE-SW).
y

1248  2.if 2—5 IS positive, the wave tilts Northwest to South east (NW-SE), in the first case (1) the eddy
y

1249  momentum transport is northward and while in the second case (2) the transport of eddy

1250 momentum is towards southward.

1251  2.3.1.3 Condition for unstable waves

1252 My research problem is closely connected to barotropic stability theory, and previously a few
1253  authors have discussed different mathematical methods of which three important methods are

1254  detailed below.

1255 e The eigen-value problem of linearized equation: Kuo (1951), by using linearized vorticity
1256 equation, defined the distinct profile conditions of zonal mean flow that would decide
1257 whether a disturbance would grow or dampen. Kuo also discussed the implications of such
1258 growing or weakening perturbations to the zonal mean flow.

1259 e Initial value problem of non-linear equation: Platzman (1952), Kuo (1953) and Syono &
1260 Aihara (1957) treat this problem as an initial value problem. This is done by prescribing
1261 certain initial conditions for the distributions of zonal mean flow and perturbations. Then,
1262 the higher order time derivatives of their kinetic energies are computed.
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e A method with statistical assumption: While Lorenz (1953) also acknowledges that this is
an initial value problem, he confines to prescribing only a few initial statistics of the flow,

rather than the whole profile of the flow pattern.

In steps of Kuo (1953), Syono & Aihara (1957) and Rao (1968; unpublished thesis) found an
analytical solution of the growing waves in a barotropic atmosphere. Rao 1971 introduced the
concept of neutral wavelength’ ‘L’, which isolates the stable shorter waves and unstable longer
waves in to two distinguished groups. It is to be noted that the final output of the solution is not
associated with the contribution of earth’s rotation. The detailed derivation is found in appendix I.
From this theory, it is proposed that the expression for the time change of perturbation kinetic

energy at the initial time is given by Rao (1968) as

%K, _ _
(W)o = 0  whenL=2DA3 (2.4)

> 0 when L>2D/\3
< 0 when L<2D/\3

Kr is perturbation kinetic energy and the left hand side of the above equation is a measure of
barotropic instability. Indeed, the associated waves longer than L (wavelength) become unstable
and below L are stable (Starr & White, 1954; Aihara, 1959). Whereas D/2 is the zonal width

between subtropical westerly jet and tropical easterly jet.
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2.3.1.4 Condition for barotropic instability

In our analysis, we use the criterion by Kuo (1949), which states that, for barotropic instability to
happen at a location, the meridional gradient of the absolute vorticity has to be either maximum or
minimum.

d (-dU _ ag _
sy tf)=0 =0 25)

Where U is the mean zonal wind, f is the Coriolis force and { is the absolute vorticity. We
use the criterion shown in equation (3) to explain the mechanism behind the formation of the after-
break synoptic disturbances over the Indian region and the Bay of Bengal, which reactivate the

Indian summer monsoon.

2.3.2 Statistical methods

2.3.2.1 One sample Student’s t test for composite analysis

In our composite analysis, the statistical significance of the composited signal is assessed by
computation of the ‘t’ statistic from a 2-tailed Student’s t-test. This is a standard test for composite

analysis. The ‘t’ is calculated as

t=2"#~ (2.6)

Where X is the sample mean, p is the population mean, o is the standard deviation of the population

mean and n is the number of cases.
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2.3.2.2 Student’s t test for two unequal variances

Two-sample T-Test with unequal variance can be applied as the samples are normally distributed,
and the standard deviation of both populations are unknown and assumed to be unequal with

sufficiently large sample size (>30)

— (x1—%2)—(U1—HU2)

2 5.2
517,527
G

tar 2.7)

(i+i)2
— nyg np
df = —=—=
(L)Z (2_)2
nq " np

ni-—1 'n2—1

x,= values of the first sample; X = mean of the values of the first sample; x,=values of the second

sample; y=mean of the values of the second sample, and df=degrees of freedom

2.3.2.3 Pearson’s correlation coefficient

Pearson’s correlation is also referred as Pearson's r. It is a measure of linear correlation between

two sets of data, such that the result always has a value between —1 and 1.

2L(xi=x)(¥i—=y)

r =
VIxi=%)2 X (vi-y)?

(2.8)
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r = correlation coefficient; x;= values of the x-variable in a sample; X = mean of the values of the

x-variable; y;=values of the y-variable in a sample, and y=mean of the values of the y-variable

2.4 A brief introduction to the Weather Research and Forecasting model

I prefer carry out few sensitivity experiments using a regional climate model in order to validate
the theory proposed in the present study. Here in our case, we use the Weather Research and
Forecasting (WRF) Model for its wide range of applicability in prediction & validation. WRF
model is mesoscale numerical weather prediction system designed for both atmospheric research
and operational forecasting applications. The model is useful for a variety of meteorological
applications at scales ranging from tens of metres to thousands of kilometres. It features two
dynamical cores, a data assimilation system, and the other one is a software architecture supporting

parallel computation and system extensibility.

WRF model is a collaborative output from the National Centre for Atmospheric Research (NCAR),
National Centres for Environmental Prediction (NCEP) and the Earth System Research
Laboratory, the U.S. Air Force, the Naval Research Laboratory, the University of Oklahoma, and
the Federal Aviation Administration (FAA). WRF offers operational forecasting a flexible and
computationally-efficient platform, while reflecting recent advances in physics, numeric, and data

assimilation contributed by developers from the expansive research community.

Importantly, all the sensitivity experiments conducted using WRF model and their discussion is

carried out in the chapter 6.
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Chapter 3

Breaks in Indian Summer Monsoon

Outline of the chapter

In this chapter, I carried out a few dynamical and statistical analyses, to understand the interactions
between the upper level midlatitude circulation features and the tropical summer monsoon
circulation of Indian region. Based on the results from the analyses, I propose a mechanism for the
genesis of the Blocking high and how it facilitates a monsoon break phase over the core monsoonal

region of the Indian region.

49



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

3.1 Introduction

The ISM experiences intraseasonal variability associated with higher and lower rainfall patterns.
The lower spells of rainfall are called breaks in monsoons. These are characterized by relatively
sparse rainfall over the core monsoon region (CMR) of India, which is bounded by 18° N to 28°
N, and 65° E to 88° E. The region is referred to as the core monsoon region because the summer
monsoon rainfall in this region is highly correlated with the area-averaged summer monsoon
rainfall over the whole of India (correlation coefficient=0.91) (Rajeevan et al., 2010). The rainfall
variations in CMR are very important for several aspects such as agricultural production and
energy generation. Intraseasonal variations of rainfall are manifested as (a) monsoon breaks of low
rainfall, (b) normal (c) or heavy rainfall in the CMR region, which are referred to as active periods.
Hence the years with low rainfall in the CMR region associated with prolonged breaks are of vital

importance. In this context, we propose to study the dynamics leading to break situations.

From a dynamical perspective, Raman and Rao (1981) suggested that the prolonged breaks causing
severe summer monsoon droughts over the Indian sub-continent are due to upper tropospheric
blocking high over East India (90° E to 120° E) associated with baroclinic waves. Thus, this
blocking high is perceived to be the initiator of the monsoon break. However, Raman and Rao
(1981)’s conclusions are based on studying a small number of cases. In this context, I evaluate the
potential importance of large-scale circulation that leads to the blocking high and subsequent
generation of break monsoon conditions. In this analysis, we find the fundamental characteristics
that are suggested to lead to the blocking high, namely, the planetary wave resonance as envisaged

by Charney and DeVore (1979).
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In this context, the following subchapters 3.2 & 3.3 discusses the results of the conditions that lead
to break phase and conditions for the genesis of blocking high using reanalysis data in the Indian
monsoonal region. The key findings are summarized in the subchapter 3.4 by proposing a robust

method to identify a break phase in the monsoon regions with the interactions of midlatitudes.

3.2 Breaks in the Indian Monsoon Season: Rainfall characteristics and associated synoptic

situation

Fig. 3.1 illustrates 200 hPa composite geopotential height (Z200) zonal anomalies for a) prebreak,
b) break, and c) after-break periods for the 41 cases of Indian break monsoon (Table 2.1). The
hatched areas in Fig. 3.1 indicate composite Z»00 anomaly significant the 95% confidence using a
two tailed student’s t-test. The composites of the zonal anomaly of Zzq0, shown in various panels
of Fig. 3.1, indicate that the high pressure region is split into two vortices, as already noted earlier
(Siu & Bowman, 2020). Siu & Bowman (2020), who refer to this quasi-stationary high-pressure
zone during the summer season as the ‘Asian monsoon anticyclone', claim that the split structure
is due to a combination of various factors such as diabatic heating, its interactions with Rossby
waves propagating along with the subtropical jet, and internal dynamics within the anticyclone.
Notably, during the break phase, we see this high over India extending to lower levels at the 1000
hPa (figure not shown).

Differences in zonal anomaly of Z»qo are not immediately perceivable among figures 3.1a, 3.1b
and 3.1c. Therefore, to focus on the changes in the upper tropospheric high during the break
monsoon situation, we present in Fig. 3.2a the difference obtained by subtracting the composite
daily zonal anomalies of Z»qo for the prebreaks from that over the breaks. We have also subtracted
the composite zonal anomalies of Z»oo during the after-breaks from that over the breaks (Fig. 3.2b).

Similar differences have also been generated for the SLP (figures 3.2¢ & 3.2d). In figures 3.2a and
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3.2b, we see negative values of the Zxoo 0ver northern and central India, statistically significant at
95% confidence levels from a 2-tailed Student’s t-test.

Fig. 3.2a suggests, in a relative sense, a substantially weak high and so an increased convergence
over the north Indian region during breaks compared to the prebreaks and also relative to the after-
breaks (Fig. 3.2b). The positive values of the SLP in figures 3.2¢ & 3.2d suggest a relative filling
up of the surface low, i.e., increase in the SLP. In other words, the various panels in Fig. 3.2 suggest
arelative sinking of air from the upper level to lower level over north India during breaks compared
to the prebreak and post break conditions. This is because of the differences that are indicative of
a relative upper level 200 hPa convergence and a relative low level divergence during the breaks.
This is also clear from a similar composite difference of the daily 1000 hPa geopotential height
zonal anomaly between monsoon breaks and prebreaks (Fig. 3.3a) and that between monsoon

breaks and after-breaks (Fig. 3.3b).
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Figure 3.1: Composite daily zonal anomalies of Geopotential height (m) over the monsoon season
of 1979-2007 in the Indian region during (a) prebreak periods, (b) break periods, and (c) after-
break periods. The hatching in the Figures 1 a-c indicates the regions where the composite
Geopotential height is significantly different from zero at 95% confidence level. Statistical

significance has been obtained using a two-tailed one sample Student’s t test. Note that
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significance test has not been applied to negative values. The shaded region vary between -120 m

to 120 m, with an interval of 20 m.
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Figure 3.2: Difference between the composite daily zonal anomalies of Geopotential height (m)
during the 1979-2007 period over the Indian region between (a) break and prebreak periods (b)
break periods and after-break periods. Difference in composites of zonal anomalies of daily mean
sea level pressure (hPa) over the Indian region during the 1979-2007 period between (c) during-
break and prebreak periods, and (d) during-break and after-break periods. The shaded region in
the panels (a) & (b) vary between -50 m to 50 m, with an interval of 10 m and those in panels (c)
& (d) vary between -2.4 hPa to 2.4 hPa, with an interval of 0.4 hPa. The hatched regions indicate
locations of significant differences, at 95% confidence level, in daily zonal anomalies of

Geopotential height in panels (a) & (b), and that of daily mean sea level pressure in panels (c) &
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1441  (d). Statistical significance has been obtained using a two-tailed two sample Student’s t-test with

1442  unequal variances.
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1445  Figure 3.3: Difference between the composite daily zonal anomalies of Geopotential height at
1446 1000 hPa (m) during the 1979-2007 period over the Indian region between (a) break and prebreak
1447  periods (b) break periods and after-break periods. The shaded region in panels (a) & (b) vary
1448  between -20 hPa to 20 hPa, with an interval of 5 hPa. The hatched regions indicate locations of

1449  significant differences, at 95% confidence level.
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In addition to Ramaswamy (1962), Krishnan et al. (2009) also note the intensification of the
anomalous westerly troughs was accompanied by retardation in their eastward movement from
west central Asia toward the Tibetan plateau for 20 years mean boreal summer season. Krishnan
et al. (2009) also suggest that, using upper-level circulation charts during weak monsoon periods
indicate zonally asymmetric variations of the Tibetan high under the influence of southward
penetrating midlatitude troughs (lows) over west central Asia and the formation of stagnant
blocking highs between 90° and 115° E over East Asia (Raman and Rao 1981). According to
Raman and Rao (1981) at 200 hPa, a dominant ridge on the North, with a cut off high or blocking
high on the southern side of the westerly jet, tends to associate with a break phase over the Indian
region. Raman and Rao (1981) show the various stages of blocking high over Southwest Asian
region (their Fig. 1), of which the first stage is with an amplified ridge at 200 hPa. This
amplification is clearly akin to the increase of amplitude of wave number 7, (in their Fig. 1 we
note an approximate distance between two ridges or wave length of about 50 degrees) and this
amplification is a sign of resonating affect between the planetary Rossby waves of the westerly
jet. Further, we also see this amplification associated with the ridge in the individual case study of
ISM of daily geopotential heights at 200 hPa & 1000 hPa and rainfall distribution, and are shown
in supplementary information (figures 3.4 a-c, 3.5 a-c & 3.6 a-c). The daily area-averaged
normalised rainfall anomaly over the core monsoon region during this event was lower than ~3 for
at least three of the 10 days over which the long break event occurred. Qualitatively, the other
features, such as the anomalous shift of the monsoon trough northward have also been observed

during this case (figure not shown).

This dominant ridge remains for about a few days up to two weeks. Also, these authors found a

closed “warm” high extending the entire column with an increase of surface pressure by about 20
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hPa. The warmth of the high indicates sinking motion. Raman and Rao (1981) also noted a trough
at upper levels. From this context, it is a typical case with a few days of exacerbated break
conditions. This typical case study provides a glimpse into the blocking high dynamics, which are

critical in understanding the characteristics of sub-seasonal variability.

