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ZERO WEIGHT SPACE FOR TORI INSIDE A DIVISION
ALGEBRA

by Sampath LONKA

Let F' be a non-Archimedean local field of residue characteristic p. Consider a
division algebra D over F' of index ¢, where ¢ is an odd prime and ¢ # p. Let 7
be an irreducible representation of D* with trivial central character. Let K/F
be any field extension of degree ¢ in D. We compute the complex dimension of

K*- invariant vectors of 7 as both 7 and K vary.
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1 Introduction

In this chapter we give the motivation for our work and explain the main the-

orem of this thesis.

1.1 The basic problem

Let g be a semisimple Lie algebra over C with Cartan subalgebra denoted by b.
We denote the space of linear functionals on h by h*. It is known that finite di-
mensional irreducible complex representaions L(\) of g are parametrized by the
set of dominant integral weights in the dual h*. Here the notion of dominance
depends on fixing first a set of simple roots for the root system of g relative to
b in h*. For more details on Lie algebras and root systems, we refer [AF] [FH]

and [JH].

Let L(A) be a finite dimensional irreducible complex representation of g and
a linear functional on h. Let L()), be the subspace of L(\) which is defined as

follows

L(N), ={ve L) |for every £ € b, Ev = p(é)v}.

We say that L(\), is the weight space attached to the functional p and g is
called a weight of the representation L(A) if L(X), # {0}. Also we say that the
elements of L(\), are weight vectors. The dimension dimL()\), is called the
multiplicity of the weight u in L(\). The zero weight space is the weight space
attached to the weight 0.

Let G be a Lie group and g be the Lie algebra of GG. Let T be a maximal torus

of G which is associated to the Cartan subalgebra b of g. A representation p



2 Chapter 1. Introduction

of G of finite dimension induces a represention of g. We note that any irre-
ducible representation of torus 7' is of dimension one. The restriction of an n
dimensional represention of GG to the torus 7" will be a sum of n one dimensional
representions of the torus 7. Then we make the following definition of weight
and weight space for Lie groups (cf.[AF]).

Definition 1.1.1 (Weights). An irreducible representation of T is called a
weight. Let (m,W) be a representaion of G and x a weight then the weight
space attached to x is the subspace of W defined by

Wy, ={w e W| n(t)(w) = x(t)w for every t € T}.

We note that if (7, W) is a representaion of G then the weight of 7 is defined as
a weight of the represention of g associated to m. Hence the zero weight space
for T" means the weight space corresponding the weight 0 of 7', i.e, the trivial
character of T. The study of the zero weight space of T in G is of consider-
able interest and there is a good deal of relevant literature (cf. [Gut], [Ko],
[DAG],[H],[Tu], [MR], [Kac] and [KP]) over many decades. We do not as yet
have a definitive answer for all Lie groups, even those of classical type. In recent
years, the dimension of this space has been studied systematically in [KP] for a

connected, adjoint, simple algebraic group G defined over the complex numbers

C.

1.2 Motivation

In [P1], Dipendra Prasad essentially shows that if D is a quaternion tame di-
vision algebra over a non-Archimedean local field F' and 7 is an irreducible
admissible representation of D* of dimension greater than 1 then there exists
a quadratic extension L of F' embedded in D such that the restriction of 7 to

L* contains the trivial representation of L* and also a field extension K of F

of degree two such that the trivial representation of K* does not occur in 7|g-.
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Wee Teck Gan (cf.[P1]) asks if such results are also true for higher dimensional
division algebras over F. The work of Savin [Sa] shows that if this is true for
cubic division algebras then it implies the non vanishing of some theta lifts from
D* to G5. Indeed Prasad’s own work implies the non vanishing of some theta
lifts. It is therefore of interest to know when an irreducible admissible repre-
sentation of a general division algebra over F' has K*-fixed vectors where K is
a field inside D. We call the multiplicative group of a maximal subfield in D*
tori in D*. In this thesis, we look at the case of division algebras of dimension

0? over F where ¢ is an odd prime unequal to the residue characteristic of F.

