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1

1 Introduction

In this chapter we give the motivation for our work and explain the main the-

orem of this thesis.

1.1 The basic problem

Let g be a semisimple Lie algebra over C with Cartan subalgebra denoted by h.

We denote the space of linear functionals on h by h∗. It is known that finite di-

mensional irreducible complex representaions L(λ) of g are parametrized by the

set of dominant integral weights in the dual h∗. Here the notion of dominance

depends on fixing first a set of simple roots for the root system of g relative to

h in h∗. For more details on Lie algebras and root systems, we refer [AF],[FH]

and [JH].

Let L(λ) be a finite dimensional irreducible complex representation of g and µ

a linear functional on h. Let L(λ)µ be the subspace of L(λ) which is defined as

follows

L(λ)µ = {v ∈ L(λ) | for every ξ ∈ h, ξ.v = µ(ξ)v}.

We say that L(λ)µ is the weight space attached to the functional µ and µ is

called a weight of the representation L(λ) if L(λ)µ 6= {0}. Also we say that the

elements of L(λ)µ are weight vectors. The dimension dimL(λ)µ is called the

multiplicity of the weight µ in L(λ). The zero weight space is the weight space

attached to the weight 0.

Let G be a Lie group and g be the Lie algebra of G. Let T be a maximal torus

of G which is associated to the Cartan subalgebra h of g. A representation ρ



2 Chapter 1. Introduction

of G of finite dimension induces a represention of g. We note that any irre-

ducible representation of torus T is of dimension one. The restriction of an n

dimensional represention of G to the torus T will be a sum of n one dimensional

representions of the torus T. Then we make the following definition of weight

and weight space for Lie groups (cf.[AF]).

Definition 1.1.1 (Weights). An irreducible representation of T is called a

weight. Let (π,W ) be a representaion of G and χ a weight then the weight

space attached to χ is the subspace of W defined by

Wχ = {w ∈ W | π(t)(w) = χ(t)w for every t ∈ T}.

We note that if (π,W ) is a representaion of G then the weight of π is defined as

a weight of the represention of g associated to π. Hence the zero weight space

for T means the weight space corresponding the weight 0 of T, i.e, the trivial

character of T. The study of the zero weight space of T in G is of consider-

able interest and there is a good deal of relevant literature (cf. [Gut], [Ko],

[DAG],[H],[Tu], [MR], [Kac] and [KP]) over many decades. We do not as yet

have a definitive answer for all Lie groups, even those of classical type. In recent

years, the dimension of this space has been studied systematically in [KP] for a

connected, adjoint, simple algebraic group G defined over the complex numbers

C.

1.2 Motivation

In [P1], Dipendra Prasad essentially shows that if D is a quaternion tame di-

vision algebra over a non-Archimedean local field F and π is an irreducible

admissible representation of D∗ of dimension greater than 1 then there exists

a quadratic extension L of F embedded in D such that the restriction of π to

L∗ contains the trivial representation of L∗ and also a field extension K of F

of degree two such that the trivial representation of K∗ does not occur in π|K∗ .
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Wee Teck Gan (cf.[P1]) asks if such results are also true for higher dimensional

division algebras over F. The work of Savin [Sa] shows that if this is true for

cubic division algebras then it implies the non vanishing of some theta lifts from

D∗ to G2. Indeed Prasad’s own work implies the non vanishing of some theta

lifts. It is therefore of interest to know when an irreducible admissible repre-

sentation of a general division algebra over F has K∗-fixed vectors where K is

a field inside D. We call the multiplicative group of a maximal subfield in D∗

tori in D∗. In this thesis, we look at the case of division algebras of dimension

`2 over F where ` is an odd prime unequal to the residue characteristic of F.

1.3 Basic setup

1.3.1 Structure of Local fields

Let F be a non-Archimedean local field with residue field F, of characteristic p,

containing q elements. Let OF be the maximal compact subgroup of F and PF

the unique maximal ideal of OF , generated by a prime element $F .

Given a non-Archimedean local field F, its multiplicative group F ∗ can be writ-

ten as a product of subgroups, namely the subgroup generated by $F , a prime

element of F, the 1-unit group and the group of root of unity µF of order coprime

to p.

F ∗ = 〈$F 〉 × µF × U1
F

We can identify µF and F∗ in canonical way. For more details on the structure

of local fields we refer to [KZ], [L]. Let K/F be a finite field extension of degree

n such that n = fe, where f is the residue degree and e is the ramification index

of K/F. In this thesis, the field extensions K/F are always tame extensions,

which means p 6 | e. By [KZ], we can then choose prime elements $F and $K
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such that

$e
K = ζK/F$F for some ζK/F ∈ µF .

Let K/F be a tame field extension. We say that K/F is unramified if e = 1,

and totally ramified if f = 1. In the case of an unramified extension K/F, we

have K = F (ζK) for any generator ζK of µK . Further if K/F is unramified, we

may take $K = $F . We will do so throughout the thesis.

1.3.2 Structure of Division algebras

Assume that D be a central division algebra over a non-Archimedean field F of

dimension n2 for some n ∈ N. Here n is called the index ofD. The ring of integers

of D is denoted by OD, the unique maximal ideal is denoted by PD and residue

field is denoted by D = OD/PD, which is a finite field extension of degree n over

F. The set of coset representatives of D is denoted by D̃ and we write F̃ = F ∩D̃.

We write TrD/F for reduced trace and ND/F for reduced norm of D over F. Sim-

ilarly we can denote the trace and norm for the residue fields by TrD/F and ND/F

respectively. Also for field extension K/F, we write TrK/F and NK/F for the

trace and norm maps from K to F. Let ψF be a non-trivial additive character

of F. For any field extension K/F, we write ψK = ψF ◦TrK/F . Assume that the

additive character ψF is trivial on PF but non trivial on OF . Then the additive

character ψK is trivial on PK but non trivial on OK for any tamely ramified

extension K/F (see pg.868 [M]). Let K/F be a field extension of degree n

then K can be embedded in D and by the Skolem-Noether theorem [Mu], the

embedding is unique upto conjugacy.

We denote T = {γ ∈ D|TrD/F(γ) = 0} = kernel of TrD/F. Then D = F⊕ T. For

a division algebra D of prime index ` over F , we write

N`(0, 1) = {x ∈ D|TrD/F(x) = 0 and ND/F(x) = 1}.
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Let the extension K/F be an unramified extension of degree n inside D and σ

be a generator of the Galois group Gal(K/F ). The following holds (cf.[W],[SP]).

Theorem 1.3.1 (Structure of Division algebras). Let D be a division algebra

over F of index n. Then D contains an unramified extension K of degree n over

F . Moreover there exists a prime element $ in D such that

1. As a K vector space D = ⊕nj=0$
jK

2. For any x ∈ K we have that $−1x$ = xσ

3. TrD/F (x$j) = 0 for any x ∈ K and 1 ≤ j ≤ n

4. $n = $F (say) is a prime element in F.