Fig. 3.7 depicts the vertical velocity (w; in Pa/s) of the Indian summer monsoon during the
prebreak, break, and after-break periods, as well as the difference in it between the break and
prebreak periods and that between the break and after-break periods. A raising motion can be seen
in the composites of prebreak, break, and after-break in figures 3.7a, 3.7b, and 3.7c, but the
magnitudes differ as shown in figures 3.7d & 3.7e. In figures 3.7d & 3.7e, we see a sinking motion
(positive @ values extending vertically) at 20° N. The observed positive ® values confirm the
sinking motion during breaks, as previously discussed in Fig. 3.2. The changes in the o (figures

3.7 a-e) are significant at 95% confidence level from a two tailed students t-test.
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Figure 3.4a: Daily geopotential height distribution at 200 hPa level for a prebreak period (23-31

July 2000) over the Indian region.
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1489  Figure 3.4b: Daily geopotential height distribution at 200 hPa level for a break period (01-09

1490  August 2000) over the Indian region.
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1493  (10-18 August 2000) over the Indian region.
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1498  Figure 3.5b: Daily geopotential height distribution at 1000 hPa level for a during-break period

1499  (01-09 August 2000) over the Indian region.
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Figure 3.6¢: Daily spatial rainfall distribution for the after-break period (10-18 August 2000) over

the Indian region.
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Figure 3.7: Composite vertical wind zonal anomalies (x107%) (omega) (Pa/s) over Indian region
and longitudinally averaged along 60°E t0100° E during the summer monsoon for the 1979-2007
period, (a) prebreak periods (b) during-break periods, and (c) after-break periods, (d) difference
between the composite break and composite prebreak periods, and (e) difference between the
composite break and composite after-break periods. The shaded region in panels (a) (b) & (c) vary
between -120 hPa to 30 hPa, with an interval of 10 hPa and those in panels (d) & (e) vary between
-6 hPa to 3 hPa, with an interval of 0.5 hPa. The hatched regions indicate composite omega zonal

anomalies are significant at 95% confidence from a two-tailed Student’s t-test.
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Nonetheless, enhanced subsidence should be associated with reduced rainfall., figures 3.8a, 3.8b
& 3.8c show the corresponding composite daily rainfall over the Indian region for the prebreak,
break, and after-break periods, respectively. The rainfall changes, shown in figures 3.8a, 3.8b &
3.8c are significant at 95% confidence level from a two tailed students t-test. Figures 3.8d & 3.8e
show the difference in rainfall between the composites of break & prebreak, and that between the
break & after-break periods, respectively. Figures 3.8d & 3.8e demonstrates that the Indian region
undergoes a decline in rainfall during the breaks as compared to the prebreak, and after-break
composite periods. The low or no rainfall in the CMR of India during the breaks is evident due to
the relative sinking motion (Figures 3.2 & 3.7) and the changes in the panels of figures 3.8d &
3.8e are significant at 95% confidence level using two tailed students t-test.
From the above observations, we notice two significant findings after conducting composite
analyses (Figures 3.1, 3.2, 3.7 & 3.8) and individual study of each case (figures not shown)

e The sinking due to upper level (200 hPa) convergence and SLP divergence at lower level.

e A blocking high forming due to the increase of amplitude of the wave, provoking “sinking”

and this condition is discussed further below.

Also noted is that, in all the “break™ monsoon cases, there is an increase of rainfall near “foot hills
of the Himalayan region”. We note that at the lower levels (figures 3.2c & 3.2d), the monsoon
trough shifts to the foot hills of the Himalayan region during the breaks (e.g., Raghavan, 1973).
Apart from the raising motion in the monsoon trough in this location, we also note that there are
“northerlies (or north westerlies)” near the foothills. These strong north westerlies at Himalayan
foothills are along the monsoon trough, cannot cause high rainfall as explained below (fig. 2).

However, we see a good rainfall across the foot hills of the Himalayan region, and a low or no
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rainfall situation at the core monsoon region or most of the Indian region with the sinking

conditions during the break phase. The rising motion at the foothills as explained below

W—uah+vah
T Tox ay '’

Here, h is the height of the mountain in the northwest (x) direction, and u is the daily zonal wind.
Here in the first term, u is positive because of the westerlies during the break. Theg—z is positive
because the trough is on the west side of the foot hills, and the height increases towards east. The

. . . on.
other term is almost zero because along the foot hills for the Northerlies o is very small or zero.

Note that figures 3.2c & 3.2d show a strong gradient of SLP zonal anomalies at North of 20° N

10P

and East of 90° E, indicating approximately, a geostrophic westerly zonal wind u, = — 7y e,

we note a high pressure zone on the left of the Himalayan and central Indian region, low pressure
zone on Tibetan region i.e., right of the Himalayan region (figures 3.2¢ & 3.2d), and the Himalayan
region height gradient is Z—: is strong along the monsoon trough region, indicating a pressure
decrease from south to north. Thus, a strong raising motion and high rainfall occurs. Also, as we
suggested, in “all” cases of break monsoon a Blocking high forms. By considering anomalies of
all the cases, we see in composite Fig. 3.2, a relative “upper level low”. This low, together with

the implied convergence at 200 hPa and a high with divergence at the surface as indicated by the

SLP (figures 3.2c & 3.2d) provokes the sinking ahead of the trough, as inferred above.
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Figure 3.8: Composite Rainfall (mm) over Indian region during the Indian summer monsoon for
the 1979-2007 period, (a) prebreak periods (b) during-break periods, and (c) after-break periods,
(d) difference between the composite break and composite prebreak periods, and (e) difference
between the composite break and composite after-break periods. The shaded region in the panels
(@) (b) & (c) vary between 3 mm/day to 15 mm/day, with an interval of 3 mm/day. The shaded
region in panels (d) &(e) vary between 2 to 6 mm/day & -2 to -6 mm/day, with an interval of 1
mm/day. The hatched regions indicate composite rainfall are significant at 95% confidence from

a two-tailed Student’s t-test.
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3.3 Genesis and Maintenance of the Blocking High Episode

From the context of Figures 3.1 3.2, 3.6 & 3.7, the occurrence of monsoon breaks boils down to
the question of how the blocking forms, develops, and subsides with time. Some theoretical aspects
on blocking high formation, maintenance, and dissipation were proposed in the previous studies.
The pioneering theory on the formation of blocking high by Charney and DeVore (1979), for
example, envisages interactions of free Rossby waves of different wavelengths with those of
stationary waves. They suggested that the resonance of stationary free (Rossby, 1939) planetary
waves interacting with stationary Rossby waves forced by topography and/or differential heating

generates large-amplitude planetary waves which are essential in the formation of a block.

In continuance, Fig. 3.9a depicts the global average of zonal wind composite at 200 hPa (hereafter
as Ungo), for prebreak, during-break and after-break periods. We see a peak of ~20 m/s, at 40°N in
all three composites. This indicates a strong and narrow jet peak in the northern hemisphere, which
is prevalent around mid-latitudes during the northern summer. Such strong and narrow jets form
stable, zonally oriented waveguides, as per Kornhuber et al., 2017. Kornhuber et al., (2017) show
that the preferred phase position of the zonal wind peak at a single location is conducive for QRA
of waves with wavenumbers 7 and 8 (Kornhuber et al., 2017). This suggests that we can expect
an amplification of such waves due to QRA. Sometimes, we also find bimodal peaks in zonal
winds in the Northern hemisphere, from June to August (also includes Indian summer monsoon).
As an example, we present, in Fig. 3.9b, the zonal wind at 200 hPa as a function of latitude during
various stages of a strong break event, i.e., prebreak (23-31July 2000), during-break (01-09 Aug
2000), and after-break (10-17 Aug 2000) period. During the prebreak phase, we note a maximum
Uao0 of 23 m/s at 45° N and a secondary peak of about 7 m/s at 75° N. During the break phase, the

peak Uago with a magnitude of 18 m/s is located at 50° N, and with a secondary peak at 80° N of
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value 11 m/s. These profiles are very similar to those given by Mann et al., (2018) (their Fig. 1b).
The secondary peak at 80° N is highly favourable for the resonant amplification of the waves with
wavenumbers 5-8 range. The profile during the break with a double peak structure of the zonal
wind is also an efficient waveguide as noted by Manola et al., (2013). If the waveguide is
circumpolar, then the wave energy is efficiently trapped and waves constructively interfere with

the forced waves leading to resonance.

To verify the possible application of Charney and DeVore (1979) theory, we show in Fig. 3.10, a
composite of the amplitude spectra of the first ten harmonics of 200 hPa meridional wind during
the prebreak conditions, at 45° N. We note that wave number 7 is prominent for the individual
case, with an amplitude of ~14 m/s (Fig. 3.10). Indeed, the corresponding composite for the
prebreak shows that the wavenumbers 5, 6 & 7 are dominant, with an amplitude of ~7 m/s (Fig.
3.10). The increase in the amplitude of the wavenumber 7 as compared to its amplitude during
prebreak is twice its prebreak value. Kornhuber et al (2017) suggest that most QRA events are
found for wave number 7, which also is associated with the longest duration. This shows the
important role of QRA for the formation of the Blocking high over India during the 41 break
monsoon cases in agreement with several authors (Manola et al 2013; Kornhuber et al., 20171

Mann et al., 2018).
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Fig. 3.9: Globally zonal averaged U wind (m/s); (a) (upper panel): for the composite prebreak,
composite during-break & composite after-break periods of ISM (Table 1), cases available during
the 1979-2007 period; (b) (lower panel): Similarly, for the case study, prebreak 23-31July 2000,

during-break: 01-09 Aug 2000 and after-break 10-17 Aug 2000 of ISM.

68



1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

Indian summer monsoon; 200 hPa; 45° N

—=—Prebreak 45 N 2000 -+--Prebreak composite —=CLIM JUL50 N —=CLIM JUL 45 N ——STD DEV

Q
~
£ 16
o 14
K
2 12
£ 10
[10]
- 8
£
S 6
® g
o
i 2
§ 0

Wavenumber

Fig. 3.10: Wavenumber spectrum using meridional wind (m/s) at 200 hPa level for; the case study
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monsoon, climatological mean of month July during the 1979-2018 period at latitude 45° N & 50°

N, and standard deviation for all the ten harmonics of July at 45° N for the period 1979-2018.

As mentioned earlier, Edmon et al., (1980) derived the EP flux (vectorF, py, from equation 1)
from the quasi-geostrophic equation for the large-scale studies (Andrews et al., 1983). The EP flux
is a direct measure of the total eddy forcing of the zonal mean state by eddies. Edmon et al., (1980)
suggest that the F, py (see equation 1) is also a measure of net wave propagation in the vertical
and the latitudinal direction. Edmon et al., (1980) also mentioned that for quasi-geostrophic
planetary waves, the sense of arrow representing F,, py gives the sense of the group velocity. Also,

the contours of F, py represent the role of zonal force on the mean state by the total effect of the

quasi-geostrophic eddies.
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Fig. 3.11a shows the EP flux for the composite of 41 break cases during the period 1979 - 2007.
In this figure, we see a convergence maximum at 150 hPa level near 30°N, and even at 200 hPa,
close to 30°N. This convergence of EP fluxes implies a deceleration of zonal wind, thus keeping
the blocking high in place during the period of the breaks. Also, this high over the main monsoon
region provokes sinking and scanty or no rainfall or a break monsoon. Subsequently, Fig. 3.11b
depicts EP fluxes for the JJAS climatology during the 1979 — 2019 period, which shows much
more weakened convergence at 150 hPa & 200 hPa. Similarly, in the single case study (Fig. 3.11¢),
the EP cross-section shows a very strong convergence at 200 hPa around 30°N during the 01-09

August 2000 period, particularly when the blocking high is observed over the Indian region.

Further, during the amplification of the Rossby waves of the sub-tropical westerly jet due to QRA,
we observe the development of two remarkable features during the break phase i.e., (1) strong
zonal wind shear in the lower latitudes and (2) a split in the jet (core) structure is seen in the higher
latitudes, these are the typical characteristics of the blocking high, as noted by Trenberth (1986)
for the Southern Hemisphere (SH) scenario. In this context, Fig. 3.12 shows the cross-section of
mean zonal wind anomalies averaged over 60°E to 100°E for all prebreak, during-break and after-
break periods. Here, this feature is noted for the first time during the southwest monsoon break
case and is statistically significant at 95% confidence using a two tailed student’s t-test. The strong
zonal wind shear is known to cause barotropic instability generating a monsoon depression (Rao,
1971; Govardhan et al., 2017). In the case of a single case study, Fig. 3.13 shows the cross-section
of daily mean zonal wind averaged over 60° E to 100° E from 23July — 18 August 2000. Initially
on 23July 2000, a westerly jet shifts south to 50° N and an easterly jet to 5°N. At the beginning of
the break phase, over CMR on 31 July 2000, the easterly jet intensifies and shifts north to 20° N,

and the westerly jet shifts south to 35° N, generating a strong zonal wind shear in the upper
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1654  troposphere in lower latitudes. Then, further to the north of 60° N, the increasing speed of the sub-

1655  tropical westerly jet is associated with a split jet structure on 06 August 2000.
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Fig. 3.11 (a): Eliassen-Palm fluxes cross-section of composite during-break periods of Indian
summer monsoon; (b): Climatological Eliassen-Palm fluxes for the summer season, JJAS during
the 1979 — 2007 period. (c): Eliassen-Palm fluxes for the case study during the break period 01-
09 August 2000 of ISM. In all the figures, the contour interval is 50 m®. The dashed lines represent

convergence and continuous lines represent divergence.
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Figure 3.12: Vertical-latitude structure of zonal anomalies of daily U wind (m/s) which are
longitudinally averaged between 65°E to100° E, for (a) ccomposite prebreak, (b) composite
during-break and (c) composite after-break spells of Indian summer monsoon. The hatched region
is significant at 95% confidence using a two-tailed Student’s t test. In all the figures, contouring

vary between -5 to 5 (m/s) with an interval of 1 m/s
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Figure 3.13: Structure of daily zonal wind anomalies which are zonally averaged between 60°E
t0100° E, before a break (a) prebreak (23-31 July 2000); (b) during-break (01-09 August 2000)

and (c) after-break (10-18 August 2000).

Fig. 3.14a shows the latitudinal variation of composite zonal wind, eddy momentum transport, and
condition for the barotropic instability (henceforth as CBI) variation for prebreak, during-break
and after-break periods. Similarly, the case study (Fig. 3.14b) illustrates the break period 01-09
August 2000 at 200 hPa. A subtropical westerly jet at 35° N and a high latitude jet at 55° N are
noted. The eddy momentum transport increases from the equator to around 42° N, decreases to a

minimum at 60° N, and then increases again. The necessary condition for barotropic instability
2
(Kuo, 1949; 1951),5 — Z—y’: = 0 occurs at 20°N, 40°N, 60°N and near 80 N. A split jet can be seen

at 45° N with mean zonal wind less than 10 m/s.
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A similar study by Trenberth (1986) (Fig. 2 in Trenberth's paper) shows the existence of CBI,
indicating that eddies may grow locally at the expense of the kinetic energy of the zonal flow, on
the poleward flanks of the two jets. A minor difference was observed between our results and
Trenberth’s (1986) analyses, that the zonal wind values in our study for the Northern Hemisphere

(NH) summer are much lower than in his work for the SH. In our case (Fig. 3.14), there is a

divergence of eddy momentum u'v' between 30°N and 45° N and the zonal wind (U) 1s positive
from 30° N and 45° N. Thus, from equation 2 of methodology, we can infer an increase of eddy
kinetic energy or barotropic instability. Similarly, on the poleward side of the mid-latitude jet, there
is a divergence of momentum from 65°N to near about 80°N and U is positive. Again, this indicates
the occurrence of barotropic instability. This instability is similar to that noted by Rao (1971) and

Govardhan et al., (2017).
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Fig. 3.14: (a) Latitudinal variation of zonal wind (m/s), eddy momentum (m?/s?) transport and
condition for the barotropic instability (CBI), which are zonally averaged between 60° E t0100° E
for composite during-break periods at 200 hPa during the 1979-2007 period of ISM. (b) Latitudinal
variation of zonal wind (m/s), eddy momentum (m?/s?) transport and condition for the barotropic
instability (CBI) for the case study during the break period 01-09 August 2000 at 200 hPa height

of ISM.
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3.4. Summary of the chapter

Using observed rainfall datasets and NCEP/NCAR II reanalysed datasets over the broad
period 1979-2007, I study 41 known break cases in the Indian break summer monsoon. I find that
the formation of a blocking high over sub-tropical west Asia a few days earlier is crucial for the
manifestation of break monsoon conditions over the India region. Importantly, our study
essentially shows that the formation of these blocking highs preceding the breaks is due to the

quasi-resonant amplification of planetary waves.

For the occurrence of breaks, the aforementioned transient blocking high is weaker than the
seasonal high pressure at upper levels over the Indian region. Because of the presence of this
transient blocking, the high pressure weakens, causing a sinking motion relative to the prebreak or
after-break period, resulting in a filled-up surface low and, eventually, a reduction in daily rainfall.
The following chapter examines whether the sequence of events associated with Indian breaks,
namely the formation of an upper level blocking high due to resonance of planetary Rossby waves
at mid-latitudes, followed by the break and relative sinking over the core monsoon region, could

also explain North and South American summer monsoon breaks.
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Chapter 4

Breaks in North & South American
summer monsoons

Outline of the chapter

In this chapter, I investigate the interactions between the upper level midlatitudes and tropical
summer monsoon circulation in North and South American regions, which is similar to the break

formation mechanism discussed in chapter 3.