1.3 Basic setup

1.3.1 Structure of Local fields

Let F be a non-Archimedean local field with residue field F, of characteristic p,
containing ¢ elements. Let Op be the maximal compact subgroup of F' and Pr

the unique maximal ideal of O, generated by a prime element wg.

Given a non-Archimedean local field F, its multiplicative group F* can be writ-
ten as a product of subgroups, namely the subgroup generated by wpg, a prime
element of F), the 1-unit group and the group of root of unity ur of order coprime

to p.

F*:(wF>><,uF><U}

We can identify pr and F* in canonical way. For more details on the structure
of local fields we refer to [KZ], [L]. Let K/F be a finite field extension of degree
n such that n = fe, where f is the residue degree and e is the ramification index
of K/F. In this thesis, the field extensions K/F are always tame extensions,

which means p [ e. By [KZ], we can then choose prime elements wp and wy
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such that

w% e CK/FwF for some CK/F € Uup.

Let K/F be a tame field extension. We say that K/F is unramified if e = 1,
and totally ramified if f = 1. In the case of an unramified extension K/F, we
have K = F((k) for any generator (i of pg. Further if K/F is unramified, we

may take wx = wrp. We will do so throughout the thesis.

1.3.2 Structure of Division algebras

Assume that D be a central division algebra over a non-Archimedean field F of
dimension n? for some n € N. Here n is called the index of D. The ring of integers
of D is denoted by Op, the unique maximal ideal is denoted by Pp and residue
field is denoted by D = Op/Pp, which is a finite field extension of degree n over
[F. The set of coset representatives of D is denoted by D and we write F = FND.

We write Trp,p for reduced trace and Np,r for reduced norm of D over F. Sim-
ilarly we can denote the trace and norm for the residue fields by Trp/r and Np/r
respectively. Also for field extension K/F, we write Trx/p and N p for the
trace and norm maps from K to F. Let ¢r be a non-trivial additive character
of F. For any field extension K/F, we write ¢ g = 9p o Trg/p. Assume that the
additive character ¢ is trivial on Pg but non trivial on Op. Then the additive
character ¥ is trivial on Pgx but non trivial on Ok for any tamely ramified
extension K/F (see pg.868 [M]). Let K/F be a field extension of degree n
then K can be embedded in D and by the Skolem-Noether theorem [Mu], the

embedding is unique upto conjugacy.

We denote T = {v € D|Trpr(y) = 0} = kernel of Trp,r. Then D = F @ T. For

a division algebra D of prime index ¢ over F', we write

N(0,1) = {z € D|Trp/p(z) = 0 and Nps(x) = 1}.
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Let the extension K/F be an unramified extension of degree n inside D and o
be a generator of the Galois group Gal(K/F'). The following holds (cf.[W],[SP]).
Theorem 1.3.1 (Structure of Division algebras). Let D be a division algebra
over I' of indexn. Then D contains an unramified extension K of degree n over

F'. Moreover there exists a prime element w in D such that
1. As a K vector space D = @;-‘:Oij
2. For any x € K we have that wlxw = 2°
8. Trpp(zw?) =0 for anyz € K and1 < j<n
4. w" = wp (say) is a prime element in F.

There is a natural filtration U} of D* for n > 0 with UP, = O}, and Uy = 1+ P}
for n > 0. Similarly, for field extension K/F, there is a natural filtration U} of
K*. Also we write K(m) = K* N U}y for m € N for any extension K/F. Note
that U not necessarily equal to K (m). Let 6 be a quasi-character of K*, then
the conductor of 0 is defined by f(0) =min{n| ker § D> UL}. We denote the

greatest integer function of a real number x by [z].