There is a natural filtration Un
D of D∗ for n ≥ 0 with U0

D = O∗D, and Un
D = 1+P n

D

for n > 0. Similarly, for field extension K/F, there is a natural filtration Un
K of

K∗. Also we write K(m) = K∗ ∩ Um
D for m ∈ N for any extension K/F. Note

that Um
K not necessarily equal to K(m). Let θ be a quasi-character of K∗, then

the conductor of θ is defined by f(θ) =min{n| ker θ ⊃ Un
K}. We denote the

greatest integer function of a real number x by [x].

The representations of D∗ that we will be considering will have F ∗U t
D (for some

non negative t) in the kernel and hence will essentially be representations of the

finite group D∗/F ∗U t
D. Let G be a locally compact, totally disconnected group

and H be a closed subgroup of G. If ρ be a representaion of H then the induced

representaion of ρ to G is denoted by IndGH ρ and the set of irreducible admissi-

ble representations of the group G is denoted by Irr(G). We denote F̂ for the

set of all quasi-characters of multiplicative group of F. We denote the trivial

representation of G by 1G. If π be a representation of G, the restriction of π to

H is denoted by π|H and the character of the representation π is denoted by Θπ.
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1.4 Main result of the thesis

We begin this section with the following definition.

Definition 1.4.1 (Tori). We say that the multiplicative group of a maximal

subfield in a division algebra D is a tori in D∗. Let K/F be a maximal extension

in D then we say that K∗ is an unramified tori in D∗ if K/F is unramified and

a totally ramified tori in D∗ if K/F is totally ramified.

In this thesis, we study the dimension of zero weight space of tori inside the

division algebra over F of index `, where ` is an odd prime and 6= p. In this

case, ` being a prime, any extension K/F of degree ` is either a totally ramified

or an unramified extension and hence we have either totally ramified tori or

unramified tori. From the structure theory of local fields we know that we have

(upto conjugacy) either one unramified tori and one totally ramified tori or one

unramified tori and ` totally ramified tori in D∗ depending on whether F has a

primitive ` th root of unity or not. We study the dimension of the zero weight

space for tori K∗ by computing the number d(π,K) = complex dimension of

HomK∗(π,1K∗), where π is an irreducible representaion of D∗.

With the above notation we state the main theorem of this thesis, which is the

joint work of author and Rajat Tandon [SR].

Theorem 1.4.2. Let D be a division algebra of odd prime index ` over the

non-Archimedean local field F with residue characteristic p, ` 6= p and π be an

irreducible representation of D∗ attached to the admissible pair (E, θ) of con-

ductor m + 1 (see 2.1.1) with central character ωπ = 1F ∗ . Let K/F be any

extension of degree ` in D. Then
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d(π,K) =



0 if E = K and K/F is unramified;

q
1
2
(`−1)(`−2)m if E/F is unramified and

K/F totally ramified;

q(`−1)(
m−1

2
−[m−1

`
]) if E/F is totally ramified and

K/F unramified;

N`(0, 1)

`
q

1
2
(m−1)(`−3)+[m−1

`
] if both E/F,K/F are totally ramified.

1.5 Outline of the article

The content of this thesis is structured as follows: In chapter 2, we recall

the construction of representations of D∗. The set of irreducible representaions

of D∗( Irr(D∗)) is parameterized by the set of admissible pairs (E, θ) over F.

The construction is well-known and is due to Howe, Moy (see [Ho], [M]) and

P. Broussess (see [Br]). In chapter 3, we recall the character formulas for the

unramified case [Tak1] and the totally ramified case [CMS]. In chapter 4, we

discuss the existence of trace 0 and norm 1 elements in finite field extensions

and, in particular, the Katz bound [Kat] for the number of such elements.

Finally in chapter 5, we use the character formulas given in [Tak1] and [CMS]

to obtain the dimension of zero weight spaces.
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2 Representation theory of D∗

In this chapter we recall Howe’s construction of admissible representations of

D∗ in the tame case, which means that p and ` are coprime. These irreducible

representations are known as tame supercuspidal representations of D∗. For

more details of the construction, we refer to ([M],[HR],[LC],[CH] and [CMS]).

For tame supercuspidal representations of arbitrary p- adic groups, we refer [Yu]

and [Kim]. Also we refer to [BK] for the construction of admissible representa-

tions of arbitrary p - adic groups via types.

Let E be an extension of F embedded inD. In the tame case, the representations

of D∗ are parametrized by admissible pairs (E, θ) where θ is an admissible quasi

character of E∗. The one dimensional representations of D∗ factor through the

norm. Hence 1-dimensional representations of D∗ are of the form χ ◦ ND/F

for some χ ∈ F̂ . Howe’s construction gives us the representations of D∗ of

dimension greater than 1.

2.1 Admissible pairs

For a finite extension E/F, of nonarchimedian local fields, we denote the ram-

ification degree by e = eE/F and the residue degree by f = fE/F . Assume that

ψE is an additive character of E of conductor PE i.e, it is trivial on PE but non

trivial on OE.

Definition 2.1.1. (see [M], 2.2.3) Let E over F be a tamely ramified extension.

A quasi character θ of E∗ is said to be admissible over F if
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1. θ is not of the form χ ◦NE/L for fields F ( L ( E and

2. if θ|U1
E

factors through NE/L where L is a proper subfield of E containing

F then E/L is unramified.

In this thesis by the conductor of the admissible pair (E, θ) we mean the con-

ductor of the quasi character θ of E∗.

Note that if E/F is tamely ramified of prime degree then θ is admissible if

and only if it is not of the form χ ◦ NE/F for some χ ∈ F̂ which is equivalent

to θ|U1
E

not factoring through norm. In particular θ|U1
E

should not be trivial.

Furthermore, if E/F is tamely ramified and the residue fields of F and E have

q and qf elements respectively then E has a primitive (qf -1)st root ζ of unity

and a prime element $E such that $e
E = ζ i$F ∈ F for some e and i. If θ is a

quasi character of E∗ with conductor m + 1, i.e., θ is trivial on Um+1
E but non

trivial on Um
E , then if m > 0, there exists γθ in the group generated by ζ and

$E such that θ(x) = ψE(γθ(x− 1)) for x ∈ Um
E . Moreover when the conductor

of the additive character ψE is one, as will be the case in the rest of this thesis,

then the valuation of γθ is −m. We write γθ = γ′θ$
−m
E , where γ′θ is a power of ζ.

Furthermore we know, by the remark at the beginning of this paragraph that if

the degree of E over F is a prime and θ is admissible then m can be zero only

when E is unramified over F.

The following definition due to Moy [M]:

Definition 2.1.2. : “A quasi-character θ of E∗ is said to be generic over F of

conductor m+ 1,

1. if m = 0 then E is unramified over F and θ does not factorise through

the norm of a proper sub extension of E/F and

2. if m > 0 then E = F (γθ).”

Let CE = 〈ζ,$E〉, where ζ be a primitive (qf − 1) root of unity in E and $E is

a prime element of E such that $e
E ∈ F so that γθ ∈ CE and it can be written

in the form γ′θ$
−m
E , where γ′θ ∈ 〈ζ〉. Observe that when E is a tame extension

of prime degree and θ is admissible then θ is generic if and only if



2.1. Admissible pairs 11

1. when E/F is totally ramified then ` 6 | m

2. when E is unramified over F then either m = 0 or γ′θ 6∈ F i.e, γ′θ is not a

(q − 1)st root of unity.