In this context, I look into similarity between the Indian summer monsoon and the North and South
American summer monsoon systems, specifically the mechanism for a break phase, with the goal

of developing a unified theory.
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4.1 Introduction

In continuation of chapter 4, this chapter is primarily concerned with identifying similar
break dynamics between ISM and NAM, SAM systems. The mean evolution of the monsoon from
Mexico to the USA, together known as NAM region, is characterized by the regular northward
progression of heavy precipitation from southern Mexico by early June, which quickly spreads
north into the southwest United States of America (USA) by early July (Higgins et al. 1999).
Cavzos et al. (2002) made a systematic and important study about the NAM for the period 1980 -
93. They found “bursts” and “breaks” in a monsoon season. In a spectral analysis of daily summer
rainfall, they also found a significant peak at 12-18 days period and also a secondary significant
peak near 40 days period. A zonal wet mode (enhanced monsoon ridge) is the most typical mode
that characterizes the mature phase of the monsoon in the southwest states of the USA. Wet (dry)
summers in the southwest states of the USA are linked to strengthening and northward
displacement (weakening and southward displacement) of the monsoon anticyclone (Carleton et
al., 1990; Douglas et al., 1993; Higgins et al., 1998; Castro et al., 2001). But, Cavazos et al. (2002)

found that eastward location of anticyclone is associated with wet conditions.

The onset of monsoon in Arizona is frequently abrupt, due to the sudden replacement of desert air
mass with humid air mass (Moore et al., 1989). Very similar conditions happen over the South
American Monsoon region and perhaps even over India, the monsoon onset is abrupt (Rao &
Ergodan 1989). Higgins and Shi (2001) noted wet and dry periods of NAM, in western Mexico
and South West USA and are linked to 30-60 day variations associated with MJO. This could be
again seen similar to India's summer monsoon variations. In the case of the South American
Monsoon System (SAM), during the austral summer season as well, there exist periods of

enhanced (reduced) convection and higher (lower) rainfall in central and South Brazil (Bolivian
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Altiplano and northern South America). The direction of wind anomalies in the Rondonia state,
Brazil, is used by Jones and Carvalho (2002) to classify a 3-4 day period known as the Westerly
and Easterly low-level wind regimes. During the prevalence of westerly (easterly) anomalies,
enhanced (reduced) convection and rainfall is observed over the Bolivian Altiplano and in the
North of South America (their figure No. 9) (Jones and Carvalho, 2002), which also shows a clear

blocking high, similar to the Indian summer monsoon case.

Similar to the mechanism of break phase of ISM, i.e., the potential relevance of mid-latitude
blocking high for the break monsoon, it is important to ascertain the robustness of this hypothesis
and its implications for changing of meridional zonal wind stress based on examination of the
sufficient number of break monsoon cases. Furthermore, it will also be pertinent to examine
whether these mechanisms could also apply to the break monsoon condition in the North and South
Americas in addition to the Indian Monsoon region. These are the primary goals of the present
investigation. In this context, this chapter is structured as follows. The following subchapter 4.2 &
4.3 discusses the results of the conditions that lead to break phase and conditions for the genesis
of blocking high using reanalysis data in the North and South American monsoonal regions. The

key findings are summarized in section 4.4.

4.2 Breaks in North American Monsoon

Vera et al., (2006) carried out a brief discussion of intra-seasonal variability for the SAM
and NAM systems. Vera et al., (2006) noted, a high located east of the United States of America
during the dry (or break) period; in contrast, during the wet period, the high is located to the west
(their figures 10a &10b). The eastern high during the break period is reminiscent of the blocking

high over Indian and South American regions.

80



1785

1786

1787

1788

1789

1790

1791

1792

1793

Fig. 4.1 shows the composite daily zonal anomalies of Z»0o during prebreak, break and after-break
periods. In all the panels of Fig. 4.1, we note a high at 40° N and 90° W over the United States of
America (USA). During the break period, the corresponding composite Z»o0 zonal anomalies (Fig.
4.1a) over the North American region shows a clear blocking high, which is very much similar to
the dry period high (Fig. 4.1) of Vera et al., (2006). Also, one can note a high pressure at 40° N in
southern parts of the United States of America (USA). In our case, Fig. 4.2 illustrates the dry/break
rainfall period for 16-24 July 2000 over the NAM region. Notably, we see the deficit of rainfall

over the Mexican country and southern states of the USA.

(a) Pre—break; GPH; 200 hPa

180 150W1 20W90W 60W 30W 0
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1794  Figure 4.1: Composite daily zonal anomalies of Geopotential height (m) over the monsoon season
1795  of 1979-2007 in the North American region during (a) prebreak periods (b) break periods, and (c)
1796  after-break periods. The hatching in the Figures 10 a-c indicates the regions where the composite
1797  Geopotential height is significantly different from zero at 95% confidence level. Statistical
1798 significance has been obtained using a two-tailed one sample Student’s t test. In all the figures,
1799  positive values are shaded, and negative values are shown in contours. Note that significance test
1800 has not been applied to negative values. Contours vary between -120 m to 0 m, with an interval of

1801 20 m. Same interval in shading, as evidenced by the greyscale shown, is used for positive values.
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1803  Figure 4.2: Daily rainfall during dry/break period, 16-24 July 2000 over the North American
1804  region.
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Figures 4.3a & 4.3c show the differences in the composite Z»o0 between break& prebreak periods
and that between SLP zonal anomalies. Figures 4.3b & 4.3d show corresponding differences
between breaks & after-break periods. Figures 4.3a & 4.3c depict a clear low pressure region at
200 hPa over the Southwest region of the USA during the breaks as compared to prebreaks. The
SLP zonal anomalies show a corresponding relatively high pressure region to the eastern United
States and a very weak low to the west. This situation, just as in the case of the Indian monsoon
breaks, suggests a convergence at a high level and a divergence at a low level indicating sinking
motion in accordance with the break conditions. In the after-break situation, figures 4.3b & 4.3d
are somewhat similar situation prevails, but to the western side of USA. The similarity to the Indian
summer monsoon in terms of the extent of significant signal isn't as obvious statistically because
only a few cases were only available for this NAM composite analysis. Fig. 4.4 shows the o (Pa/s)
during the prebreak, break, and after-break periods, as well as the difference between the break
and prebreak periods and the difference between the break and after-break periods for NAM
system. A similar raising motion can be seen in the composite prebreak, break, and after-break
periods in figures 4.4a, 4.4b, & 4.4c, but the magnitudes differ as shown in figures 4.4d & 4.4e. In
Fig. 4.4d, we see a strong sinking motion (positive ® values) at 10° N and in Fig. 4.4e we note a
very weak raising motion compared to the figures 4.4a, 4.4b & 4.4c. The changes in the o in figures
4.4a, 4.4b & 4.4c are significant at 95% confidence level, from a two tailed students t-test. Even
though the composite ® in figures 4.4d & 4.4e is not as significant as expected, this weak raising
motion can be considered as a good observation because we already note sinking motion in Fig.
4.4d, which could be elucidated as a significant result leading to the NAM system’s break phase,

although only three break cases were found.
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Figure 4.3: Difference between the composite daily zonal anomalies of Geopotential height (m)
during the 1979-2007 period over the North American region between (a) break and prebreak
periods (b) break periods and after-break periods. Difference in composites of zonal anomalies of
daily mean sea level pressure (hPa) over the North American region during the 1979-2007 period
between (c) during-break and prebreak periods, and (d) during-break and after-break periods. The
hatched regions indicate locations of significant differences, at 95% confidence level, in daily
zonal anomalies of Geopotential height in panels (a) & (b), and that of daily mean sea level
pressure in panels (c) & (d). Statistical significance has been obtained using a two-tailed two
sample Student’s t-test with unequal variances. In all the figures, positive values are shaded, and
negative values are shown in contours. The contours in panels (a) & (b) vary between -120 m to 0
m, with an interval of 20 m and those in panels (¢) & (d) vary between -10 hPa to 0 hPa, with an
interval of 1 hPa. Same intervals as used for contours are used for the shadings, and indicated in

the grayscales shown.
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Figure 4.4: Composite vertical wind zonal anomalies (x10%) (omega) (Pa/s) over North American
region and longitudinally averaged along 60° W - 125° W during the summer monsoon for the (a)
prebreak periods (b) during-break periods, and (c) after-break periods, (d) difference between the
composite break and composite prebreak periods, and (e) difference between the composite break
and composite after-break periods. The contours in panels (a) (b) (c) (d) & (e) vary between -30
Pa/s to 0 Pa/s, with an interval of 10 Pa/s. The hatched regions indicate composite omega zonal

anomalies are significant at 95% confidence from a two-tailed Student’s t test.
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1853  To explore the possible occurrence of resonance as suggested by Charney and Devore (1979) for
1854  the initiation of the blocking high in the North American monsoon breaks, we constructed the first
1855 ten simple harmonics for the meridional wind over the region (Fig. 4.5) for the prebreak at 45° N
1856  composite, July climatology at 45° N and 50° N, and an individual case for 1995 prebreak period.
1857  For the North American monsoon case, we note a dominant wave number 5 and 6 respectively for
1858  the 1995 case and the composite prebreak. Unlike, the wavenumber 7 for Indian summer monsoon
1859  case, we do not see a clear dominance of a single wave. This may probably be because of the small
1860 number of break cases we used for the NAM system. In any case, compared to the climatology
1861 and the standard deviation curves in Fig. 4.5, we do see that wave numbers 5, 6 and 7 are most
1862  dominant. This agrees with what is expected from the Charney and Devore perspective and

1863  supports the QRA theory for the break monsoon case of North America.
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1865  Figure 4.5: Wavenumber spectrum using meridional wind (m/s) at 200 hPa level; for composite

1866  prebreak periods of North American monsoon (Table 2.3); case study prebreak period, 10-15 Jul
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1995; the climatological mean of month July during 1979-2018 periods at 45° N and 50° N, and

standard deviation for all the ten harmonics of July at 45° N for the period 1979-2007.

Fig. 4.6a shows the EP flux for the composite during-break periods of NAM (Table 2.3). In this
figure, we see a convergence maximum at 150 hPa level near 30°N, and even at 200 hPa, close to
30°N. This convergence of EP fluxes implies a deceleration of zonal wind, thus keeping the
blocking high in place during the period of the breaks. Also, this high over the main monsoon
region provokes sinking and scanty or no rainfall or a break monsoon. Subsequently, Fig. 4.6b
depicts EP fluxes for a single case study, the EP cross-section shows a very strong convergence at
200 hPa around 30°N during the 16-24 July 2000 period, particularly when the blocking high is

observed over the North American region.

Fig. 4.7a illustrates the composite of mean zonal wind and Fig. 4.7b shows the profiles of prebreak
periods of each case. Fig. 4.8 shows the zonal wind profiles during the break phase for each case.
Here, the composite zonal wind profiles (Fig. 4.7a) prebreak, during-break, and after-break periods
show a minimal difference of about 23 m/s. In each case, during prebreak spells, we note zonal
wind of 25 m/s and during the break phase (Fig. 4.8) we note 27 m/s. Manola et al., (2013) have
shown that stronger and narrower jets tend to stronger zonal waves and smaller wavenumbers (4
and 5). Also, we see a double-jet structure (Fig. 4.9) in the composite zonal wind anomalies and
the steep sub-tropical jet is strongly linked to QRA (Kornhuber et al., 2017). The resonance
amplification depends on the characteristics of mean zonal wind. In the case of SAM (ISM) the
strength of the jet is higher and the stationary free waves are of higher wavelengths or lower

wavenumbers (lower wavelengths and higher wavenumbers)
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Figure 4.6: (a)Eliassen-Palm fluxes cross-section of composite during-break periods of NAM,;

(b):Eliassen-Palm fluxes for the case study during the break period 16-24 July 2000 of NAM. In

all the figures, the contour interval is 50 m3. The dashed lines represent convergence and

continuous lines represent divergence.
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Figure 4.7(a):(Top) Composite globally zonal averaged U wind (m/s) of composite prebreak,

composite during-break and composite after-break periods of North American monsoon (b):

(Bottom) Globally zonalaveraged U wind of prebreak periods in three different cases: 10-16 July

1981, 20 - 24 July 1995 and 10-15 July 2000 of NAM.
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1901  Figure 4.8: (¢) Zonal wind profiles during the break phase for 1981, 1995 and 2000 events.
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Figure 4.9: Composite structure of daily U wind zonal anomalies (m/s) for the break cases of
NAM, 10-16 July 1981, 20 - 24 July 1995 and 10-15 July 2000; which are zonally averaged in
between 60° W - 125° W. The hatched region indicates 95% confidence using a two-tailed
Student’s t test. In this figure positive values are shaded and negative values are shown in contours.

Contouring between -5 to 0 (m/s) with an interval of 1 m/s

4.3 Breaks in South American Monsoon

The strong summer convective activity in South America is associated with large-scale
atmospheric circulation. Intra-seasonal variability of SAM is related to convection on a wide range
of spatial-temporal scales. Previously, the intra-seasonal variability of the 10-90 days scale is
observed over eastern South America and particularly over northeast Brazil (Jones and Carvalho,
2002; Carvalho et al., 2002; Ciffelli et al., 2002; Grimm et al., 2005; Souza et al., 2005). Intra-
seasonal variations of SAM mayoccurby the propagation of mid-latitude perturbations into the
convection region, and as well as, with a subsequent increase in north-westerly cross-equatorial
moisture transport over southern tropical South America (Carvalho et al., 2010) with the

amplification of wave activity in the Northern hemisphere.

A study on SAM by Gan et al., (2004) found some similarities and differences with the Indian
Monsoon using a 21-year (July 1979-June 2000) period of data. They noted a strong easterly jet
maximum at 100 hPa during January, similar to the easterly jet over south India (Halley, 1686;
Koteswaram, 1958). They found that only zonal wind anomalies show a perceptible reversal in
direction, i.e., when the annual cycle is removed as noted by Zhou and Lau (1998). Further, they
had observed wet and dry periods of SAM which are similar to the Asian Monsoon (Jones and
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Carvalho, 2002). Thus, the blocking high configuration in the upper troposphere, Fig 9 of Jones

and Carvalho (2002) is similar as noted earlier for Indian monsoon breaks.

Fig. 4.10 shows the composite zonal anomalies Z2oo and all panels are statistically significant at
95% confidence using a two tailed students t-test. We observe a high at 60° S & 120° W and another
high extending between 40° S to 0° and at 60° E, i.e., central and north of South America. Figures
4.11 a-b illustrates theZ»00 anomaly pattern for the break period in January 1980 & 1981. A clear
blocking high over central South America can be noted with two troughs on either side of the
blocking high at 20°S. The formation of a blocking high preceding a break/drought situation in
this case of SAM is analogous to that for the Indian summer monsoon situation (Fig. 4.11a). Thus,
these features are a unifying characteristic for the break in the ISM (Fig. 3.1) and SAM. The
troughs which are associated with blocking high are strongly oriented towards NW to SE tilt which
implies southward (poleward) transport of eddy momentum. Fig. 4.11b depicts Geopotential
Height for the break case during 06-11 January 1981. The characteristics in this figure are very

similar to those in January 1980 case.
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Figure 4.10: Composite daily zonal anomalies of Geopotential height (m) over the monsoon
season of 1979-2007 in the South American region during (a) prebreak periods (b) break periods,
and (c) after-break periods. The hatching in the Figures 17 a-c indicates the regions where the
composite Geopotential height is significantly different from zero at 95% confidence level.
Statistical significance has been obtained using a two-tailed one sample Student’s t test. In all the
figures, positive values are shaded, and negative values are shown in contours. Note that

significance test has not been applied to negative values. Contours vary between -120 m to 0 m,
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1948  with an interval of 20 m. Same interval in shading, as evidenced by the greyscale shown, is used

1949  for positive values.
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Figure 4.11: (a) Geopotential Height anomalies (m) at 200 hPa during the break spell, 21-26
January 1980 over the South American region. (b) Geopotential Height anomalies (m) at 200 hPa

during the break spell, 06-11 January 1981 over the South American region.