The representations of D* that we will be considering will have F*U}, (for some
non negative t) in the kernel and hence will essentially be representations of the
finite group D*/F*U},. Let G be a locally compact, totally disconnected group
and H be a closed subgroup of G. If p be a representaion of H then the induced
representaion of p to G is denoted by Ind% p and the set of irreducible admissi-
ble representations of the group G is denoted by Irr(G). We denote F for the
set of all quasi-characters of multiplicative group of F. We denote the trivial
representation of G by 14. If m be a representation of GG, the restriction of 7 to

H is denoted by 7|z and the character of the representation 7 is denoted by ©,.
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1.4 Main result of the thesis

We begin this section with the following definition.

Definition 1.4.1 (Tori). We say that the multiplicative group of a maximal
subfield in a division algebra D is a tori in D*. Let K/F be a maximal extension
in D then we say that K* is an unramified tori in D* if K/F' is unramified and
a totally ramified tori in D* if K/F is totally ramified.

In this thesis, we study the dimension of zero weight space of tori inside the
division algebra over F of index ¢, where ¢ is an odd prime and # p. In this
case, ¢ being a prime, any extension K/F of degree ¢ is either a totally ramified
or an unramified extension and hence we have either totally ramified tori or
unramified tori. From the structure theory of local fields we know that we have
(upto conjugacy) either one unramified tori and one totally ramified tori or one
unramified tori and ¢ totally ramified tori in D* depending on whether F' has a
primitive ¢ th root of unity or not. We study the dimension of the zero weight
space for tori K* by computing the number d(r, K) = complex dimension of

Home« (7, 1 g+ ), where 7 is an irreducible representaion of D*.

With the above notation we state the main theorem of this thesis, which is the
joint work of author and Rajat Tandon [SR].

Theorem 1.4.2. Let D be a division algebra of odd prime index ¢ over the
non-Archimedean local field F' with residue characteristic p, { # p and 7 be an
irreducible representation of D* attached to the admissible pair (E,0) of con-
ductor m + 1 (see 2.1.1) with central character w, = 1p-. Let K/F be any

extension of degree £ in D. Then
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0 if E = K and K/F is unramified;
q%(é_l)(e_Q)m if E/F is unramified and
K/F totally ramified;

q(e’l)(mTfl’[mTle if EJF is totally ramified and
K/F unramified;

(=)

if both E/F, K/F are totally ramified.

1.5 Outline of the article

The content of this thesis is structured as follows: In chapter 2, we recall
the construction of representations of D*. The set of irreducible representaions
of D*( Irr(D*)) is parameterized by the set of admissible pairs (F,6) over F.
The construction is well-known and is due to Howe, Moy (see [Ho], [M]) and
P. Broussess (see [Br]). In chapter 3, we recall the character formulas for the
unramified case [Takl] and the totally ramified case [CMS]. In chapter 4, we
discuss the existence of trace 0 and norm 1 elements in finite field extensions
and, in particular, the Katz bound [Kat] for the number of such elements.
Finally in chapter 5, we use the character formulas given in [Takl] and [CMS]

to obtain the dimension of zero weight spaces.






2 Representation theory of D*

In this chapter we recall Howe’s construction of admissible representations of
D* in the tame case, which means that p and ¢ are coprime. These irreducible
representations are known as tame supercuspidal representations of D*. For
more details of the construction, we refer to ([M],[HR],[LC],[CH] and [CMS]).
For tame supercuspidal representations of arbitrary p- adic groups, we refer [Yu]
and [Kim]. Also we refer to [BK] for the construction of admissible representa-

tions of arbitrary p - adic groups via types.

Let E be an extension of F' embedded in D. In the tame case, the representations
of D* are parametrized by admissible pairs (F, #) where 6 is an admissible quasi
character of E*. The one dimensional representations of D* factor through the
norm. Hence 1-dimensional representations of D* are of the form x o Np,p

for some x € F. Howe’s construction gives us the representations of D* of

dimension greater than 1.

2.1 Admissible pairs

For a finite extension E/F, of nonarchimedian local fields, we denote the ram-
ification degree by e = eg/p and the residue degree by f = fg/p. Assume that
Y is an additive character of E of conductor Pg i.e, it is trivial on Pg but non
trivial on Op.