We remark that θ admissible with m = 0 is possible if and only if θ(ζ) is not a

(q − 1)st root of unity.

For if θ is trivial on U1
E then θ = α ◦ NE/F where α is a quasicharacter of F ∗

which is trivial on U1
F , then α($F ) = an `th root of θ($F ) and α(ζ

q`−1
q−1 ) = θ(ζ).

The last equality is only possible if θ(ζ) is a (q − 1)st root of unity.

Proofs of the following results exist in the literature but in our simple case when

[E : F ] = `, a prime not equal to p much simpler proofs can be given which are

instructive in themselves.

Proposition 2.1.3. If θ is generic then θ is admissible. (This is true in general)

Proof. Case 1: E/F is totally ramified : Then ` 6 | m. We claim that θ|Um
E

does

not factor through norm and therefore θ does not factor through norm. Observe

that [JPS]

N(Um
E ) =

 U
m/`
F if ` | m

U
[m/`]+1
F if ` 6 | m

Hence if ` 6 | m then N(Um
E ) = N(Um+1

E ). If θ = α ◦NK/F then

θ(Um
E ) = α(N(Um

E ))

= α(N(Um+1
E ))

= θ(Um+1
E )

= {1}

which contradicts the fact that the conductoral exponent of θ is m+ 1.

Case 2: E is unramified over F : Then either m = 0 or γ′θ 6∈ F. If m = 0 then

the definition of generic means that θ does not factor through norm and so θ

is admissible. If γ′θ 6∈ F ∗ we claim that θ|Um
E

does not factor through norm and

therefore θ does not factor through norm. Observe that, we have
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θ(1 + x$m
E ) = ψE(γθx$

m
E ) for every x ∈ OE

= ψE(γ′θ$
−m
E x$m

E )

= ψE(γ′θx) for every x ∈ OE.

If σ generates the Galois group of E over F and if θ|Um
E

factors through norm

then θσ = θ on Um
E . Hence

θσ(1 + x$m
E ) = θ(1 + x$m

E )

⇒ ψE(γ′σθ x) = ψE(γ′θx) for every x ∈ OE
⇒ ψE((γ′σθ − γ′θ)x) = 1 for every x ∈ OE

But when E is unramified over F and γ′θ 6∈ F then γ′σθ − γ′θ must be a unit in

E so by the above if θ factors through norm on Um
E we get that ψE is trivial on

OE which contradicts the fact that the conductor of ψE is PE.

In what follows we will usually assume that θ is trivial on F ∗ i.e., θ is a quasi

character of E∗/F ∗. In this case the converse is also true i.e if θ is admissible

then it is generic.

Proposition 2.1.4. If θ|F ∗ = 1 and θ is admissible then it is generic.(E is of

prime degree over F.)

Proof. Case 1: If E/F is totally ramified, we need to show that ` 6 | m. But if

`| m then Um
E ⊂ F ∗Um+1

E . Since θ is trivial on F ∗Um+1
E it would mean that θ is

trivial on Um
E which contradicts the fact that m+ 1 is the conductor of θ.

Case 2: If E is unramified over F and if m = 0 then θ is generic by definition;

otherwise we need to show γ′θ 6∈ F. Without loss of generality we may assume

that ψE = ψF ◦ TrE/F , where ψF is an additive character of F ∗ of conductor

PF . Then for any x ∈ OF , we have

1 = θ(1 + x$m
F )

= ψF (TrE/Fγ
′
θ$
−m
F $m

F x)

= ψF (`γ′θx) if γ′θ ∈ F.

But then ψF is trivial on `xOF = OF which contradicts the fact that the

conductor of ψF is PF . Hence γ′θ 6∈ F which implies that θ is generic.
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So for characters of E∗/F ∗ genericity and admissability are the same.

The following proposition says more about genericity. We do not assume here

that θ|F ∗ is trivial.

Proposition 2.1.5. Let E/F be a tame extension of degree ` (prime) and (E, θ)

an admissible pair of conductoral exponent m+1. Then θ is generic is equivalent

to θ|Um
E

does not factor through norm. Furthermore

1. If E/F is totally ramified then θ|Um
E

does not factor through norm if and

only if m > 0 and ` 6 | m.

2. If E/F is unramified then θ|Um
E

does not factor through norm if and only

if either m = 0 and θ(ζ) is not a (q−1)st root of 1 or m > 0 and θ is non

trivial on elements of the form 1+x$m
F , where x ∈ OE and TrE/F (x) = 0.

Thus when θ is generic then θ is minimal, i.e., its conductoral exponent cannot

be lowered by twisting it by a quasi character of E∗ which factors through norm.

Proof. We have already proved that when the extension E/F is as in the propo-

sition that θ|Um
E

does not factor through norm (Proposition 2.1.3). For the con-

verse suppose that θ|Um
E

does not factor through norm.

Case (i): E is totally ramified over F : Then m+ 1 > 1 and $`
E = $F ∈ F.

We claim that ` 6 | m and therefore θ is generic. Suppose to the contrary that

`| m, we have

Um
E = U

m
`
F U

m+1
E .

Define α1 : U
m
`
F

/
U

m
`
+1

F → C∗

such that

α1(1 + x$
m
`
F ) = θ(1 +

x

`
$m
E ).

Then

α1 ◦NE/F (1 + x$m
E ) = α1 ◦NE/F

(
(1 + x0$

m
`
F )(1 + y$m+1

E )
)
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for some x0 ∈ OF , y ∈ OE. So

α1 ◦NE/F (1 + x$m
E ) = α1((1 + x0$

m
`
F )`)

= α1(1 + `x0$
m
`
F )

= θ(1 + x0$
m
E )

= θ((1 + x0$
m
`
F )(1 + y$m+1

E ))

= θ(1 + x$m
E ) (∵ f(α1) = m

`
+ 1.)

Therefore θ = α1 ◦NE/F on Um
E which gives a contradiction.

Case (ii): E/F is unramified: The statement for m = 0 has alread been proved.

Observe that if the Galois group of E/F is generated by σ then

θσθ−1(1 + x$m
F ) = ψE(γ′θ(σ(x)− x)) = ψE((σ(γ′θ)− γ′θ)x)

since ψE factors through trace. Clearly then if θ|Um
E

does not factor through

norm,i.e., θσθ−1 is not trivial on Um
E we must have γ′θ 6∈ F so that θ is generic.

Finally observe that θ|Um
E

factors through norm if and only if θσ = θ on Um
E .

Moreover

θσ(1 + x$m
F ) = θ(1 + x$m

F ) if and only if θ(1 + (σx− x)$m
F ) = 1

where x ∈ OE.
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Suppose θ is not trivial on all elements of the form 1 +x$m
F , where x ∈ OE and

TrE/F (γ) = 0. Observe that, by a slight refinement of the additive Hilbert’s 90,

the elements of OE of trace 0 are precisely of the form σ(y)−y for some y ∈ OE.