Figures 4.12 a-d show the difference between the composites of break & prebreak periods, and
breaks & after-break periods of Z>poand SLP zonal anomalies. In Fig. 4.12, we note a strong low
pressure region at 200 hPa over southern South America and eastern South Atlantic. While in Fig.
4.12(c) we note a relatively high pressure region, this indicates again similar to Indian and North
American break monsoons convergence at higher levels and divergence at lower levels (figures

4.12c & 4.12d; SLP figures) indicating a sinking motion. Thus, in all the break monsoon regions
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very similar conditions exit and the analysis using Z»oo and SLP zonal anomalies, and strongly
supports sinking and reduction of rainfall causing break monsoons. All the changes in the panels
of the Fig. 4.12 are statistically significant at 95% confidence level using a two tailed students t-
test. Figures 4.13a, 4.13b & 4.13c shows the vertical velocity (omega) (Pa/s) of the South
American summer monsoon during the prebreak, break, and after-break periods, as well as the
figures 4.13d & 4.13e difference between the break and prebreak periods and the difference
between the break and after-break periods. A strong sinking motion is seen in the composite
prebreak& break between 10° S - 0° in figures 4.13a & 4.13b, and raising motion in after-break
periods between 10° S - 0° in fig. 19¢, but the omega magnitudes differ as shown in Figures 4.13d
& 4.13e. In Figures 4.13d & 4.13e, we note a narrow region of raising motion at 10° S and strong
sinking between 0° — 10° N. The changes in the omega wind in figures 4.13 a-e are significant at

95% confidence level using two tailed students t-test.
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Figure 4.12: Difference between the composite daily zonal anomalies of Geopotential height (m)
during the 1979-2007 period over the South American region between (a) break and prebreak
periods (b) break periods and after-break periods. Difference in composites of zonal anomalies of
daily mean sea level pressure (hPa) over the South American region during the 1979-2007 period
between (c) during-break and prebreak periods, and (d) during-break and after-break periods. The
hatched regions indicate locations of significant differences, at 95% confidence level, in daily
zonal anomalies of Geopotential height in panels (a) & (b), and that of daily mean sea level
pressure in panels (c) & (d). Statistical significance has been obtained using a two-tailed two
sample Student’s t-test with unequal variances. In all the figures, positive values are shaded, and
negative values are shown in contours. The contours in panels (a) & (b) vary between -100 m to 0
m, with an interval of 20 m and those in panels (¢) & (d) vary between -25 hPa to 0 hPa, with an
interval of 5 hPa. Same intervals as used for contours are used for the shadings, and indicated in

the grayscales shown.
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Figure 4.13: Composite vertical wind zonal anomalies (x10%) (omega) (Pa/s) longitudinally

averaged along 60° W to 125° W over South American region during the summer monsoon for the

1979-2007 period, (a) prebreak periods (b) during-break periods, and (c) after-break periods, (d)

difference between the composite break and composite prebreak periods, and (e) difference

between the composite break and composite after-break periods. The contours in panels (d) & (e)

vary between -30 Pa/s to 0 Pa/s, with an interval of 10 Pa/s. The hatched regions indicate composite

omega zonal anomalies are significant at 95% confidence from a two-tailed Student’s t-test.
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Fig. 4.14 illustrates the wavenumber spectrum of meridional wind at 200 hPa height for composite
prebreak periods, a case study during 1981 January at 45° S, and the climatology of January month
for the 1979-2018 period at 45° S & 50° S, and standard deviation. For the South American
monsoon case, we see the dominance of wave numbers 4 & 5 for the 1981 prebreak case and 4, 5
& 6 for the prebreak composite. The values of the amplitude for wave number 4 and 5 are much
higher than for the climatology and also above standard deviation. In the case of austral summer
Kornhuber et al., (2017) found waveguides approximately 70% for the analysed period for
wavenumber 4 & 5. In our case, the dominance of wavenumber 4 & 5, thus is very similar to that
noted by Kornhuber et al., (2017). This indicates a strong case for wave resonance as suggested
by Charney and DeVore (1979) and quasi-resonant amplification for the SH case noted by

Kornhuber et al., (2017).

The difference in the dominant wave numbers is due to the difference in the strength of the mean
zonal wind. In the Indian break monsoon case, the maximum velocity of the zonal wind is around
22 mys, as explained Kornhuber (2017, their Fig. 1) the QRA is expected for wave numbers >6.
While in the case of the SH the maximum velocity of composite zonal wind is around 28 m/s (Fig.
4.15a), as explained by Kornhuber et al., (2017) leads to the QRA mechanism for wave numbers
>4. Fig. 4.15b shows the zonal wind profiles for the prebreak period of each case, and Fig. 4.16
shows the during-break and after-break periods for all cases. Jones and Carvalho (2002) studied
independent events of westerly and easterly wind samples, 113 and 104 respectively for SAM
(their Fig.7). Westerly and easterly phases are associated with lower and higher rainfall over the
SAM core monsoon region. Their fig. 9 shows a clear blocking high at 200 hPa level during the
westerly regime and break monsoon case. Note that these characteristics are for a composite of

104 break events. Also, they mentioned in their figure, the resemblance to wave trains implying
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2021  Rossby wave propagation akin to those envisaged by Charney and DeVore (1979), Kornhuber et
2022  al., (2017), and others mentioned earlier. Thus, the break monsoon events in South America are

2023  analogous to break events in Indian CMR.
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2026  Figure 4.14: Wavenumber vs. Amplitude spectrum using meridional wind (m/s) at 200 hPa, for an
2027  individual case 1981 at 45° N, composite of prebreak periods of South American monsoon (Table
2028  3), the climatological mean of month July during 1979-2018 periods at 45° N and 50° N, and

2029  standard deviation for all the ten harmonics of July at 45° N for the period 1979-2007.
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Figure 4.15(a):(Top) Globally zonal averaged U wind (m/s) of composite prebreak, composite
during-break and composite after-break periods of SAM (b): (Bottom) Globally zonal averaged
U wind (m/s) for prebreak periods of six different cases of SAM: 18-21 January 1980, 01-04
January 1981, 10-15 January 1988, 16-20 January 1990, 25 December-01 January 1993, 19-24

January 1996.

101



2037

2038

2039

2040

2041

2042

2043

2044

During—Break

+——+1980
&—5 1981
+—e 19388
E—+H1990
=—m 1993

»—= 1996

Zonal Wind (m/s)

+—+ 1980
G—=a 1981
=—» 1988
G—81990
——u 1993

—x 1996

Zonal Wind (m/s)

D L] 1 ] 1 1 L) L) L)
90S B80S /70S 60S 50S 40S 30S 20S 10S EQ

Figure 4.16: (a) (Top) Composite of globally zonal averaged U wind (m/s) for during-break in six
different cases. (b) (Bottom) Globally zonal averaged U wind (m/s) for after-break periods in six
different cases: 18-21 January 1980, 01-04 January 1981, 10-15 January 1988, 16-20 January

1990, 25 December-01 January 1993, 19-24 January 1996.

Fig. 4.17 shows the composite structure of zonal wind anomalies. Two jets, one at 55°S and the

other at 35°S can be noted around the height of 250 hPa. Also, a tropical easterly jet can be seen
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around 15°S at levels above 100 hPa. Similarly, Fig. 4.18 portrays the structure of zonal wind
anomalies before the block formation on 4 January 1981. Whereas, the shear between the jets is
maximized on 6 January 1981, the day on which the break period starts, indeed the maximized
shear can be seen in the composite of during-break (Fig. 4.17b). This occurrence of maximum
zonal wind shear during the break is similar to that noted for the Indian case. Further, the strong
shear also can be noted in the upper troposphere between the westerly and easterly jets. We noted
two regions of convergence, one at 60°S and 400 hPa and the other at 30°S and 250 hPa. Similarly,
for the two case studies in January 1980 and 1981 (Fig. 4.19), two large convergence regions are
found with a slightly higher magnitude relative to composite EP fluxes during-break period (Fig.
4.20a) and climatology DJF for the 1979-2007 period (Fig. 4.20b). This situation can be seen as
similar to that co-occurred over India, the low latitude convergence seems to reduce the zonal wind

and maintain the block without being advected, by the zonal current.
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Figure 4.17: (a)(Top) Prebreak composite structure of U wind zonal anomalies of South American
monsoon (Table 3) (m/s), (b)(Bottom) During-break composite structure of zonal wind anomalies
of South American monsoon (m/s) (Table 3), which are zonally averaged between 60° W to 125°
W. The hatched region indicates 95% confidence using a two-tailed Student’s t test. In both the
figures positive values are shaded and negative values are shown in contours. Contouring between

-5 to 0 (m/s) with an interval of 1 m/s.
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2070  Figure 4.19: Eliassen Palm fluxes for (a) 18-26 July 1980 & (b) 05-10 July 1981. The dotted lines

2071  denote convergence and continues lines denote divergence and contouring at 50 m>.
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Figure 4.20: Eliassen -Palm flux cross-sections of southern hemisphere(a) Composite during-
break periods (Table 2.4) of SAM; (b) during the season (austral summer) DJF for the 1979-2007
period. The contour interval is 50 m3. In both the figures dashed lines represent convergence and

continuous lines represent divergence.
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4.4. Summary of the chapter

| observe a similar sequence of break monsoon characteristics as of the Indian summer
monsoon, to those seen in the North and South American summer monsoon systems. These similar
characteristics can be viewed as a global monsoon feature, in which extratropical eddies play a
significant role in the common ground of the basic characteristics of the breaks in these three

monsoons, namely, the ISM, SAM, and NAM. This is referred to as the unified theory.

The following chapter examines the revival of active conditions of rainfall after a break period

over the core monsoon region of India during boreal summer.
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Chapter 5

Understanding the revival of the Indian
Summer Monsoon after Breaks

Outline of the chapter

In this chapter, I discuss a mechanism for reviving ISM after a typical break phase. This mechanism
is associated with upperlevel barotropic instability caused by an increase of eddies in the mean
zonal flow at 200 hPa, which spurs a subsequent synoptic low formation in the head of Bay of

Bengal for the revival of ISM.
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5.1 Introduction

In this chapter, | discuss the revival of active conditions of ISM after a break phase is
facilitated by the formation of synoptic disturbances in the BoB, namely, monsoon depressions,
and low pressure systems that travel toward the northwest from Bay of Bengal into the Indian
region. For example, some of the previous studies discussing about the synoptic disturbance in the
BoB for the active conditions over Indian region during boreal summer, Chen et al. 2005; Sikka

and Dixit 1972; Boos et al. 2015; Sikka and Gadgil 1980.

From a dynamical standpoint, for example, Ramaswamy (1962) emphasise that the relevance of
anomalous southward shift of large-amplitude westerly trough from the midlatitudes into the Indo-
Pakistan region during ISM breaks. Importantly in a case study by Rao (1971), also documents a
manifestation of barotropic instability associated with increased horizontal shear due to the
southward shift of the westerly troughs in the subtropical westerly jet at the midtropospheric level
in the aforementioned break event and a subsequent revival associated with the formation of a
synoptic disturbance. Rao (1971) hypothesized that manifestation of the barotropic instability
during break leads to the formation of disturbances that in turn invigorate the ISM an active phase.
In a recent study, Krishnamurthy and Ajayamohan (2010) have shown that the absence of low
pressure systems, such as lows, depressions, and cyclonic storms, represents the break phase and
their presence represents an active phase of ISM. Therefore, the question remains whether
instabilities generated by large-scale processes lead to subsequent revival of the monsoon through

a barotropic instability mechanism and formation of a synoptic disturbance.

In this chapter, | attempt to answer this question. The availability of reanalysis datasets in the

recent decades is a great opportunity in this sense. Analysis of multiple cases will also help us to
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refine any theoretically based thresholds and indices that represent a phenomenon. For example,
theory (Kuo 1953; Starr and White 1954; Aihara 1959) suggests that barotropic instability occurs
only in disturbances of very long wavelengths. The case study of a break monsoon Rao (1971)
suggests that synoptic waves in the subtropical westerly jet in the Indian region with a wavelength
greater than (less than) 3000 km are unstable (stable). We revisit this aspect in this study. We

present our results and a discussion in section 5.2 & 5.3, followed by conclusions in section 5.4.

5.2 Barotropic instability in the aftermath of breaks

From the works of Starr and White (1954) and Rao (1971), | can suppose that such a break
condition will result in barotropic instability, which may in turn manifest as a synoptic disturbance
for the revival of ISM. In this context, from Table 2.2, following Rajeevan et al. (2008), we list
the dates of various postbreak revival events of ISM. Of the 41 total break events (Table 5.1), 18
revivals occurred with the formation of low pressure in the Bay of Bengal (e.g., Fig. 5.1) and 7
others with the formation of low pressure on land (figures not shown). This result suggests that
about 61% of the postbreak revivals are associated with formation of low pressure in the Bay of
Bengal or land regions, providing a general support to the hypothesis of Rao (1971) and Raghavan

(1973).
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Figure 5.1: Observed Sea Level Pressure (SLP) distribution on 10 Aug., 2000, after a break

period.

Table 5.1: Gives the formation of a synoptic disturbance on the particular day after every break

event during the 1979-2007 period. ' *** ‘represents the revival of ISM without low formation.

Year Low formation day after every Condition
break event

1979 ekl
1979 ekl
1980 23 July Bay of Bengal
1980 26 August Bay of Bengal
1981 Fokk
1982 19 July Bay of Bengal
1983 4 August Bay of Bengal
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1984

1985

1986

1987

1987

1988

1989

1989

1992

1993

1993

1993

1995

1995

1996

1997

1997

1998

1998

1999

1999

1999

2000

30 July
28 August
9 September
11 August

19 August

2 August
16 August

18 July

6 September

22 July
16 August
1 September

29 July

10 August

Bay of Bengal
Bay of Bengal
Bay of Bengal
Land Region
Bay of Bengal
Bay of Bengal
Bay of Bengal

Land Region

—
—

Bay of Bengal
—
——

*k*k

Bay of Bengal
Bay of Bengal
Land Region

Land Region

*k*k
*k*k

*k*k

Bay of Bengal
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2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2001 6 August Bay of Bengal
2001 11 September Land Region
2002 —
2002 1 August Bay of Bengal
2004 —
2004 26 July Land Region
2004 N—
2005 11 September Bay of Bengal
2005 19 August Land Region
2007 N—
2007 18 August Bay of Bengal

Now, eddy formation due to barotropic instability would necessitate a conversion of the into, as
shown by equation (2.3). Indeed, this is true in 30 out of the 41 cases (i.e., 73% of postbreak revival
events), as evidenced by the positive values of rate of conversion of mean kinetic energy to eddy
kinetic energy (CMKE) (Table 3) (Fig. 5.2). This indicates that the barotropic instability is the
primary possible large-scale dynamical instability mechanism during the ISM breaks, many times
leading to the formation of synoptic eddies. Another way to ascertain this further is by checking
that there exists a significant negative correlation between the CMKE and wavelength, an
indication of barotropic instability (e.g., Rao 1971). We find a strong correlation of —0.285 (Table
5.2), which is significant at 95% confidence level from a student’s two-tailed t test. This significant
correlation confirms that barotropic instability is indeed manifested after the monsoon break events

and is a necessary condition for the revival of Indian summer monsoon after break conditions.
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Figure 5.2: Conversion of Kinetic Energy (J/s) anomaly values of 41 break periods during the

1979-2007 period.