Definition 2.1.1. (see [M], 2.2.83) Let E over F be a tamely ramified extension.

A quasi character 0 of E* is said to be admissible over F' if
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1. 0 is not of the form x o Ny, for fields F C L C E and

2. f 0|U]13 factors through N, where L is a proper subfield of E containing
F then E/L is unramified.

In this thesis by the conductor of the admissible pair (F,6) we mean the con-

ductor of the quasi character 6 of E*.

Note that if E/F is tamely ramified of prime degree then 6 is admissible if
and only if it is not of the form y o Ng,p for some x € F which is equivalent
to f|y1 not factoring through norm. In particular 6y1 should not be trivial.
Furthermore, if E'/F is tamely ramified and the residue fields of F' and E have
q and ¢/ elements respectively then E has a primitive (¢/-1)st root ¢ of unity
and a prime element wg such that w$ = (‘wp € F for some e and 4. If 6 is a
quasi character of £* with conductor m + 1, i.e., € is trivial on Ug”l but non
trivial on Ug', then if m > 0, there exists 7y in the group generated by ¢ and
wp such that 6(z) = Yg(ye(x — 1)) for x € U}Y'. Moreover when the conductor
of the additive character 1 is one, as will be the case in the rest of this thesis,
then the valuation of vy is —m. We write vy = 4wz, where 7, is a power of (.
Furthermore we know, by the remark at the beginning of this paragraph that if
the degree of E over F is a prime and 6 is admissible then m can be zero only

when F is unramified over F.

The following definition due to Moy [M]:
Definition 2.1.2. : “A quasi-character 6 of E* is said to be generic over F of

conductor m + 1,

1. if m = 0 then E is unramified over F' and 6 does not factorise through

the norm of a proper sub extension of E/F and
2. if m >0 then E = F(vp).”

Let Cp = ((,wg), where ¢ be a primitive (¢/ — 1) root of unity in F and wg is
a prime element of E such that @w$, € F so that 7y € C and it can be written
in the form jw,"™, where v € ((). Observe that when E is a tame extension

of prime degree and 6 is admissible then 6 is generic if and only if
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1. when E/F is totally ramified then ¢ fm

2. when E is unramified over F' then either m = 0 or 7, € F' i.e, y, is not a

(¢ — 1)st root of unity.

We remark that 6 admissible with m = 0 is possible if and only if §(() is not a
(¢ — 1)st root of unity.

For if @ is trivial on U} then § = o o N /r Where « is a quasicharacter of I
P
which is trivial on U, then a(wwp) = an fth root of §(wr) and oz((?ll) =0(C).

The last equality is only possible if 6(C) is a (¢ — 1)st root of unity.

Proofs of the following results exist in the literature but in our simple case when
[E : F] = ¢, a prime not equal to p much simpler proofs can be given which are
instructive in themselves.

Proposition 2.1.3. If0 is generic then 0 is admissible. (This is true in general)

Proof. Case 1: E/F is totally ramified : Then ¢ fm. We claim that [y does
not factor through norm and therefore 6 does not factor through norm. Observe

that [JPS]
urt it m

NUD) =
" Ut i e m

Hence if ¢ f m then N(Ug) = N(Up™). If = a o Ng/r then

o) = a(NER)
(NEE)
= owp

- {1}

which contradicts the fact that the conductoral exponent of 6 is m + 1.

|
Q

Case 2: FE is unramified over F: Then either m = 0 or 7, ¢ F. If m = 0 then
the definition of generic means that 6 does not factor through norm and so 6
is admissible. If 7, ¢ F™* we claim that «9|ng does not factor through norm and

therefore 6 does not factor through norm. Observe that, we have
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(1 +awl) = r(yerwly) for every x € Op
= ¢Yp(Vywg Ty

= Yg(yyz) for every x € Op.