These facts clearly show that θ|Um
E

does not factor through norm precisely when

θ is non trivial on elements of the form 1 + x$m
F for x ∈ OE of trace zero.

If θ|Um
E

is trivial on elements of the form 1 + x$m
F for x ∈ OE of trace 0

then the following explains how we can get a quasi character α of F ∗ such

that θ = α ◦ NE/F on Um
E . Define α : Um

F /U
m+1
F → C∗ by α(1 + u$m

F ) =

θ(1+ u
`
$m
F ), u ∈ OF . Extend α to a character of F ∗. (Recall that if G is a finite

abelian group with subgroup H then any character of H can be extended to

G. Hence a character of Um
E /U

m+1
E can be extended to UE/U

m+1
E and further

extended to E∗ by giving α($) any arbitrary complex value.) We claim that

θ = α ◦NE/F on Um
E . The proof of the claim is as follows.

Let u = 1
`
TrE/F (x) and y = x − 1

`
TrE/F (x). When x ∈ OE then u ∈ OF and

y ∈ kerTrE/F ∩ OE.

Then α ◦NE/F (1 + x$m
F ) = α ◦NE/F (1 + (u+ y)$m

F )

= α(NE/F (1 + u$m
F ))α1(NE/F (1 + y$m

F ))

= α((1 + u$m
F )`)α(1 + TrE/Fy$

m
F )

= α((1 + `u$m
F ))

= θ(1 + u$m
F ))θ(1 + y$m

F )

= θ(1 + x$m
F ).

Since θ is non trivial on Um
E then α is non trivial on Um

F .

Therefore the conductor of α is m+ 1.
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Finally we show in general that any admissible quasi character of E∗ is the

product of a generic character and a character that factors through norm.

Proposition 2.1.6. Let E/F be a tame extension of prime degree and θ be an

admissible character of E∗. Then

θ = (χ ◦NE/F )θ′,

where χ ∈ F̂ and θ′ is a generic character of E∗.

Proof. We first make the elementary remark that if we twist (multiply) an

admissible quasi character of E∗ by a character that factors through norm then

the product is again admissible. Let the conductor of θ be m+ 1. If θ is generic

we let θ′ = θ and χ = 1. If θ is not generic then θ|Um
E

must factor through

norm. Let θ = α ◦ NE/F on Um
E . Let θ1 = θ(α−1 ◦ NE/F ). Clearly θ1 is trivial

on Um
E and so its conductor m1 + 1 is less than m+ 1. If θ1|Um1

E
does not factor

through norm then it is generic and we let θ′ = θ1 and χ = α1. If, on the other

hand, θ1 = β2 ◦ NE/F on Um1
E we let θ2 = θ1(β

−1
2 ◦ NE/F ) = θ(α−12 ◦ NE/F )

where α2 = α1β2. Clearly the conductor m2 + 1 of θ2 is less than m1 + 1. We

now have θ = θ2(α2 ◦ NE/F ) and m2 < m1. Continuing in this way we will

finally get a character θn which is generic and a character αn of F ∗ such that

θ = θn(αn ◦NE/F ). We let θ′ = θn and χ = αn.

2.2 Construction of πθ

Let D be a tame division algebra over its centre F of dimension `2 and (E, θ)

an admissible pair such that E is embedded in D and has dimension ` over F

and the conductor of θ is m + 1. Let us first assume that E/F is unramified.

If m = 0 then θ may be considered to be a representation of F ∗UD since

F ∗UD/U
1
D ' E∗/U1

E. We define πθ to be IndD
∗

F ∗UD
θ. If m > 0 we let ψF be

the character of (F,+) as in §1.3.2. Then there exists an element γθ ∈ E such

that θ(x) = ψF ◦ TrE/F (γθ(x − 1)) for all x ∈ U t
E where t = [ `m+2

2
]. We define

ρθ on E∗U t
D by ρθ(xy) = θ(x)ψF ◦TrD/F (γθ(y− 1)) for x ∈ E∗ and y ∈ U t

D. We
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then define πθ = IndD
∗

E∗Ut
D
ρθ. In both cases πθ is an irreducible representation

of D∗.

Proposition 2.2.1 (cf.[Tak1]). Let πθ be an irreducible representation of D∗

as above. Then we have the following

1. dimension of πθ = `q`(`−1)m/2.

2. f(π) = `f(θ).

3. Any irreducible representations of D∗ whose conductor is divisible by ` is

of the form πθ for some unramified pair (E, θ) as above.

Let the extension E/F be totally ramified of prime degree ` and (E, θ) be an

admissible pair over F. We next construct πθ attached to the pair (E, θ). We

follow [CMS]. There is a non trivial additive character ψ0 of F such that

θ(1 + α$m
E ) = ψ0(Trα) = ψ0(`α), for α ∈ F̃.

Define 
m′ = m′′ = m+1

2
if m is odd;

m′ = m
2

+ 1,m′′ = m
2

if m is even;

let H ′ = E∗Um′
D /Um+1

D and H ′′ = E∗Um′′
D /Um+1

D , We set

N0 =
{
y ∈ Pm′

D |TrD/Fyz = 0 for all z ∈ E
}
,

and define

N = Um+1
D (1 +N0)/U

m+1
D .

Then we have the following:

1. N �H ′

2. N ∩ E∗Um+1
D /Um+1

D is trivial.

3. H ′ = N.E∗Um+1
D /Um+1

D
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4. We extend θ to H ′ by setting

θ#|N ≡ 1, θ#|E∗ = θ.

Observe that θ may be considered to be a character of E∗Um+1
D /Um+1

D . If m is

odd then we define πθ = Ind
D∗/Um+1

D

H′ θ#. If on the other hand m is even then

modulo the kernel of θ#, H ′′ is a Heisenberg p-group in which H ′ has index q`−1.

Then there exists a subgroup W of index q
`−1
2 in H ′′ such that (modulo kernel

θ#) W is abelian and θ# extends to a character θ
′

of W. Moreover IndH
′′

W θ
′

is

irreducible. We let πθ = IndD
∗

W θ
′
. The following proposition is due to Takahashi

and Moy.

Proposition 2.2.2 (cf.[Tak2],[M]). Let πθ be the irreducible representation of

D∗ as above. Then we have the following

1. dimension of πθ =
q` − 1

q − 1
q

1
2
(`−1)(m−1).

2. f(π) = f(θ) + `.

3. Any irreducible representations of D∗ whose conductor is not divisible by

`, of dimension greater than 1, is of the form πθ for some totally ramified

pair (E, θ) as above.
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3 Character formulas

In this chapter we recall the character formulas from [Tak1] and [CMS].

Recall that ` is an odd prime.

3.1 Unramified Case

In this section we consider irreducible representations π of D∗ attached to some

unramified pair. Then the following theorem is due to Takahashi.

Theorem 3.1.1 ([Tak1], Corollary 1.2.2). Let E/F be an unramified extension

of degree over ` in D and the pair (E, θ) admissible over F. Assume that π is

the irreducible representation attached to the pair (E, θ). Then

Θπ(x) =


q

1
2
`(`−1)j ∑

σ∈Gal(E/F )

θ(σ(x)) if x ∈ C∗j (0 ≤ j < m)

q
1
2
`(`−1)m ∑

σ∈Gal(E/F )

θ(σ(x)) if x ∈ Cm

where Cj = U1
FU

j
E/U

1
FU

`m+1
E and C∗j = Cj − Cj+1 for 0 ≤ j < m.