Table 5.2: Conversion of Mean Kinetic Energy Values (Joule/second) at 200 hPa.

Year Pre- break period Break period After-break period
1979 -533.85 -324.67 568.11
1979 -307.49 -1668.31 -1040.26
1980 -902.14 419.32 -483.19
1980 -168.76 838.84 1241.05
1981 -445.01 41.06 654.83
1982 -206.31 -104.81 -873.12
1983 -483.50 932.99 345.91
1984 -381.30 386.58 -334.05
1985 -691.33 1736.20 864.34
1986 -391.23 667.50 533.51
1987 -845.24 -15.09 1909.51
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1987

1988

1989

1989

1992

1993

1993

1993

1995

1995

1996

1997

1997

1998

1998

1999

1999

1999

2000

2001

2001

2002

2002

-845.24

-267.84

-134.70

-272.84

-209.65

-662.03

-27.15

-154.66

-645.48

-155.81

-410.98

-348.92

-424.11

-111.57

-496.43

-409.16

-671.99

-691.03

-51.00

-547.99

-348.58

-1218.62

-1218.62

266.40

-600.93

1450.52

722.94

551.18

641.99

-134.37

171.96

627.13

1094.81

1179.61

-435.35

-249.73

296.10

597.56

-320.18

1026.46

1662.09

447.82

-1176.18

224.42

357.86

818.58

-92.27

884.11

1326.88

-289.01

796.84

500.70

132.38

1059.52

-336.83

-499.51

18.84

-1599.46

147.87

1457.89

-211.52

178.70

727.02

646.58

-588.90

-147.23

-108.66

-950.32

-950.32
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2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2004 -309.27 1192.99 -520.30
2004 -309.27 558.93 -520.30
2004 -442.18 462.54 952.01
2005 -88.06 188.81 754.90
2005 -418.94 -341.93 -275.85
2007 -763.64 693.70 231.90
2007 -384.59 1507.19 1175.04

What is the potential mechanism for such manifestation of barotropic instability in these
subseasonal events? As is known, barotropic disturbances derive energy from the mean Kinetic
energy. Energy considerations (e.g., Kuo 1951) show that for a disturbance to grow, it must tilt in
a direction opposite to that of the meridional gradient of zonal wind. To be specific, a tilt from
southwest to northeast (SW-NE) in a westerly zonal flow will meet this criterion. That is, waves
with an SW-NE tilt will result in a maximum vorticity to the south [see (3), which is from Kuo
(1949)]. Fig. 5.3 (a-€) shows the zonal wind at 200 hPa of 41 break periods during the 1979-2007
period and Fig. 5.4 (a-e) shows the zonal wind on a peak day of the 41 break periods for the 1979-
2007 period. Whereas, figures 5.3 and 5.4, it is seen most of the break days are also indeed
associated with such an SW-NE tilt in the 200-hPa zonal flow. Such a tilt in the mean 200-hPa
subtropical westerly jet over the Indian region on a typical break day (see Fig. 5.5a as an example,
along with the corresponding geopotential field in Fig. 5.5b) is associated with a northward transfer
of westerly momentum (Kuo 1949). In such a case, the zonally averaged eddy momentum transport

will be positive and is, importantly, conducive to the formation of an eddy disturbance (Fig. 5.6a)

117



2198  associated with maximum vorticity to its south (Kuo 1949). Truly, the corresponding zonal wind
2199  structure at 200 hPa shows a southward shift of the westerly jet during the break period and a

2200  northward shift of the tropical easterly jet (Fig. 5.6b).
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Fig. 5.3 (a-e): Spatial distriubution of zonal wind at 200 hPa for 41 break events (Rajeevan et al.
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2218  Fig. 5.4 (a-e): Spatial distribution of zonal wind on a peak days of of 41 break events (Rajeevan
2219  etal. 2008) during the 1979-2007 period for the region 0°-50°N, 20°-120°E.

2220

(a) Zonal wind (b) Geopotential distribution

2221
2222  Figure 5.5: (a) Zonal wind at 200hpa on 4august, 2000, a typical break day; (b) the corresponding

2223  Geopotential distribution (in Km). The black line shows the NE-SW tilt orientation in both the

2224 figures.
2225

2226
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Figure 5.6: (a) Eddy momentum flux transfer during a break (1-9 August); before the break (14-
23 July); and after the break (10-15 August), in relation to the 1-9 August break in the year 2000.
(b) zonal wind profiles (82.5° E) at 200hpa during a break day (4™ August); on a day in the prebreak
period; (23" July); on a after-break day (11" August), all for the same event presented in Fig.

5.6(a).

From the point of Rao (1971), it will be instructive to verify that the barotropic instability is a
mechanism that would help the aforementioned eddies grow in such situations. To that end, the
meridional vorticity distribution of the absolute vorticity C in the Indian region composite of during
break events is presented in Fig. 5.7a, along with the corresponding all the break events in Fig.
5.7b. Importantly, we see maximum or minimum in absolute vorticity { around 29°N in the
composite, with the individual values varying between 25° and 30°N. Manifestation of such
maximum or minimum values is a necessary condition for the barotropic instability (Kuo 1951)

from the individual case also indicates such manifestation (Fig. 5.7b). All this highlights the
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2242  importance of the mean seasonal zonal wind structure, with westerlies to the north and easterlies
2243  to the south of the Indian subcontinent, in facilitating such a dynamical instability manifested by

2244  the breaks.
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2257  Figure 5.7: (a) Meridional distribution of the composite absolute vorticity (200 hPa), obtained by
2258  compositing it over all the break periods for the period of 1979-2007. (b) Same as Fig. 5.7(a) but
2259  composited over each break periods during 1979-2007.

2260

2261 5.3 Wavelength threshold for manifestation of a postbreak synoptic disturbance

2262  Ramaswamy (1962) and Rao (1971) claim from their individual case studies a decrease in channel
2263  width (D/2) between subtropical westerly and tropical easterly jets that manifest as a dynamical

2264  instability. We revisit this aspect by computing the D/2 during the break events in the study period.
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Our results (Table 5.3 and Fig. 5.8) show that 32 out of 41 break events (78%) indeed show a

decrease in channel width. From this, we can deduce that a dynamical instability during the breaks

is facilitated either as a result of a transient southward shift of the westerlies over the northern

portions of the subcontinent and/or a transient northward shift of the tropical easterly jet stream

over the peninsular region. Such a decrease in the channel width in the zonal width can also

manifest with a weakening (strengthening) of the upper-level westerlies (easterlies) in the Indian

region.

Table 5.3: The channel width (D/2) between the subtropical westerly jet and tropical easterly jet

(°) at 200 hPa for 41 break periods during the 1979-2007 period.

Year Prebreak period Break period After-break period
1979 35.43 28.25 26.11
1979 31.00 30.00 34.50
1980 42.25 37.25 34.83
1980 28.88 23.67 31.83
1981 35.00 31.75 34.29
1982 29.88 25.63 34.43
1983 33.29 35.33 36.38
1984 30.63 22.67 43.00
1985 31.00 20.00 36.14
1986 33.57 26.00 26.25
1987 26.10 29.83 22.67
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2004 28.13 32.25 40.20
2004 28.13 23.67 40.2
2004 29.70 23.33 31.00
2005 31.86 24.25 38.63
2005 32.71 33.63 34.86
2007 25.38 25.20 29.43
2007 37.57 37.00 40.57
2275
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2277  Figure 5.8: Latitudinal distance (degrees) between westerlies and easterlies at 200 hPa for various
2278  phases associated with observed break events.

2279

2280  Theory (Kuo 1953; Syono and Aihara 1957) shows that barotropic instability occurs only in zonal
2281  waves of wavelength shorter than a critical wavelength L. [see chapter 2]. Rao (1971), from his
2282  sole case study, estimates L. of the upper-level westerly jet stream in the Indian region to be ~3000
2283  km. However, given that it was only a single case and the relatively poor quality of the upper-air
2284  data during that period, we use the reanalyzed gridded datasets for multiple monsoon break cases
2285  to revisit this important finding by Rao (1971). Our analysis using (1) (Table 5.4) shows that (i)
2286  wavelengths in the upper-level westerlies north of Indian region during the summer monsoon reach

2287  aminimum value during breaks as compared to a few days prior to and after the event and (ii) the
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2288

2289

2290

2291
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2293

critical mean value of the aforementioned wavelength, obtained by averaging it over all break

events, is 7411 km. The minimum Lc we find is just 5127 km (Fig. 5.9).

Table 5.4: Critical wavelength (L Km) for prebreak, break and after-break periods.

Year Prebreak period Break period After-break period
1979 9082 7310 6693
1979 7947 7690 8844
1980 10831 9549 8929
1980 7402 6067 8160
1981 8972 8139 8789
1982 7658 6569 8826
1983 8533 9057 9324
1984 7851 5810 11023
1985 7947 5127 9265
1986 8606 6665 6729
1987 6691 7648 5810
1987 8240 7519 10034
1988 9741 8395 7904
1989 6775 7178 11096
1989 12524 10305 11279
1992 8004 7402 10158
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Figure 5.9: Wavelength anomalies (Km) of the zonal wind at 200 hPa, averaged over the span of

each break event

5.4 Summary of the chapter

In this chapter, using the atmospheric circulation datasets from the NCEP-NCAR
Reanalysis 2 (Kanamitsu et al. 2002) for the period 1979-2007, | explore the potential role of
monsoon break conditions in subsequent revival of the monsoon through formation of a synoptic
disturbance in the Indian region. | find that barotropic instability manifests in the Indian region
during monsoon breaks in 61% of the cases. Such a revival is found to be associated with a
reduction of the zonal width between the upper-level subtropical westerlies and tropical easterlies.
Further, the anomaly correlation between the wavelength of zonal winds in the Indian region and
the local rate of conversion of mean kinetic energy values for the study period is —0.285,
statistically significant at 95% confidence level, which confirms the role of barotropic instability

for formation of the post break synoptic disturbance. During the monsoon break period there is no
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rainfall over most of the country, and therefore the succeeding disturbances are not generated by
the condensational heating. Thus, the argument that generation of monsoon depressions and
synoptic disturbances due to the break-induced barotropic instability is reasonable. | also find that
the mean wavelength of westerlies during boreal monsoon events north of the Indian region, which
leads to the revival of the monsoons, is about 7400 km. While Rao (1971) suggests a threshold
wavelength of 3000 km from his single case study, my analysis of the 41 cases (adopted from

Rajeevan et al. 2008) suggests an apparent threshold to be above 5000 km.

The following chapter accesses the revival of active conditions of rainfall after a break period over

the core monsoon region of India during boreal summer using the WRF model.
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Chapter 6

Assessment of a dynamical mechanism
for the revival of active summer
rainfall conditions over India following
a break phase

Outline of the chapter

This chapter mainly focuses on various WRF model sensitivity experiments, which | have carried
out to confirm the active role of the dynamical mechanism for the revival of active monsoon after
a break phase, as proposed in Chapter 5. In this regard, we have carried out a variety of simulations
to see the sensitivity of the simulated break to active transition to changes in the various

meteorological parameters.
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6.1 Introduction

Chapter 5 proposes, using nearly 30-years of reanalysis data, that, the monsoon revival
after a break is caused by the barotropic instability of the zonal current. They found that during the
peak of monsoon break, the tropical Easterly Jet, which is normally located around 9° N, invariably
shifts northward. Also, the Subtropical Westerly Jet normally located around 40° N, shifts
southward. These meridional shifts in the position of the jet streams increase the zonal wind shear,
which results in the generation of barotropic instability. This instability results in the formation of
a synoptic disturbance at least in about 61% of the cases, thereby reviving to the active monsoon
phase.

To ascertain that the formation of barotropic instability associated with the closing of jet streams
isindeed important for the subsequent revival of the monsoon, we have carried out few sensitivity
experiments using the Weather Research and Forecasting (WRF) model version 3.8 (Skamarock
et al., 2008) for a typical break case. The results are discussed in this chapter. We also verify the
role of convection is also important in this process.

In the next section 6.2, | provide a description of the model configuration detailed experimental
setup, and other datasets used in this study. I discuss the experimental results in section 6.3 and

finally provide conclusions in the last section 6.4.

6.2 WRF model description and sensitivity experiments performed

The WRF model version 3.8 is a mesoscale numerical weather prediction system. It has
both hydrostatic and non-hydrostatic options with the latter needing a fully compressible condition.
The model has a sigma coordinate system designed for atmospheric research and operational

forecasting needs. Several studies have been used this regional model to study the monsoon
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problems from weather scale (e.g., Srinivas et al., 2017; Mohanty, Rao, 2014), intra-seasonal
variability of ISM (e.g., Taraphdar et al. 2010; Kolusu et al., 2014; Chen et al., 2018), and even
the relevance of interannual variations and background changes for extreme rainfall events (e.g.,
Boyaj et al., 2017, 2020). Various authors used the WRF model to successfully simulate and
diagnose the break monsoon over the Indian region. For example, Taraphdar et al., (2010) used
the WRF model to estimate the predictability of active and break phases of ISM from 2001 to
2009. Taraphdar et al., (2010) reported that the predictability is more for the break phases than the
active phases of the monsoon over the Indian region.

We configured the model with two nested domains at 60 and 20 km horizontal resolutions, and 30
vertical levels. The mother domain covers the large-scale region encompasses 20°S-60°N, 10°E-
160°E, the and nested domain 0°-50°N, 40°E-120°E region (Fig. 6.1). The selected physics
options follow those of Rao et al. (2014), Boyaj et al., (2020), given that the simulation is mainly

for the Indian region. Some of the physics schemes chosen are shown in Table 6.1.

EON W d01 60km J C
50N - /
& o~ d02 20km .
N ) @ s 25'
b -~ e

30N+

20N+

10N

EQ

1051

208

20E 408 60K 80E 100E  120E  140E 160

Figure 6.1: Schematic figure of the WRF model domain chosen, two nested domains of 60 and

20 km horizontal resolutions, and 30 vertical levels. The mother domain covers the large-scale
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region encompasses 20°S-60°N, 10°E-160°E, the and nested domain 0°-50°N, 40°E-120°E

region.

Table 6.1: List of physics schemes/parametrizations used in the sensitivity experiments of WRF

model
Sr. No. Physics schemes Citation
1 Goddard Ensemble scheme for microphysics Tao et al., 2016
2 Short-wave radiation scheme Dudhia et al., 1989

3 Rapid Radiation Transfer Model (RRTM) for long- | Mlawer et al., 1997

wave radiation

4 Yonsei University (YSU) non-local scheme Hong et al., 2006
5 Planetary boundary layer and NOAH scheme Tewari et al., 2004
6 The Kain-Fritsch (KF) scheme Kain, 2004

The initial and lateral boundary meteorological conditions for the model are obtained from the
National Centers for Environmental Prediction-Final Analysis (NCEP-FNL) data, available for
every six hours at 1°x1° horizontal resolution (NCEP, 2000). From the break case we selected,
from those suggested by Rajeevan et al. (2010), is from 1August to 9August, 2000 (hereafter
referred to as B2000).