If o generates the Galois group of E over F' and if 6|y factors through norm

then 67 = 0 on U}'. Hence

07 (1 + zowyy) = (1 + zwl)
= Ye(7g ) = Yp(yyx) for every x € Op
= Yp((vy —7p)r) = 1forevery z € O

But when F is unramified over F' and vy, ¢ F' then v, — 7, must be a unit in
E so by the above if 6 factors through norm on Uj' we get that ¢y is trivial on

Opg which contradicts the fact that the conductor of ¢ g is Pg. O

In what follows we will usually assume that 6 is trivial on F* i.e., 6 is a quasi
character of E*/F*. In this case the converse is also true i.e if 6 is admissible
then it is generic.

Proposition 2.1.4. If 6

= 1 and 0 is admissible then it is generic.(E is of

prime degree over F.)

Proof. Case 1: If E/F is totally ramified, we need to show that ¢ f m. But if
| m then U C F*UZ™. Since 6 is trivial on F*Up*" it would mean that 6 is
trivial on Up' which contradicts the fact that m + 1 is the conductor of 6.

Case 2: If F is unramified over F' and if m = 0 then @ is generic by definition;
otherwise we need to show v, € F. Without loss of generality we may assume
that g = 9 o Trg/p, where ¢p is an additive character of F™* of conductor

Pr. Then for any = € Op, we have

1 =60(1+azw})
= Yr(Trp/rry@r " wie)
= Yp(lypr) if vy € F.
But then ¢p is trivial on ¢xOpr = Op which contradicts the fact that the

conductor of ¢p is Pp. Hence v, ¢ F which implies that 6 is generic.
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So for characters of E*/F* genericity and admissability are the same.

The following proposition says more about genericity. We do not assume here
that 0
Proposition 2.1.5. Let E/F be a tame extension of degree { (prime) and (E, 0)

e 1S trivial.

an admassible pair of conductoral exponent m+1. Then 0 is generic is equivalent

to Oy does not factor through norm. Furthermore

1. If E/F is totally ramified then 0

vy does not factor through norm if and

only if m >0 and { fm.

2. If E/F is unramified then 0|ym does not factor through norm if and only
if either m = 0 and 0(() is not a (q—1)st root of 1 or m > 0 and 0 is non

trivial on elements of the form 1+xwy, where x € O and Trg p(x) = 0.

Thus when 0 is generic then 6 is minimal, i.e., its conductoral exponent cannot

be lowered by twisting it by a quasi character of E* which factors through norm.

Proof. We have already proved that when the extension E/F is as in the propo-
sition that 6]y does not factor through norm (Proposition 2.1.3). For the con-

verse suppose that 6|y does not factor through norm.

Case (i): E is totally ramified over F: Then m + 1 > 1 and w% = wp € F.
We claim that ¢ f m and therefore € is generic. Suppose to the contrary that
¢| m, we have

m __ % m+1
Up =UzLUpH.

Define oy : UJ‘?/U]?Jrl — C*
such that

Tel3

ar(1+zwt) =0(1+ %wg).

Then

N‘S

10 Neyr(1 +a) = o o Ny (1 + 20 )1+ yp ™)
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for some xg € Op, y € Og. So
ay o Ng/p(l + zwh) = ar((1+ zewy )*)

=o(1+ Ea:owﬁ)

= 0(1 + zowy)

~[3

= 0((1 + 2ot )1+ yo'p ™))

=0(1+zwy) (o flu)=%+1)

Therefore 6 = a; o Ng/p on Ug' which gives a contradiction.

Case (ii): E/F is unramified: The statement for m = 0 has alread been proved.

Observe that if the Galois group of E/F is generated by o then

070~ (1 + 2vwp) = Ye(y(o(z) — 2)) = Ye((o(vp) — 7))

since ¢ factors through trace. Clearly then if f|ym does not factor through

norm,i.e., 6°07" is not trivial on U we must have v € F so that 6 is generic.

Finally observe that ¢|ym factors through norm if and only if 67 = 6 on Ug'.