The following theorem gives character fomulas when we restrict π to totally

ramified tori.

Theorem 3.1.2 ([Tak1], Theorem 1.2.17(2)). Let E, π be as in the theorem

above and K/F be a totally ramified extension of degree `. Then

Θπ(x) =

 0 if x 6∈ F ∗U `m+1
K

θ(c)`q
1
2
`(`−1)m if x = c(1 + y) ∈ F ∗U `m+1

K
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3.2 Totally ramified case

Note that every non zero element x of the division algebra D has a unique

expression of the form

x =
∞∑
j=j0

αj$
j, αj ∈ D̃ and j0 = ν(x)

where ν be the valuation of D.

The following definition due to [CMS].

Definition 3.2.1. Let x be as above. We say that x is a normal element if the

monomials αj$
j all commute.

We note that every element of D∗ is conjugate to a normal element. Given any

normal x ∈ D \ F,

write

x = α0$
j0(1 + α1$ + · · · )

and define

ν0(x) =

 0 if α0$
j0 6∈ F ;

j if α0$
j0 ∈ F and j is the smallest index with αj$

j 6∈ F.

Let the extension E/F be totally ramified of degree ` and π be the irreducible

representation attached to the admissible pair (E, θ). The following theorem is

taken from [CMS]. There is a typographical error in [Theorem 4.2 (c),[CMS]]

which is acknowledged in (pg.58, [ACS]). In view of [ACS], we have the following

theorem.

Theorem 3.2.2 ([CMS], Theorem 4.2). Let x ∈ D∗ be normal and ν(x) = j.

Then we have the following:

1. If j > m,Θπ(x) =
q` − 1

q − 1
q

1
2
(`−1)(m−1)θ#(x).

2. If j < m and x is not conjugate to an element of E, then Θπ(x) = 0.
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3. If j < m and x ∈ E, then

Θπ(x) = q
1
2
(`−1)j

∑
σ∈Gal(E/F )

G(σ(x), θ)θ(σ(x)),

where Gal(E/F ) is the Galois group of E/F.

4. If j = m, then x = fx0, f ∈ F and x0 ≡ 1 + α$m( mod Pm+1
D ). Then

Θπ(x) = q
1
2
(`−1)(m−1)θ(f)

∑
δ∈kerND/F

ψ0 ◦ TrD/F(αδ).

Where

G(x, θ) =



( q
`
) if j = 0 (the Legendre symbol)

1 if j > 0, and m and j have opposite parities;

q−(`−1)/2
∑
γ∈T

ψ0TrD/F(αjγ
σ

m+j
2 (γσ

j − γ) if j > 0, and m and j

have the same parity.

The following lemmas are repeatedly used in section 5.1. The first two lemmas

can be stated in greater generality. However we state them only when ` is a

prime and prove them by using the structure theory of local fields [W].

Lemma 3.2.3. Let K/F be a tame extension of degree ` and r a non negative

integer. Then

K∗ ∩ F ∗U r
D = F ∗U

[ r−1
`

]+1

K if K is unramified over F

= F ∗U r
K if K is totally ramified over F.

Proof. We note that in either case

the right hand side in the above equalities ⊂ F ∗U r
D for r ≥ 0.

Let x ∈ F ∗U r
D then x can be written uniquely as

x =
r−1∑
i≥0

αi$
i
F +

∑
j≥r

βj$
j
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where αi ∈ F̃ and βj ∈ D̃.

Case I: If K/F is an unramified extension and x ∈ F ∗U r
D ∩K∗. Then we have

the following

j ≡ 0 ( mod `) and βj ∈ F̃.

Then

K∗ ∩ F ∗U r
D ⊂ F ∗U

[ r
`
]

K if r ≡ 0 ( mod `)

⊂ F ∗U
[ r
`
]+1

K if r 6≡ 0 ( mod `).

Hence

K∗ ∩ F ∗U r
D = F ∗U

[ r+`−1
`

]

K

= F ∗U
[ r
`
]+1

K .

Case II: If K/F is a totally ramified and x ∈ F ∗U r
D ∩K∗. Then βj ∈ F̃ which

implies that x ∈ F ∗U r
K . Hence

K∗ ∩ F ∗U r
D = F ∗U r

K .

Lemma 3.2.4. Let K/F be as in above lemma and r be a non negative integer.

Then

|K∗/F ∗U r
K | =


q` − 1

q − 1
q(`−1)(r−1), if K is unramified over F ;

`q(r−1)−[
r−1
`

], if K is totally ramified over F.

Proof. We note that

F ∗ = $F × 〈ζF 〉 × U1
F

where ζF be the primitive (q − 1)st root of unity in F.

Then we write K∗ as

K∗ =

 $F × 〈ζK〉 × U1
K , if K/F is unramified;

$K × 〈ζF 〉 × U1
K , if K/F is totally ramified
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where ζK be the primitive (q` − 1)st root of unity in K. Also we note that

U1
F ∩ U r

K =

 U r
F , if K/F is unramified;

U
[ r−1

`
]+1

F , if K/F is totally ramified.

Since U1
FU

r
K/U

r
K
∼= U1

F/U
1
F ∩ U r

K and for i > 0,

U i
K/U

i+1
K
∼=

 D, if K/F is unramified;

F, if K/F is totally ramified.

Then

[U1
K : U1

FU
r
K ] = [U1

K : U r
K ]/[U1

FU
r
K : U r

K ]

= [U1
K : U r

K ]/[U1
F : U1

F ∩ U r
K ]

=

 q(`−1)(r−1) if K is unramified over F ;

q(r−1)−[
r−1
`

] if K is totally ramified over F.

If K/F is unramified, the cardinality of the quotient is given by

[K∗ : F ∗U r
K ] =

q` − 1

q − 1
[U1

K : U1
FU

r
K ]

=
q` − 1

q − 1
q(`−1)(r−1).

In case of totally ramified K/F, we have

[K∗ : F ∗U r
K ] = `[U1

K : U1
FU

r
K ]

= `q(r−1)−[
r−1
`

].

Finally, the following lemma is well known.

Lemma 3.2.5. “Let G be a finite group and χ be a non trivial character of G.

Then ∑
g∈G

χ(g) = 0.”
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4 Trace zero and Norm one

elements

Let Fq be a finite field with q = pr elements. In this chapter we recall the result

of Moisio ([Mo]) where he obtains bounds for the cardinality of elements of Fqn

with prescribed trace and norm over Fq for arbitrary n. As a corollary we will

see a sharp bound in the case when n is a prime and the trace and norm are 0

and 1 respectively. Also we prove that the number of elements of Fq` with trace

zero and norm one is non zero and multiple of `. The existence of trace zero

and norm one elements in Fq3 over Fq is discussed in the following example.

Example 4.0.6. (Existence of trace zero and norm 1 elements)

There exist x ∈ Fq3 such that trFq3/Fqx = 0 and NFq3/Fqx = 1.