The experiments carried out in this study using the WRF model are tabulated below (Table 6.2).
We have carried out three experiments. In all the experiments, the model simulation spans from
01 to 15 August 2000, and the model initial boundary conditions start at 0000 UTC on 01 August

2000. In all the experiments, the lower boundary conditions are obtained from NCEP-FNL data.
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The first experiment is what we refer is the control experiment (hereafter CTL). In this experiment,
the lateral boundary conditions (LBC) for the outermost domain are adapted from the NCEP-FNL
datasets. The second experiment is referred as the Daily Climatological Winds (hereafter DCW)
experiments, respectively (Table 6.2). The DCW experiment is similar to that as the CTL, except
that the LBCs are from the daily NCEP reanalysis-Il climatological winds (generated 1980 to
2000). The third experiments are similar to DCW experiments, except that the convection scheme

is switching off (DCWNC).

Table 6.2: A list of Experiments carried out using WRF model.

Sr. No. Brief experiment details Acronym
1 Real simulation using NCEP-FNL data as LBC’s, from 31 July to CTL
15 August 2000

2 Same as CTL but the experiment is forced with daily climatology of DCW
NCEP-II reanalysis zonal and meridional winds (1980-2000) as

initial conditions.

3 Same as DCW experiment with the cumulus convection scheme DCWNC

switched off

6.3 Results and Discussion

6.3.1 Wavelength characteristics and energetics exchange for the revival of active conditions

over India
We recall from chapter 5 that the critical wavelength (L) above which barotropic instability can

occur during monsoon breaks is equal to or greater than ~5000 km. The L for the B2000 break
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event from the NCEP/NCAR reanalysis Il is 7405 km (Table 6.3). During the break, the average
latitudinal distance between the two upper level jets was 30°. The corresponding values simulated
in the CTL experiment with latitudinal distance of 30°, and L of 7690 km, which are well in
agreement with the values from the NCEP-II reanalysis. The DRW experiment simulates a
significant latitudinal distance between the SWJ and TEJ during the B2000 break event,
particularly in comparison to NCEP Il reanalysis data. Interestingly, the latitudinal distance
simulated in the DRW is 24°. We believe that the relatively better results from the CTL simulation,
compared to the NCEP Il reanalysis data, whereas the FNL data sets are relatively coarser.
Furthermore, all of the experiments show L. values greater than the average (~5000 Km),

indicating that there is a basis for barotropic instability at 200 hPa.

Table 6.3: Latitudinal distance (D/2) (°) and Critical wavelength (Lc) (Km) during the break period

B2000 in the NCEP I reanalysis data and conducted sensitivity experiments.

Year Lat. Dist. (°), B2000 | Wavelength (Km), B2000
NCEP |1 reanalysis 29 7405
CTL 30 7690
DCW 32 8203
DCWNC 31 8175

As discussed so far, horizontal atmosphere, the barotropic instability develops due to an increase
in horizontal shear of the zonal flow. From the context of Lorenz cycle (1955), this involves the
conversion of mean Kinetic energy to eddy kinetic energy of the zonal flow, a term we represent
by Ck. In this context, in Fig. 6.2, | illustrate the evolution of the Ck at 200 hPa over the CMR
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2456

through the break phase B2000 from the NCEP 11 reanalysis as well as that from all the simulation
experiments. Its evolution from the NCEP reanalysis suggests a significant fall in the Cy during 1-
5 August, 2000 in association with the peaking of the break, after which its magnitude increases;
it peaks on 8 August. The CTL experiment also broadly captures the general weakening phase and
its intensification later. The DCW and DCWNC experiments, which are forced with daily
climatological winds do not simulate the fall in the Cx well. On the other hand, Fig. 6.2 also shows
that the evolution of the Cx from the simulation is qualitatively reasonable.
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Figure 6.2: Daily mean Ck, the rate of conversion of mean kinetic energy to eddy kinetic energy
(J/s) during break event from 31 July-09 August 2000 over core monsoon region of India, from
the NCEP 11 reanalysis data, and from the CTL, DCW, and DCWNC experiments. The abscissa
shows the dateline from 31 July-12" August 2000 and the ordinate shows the rate of conversion

of energy.
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The Fig. 6.3a shows the SLP from the NCEP 11 reanalysis data on 10" August 2000, which is the
day after the demise of the B2000 break event. In this figure, we see the formation of a low in the
north BoB. It is widespread and close to the eastern Indian coast, and located in the southern
portion of the MT, which is aligned along the CMR. The CTL experiment simulates the low (Fig.
6.3d) with an intensity similar to that in Fig. 6.3a at the head of the BoB, with though the MT has
been simulated slightly North of its observed position. However, the DCW experiment shows a
weak low and MT (Fig. 6.3b). Despite DCWNC experiment (Figures 6.3c) do neither simulate the

low nor the MT.
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Figure 6.3: Sea level pressure on 10 August 2000 over the Indian region from (a)NCEP Il

reanalysis data, (b) DCW, (¢) DCWNC, and (d) CTL experiments

6.3.2 Eddy momentum flux and rainfall characteristics during a break phase.

The energy to grow the barotropic disturbances is derived from the mean kinetic energy.
Energy considerations show that for a disturbance to grow, it must tilt in a direction opposite to
that of the meridional gradient of zonal wind (Kuo 1949). That is, waves with an SW-NE tilt will
result in maximum vorticity to the south (Kuo 1949), and are associated with a northward transfer
of westerly momentum. In such a case, the zonally averaged eddy momentum transport will be
positive and is, importantly, conducive to the formation of an eddy disturbance associated with
maximum vorticity to its south (Kuo 1949). The transport of eddy momentum flux ( u'v' ) is
associated with large-scale eddies. Fig. 6.4 depicts the eddy momentum flux for the B2000 break
event over the CMR from the NCEP 1l and all simulations. The evolutions of the simulated eddy
momentum flux from the CTL experiment is comparable to that from the NCEP Il (Fig. 6.4),
though the magnitudes of the eddy momentum flux simulated by the DCWNC, DCW are much

weaker.
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Figure 6.4: Evolution of the eddy momentum flux (m?/s?) through the break event 01-09 August
2000 over the core monsoon region of India using NCEP 1I, DCW, DCWNC, and CTL. The
abscissa shows the dateline from 31 July-12"" August 2000 and the ordinate shows the rate of

conversion of energy.

As per Kuo (1949), the occurrence of neutral waves requires that the absolute vorticity (Z) of zonal

flow possess an extreme value ( Z—i = —U" =0 ) at some point. This is the condition for

barotropic instability (CBI) of the zonal Rossby waves. If no such critical point exists in the
velocity profiles of waves, there can be no neutral waves with phase velocity in the range of the
minimum and maximum zonal magnitude of the Rossby waves. Unstable waves manifest the
growth of the eddies, which are associated with the transport of momentum flux depending upon
the orientation of the troughs of vacillating flow. Kuo (1951) further extended the “the study of
wave motions from the very long and slowly moving or retrograding waves into the realm of
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ordinary waves and cyclone waves and it is found that, for nondivergent barotropic motion, the
condition for the presence of neutral and amplified waves with a phase velocity whose value is
between the maximum and minimum wind velocity in the belt is the existence of critical points
where the absolute vorticity has an extreme value. If no such point exits, then all perturbations
must be damped. When this condition is satisfied, both amplified (unstable) and neutral waves can
be expected. The waves moving with a velocity equal to the current velocity at the critical point is
neutral while those with a velocity less than this values but greater than the minimum wind velocity
will be amplified. The amplification will be greatest when the phase velocity is the intermediate
between the latter two values; therefore, both fast and slowly moving waves will have little
amplification. The degree of instability will also depend upon the sharpness of the velocity profile.
When the wave is unstable, the trough line will be directed from southeast toward northwest to the
south of the point of the minimum absolute vorticity and from southwest toward northeast to the

north of the point of maximum vorticity.”

In this sense, Fig. 6.5 shows the zonal wind (u) and condition for barotropic instability (CBI)
during a break event B2000. In chapter 5, | show the composite CBI or absolute vorticity (chapter
5, Fig. 5.6 & Fig. 5.7) using NCEP Il zonal wind data and declining meridional width between
SWJ and TEJ. In comparison to NCEP Il reanalysis data, CTL, DCW, and DCWNC experiments
show a weak zonal wind magnitude on peak days of break phase, along with weaker vorticity.
Importantly, the unstable waves are located to the north of the point of maximum vorticity and the
westerly waves orient along NE-SW direction (Kuo 1951), indeed, the geopotential height
distribution at 200 hPa on B2000 break event show the trough oriented along NE-SW direction
(Fig.6.5). Fig. 6.6 shows the 200 hPa geopotential height distribution for the average of break

period B2000 and Fig. 6.7 shows the 200 hPa geopotential height difference between the NCEP 11
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and conducted sensitivity experiments, for the break B2000. The observed westerly jet trough

orientation along the NE-SW direction is seen in all the experiments with a minor spatial shift.

Similarly, 1 note the trough NE-SW orientation in the zonal wind distribution at 200 hPa during
the break B2000 in all the sensitivity experiments conducted with a slight spatial shift and changes
in the magnitude to the SWJ (Fig. 6.8). Fig. 6.9 shows the zonal wind difference between the
reanalysis data and model experiment results. In comparison to the reanalysis data, the experiments
CTL, and DCW seem to show a good shifting of SWJ and TEJ towards each other during the
B2000 break event (Fig. 6.9). Notably, the experiments DCWNC show weaker magnitudes of
zonal winds and meridional distribution of SWJ and TEJ. In addition to the geopotential height
distribution, all the experiments of the zonal wind distribution at 200 hPa also demonstrate the
westerly jet trough orientation along the NE-SW direction (figures 6.8 & 6.9).

Thus, all the model results show a weak rainfall situation over CMR. Fig. 6.10 shows the daily
rainfall over the CMR of India for the B2000 break event. Apart from rainfall IMD gridded data,

all the experiments show an overestimated daily rainfall during the break period B2000.
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2536  Figure 6.5: Zonal wind (u; Black) and Condition for barotropic instability (CBI) (/s) for break
2537  event 01-09 August 2000 over core monsoon region of India using (a)NCEP 11, (b) DCW, (c)

2538 DCWNC, (d) CTL, (€) DNW, and (f) DNWNC
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2540  Figure 6.6: Geopotential height (m) at 200 hPa on break event 01-09 August 2000 of (a) NCEP

2541 11, (b) DCW, (c) DNW (d) CTL, (e) DCWNC, and (f) DNWNC
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2543  Figure 6.7: Geopotential height (m) at 200 hPa on break event 01-09 August 2000 of (a) difference

2544  between DCW-NCEP I, (b) difference between DNW-NCEP 11, (c) difference between CTL-
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2545  NCEP I1, (d) difference between DCWNC-NCEP II, and (e) difference between the DNWNC-

2546  NCEP Il
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2548  Figure 6.8: Zonal wind (m/s) at 200 hPa on break event 01-09 August 2000 of (a) NCEP 11, (b)

2549  DCW, (c) DNW (d) CTL, (€) DCWNC, and (f) DNWNC
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2551  Figure 6.9: Zonal wind (m/s) at 200 hPa on break event 01-09 August 2000 of (a) difference
2552  between DCW-NCEP II, (b) difference between DNW-NCEP I1, (c) difference between CTL-
2553  NCEP I, (d) difference between DCWNC-NCEP II, and (e) difference between the DNWNC-

2554  NCEP I
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Rainfall; 2000

Figure 6.10: Daily Rainfall over core monsoon region of India, using NCEP I, DCW, DNW,
CTL, DCWNC, and DNWNC. The abscissa shows the dateline from 31% July-12" August 2000

and the ordinate shows the rate of conversion of energy.

6.4 Summary of the chapter

As the study on monsoon break case i.e., 01-09 August 2000, is assessed using the WRF model
to ascertain the changes in the upper atmosphere during a break phase for the revival of summer
monsoon over India. The primary goal of the study is to see the characteristic changes in the zonal
flow of the upper atmosphere with the conditions variable initial conditions provided in the WRF
model, which is the key component to the development of dynamical shear at 200 hPa and
subsequently followed by the formation of a low in the head of the Bay of Bengal for the revival
of ISM.

Our study suggests the experimental results have shown a qualitative similarity to the NCEP II
reanalysis data. The experiment CTL (real run of the model using NCEP-FNL as LBCs), have

proven with the significant energy exchange between the SWJ and TEJ, as the jets move close to
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each other tend to develop a horizontal shear. The associated geopotential height and zonal wind
spatial distribution at 200 hPa during the break period B2000 of the experiments DCW, DCWNC,
and CTL experiments show a good agreement with the reanalysis data.

The horizontal shear developed is associated with a synoptic low formation in the head of BoB for
the revival of ISM. The experiment DCWNC with KF convection scheme turned off, using SLP
daily distribution, do not show a low formation in the BoB after a break phase, which is
understandable. The experiments DCW and CTL show a low formation with a minor spatial shift
towards the Himalayan region or the coastal regions of India.

Nonetheless, apart from upper atmosphere characteristics, the model results of the rainfall over the
CMR of India are pretty vague. This could be due to the model's initial conditions, which are
developed through the assimilation of limited observational data and ocean features. From this
context, it is evident that the inclusion of the observational ocean characteristics/data into the

model is very much necessary, this needs further analysis to be carried out using a coupled model.
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Chapter?

Summary, conclusion and future scope
of the thesis

Outline of the chapter

In this chapter, | discuss the entire summary and conclusion of the research conducted, as well as

a brief outline of the thesis's future scope.
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7.1 Conclusion

This primary focus of the thesis is to the break monsoon characteristics of ISM and a comparison
of these characteristics with those over the Americas, and the role of breaks in the ISM in its
subsequent revival. For this, using observed rainfall datasets and NCEP/NCAR Il reanalysed
datasets, over the broad period from 1979 to 2007, | study 41 known break cases of ISM, which

were identified by Rajeevan et al. (2010).

| find that the formation of a blocking high over sub-tropical west Asia a few days earlier
is crucial for the manifestation of break monsoon conditions over the India region. While there has
been a single case study earlier (Raman and Rao, 1971) that mentioned about the relevance of a
blocking high for the formation of a break monsoon event, the study is essentially of historic
relevance given the limited data that was used in that study. Interestingly, my results from the
analysis of these 41 cases are in conformation with a conclusion from this single case study. My
study shows that the formation of these blocking highs preceding the breaks is due to a quasi-
resonant amplification of planetary waves. Importantly, | also discover similar conditions
associated with break monsoon conditions in the NAM and SAM, respectively. The above
discussion on how the extratropical eddies potentially play a major role in the common ground of
the basic characteristics of the breaks in these three monsoons i.e., ISM, SAM, and NAM is
indicative of a potential global monsoon feature. This motivates us to propose as a unified theory

for the development of breaks during summer monsoon.

In addition, | find a dynamical mechanism involved in the revival of the summer monsoon after a
break. During the peak of significant breaks, the southward shift of the subtropical westerly jet

stream and northward shift of a stronger-than-normal easterly jet facilitate local generation of
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barotropic instability mechanism, which apparently leads to formation of a synoptic disturbance.
Indeed, my other computations of energetics and correlation analysis, suggest an increase in the
eddy kinetic energy at the expense of the mean kinetic energy during the breaks, which is also
apparently with the formation of the synoptic disturbances in many cases. Indeed, formation of
such a disturbance is critical to the subsequent revival of the summer monsoon in 61% of the

observed break-to-active revivals.

To verify this hypothesis, | have carried out a few sensitivity experiments using the WRF model.
My sensitivity experiments yield energetics and zonal wind changes quantitatively and
qualitatively comparable to those from the analysis of the NCEP reanalysis 2 data, and thereby

support the afore-proposed mechanism for the revival of active conditions after a break phase.