Moreover

0°(1 4+ zwp) = 0(1 + zw}) if and only if (1 + (o — x)wp) =1

where z € Op.
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Suppose @ is not trivial on all elements of the form 1+ 2w}, where z € Op and
Trg/p(7) = 0. Observe that, by a slight refinement of the additive Hilbert’s 90,
the elements of O of trace 0 are precisely of the form o(y)—y for some y € Op.
These facts clearly show that 6]y does not factor through norm precisely when

6 is non trivial on elements of the form 1 + xw} for x € O of trace zero. [

If Oy is trivial on elements of the form 1 + xwp for x € Op of trace 0
then the following explains how we can get a quasi character a of F™ such
that # = a o Ng/p on U. Define a : UR/UR™ — C* by a(l + uw}) =
0(1+ 3@f), u € Op. Extend a to a character of F**. (Recall that if G is a finite
abelian group with subgroup H then any character of H can be extended to
G. Hence a character of Um/UR*! can be extended to Ug/Up™ and further
extended to E* by giving a(w) any arbitrary complex value.) We claim that

0 = ao Ng/p on Ug'. The proof of the claim is as follows.

Let u = %TTE/F(ZU) and y = o — %TTE/F(JZ). When z € O then v € Op and
y € kerTrg,;p N Op.
Then a o Ng/p(l + 2w}) = ao Ng/p(l + (u+ y)w}y)

= a(Ng/p(1 +uw))ar (Ng/p(1 + yoi))

= a((1 +uw®)")a(l + Trg/ rywy)

= a((1+ tuw}))

= 0(1 + uzw?))A(1 + yo™)

=0(1 + zw}).

Since 6 is non trivial on Uy’ then « is non trivial on Uj'.

Therefore the conductor of o is m + 1.
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Finally we show in general that any admissible quasi character of E* is the
product of a generic character and a character that factors through norm.
Proposition 2.1.6. Let E/F be a tame extension of prime degree and 0 be an

admissible character of E*. Then
0= (xo NE/F)0/>

where x € F and 0 is a generic character of E*.

Proof. We first make the elementary remark that if we twist (multiply) an
admissible quasi character of E* by a character that factors through norm then
the product is again admissible. Let the conductor of 8 be m + 1. If € is generic
we let 0" = 0 and xy = 1. If 6 is not generic then 6]y must factor through
norm. Let § = ao Ng/p on Up. Let 0; = 6(a™" o Ng/r). Clearly 6, is trivial
on Up' and so its conductor m; + 1 is less than m + 1. If 01|Ugll does not factor
through norm then it is generic and we let / = #; and x = 4. If, on the other
hand, 61 = By 0 Ng/p on Ug" we let 0y = 01(By " o Ngp) = O(ayt o Ng/r)
where as = a1 5. Clearly the conductor mq + 1 of 05 is less than m; + 1. We
now have 6 = 60y(ap o Ng/p) and my < m,. Continuing in this way we will
finally get a character #,, which is generic and a character «, of F™* such that

0 = 0,(on 0o Ngyp). Welet 0/ =0, and x = ay,. O

2.2 Construction of my

Let D be a tame division algebra over its centre F' of dimension ¢? and (E,6)
an admissible pair such that E is embedded in D and has dimension ¢ over F'
and the conductor of 0 is m + 1. Let us first assume that £/F is unramified.
If m = 0 then 6 may be considered to be a representation of F*Up since
F*Up /U, ~ E*/Uf. We define mg to be IndP.y, 6. If m > 0 we let ¢p be
the character of (F,+) as in §1.3.2. Then there exists an element 7y € E such
that 0(z) = ¢ o Trg/r(ve(x — 1)) for all z € U}, where ¢t = [“22]. We define
po on E*U}, by po(zy) = 0(x)pp o Trp/p(ve(y — 1)) for € E* and y € Uj,. We
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then define mp = Ind?

E:Ut pe- In both cases 7y is an irreducible representation
D
of D*.