Proof. Consider polynomial fa(x) = X3 + aX − 1, a ∈ Fq. If a 6= b and x1

and x2 are two roots of fa and fb respectively in Fq then x1 6= x2. For suppose

x1 = x2. Then x31 + ax1 − 1 = x32 + bx2 − 1 = 0, which implies a = b. Hence the

q different f ′as can’t all have a root in Fq (since 0 is never a root). Therefore

at least one polynomial of the form X3 + aX − 1 must be irreducible. Then in

Fq3 ∼= Fq[X]/〈X3 + aX − 1〉, X has trace 0 and norm 1.
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4.1 Katz bound

We define for any positive integer t

N`(0, b) = |{x ∈ Fqt |TrFqt/Fq(x) = 0 and NFqt/Fq(x) = b}|

= the number of elements of Fq` with trace 0 and norm b

over Fq.

Then the following theorem is due to Moisio.

Theorem 4.1.1 (cf.[Mo], (Theorem.3.2)). Let γt be a primitive element of Fqt .

Assume that p 6 |m
t

and d|r where b = gr. Then,

Nt(0, b) = d
(q`−1 − 1

q − 1
+

1

q

∑
x∈Fqt

ψ0(Trγ
i0
t x

s)
)

where s = gcd(`, q − 1), d = gcd(m
t
, q − 1).

In case of t = `, we have the following corollary.

Corollary 4.1.2. Assume that p 6 |m
`

. Then,

N`(0, 1) =
q`−1 − 1

q − 1
+

1

q

∑
x∈F

q`

ψ0(Trx
s)

where s = gcd(`, q − 1).

Proof. Follows from the theorem when b = 1, i0 = 0

Then we have the special case of the Katz bound (cf.[Mo],(1.2)) in case ` is a

prime.

Lemma 4.1.3 (see [Mo], corollary (3.3)).

∣∣∣N`(0, 1)− q`−1 − 1

q − 1

∣∣∣ ≤ (s− 1)q
`−2
2

where s = gcd(`, q − 1).

Lemma 4.1.4. N`(0, 1) is non zero for all odd primes `.
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Proof. By using above lemma we have the following:

Case (i): if ` 6 | q − 1, then N`(0, 1) =
q`−1 − 1

q − 1
.

Case (ii): if s = ` (i.e., `|(q − 1)) and ` ≥ 5, then

|N`(0, 1)− q`−1 − 1

q − 1
| ≤ (`− 1)q(`−2)/2

< q.q(`−2)/2 = q`/2 ≤ q`−2

<
q`−1 − 1

q − 1
.

Case (iii): if ` = 3, then

|N3(0, 1)− (q + 1)| ≤ 2
√
q.

Therefore, in all cases, we have

N`(0, 1) 6= 0.

However, if ` = 2 the following is easy to prove:

Lemma 4.1.5. If q is odd and ` = 2, then

N2(0, 1) =

 0 if q ≡ 1 mod (4)

2 if q ≡ 3 mod (4).

Proof. If q ≡ 3 mod (4), then −1 is not a square in Fq and x2+1 is irreducible

over Fq. Write

Fq2 = Fq + Fqα
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where α2 = −1.

Let x = a + bα ∈ Fq2 (a, b ∈ Fq) such that TrFq2/Fq(x) = 0 and NFq2/Fq(x) = 1.

Then a = 0 and −b2α2 = 1, which implies that b2 = 1 i.e, b = ±1. Therefore

N2(0, 1) = 2.

If q ≡ 1 mod (4), there exist an i ∈ Fq such that i2 = −1. Choose a β ∈ Fq
which is not a square. Then x2 − β is irreducible over Fq. So we write

Fq2 = Fq + Fqα

where α2 = β.

For a+ bα to have trace 0 we must have a = 0. For it to then have norm 1 we

must have −b2β = 1 which implies that β = (ib−1)2 which contradicts the fact

that a is not a square. Therefore there are no elements of trace zero and norm

one.

Lemma 4.1.6. N`(0, 1) ≡ 0 (mod `).

Proof. By using the lemma above (4.1.4) and Theorem (3.2) in [Mo], when ` is

a prime we have the following:

N`(0, 1) =


q`−1 − 1

q − 1
if q 6≡ 1 (mod `);

q`−1 − 1

q − 1
+

1

q

∑
x∈F

q`

ψ0(TrF
q`
/Fq(x

`)) if q ≡ 1 (mod `).

Case (i): q 6≡ 1 (mod `). By using elementary properties of finite group Z`, we

can show that
q`−1 − 1

q − 1
≡ 0 (mod `).

Case (ii): q ≡ 1 (mod `). We note that
q`−1 − 1

q − 1
≡ −1 (mod `). To complete

the proof, we prove that
∑
x∈F

q`

ψ0(TrF
q`
/Fq(x

`)) ≡ 1 (mod `). Let A be the sub-

group of F∗q consisting of `th roots of unity and let F∗
q`

=
⋃
i xiA be the left

coset decomposition of A in F∗
q`

. Then
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∑
x∈F

q`

ψ0(TrF
q`
/Fq(x

`)) = 1 +
∑
x∈F∗

q`

ψ0(TrF
q`
/Fq(x

`))

= 1 +
∑
i

∑
t∈A

ψ0(TrF
q`
/Fq((xit)

`))

= 1 +
∑
i

∑
t∈A

ψ0(TrF
q`
/Fq(x

`
i))

= 1 + `
∑
i

ψ0(TrF
q`
/Fq(x

`
i))

≡ 1 (mod `).

[∵
∑
i

ψ0(TrF
q`
/Fq(x

`
i)) ∈ Z]

Thus, we have

N`(0, 1) ≡ 0 (mod `).
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5 Multiplicity Theorem

5.1 Multiplicity Theorem

We are now ready to state and prove our multiplicity theorems. For a subfield

K embedded in D, for the trivial representation of K∗ to occur in an irre-

ducible representation π of D∗ it is necessary that the central character of π

should be trivial. If π is parametrized by the admissible pair (E, θ) then the

central character is θ|F ∗ . Hence we assume from now on that θ|F ∗ is trivial. By

Lemma 2.1.4 above (` being an odd prime) we know that θ is generic. In this

section we assume that the conductor of the generic pair (E, θ) is m+ 1. Recall

also that our representations of D∗ are representations of a finite quotient of

D∗. For a finite group G and for complex valued functions f, g on G we define

“〈f, g〉G =
1

|G|
∑
x∈G

f(x)g(x).”

The following theorem give the dimension of zero weight space of the irreducible

representations attached to unramified tori.

Theorem 5.1.1. Let E/F be an unramified extension of degree ` and π be the

irreducible representation of D∗ attached to the generic pair (E, θ). Assume that

the extension K/F is degree ` embedded in D. Then

d(π,K) =


0 if K/F is an unramified extension

q
1
2
(`−1)(`−2)m if K/F is a totally ramified extension.
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Proof. Note that dimension of π is `q
1
2
`(`−1)m (see §2.2). The proof divided into

two cases.