Thus, the transformation from break to active conditions is also a barotropic process (Rao, 1971,
and Govardhan et al., 2017 which has been reported in this thesis). In this context, the entire life
cycle of formation of the monsoon breaks and reversal to normal monsoon can therefore be seen
as a barotropic adiabatic cycle. This is somewhat similar to the index cycle in a barotropic
atmosphere of the middle and polar latitudes, confirming the hypothesis put forth by Arakawa,
(1961). This conceptual similarity will be elucidated later. Rao (1971) have first pointed out that
the study by Arakawa (1961) is relevant for break-normal cycles. What is more, this concept seems
to apply to the SAM and NAM as well. For example, Webster and Curtin (1975), using constant
density balloon data, suggested that the 18-23 day variations in the SH seem to be a barotropic
interaction between the midlatitudes mean westerlies and ultralong perturbations. They also
mention the potential relevance of the findings from the study by Arakawa (1961) on index cycles
in a barotropic atmosphere. The real test would be to see whether these variations in the zonal

index occur in the observational data over the monsoonal regions. The divergence of eddy
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momentum in the region of the jet, decelerating the mid-latitude jet implies, a decrease of zonal
kinetic energy and a corresponding increase of eddy kinetic energy or barotropic instability, very
similar to the Indian break monsoon case (Rao, 1971 and Govardhan et al., 2017; also see equation
(2.2)). Note that the regional variations can also be viewed as a regional manifestation of global
waves as suggested by Mishra (2018) for the ISM. Fig. 7.1 illustrates the time latitude cross section
of 200 hPa zonal wind averaged for the period June to September 2000. As discussed earlier, | see
an increase in zonal wind shear during the break period. Fig. 7.1, which shows the longitudinally
averaged 200 hPa zonal winds, shows a 50m/s per 20° latitude meridional shear of zonal winds
between 20°N and 40°N on 1st July. While on 1 August, the meridional shear of horizontal wind
was 50m/s per 10° latitude, between these latitudes, which is twice the value recorded for 1 July.

As shown in chapter 5, this increase in shear generates barotropic instability.

16SEP2000
1SEP2000

16AUG2000

1AUG2000

Figure 7.1: Structure of daily U (zonal) wind averaged along 60° E - 95° E over the Indian region,

during the period 1 June — 30 September 2000. Black box highlights the Sub-tropical Westerly jet
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and Tropical Easterly jet moving close to each other during a break period 01-09 Aug 2000 (case

study). Contouring between -40 to 40 (m/s) with an interval of 10 m/s.

One potential reason for the higher latitude westerly jet and lower latitude easterly jet coming
closer to one another, in all the three monsoonal regions, is the formation of the blocking high, as
conjectured by Ramaswamy (1956, 1962) and confirmed by Fig. 7.1. Similar to the index cycles,
during a break, I find that the upper level sub-tropical westerlies and tropical easterlies shift closer.
This is analogous to the changes in the westerlies for mid-latitude index cycles. In my case, apart
from the blocking, it is still not known exactly what makes these westerly and easterly jets come
closer and later move farther. At this moment, I only conjecture that such shifts in the upper level
zonal winds in the context of monsoons are closely related to the barotropic processes, as suggested
by Chapter 5. As noted earlier, the index cycle variations in the westerly jet can be periodic
Arakawa (1961). However, the variations in the Tropical Easterly jet are irregular. This can be
understood in a general sense; the variations in the westerlies, extending almost across the globe
are more related to the mid-latitude process. The variations in the easterlies may be associated with
the changes in the Tibetan plateau, and even due to changes in the monsoon regions, and North
Indian Ocean. Therefore, the shifts in both jet streams can be purely due to internal variability, and
in some cases, also due to forcing from a co-occurring phenomenon such as an ENSO, 10D,
Atlantic zonal mode, etc., which can modulate the jet streams (e.g. Guan and Yamagata, 2003
GRL; . These aspects need to be explored further in detail. Before the break, all waves with
wavelengths above 10,000 km are only unstable. This value is manifested through the 2D/3 limit
Rao (1971). That is, as there are hardly any waves with some lower wavelength, prior to a break,

practically there is no instability during the normal conditions. However, during the break the
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corresponding limit is 5000 km; this value is the lowest found by Govardhan et al., (2017; also see

chapter 5) cases. Thus, this jet-induced barotropic instability can generate monsoon disturbances.

A careful examination of Fig. 7.1 shows clear periods of high westerlies in the latitudinal band
30°N-50°N. In the period 1 June- 1 October 2000, there are six varying intervals of high westerlies
of about 30 m/s. Also, one can note from 1st September the westerlies in lower latitudes, with the
change of the seasons. Further, westerlies increase in speed from 1st September. During the break
period, starting at the end of July, the easterly jet (-20m/s) moves northward and the westerly jet
(20m/s) southward. In the first week of August, | see a strong shear. Thus, in general, | see regular
westerly jet cycles, reminiscent of index cycles between 30°N-50°N. The easterly cycles are very
irregular. Fig. 7.1, thus shows the existence of “Monsoon Index Cycle”, with growth and decay of
westerlies over the monsoon region. It would be interesting to speculate the origin of these
“Monsoon Index Cycle”. One possibility, as mentioned earlier, is the barotropic and adiabatic
interactions as suggested by Arakawa (1961). Breaks in monsoon occur in one or more cycles. As
noted earlier, a typical break is preceded by the formation of blocking high, which occurs due to
the penetration of midlatitudes baroclinic wave as shown by Raman and Rao (1981). In Fig. 7.1, |
note the southward shift of westerlies in the last week of July 2000. This southward extension of
westerlies favours the penetration of midlatitudes baroclinic wave, since easterlies will not permit
propagation of a midlatitude baroclinic wave (Charney, 1969). Overall, | note the occurrence of
“Monsoon Index Cycles” at least in this monsoon season of 2000. A simple schematic, which
elucidates the same, r is shown in Fig. 7.2. It would be interesting to see whether these cycles occur
in other seasons over India and in other monsoon regions. Considering the regularities in
westerlies, interestingly it contributes to the predictability of block formation and consequently

breaks.
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We should also note that that the breaks in the monsoon could occur due to various other factors
also. For example, a recent study by Umakanth et al., (2019) suggests the importance of high-
frequency latent heat changes over the central Indian region, foothills of the Himalayas, and Indo-
China region for the manifestation of breaks through triggering of meridional wave train trough

Artic. As mentioned in the introduction, the monsoon breaks can be manifested due to the MJO.

(@)

45°

(b)

45°

Figure 7.2: A simple schematic picture of a barotropic adiabatic cycle at the upper level. The bold
curved arrows represent the Blocking high. The thin angular continuous lines above the Blocking

high represent the planetary Rossby waves amplification. The dotted line is the ridgeline and is
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inclined along the NE-SW direction. (a) Prebreak situation: the genesis of Blocking high due to
the QRA (b) Break situation: the sustenance of the Blocking high over Indian region due to the

deceleration of the zonal wind as shown in the prior Eliassen-Palm flux analysis.

Of course, the Indian summer monsoon variability is controlled by several other factors and
drivers. For example, both monsoons and MJO are modulated by the ENSO (e.g., Pai et al., 2016).
Pai et al. (2016) show anomalously high number of the ISM break events, which are longer than
normal, during the summers when El Nifios occur. On the other hand, La Nifias, which are
traditionally associated with anomalously surplus ISM rainfall, do not seem to have any
association with the frequency of the active cases of the ISM. Importantly, we know that a new
type of ENSO, named as ENSO Modoki has been occurring since late 1970s (Ashok et al., 2007,
Marathe et al., 2015). In this context, | have carried out a preliminary analysis to document the
relative impacts of ENSO types on the active and break monsoon events. | find that both canonical
and modoki EI Nifios anomalously increase the break events, there is a difference in the associated
circulation patten and the distribution of negative rainfall anomalies between them. Interestingly,
in a general conformation with Pai et al. (2016), the both La Nifia types do not indicate a significant
association with active event statistics. Further details are provided in Appendix 11, and have been
published as part of a book chapter (Feba et al., 2020). Asitis, as the ENSO impacts and associated
circulation patterns last throughout the season, and importantly act from a relatively remote region,
any effect of ENSO must be through the ENSO-associated circulation changes in the Indian
theatre. Indeed, formation of a synoptic disturbance, which revives the monsoon from breaks,
depends on various other factors such as local SST and moisture availability. The monsoon can

also revive as a result of large-scale circulation changes that are forced by external drivers, without
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the explicit formation of a synoptic disturbance. In such cases, the manifested instability may be
different. From this context, the other large-scale processes likely explain the remaining cases of
the break—active transitions that are not explained by the formation of the synoptic disturbances.
We should also be mindful that the mechanism for the revival proposed by us is not necessarily
out of the purview of the MJO. For example, a particular phase of an MJO co-occurring during a
break induced by a blocking high, may potentially cause an anomalous northward shift of the TEJ

and expedite the revival of ISM after a break phase. These possibilities need to be explored.

7.2 Future Scope

Finally, there is also a need to explore the synergies and distinctions in the various mechanism

proposed for the active and break cycles.

1. The relative roles of the impact of the midlatitudes versus the role of MJO during breaks
and active conditions of ISM.
2. To observe the future changes of instabilities associated with intraseasonal variability of

ISM due to the increasing GHGs, aerosols, and land use land cover changes.
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Appendix-I|

Barotropic instability problem

These are two ways of studying the development of disturbances, namely,
1. Eigen value problem (Dynamic Meteorology by Holton (2004))
2. The initial value problem (Kuo 1953; also see Chapter 6 of Tropical meteorology: An
Introduction by Krishnamurti (2013))
Here we have adopted the initial value problem. The symbols/notations representing various

variables/parameters in the appendix are listed below (Table Al).

In order to estimate the energy exchange between the basic zonal current and a superimposed
disturbance in a barotropic, non-divergent and frictionless atmosphere, we use the barotropic

vorticity equation in the form.

=(f+vp) =0 (1)

where

f = 20sin(¢) ; Coriolis force term

¢ — Latitude
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vg = V%- Relative vorticity
- Stream function
u and v are the zonal and meridional components of the horizontal velocity vector, and can be

expressed as

-0 0
dy ox

As can be understood, x &y are the co-ordinate axes taken positive towards east and north
respectively.

Linearization of equation (1) yields

9 2 0 g2y O (p 07U _
6tV¢+U6xV¢+6x(’B ayz)_o )

U is the mean zonal current and 1 is the stream function for the perturbation flow.
Y ___
B = & Rossby factor

A typical solution for equation (2) will be

Y = A(y, t)sin(kx) + B(y, t)cos(kx) 3
Where k = ZT" is the wave number, and L the Wavelength

Substituting solution (3) in the equation (2) and equating the coefficients of Sin (kx) and Cos (kx)

terms, we get the following equations:

aa_yzz(g_‘t‘)—kzzit‘z—U(k3B—KZZT’j)+kB(ﬁ—327‘Z’) (4)

159



22 (ea w2 a2 ®

(4) and (5) are two unknown equations in two unknowns, z—f andf;—f and so form a closed system

of equations.

2
From the prescribed initial values of u, A, B, and ZTZ’ and with proper boundary conditions, we

can find solutions for 22 and 22,
at at
Initial conditions
Ao=0and Bo=asinly , [ = % (6)
where D is the channel width, and suffix ‘0’ represents the initial value . As pointed by

Platzman (1952), it is desirable to take initial conditions in such a way as to make the first
derivative of perturbations kinetic energy zero. As would be shown later specifically in equation

(10), the above condition (6) will fulfil the requirement.

Boundary conditions-- Meridional direction

A=0 at y=0 and y=D; Z—f:O and Z—}::O at y=0 and y=D @)

In the X-direction we assume that the disturbance quantities have cyclic periodicity at intervals of

one wavelength L. If Q is any disturbance quantity, then Q(x.y)=Q(xxL,y). Thus it is sufficient to
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consider the domain of integration as the area bounded by one wavelength ‘L' in the X- direction

and distance D in the y- direction to evaluate various kinds of energies.

Time tendency of Amplitudes

Amplitudes A and B after a time At are given by the Taylor's series

A(A) = A, + (Z—:‘)O At + %(Zsz)OAtz +—— ®)
B(At) = B, + (Z—f)om + %(ZZTS)OMZ +—— ©)

If At is sufficiently small, the above series can be truncated after the second derivative. This will
no doubt introduce some error in the forecasted amplitudes. Nevertheless, it is not an essential
shortcoming as shown by the results.

With initial conditions (6), (5) becomes
0% (9B 2 (0B _
2 G K (50) =0 (10)

It can easily be shown from (10) and (7) that (Z—f) = 0, everywhere,
o

Equations for (Z%) and (?:Tf) can be obtained by differentiating (4) and (5) with respect to
0 0

time. They take the form
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20 -t = v (e () 442 (- 1) o

2G-St = v (02K (3) -k (- 2) @)

Initial conditions (6) are used to obtain (11) and (12) since (Z—f) = Ofrom equations (11) and (7)
o

it can easily be shown that (%) = 0 everywhere, so (8) and (9) reduce to
0

A(AL) = (Z—‘t‘)om (13)
B(At) = B, + %(ZTB)O At? (14)

so after time At,ip is given by

Y(At) = A(At)sin(kx) + B(At)cos(kx)

Y(At) = Rycos(kx — 5) where Ry, = [A2(4¢t) + B%(41)]Y/?

A(At)

and tan(éy) = 5D

(15)

Thus the amplitude and phase of y wave can be found after time At from (15)
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Initial change of kinetic enerqy

The rate of change of kinetic energy may be regarded as the rate of amplification of the

disturbances. If it is positive, kinetic energy tends to increase with time, and disturbance is said to

be unstable. If it is negative, kinetic energy tends to decrease, and the disturbance is said to be

stable or damping. If the rate of change of kinetic energy is zero, the Kinetic energy remains

constant, and the disturbance is said to be neutral.

The kinetic energy of the disturbance is given by

K, = [ [ dxdy

But

-d 04 . oB
u= a—;/) = — [asm(kx) + Ecos(kx)]

v= Z—f = —k[Acos(kx) — Bsin(kx)]

Inserting (17) and (18) into (16) we get

K;=%ﬂ1@92+692+WQF+BQdy

Differentiating (19) with respect to time and using (4), (5) and (7) we get

(16)

17)

(18)

(19)
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0Ky D 9°B 924
F__T[J‘OU[AT_BT]dy (20)

The equation for the time change of the zonal wind is

U _ -8

= (21)

where the overbar denotes a zonal average.
Multiplying (21) by U and integrating over the region we get the equation for the time change of

zonal kinetic energy as

0

D (L 0 —
K, = —J, J; Uauvdxdy (22)

Where K,. is the zonal Kinetic energy given by

D (L U2
K, =-— J J <—) dxdy
o Jo \ 2

Using (17) and (18)

= 4[p2 - 42

3y % (23)

Using (23) and (22) becomes
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5] D 9°B 924
aKrZ:T[fo U[Aa_yz_Bﬁ]dy (24)

It is seen from (20) and (24) that the right hand side of (24) is the same as the right hand side of
(20) but with opposite sign. Thus this term represents the interaction between the zonal and
perturbation Kinetic energies.

In view of our initial conditions,

(50), = (%), =0 (25)

at at

Thus, as pointed out, earlier our initial conditions are such that the first derivative of perturbation
kinetic energy is made equal to zero. So we have to consider the second derivative of perturbation

kinetic energy K., in order to find out the initial change of kinetic energy, then

E = 0[2) 52 0 ) o e

Initial conditions are used to get (26)
Now, we will study the stability properties of different zonal currents with initial disturbance

Y = asin(ly)cos(kx), i.e.., B, = asin(ly)and A, = 0 27)
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The actual forms of the zonal current will be selected in such a way as to study different aspects
of the problem.

(i) the zonal current U is given by

U = ccos(2ly) Wherel = %

We shall discuss this symmetric mean zonal current. This profile has two inflections points (where

ZL;; = 0 ) midway between the axis of the flow and the walls. Kuo (1949) found that the presence

of flex points plays an important role in the barotropic stability problem.