Proposition 2.2.1 (cf.[Takl]). Let my be an irreducible representation of D*

as above. Then we have the following
1. dimension of mg = £g"¢=m/2,

2. f(m) = Lf(0).

3. Any irreducible representations of D* whose conductor is divisible by { is

of the form my for some unramified pair (E,0) as above.

Let the extension E/F be totally ramified of prime degree ¢ and (E, ) be an
admissible pair over F. We next construct my attached to the pair (£, 6). We
follow [CMS]. There is a non trivial additive character ¢y of F such that

0(1 4 aw) = o(Tra) = ¥y(la), for a € F.

Define

m =m" = mtL if m is odd;
m' =% +1,m" =% if mis even;

let H' = E*UY JUST and H" = E*UR" /USRS, We set
Ny = {y € Pgl]TrD/Fyz =0forall z € E},
and define
N =UZ" 1+ No)JUFH
Then we have the following:
1. NaH
2. NN EURT JUR is trivial.

3. H = N.E*UyT Uyt
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4. We extend 0 to H' by setting

6#’]\7 = 1, 0#‘E* =6.

Observe that § may be considered to be a character of E*Ujy™ /UNT. If m is
odd then we define mp = Indgt/Ung@#. If on the other hand m is even then
modulo the kernel of 8%, H” is a Heisenberg p-group in which H’ has index ¢‘~!.
Then there exists a subgroup W of index q% in H” such that (modulo kernel
0#) W is abelian and 6% extends to a character § of W. Moreover Indf¢" is
irreducible. We let 7y = IndE; 6'. The following proposition is due to Takahashi
and Moy.

Proposition 2.2.2 (cf.[Tak2],[M]). Let my be the irreducible representation of
D* as above. Then we have the following

-1
-1

q%(ﬁ—l)(m—l).

1. dimension of my = a

2. f(m) = f(O) + .

3. Any irreducible representations of D* whose conductor is not divisible by
¢, of dimension greater than 1, is of the form mwy for some totally ramified

pair (E,0) as above.
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3 Character formulas

In this chapter we recall the character formulas from [Takl] and [CMS].
Recall that ¢ is an odd prime.

3.1 Unramified Case

In this section we consider irreducible representations m of D* attached to some
unramified pair. Then the following theorem is due to Takahashi.

Theorem 3.1.1 ([Takl], Corollary 1.2.2). Let E/F be an unramified extension
of degree over € in D and the pair (E,0) admissible over F. Assume that 7 is

the irreducible representation attached to the pair (E,0). Then

@i Y (o(x) ifreCr(0<j<m)
@ﬂ_(x) - c€Gal(E/F)

o q%e(e—nm > b(o(z)) ifzeCy

c€Gal(E/F)

where C; = ULUL/ULUE™! and C* = C; — Cjyq for 0 < j < m.

The following theorem gives character fomulas when we restrict = to totally
ramified tori.

Theorem 3.1.2 ([Takl], Theorem 1.2.17(2)). Let E,m be as in the theorem
above and K/F be a totally ramified extension of degree £. Then

0 if v g FrU

O () = )
0(c)lq2" =™ if x = c(1+y) € F*U
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3.2 Totally ramified case

Note that every non zero element x of the division algebra D has a unique

expression of the form

r = Zajwj, a; € D and jy = v(z)

Jj=jo
where v be the valuation of D.
The following definition due to [CMS].

Definition 3.2.1. Let x be as above. We say that x is a normal element if the

monomials ajwj all commute.

We note that every element of D* is conjugate to a normal element. Given any

normal z € D\ F,

write
=0y (1 +aiw+---)
and define
0 if g’ & F;
vo(r) =

j if aqpw? € F and j is the smallest index with a;w@’ & F.

Let the extension E/F be totally ramified of degree ¢ and 7 be the irreducible
representation attached to the admissible pair (£, ). The following theorem is
taken from [CMS]. There is a typographical error in [Theorem 4.2 (c),[CMS]]
which is acknowledged in (pg.58, [ACS]). In view of [ACS], we have the following
theorem.