Case (I): Suppose that K/F is unramified. Without loss of generality, we may

assume that K = E. We may consider π as a representation of D∗/F ∗U `m+1
D

where m+ 1 is the conductor of θ. Since E∗ ∩F ∗U `m+1
D = F ∗Um+1

E (see Lemma

3.2.3). By the definition of d(π,E) we have :

d(π,E) = 〈Θπ|E∗ ,1E∗〉E∗/F ∗Um+1
E

=
1

|E∗/F ∗Um+1
E |

∑
x∈E∗/F ∗Um+1

E

Θπ(x)

=
1

|E∗/F ∗Um+1
E |

[m−1∑
j=0

q
1
2
`(`−1)j

∑
x∈C∗j

∑
σ∈Gal(E/F )

θ(σ(x))

+q
1
2
`(`−1)m

∑
x∈Cm

∑
σ∈Gal(E/F )

θ(σ(x))
]

We note that for 0 ≤ j ≤ m, Cj’s are finite groups (see Theorem (3.1.1)). Thus

∑
x∈Cj

θ(σ(x)) = 0

and hence ∑
x∈C∗j

θ(σ(x)) = 0.

Thus we have,

〈Θπ|E∗ ,1E∗〉E∗ = 0.

Case (II): Suppose that K/F is totally ramified extension. since π|K∗ is trivial

on

K∗ ∩ F ∗U `m+1
D = F ∗U `m+1

K (see Lemma 3.2.3).

Then we have

d(π,K) = 〈Θπ|K∗ ,1K∗〉K∗/F ∗U`m+1
K

=
1

|K∗/F ∗U `m+1
K |

∑
x∈K∗/F ∗U`m+1

K

Θπ(x)

=
1

`q(`−1)m
Θπ(1) (see Lemma 3.2.4 & Theorem 3.1.2 )

=
1

`q(`−1)m
dimπ
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= q
1
2
(`−1)(`−2)m.

We next look at representations π ofD∗ (with trivial central character) parametrized

by the generic pair (E, θ) where E/F is totally ramified extension of degree `.

The following proposition give the dimension of zero weight space of irreducible

representation attached to totally ramified tori when it restricted to unramified

tori.

Proposition 5.1.2. Let E/F be a totally ramified extension of degree ` and π

be a representation of D∗ attached to the generic pair (E, θ). Let K/F be an

unramified extension of degree ` embedded in D. Then

d(π,K) = q(`−1)(
m−1

2
−[m−1

`
]).

Proof. We note that dimension of π is
q` − 1

q − 1
q

1
2
(`−1)(m−1) and K∗ ∩ F ∗Um+1

D =

F ∗U
[m
`
]+1

K for ` - m (see Lemma 3.2.3). Hence we consider π|K∗ as a representa-

tion of the group K∗/F ∗U
[m
`
]+1

K . From the definition of d(π,K), we have

d(π,K) = 〈Θπ|K∗ ,1K∗〉
K∗/F ∗U

[m
`

]+1

K

=
1

|K∗/F ∗U [m
`
]+1

K |

∑
x∈K∗/F ∗U

[m
`

]+1

K

Θπ(x).

By using Theorem 3.2.2 (case 2) and Lemma 3.2.4, we have

d(π,K) =
1

q`−1
q−1 q

(`−1)[m
`
]

Θπ(1)

=
dim π

q`−1
q−1 q

(`−1)[m
`
]

= q(`−1)(
m−1

2
−[m−1

`
]).

Suppose `|(q− 1) so that E/F is a Galois extension. Let E1 be another totally

ramified extension of degree ` in D such that E1 � E. Recall that we have a

primitive (q`−1)st root ζ of unity and a prime element $ such that $ζ$−1 = ζq.

Without loss of generality, we may assume that E = F ($) and E1 = F (ζ i$)

for some i. The element $E1 = ζ i$ is a prime element of E1. Furthermore F

consists of the intersection with F of the cyclic group < ζ > generated by ζ

together with 0.
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Then the following two lemmas are useful.

Lemma 5.1.3. Let E, π be as in the previous proposition and the extension

K/F is totally ramified of degree ` not isomorphic to E. Then

∑
u∈U1

FU
m
K /U1

FU
m+1
K

Θπ(u) = N`(0, 1)q
1
2
(`−1)(m−1)+1.

Proof. Let $K = ζ1$ be a prime element in K for some (q` − 1) st roots of

unity ζ1 and write u = 1 + α$m
K = 1 + αζ1−q

m

1 $m , where α ∈ F. Then

∑
u∈U1

FU
m
K /U1

FU
m+1
K

Θπ(u) = Θπ(1) +
∑

1 6=u∈U1
FU

m
K /U1

FU
m+1
K

Θπ(u)

=
q` − 1

q − 1
q

1
2
(m−1)(`−1) + q

1
2
(m−1)(`−1)

∑
α∈F∗

∑
δ∈ker ND/F

ψ0(αTrD/F(ζ
1−qm
1 δ))

(case 4 of Theorem 3.2.2)

= q
1
2
(m−1)(`−1)

[q` − 1

q − 1
+
∑
α∈F∗

∑
δ′∈ker ND/F

ψ0(αTrD/F(δ
′))
]

= q
1
2
(m−1)(`−1)

[q` − 1

q − 1
+
∑
α∈F∗

( ∑
ND/F(δ

′)=1

TrD/F(δ
′)=0

ψ0(αTrD/F(δ
′))+

∑
ND/F(δ

′)=1

TrD/F(δ
′)6=0

ψ0(αTrD/F(δ))
)]

= q
1
2
(`−1)(m−1)

{q` − 1

q − 1
+ (q − 1)N`(0, 1) + (−1)

[q` − 1

q − 1
−N`(0, 1)

]}
= N`(0, 1)q

1
2
(`−1)(m−1)+1.

Lemma 5.1.4. Let E, π be as in the previous proposition. Then

∑
x∈U1

E/U
1
FU

m+1
E

Θπ(x) = N`(0, 1)q
1
2
(`−1)(m−1)+1.

Proof. For 1 ≤ j ≤ m, write

Cj = U1
FU

j
E/U

1
FU

m+1
E

and

C∗j = U1
FU

j
E/U

1
FU

m+1
E − U1

FU
j+1
E /U1

FU
m+1
E .
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Then∑
x∈U1

E/U
1
FU

m+1
E

Θπ(x) =
m+1∑
j=1

[ ∑
x∈U1

E/U
1
FU

m+1
E

ν0(x)=j

Θπ(x)
]

=
m−1∑
j=1

q
1
2
(`−1)j ∑

x∈C∗j

∑
σ∈Gal(E/F )

G(σ(x), θ)θ(σ(x))

+ q
1
2
(`−1)(m−1) ∑

x∈C∗m

∑
δ∈kerND/F

ψ0(αmTrD/F(δ)) + Θπ(1).

Using case 3 of Theorem 3.2.2, we simplify the right hand side terms of above

equation.

If m and j have opposite parities then G(σ(x), θ) = 1. Then we have

∑
x∈C∗j

∑
σ∈Gal(K/k)

θ(σ(x)) = 0 for 1 ≤ j < m

(since
∑
x∈Cj

θ(σ(x)) = 0 for σ ∈ Gal(E/F ) and hence
∑
x∈C∗j

θ(σ(x)) = 0).