We now need to solve equation (4) for the above prescribed zonal wind profile and B, (given by

equation 27). B is given as

20000 @ ~ 21+ cos(2))* = 2(1 + acos (1y)) )

B =
where R is the radius of the earth and o <1,
With the prescribed expressions for U, B and 3, equation (4) is solved with the boundary conditions

(7) to give

04
(E) k2+12 sin(ly) — 412 sin(2ly) — e 912 sin(3ly) — — — — (29)

Where
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E_ka!) k3ac 3kacl?

R T3 2
F_kaﬂa
2R
o 3lzk k3ac
- T

with the expressions for (?,_/2) , Boand U, the integral in (26) is evaluated to give
o

%K, ka®c?1?>nD
(55), =" B2 = k) (30)
%K, _ 2D

(F)o = 0 when L = E (31)

2D

> 0 when L > Ve

2D

< 0 when L < NG

Thus, the neutral wavelength L < % separates the stable shorter waves and unstable longer

waves. It is to be noted that the terms due to earth’s rotation will not appear in (30). So earth’s

r

2 2
rotation will not contribute to (aaTi) with the symmetric profile for U considered. (%) IS
o o

maximum at a wavelength 2.1 D and so is the most unstable disturbance.
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Table Al: A complete list of the symbols/notations representing various variables/parameters in

the appendix.

Symbol Definition
f Coriolis parameter
¢ Latitude
vg = V%Y Relative vorticity
Y Stream function for perturbation flow
u Zonal wind
v Meridional wind
U Mean zonal wind
p= % Rossby factor
= 2 Wave number
L
t time
L Wavelength
D Channel width
Q Any disturbance quantity
AB Amplitude
K, Perturabation Kinetic energy
K, Zonal kinetic energy
Radius of Earth
dx g dy Incremen_tal_zonal & mer_idional_di_stances
used in integration/differentiation
a,0,C
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AZ

Wavelength
Vertical ‘p’ velocity
Angular speed of the earth

Del operator applied to a quantity which
varies on an isobaric surface

Laplacian operator
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Appendix - 11

Intraseasonal Variability of ENSO Modoki - ISM Teleconnections

The intraseasonal variability of the Indian Summer Monsoon (ISM) rainfall has is
characterized by periods of wet (active) and dry (break) rainfall activity mainly prominent over
the monsoon core region of central India. It is manifests as a 30-60-day oscillation (Gadgil and
Joseph 2003; Goswami and Mohan 2001; Goswami and Xavier 2003; Keshvamurthy and Sankar
Rao 1992; Krishnamurti and Bhalme 1976; Krishnamurti and Subrahmanyam 1982; Sikka and
Gadgil 1980; Yasunari 1979). Goswami and Chakravorty elaborate on these aspects of active and

break spells of monsoon in their recent review (Goswami and Chakravorty 2017).

Pai et al. (2016) showed that the composite rainfall patterns of active days during El Nifios in the
1901-2014 period show only a slight difference from those during La Nifias, except for slightly
stronger negative rainfall anomalies along the foothills of Himalayas during EI Nifios. However,
in the case of break monsoon, the positive composite rainfall anomalies along the foothills of
Himalayas during La Nifia years are both stronger and extending more westwards (North-eastern

states) compared to that of El Nifio years.

Motivated by this, in my study, I carried out composite analysis of intraseasonal summer monsoon
rainfall anomalies for each type and phase of ENSOs during the 1951-2019 period was obtained
by averaging daily rainfall anomalies during the break monsoon and active monsoon periods
identified by Rajeevan et al. (2006; 2010), and are shown in Figures A2.1 and A2.2, respectively.

TableA2.1 lists the aggregate number of break and active monsoon days in all the canonical El
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Nifo years, those in El Nifio Modoki years, and those in two types of La Nifia years respectively
(Marathe et al., 2015), during the 1951-2007 period. The El Nifio and EI Nifio Modokis are seen
to be predominantly associated with higher number of break conditions over India (Figures A2.1).
Interestingly, unlike its seasonal signature (e.g., Figure 5, Ashok et al., 2019), the El Nifio Modoki
events are associated with negative rainfall anomalies along the monsoon trough during the break
periods (Figure A2.1). However, the association between the type and phase of ENSO events with
the active monsoon condition is not clear, unlike for the break events. Heuristically, I would expect
that the number of active days is more during La Nifias. But we also see many active days during
El Nifios as well. Of course, the relatively high rainfall during EI Nifio Modokis over the core
monsoon region may be due to the fact that the anomalously negative seasonal rainfall anomalies
during these events are more concentrated in peninsular India, with a positive association in the
core monsoon region (Fig. 3.4; also see Ashok et al., 2007 and 2019). There is an argument that
propensity of the break and active cycles in any monsoon season decide whether the relevant
seasonal monsoonal rainfall is below or above normal (Goswami and Chakravorty, 2017; Lau et

al., 2012 and references therein).

Table A2.1 List of total number of active and break monsoon days (and spells) during El Nifio, El

Nifio Modoki, La Nifia Modoki and La Nifia years during the period of 1951-2007.

Total No. Total Total No. | Total

of active average of break average
Event Years rainfall rainfall rainfall rainfall

days over | over CMR | daysover |over CMR

CMR (mm) CMR (mm)
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All 1951-2007 414 7.67 404 -4.06
1967, 1977, 1991,

El Nifio Modoki 36 8.84 52 -2.25
1994, 2002, 2004
1957, 1965, 1972,

El Nifo 40 5.24 74 -4.29
1982, 1987, 1997
1975, 1983, 1998,

La Nifia Modoki 19 7.37 32 -2.12
1999
1970, 1973, 1988,

La Nifa 43 8.39 25 -3.05
2007

35N 1
30N 1
25N 1
20N

15N 1
10N 1

35N 1
30N 1
25N -
20N
15N 1
10N 1
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(b) EI Nino Modoki
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L

4
d) La Nina Modoki

70E

Figure A2.1: (clockwise) Composite of rainfall anomalies during break monsoon days in the El

Nifio, El Nifio Modoki, La Nifia Modoki & La Nifia years (in contours, at 5 mm/day intervals).
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The shaded region indicates 95% confidence using two tailed Student’s t test (orange - negative;

sky-blue - positive).

(a) EI Nino (b) EI Nino Modoki

35N
IN{ A
25N-f“ F
20N

15N 1
10N

A
(c) La Nina

35N 1 ﬁag

30N
25N "'
20N
15N 1
10N

80E  90F

Figure A2.2: (clockwise) Composite of rainfall anomalies during active monsoon days of Indian
region in the El Nifio, El Nifio Modoki, La Nifia Modoki & La Nifia years (in contours, at 10
mm/day intervals). The shaded region indicates 95% confidence using two tailed Student’s t test

(orange - negative; sky-blue - positive).

We see from Figure A2.3(b) that the highest number of break days in a year are seen in 2002,
associated with a strong EIl Nifio Modoki. The 1965 El Nifio seems to be also associated with the
third-highest number of break monsoon days. When the total number of break days are concerned
(Table A2.1), the canonical El Nifio events are more proficient. During years with a warm-phased

event in the tropical Pacific, break spells of longer length are more common, such as the EI Nifio
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years during 1951-2007 showing longer break spells compared to the active spells & EI Nifio
Modoki in 2002 & 2004, rather than during the La Nifia years. All this suggests that the ENSOs
affect the intraseasonal variability of the ISM through the modulation of background seasonal
circulation. Moreover, there should be a significant role of internal variability, as evidenced by
that the second-highest number of breaks has occurred in 1966 (Table A2.1) when neither a strong

warm ENSO nor a positive 10D have co-occurred (Figures not shown).

Interestingly, we also see from Table A2.1 that the number of active days during either of these
two El Nifios is not negligible. The number of active days associated with La Nifias during 1951-
2007 is higher than those associated with the La Nifia Modokis. The highest number of active days
during summer monsoon occurred in 2006 when no discernible ENSO event was observed. These
are likely associated with the co-occurring strong positive 10D event (Cai et al., 2009; Kucharski
et al., 2020). The above-normal active cycles during the strong canonical El Nifio in 1997 and
those during the strong EI Nifio Modoki during 1994 can be attributed to the opposing effect of
the co-occurring strong positive 10D events in years such as 1997 (Ashok et al., 2001). This of
course needs to be verified through modelling experiments. In short, we observe that both EI Nifios
and El Nifio Modokis apparently facilitate higher than normal break days in Indian summer
monsoon, the former particularly so. However, an analogous unique impact of the La Nina’s on

active cycles is not that evident, which supports the argument of Pai et al. (2016).

Figure A2.ldepicts a composite analysis of daily rainfall anomalies during break conditions
associated with the two types of El Nifios, El Nifio Modoki, and corresponding La Nifias. A similar
analysis for the active cases is shown in Figure A2.2. We see negative rainfall anomalies over
most of India, except the anomalously positive rainfall anomalies along the Himalayan foothills. |

do not see a big difference between the signatures of two types of El Nifios, except that the
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canonical events seem to introduce higher deficit in daily rainfall during the breaks. Notably, the

impact of El Nifio Modokis on the seasonal summer monsoon rainfall along the monsoon trough

(e.g., Fig. 5 of Ashok et al., 2019) is apparently opposite to that during the break monsoon days.

In addition, while the EI Nifio Modokis and El Nifios are associated with a positive rainfall

anomalies in the break monsoon distribution and negative rainfall anomalies during active

conditions over the Northeast India, these indications are subject to the data quality in the r region

(Soraisam et al., 2018).The surplus rainfall footprints during active cases associated with all types

ENSOs seem to be only confined to the monsoon trough region (Fig. A2.2), unlike those during

the corresponding break conditions. The La Nifia Modokis do not seem to be as proficient as the

La Nifias in causing surplus rainfall in the central Indian region during the active phase of ISM

(Figures A2.1 and A2.2, lower panels).

Number of break days

Number of Active days

Break Monsoon

mmm No of Break days ——Mean (No of Break days)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Active Monsoon

= No. of Active days —— Mean (No. of Active days)
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Figure A2.3: (a- Top) Histogram of break days during 1951-2007 based on Rajeevan et al., (2008)
criterion. The El Nifio, EI Nifio Modoki, La Nifia, La Nifia Modoki are designated by the Bars in
Red, Yellow, Blue and Green, respectively. (b - Bottom) Same as Figure 3.7 (a) but for active

days.

Figures A2.4 aand A2.4 b shows the composite of daily anomalous 850 hPa velocity potential and
the divergent wind vectors over all the break and active cases during the 1951-2007 period.
Notably, during the breaks, | see a relatively small zone anomalous convergence confined over the
central tropical pacific (Fig. A2.4 a). On the other hand, during the active monsoon conditions, the
zone of convergence extends well over the western pacific region (Fig. A2.4 b); this looks like an
enhanced seasonal mean Walker circulation, with a strong signal over the tropical western pacific.
In conformation with the active conditions, we find a convergence over the Indian sub-continent
too, along with convergence from the equatorial Indian Ocean (Fig. A2.4 b). This is more
prominent over the eastern portion, importantly, over the equatorial Pacific region at the level of
850 hPa, the magnitude of the divergent vectors is strong during the active phase of the Indian

summer monsoon, with an opposite signature during the breaks. (Fig. A2.4 b).
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Figure A2.4: 850hPa Velocity potential anomalies (in contours, at 2 m?/s intervals) and
divergent (convergent) wind vectors for all the (a) break and (b) active cases during the 1951-

2007 period. The shaded region indicates 95% confidence using two tailed Student’s t test.

Figure A2.5 illustrates the composites of the daily anomalous 850 hPa velocity potential and the
divergent wind vectors for summer monsoon breaks during all phases of co-occurring ENSOs and
ENSO Modokis. Figure A2.5a shows that during canonical El Nifios, I find a strong zone of
anomalous divergence over the western Indian sub-continent. An anomalous zone of convergence
over the northeast Indian region is also shown. These anomalous signatures explain the dynamics
behind the rainfall anomalies during breaks associated with the canonical El Nifios (Fig. A2.1).
During the El Nifio Modokis as well, we still see anomalous divergence signature, statistically

significant at 95% confidence level. The composites of the active cases during all phases of ENSO
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and ENSO Modoki indicate anomalous convergence mainly over the northern Head Bay of Bengal
(Fig. A2.6), except in case of La Nifia Modoki where the anomalous convergence is more
prominent over the Arabian Sea. We also observe a strong convergence zone (Fig. A2.6 a) in the
in the tropical eastern pacific case of El Nifio, and in northern tropical central Pacific region in the
case of El Nifio Modokis with a slight weakened convergence over the western equatorial Pacific
region (Fig. A2.6 b) and vice versa in the cases of La Nifia (Fig. A2.6 c¢) and La Nifia Modoki (Fig.
A2.6 d) respectively in these locations. . The anomalous convergence signal over the Indian
regions fall slightly short of statistical significance during active cases associated with canonical

La Nifas.

The above composite analysis, essentially a preliminary effort, when combined with Table A2.1
suggest that changes in seasonal circulation may play potential role in the active-break cycles.
There seems to be a relatively stronger association between the El Nifios — be it canonical or
Modokis -and breaks. However, a similar relatively stronger relation between active conditions
with La Nifas, which | expect because of the propensity of La Nifias to provide a favourable
background condition for the active conditions, is not that conspicuous. These subtle conjectures
need to be supported by further observations using multiple observations -particularly station level
observations, and a more exhaustive dynamical analysis. We would also note from Figures A2.5
and A2.6 that the large scale circulation changes associated with monsoon break and active
conditions due to ENSOs have their signatures as far as Australia, indicating the complex dynamics
that may be involved, and need further attention. The analysis is also subject to the fact that we
have not factored the impacts from other climate drivers such as the 10D, Atlantic Zonal Mode,

and Madden-Julian Oscillation into our analysis.
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(d) La Nifia Modoki years. The shaded region indicates 95% confidence using two tailed Student’s

t test.
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Figure A2.6: 850 hPa Velocity potential anomalies (in contours, at 2 m2/s intervals) and divergent

(convergent) wind vectors for the active cases in (a) El Nifio, (b) EI Nifio Modoki, (c) La Nifia and
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(d) La Nifia Modoki years. The shaded region indicates 95% confidence using two tailed Student’s

t test.

ENSO & ENSO Modoki Index

We use the standard Nifio3 and Nifio4 indices (area-averaged SST anomaly over the regions 5°N-
59S, 150°W-90°W and 5°N-5°S, 160°E-150°W respectively) to define the canonical ENSO events.
For ENSO Modoki, we use the ENSO Modoki Index (EMI) as defined by Ashok et al. (2007) and
Marathe et al. (2015).

EMI=[SSTA]a - 0.5*[SSTA]g — 0.5*[SSTA]c

with SSTA area-averaged over the regions,

A (165°E-140°W, 10°S-10°N), B (110°W-70°W, 15°S-5°N), and C (125°E-145°E, 10°S-20°N), respectively.

Criterion for Break/Active spells

In evaluating the potential impact of the ENSO Modoki on the active and break monsoon events,
the rainfall anomalies are obtained by subtracting the daily rainfall climatology for the period
1951-2019 from the daily mean value. We follow the well-accepted Rajeevan et al. (2006) criterion
to identify the active and break spells/phase of the ISM, which is based on daily rainfall data.
According to the criterion, the active (break) episodes are identified during the peak monsoon
months (July to August) as the period through which the standardized daily rainfall anomaly in the
interested area exceeds (is less than) one standard deviation. If this continues for at least 3
consecutive days, then these are called as Active (Break) spells. Here, we applied the criterion to
identify the active and break episodes in the monsoon core zone limited to the region 18’'N-28'N,

65 E-88°E.
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