If m and j have the same parities, then

G(σ(x), θ) =
∑
γ∈T

ψ0(αjTrD/F(γ
σ

m+j
2 (γσ

j − γ)).

For 1 ≤ j < m,

∑
x∈C∗j

∑
σ∈Gal(E/F )

∑
γ∈T

ψ0(αjTrD/F(γ
σi+j

(γσ
j − γ))θ(σ(x))

=
∑

σ∈Gal(E/F )

∑
γ∈T

∑
(αj ,αj+1,...,αm)∈Fm−j

αj 6=0

ψ0(αjTrD/F(γσ
m+j
2 (γσ

j−γ))θ(σ(1+
∑
j

αj$
j))

=
∑

σ∈Gal(E/F )
αj∈F−{0},γ∈T

[
ψ0(αjTrD/F(γ

σ
m+j
2 (γσ

j − γ))θ(σ(1 + αj$
j))

×
∑

(α′j+1,...,α
′
m)∈Fm−j

θ(σ(1 +
m∑

i=j+1

α′j$
j))
]

= 0 (∵ the later sum is 0).

Thus ∑
x∈U1

E/U
1
FU

m+1
E

ν0(x)=j

Θπ(x) = 0 for 1 ≤ j < m.
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Therefore, we have

∑
x∈U1

E/U
1
FU

m+1
E

Θπ(x) =
∑

x∈U1
FU

m
E /U1

FU
m+1
E

Θπ(x)

= N`(0, 1)q
1
2
(`−1)(m−1)+1 (see Lemma 5.1.3).

Now the following proposition give the dimension of zero weight space in totally

ramified case.

Proposition 5.1.5. Let E, π be as in the last proposition and K/F be the

totally ramified extension of degree `. Then

d(π,K) =
N`(0, 1)

`
q

1
2
(m−1)(`−3)+[m−1

`
].

Proof. Case (I): Assume thatK 6∼= E. Since π|K∗ is a representation ofK∗/F ∗Um+1
K

and F ∗Um+1
D ∩K∗ = F ∗Um+1

K . Then by the definition of d(π,K), we have the

following:

d(π,K) = 〈Θπ|K∗ ,1K∗〉K∗/F ∗Um+1
K

=
1

|K∗/F ∗Um+1
K |

∑
x∈K∗/F ∗Um+1

K

Θπ(x)

=
1

`qm−[
m
`
]

( ∑
u∈U1

FU
m
K /U1

FU
m+1
K

Θπ(u)
)

(∵ Θπ(x) = 0 for ν0(x) < m,

Th.3.2.2.(2))

=
1

`qm−[
m
`
]
N`(0, 1)q

1
2
(`−1)(m−1)+1 (see Lemma(5.1.3))

=
N`(0, 1)

`
q

1
2
(`−3)(m−1)+[m−1

`
].

Case (II): Assume that K ∼= E. Without loss of generality, we may assume that

E = K.

Again by the definition of d(π,K), we have

d(π,K) = 〈Θπ|K∗ ,1K∗〉K∗/F ∗Um+1
K

=
1

|K∗/F ∗Um+1
K |

∑
x∈K∗/F ∗Um+1

K

Θπ(x)
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=
1

`qm−[
m
`
]

`−1∑
i=0

∑
u∈U1

K/U
1
FU

m+1
K

Θπ($iu)

=
1

`qm−[
m
`
]

( ∑
u∈U1

K/U
1
FU

m+1
K

Θπ(u) +
`−1∑
i=1

∑
u∈U1

K/U
1
FU

m+1
K

Θπ($iu)
)
.

Since ν0($
iu) = 0 for 1 ≤ i < `, by case 3 of Theorem 3.2.2, we have

Θπ($iu) = (
q

`
)θ($iu).

Then

d(π,K) =
1

`qm−[
m
`
]

( ∑
u∈U1

K/U
1
FU

m+1
K

Θπ(u) +
`−1∑
i=1

∑
u∈U1

K/U
1
FU

m+1
K

(
q

`
)θ($iu)

)

=
1

`qm−[
m
`
]

( ∑
u∈U1

K/U
1
FU

m+1
K

Θπ(u) +
`−1∑
i=1

(
q

`
)θ($i)

∑
u∈U1

K/U
1
FU

m+1
K

θ(u)
)
.

Note that θ is a non trivial character of the group U1
K/U

1
FU

m+1
K , and hence

∑
u∈U1

K/U
1
FU

m+1
K

θ(u) = 0.

Thus in view of Lemma 5.1.4, we have

d(π,K) =
1

`qm−[
m
`
]

∑
u∈U1

K/U
1
FU

m+1
K

Θπ(u)

=
1

`qm−[
m
`
]

(
q

1
2
(`−1)(m−1)+1N`(0, 1)

)
=
N`(0, 1)

`
q

1
2
(m−1)(`−3)+[m

`
].

Remark 5.1.6. If ` 6 | q − 1, we have N`(0, 1) =
q`−1 − 1

q − 1
(see Lemma 4.1.6)

then

d(π,K) =
q`−1 − 1

`(q − 1)
q

1
2
(m−1)(`−3)+[m

`
].

Thus in view of Propositions 5.1.2 and 5.1.5, we proved the following theorem.
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Theorem 5.1.7. Let E/F be a totally ramified extension of degree ` and (E, θ)

be the admissible pair of conductor m + 1 with trivial central character. Let π

be the irreducible representation of D∗ attached to the pair (E, θ). If K/F be an

extension of degree ` embedded in D. Then

d(π,K) =


q(`−1)(

m−1
2
−[m−1

`
]) if K/F is unramified;

N`(0, 1)

`
q

1
2
(m−1)(`−3)+[m−1

`
] if K/F are totally ramified.

Theorem (5.1.1) and theorem (5.1.7) together give the proof of our main theo-

rem.

Let K/F be any field extension of degree `, we denote K(n) = K∗ ∩ Un
D for

n ≥ 0. We express our theorem in terms of the dimension of π (see §2.2).

Theorem 5.1.8. Let D be a division algebra of odd prime index ` over the

non-archimedean local field F with residue characteristic p, ` 6= p and π be an

irreducible representation of D∗ attached to the admissible pair (E, θ) of con-

ductor m+1 with central character ωπ = 1F ∗ . If K/F be any extension of degree

` in D. Then

d(π,K) =



0 if E = K and K/F is

unramified;

dim π

|K∗/F ∗K(`m+ 1)|
if E/F unramified and

K/F totally ramified;

dim π

|K∗/F ∗K(m+ 1)|
if E/F totally ramified and

K/F unramified;

q(q − 1)N`(0, 1)

q` − 1
.

dim π

|K∗/F ∗K(m+ 1)|
if both E/F,K/F are

totally ramified.

Note that in the cases above F ∗K(n) is the largest subgroup of K∗ on which π

is trivial.
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In conclusion we remark that in view of Lemma 4.1.5 our formulae agree entirely

with those of Prasad [P2] in case D is a tame quaternion division algebra over F.
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