Theorem 3.2.2 ([CMS], Theorem 4.2). Let x € D* be normal and v(x) = j.
Then we have the following:
¢ -1
qg—1
2. If j < m and x is not conjugate to an element of E, then ©,(z) = 0.

q%(f—l)(m—l)g#(x)'

1. If j > m,0,(x) =
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3. If j <m and x € E, then

Or(x) =g N~ G(o(x),0)0(0()),

oc€Gal(E/F)

I
Q

where Gal(E/F) is the Galois group of E/F.

4. If j =m, then v = fxo, f € F and 29 = 1 + aw™( mod Py*). Then

(-—)ﬂ(x) — q%(f—l)(m_l)e(f) Z ¢0 ) TTD/F(OKS).

d€ker Np/p
Where
(4) if 7 = 0 (the Legendre symbol)
1 if >0, and m and j have opposite parities;
G(z,0) =

m+j ;
g VY o Trpye(ay” * (v =) if 5> 0, and m and j
yeT

have the same parity.

\

The following lemmas are repeatedly used in section 5.1. The first two lemmas
can be stated in greater generality. However we state them only when ¢ is a
prime and prove them by using the structure theory of local fields [W].

Lemma 3.2.3. Let K/F be a tame extension of degree £ and r a non negative

integer. Then
K*NFU}, = F*U[[(T%”Jrl if K is unramified over F
= F*Uy if K is totally ramified over F.
Proof. We note that in either case

the right hand side in the above equalities C F*U}, for r > 0.

Let © € F*UJ, then = can be written uniquely as

r—1
= Zaiw% + Z/ijj

i>0 j>r
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where a; € F and Bj € D.
Case I: If K/F is an unramified extension and = € F*U}, N K*. Then we have

the following
7=0( mod () and §; € F.

Then
K*NFU, c FUZ ifr=0( mod 0)
c U™ i r 20 (1 mod 0).

Hence
[mH=L

K*NFUp = F*Uy

= Ut

Case II: Tf K/F is a totally ramified and 2 € F*Uj, N K*. Then f; € F which

implies that x € F*U}.. Hence
K*NF'Up, = F*Uyg.

]

Lemma 3.2.4. Let K/F be as in above lemma and r be a non negative integer.

Then
¢ —1
K/ FUL| —1q(f—1)(’“_1), if K is unramified over F;
* KT | q—
K
&](T—l)—[ﬁl]’ if K is totally ramified over F.

Proof. We note that
F*:’WF X <<F> X Ufly

where (g be the primitive (¢ — 1)st root of unity in F.

Then we write K* as

wr X {Cx) X Uk, if K/F is unramified;

wi X ((r) x Uk, if K/F is totally ramified

K* =
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where (x be the primitive (¢° — 1)st root of unity in K. Also we note that

. . Up, if K/F is unramified;
Ur MUk = [F+1 . . .
Up® ', it K/F is totally ramified.

Since ULUY /U = Ur /UL N Uy and for i > 0,

D, if K/F is unramified;

i
F, if K/F is totally ramified.

Then
Uk : UpUg] = Uk : Ug]/[UpUf - Ug]

= [Uk : U]/IUp : Up NUK]

¢=V=1  if K is unramified over F';

¢ V-7 if K is totally ramified over F.

If K/F is unramified, the cardinality of the quotient is given by

¢ -1
[K*: F*Uj] = m[Uk : URU]

¢ -1
-

gD,

In case of totally ramified K/F, we have
[K*: F*Uy] = (U, : UpUp]

r—1

= gD,

Finally, the following lemma is well known.
Lemma 3.2.5. “Let G be a finite group and x be a non trivial character of G.
Then

> x(g)=0."

gelG
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4 Trace zero and Norm one

elements

Let IF, be a finite field with ¢ = p” elements. In this chapter we recall the result
of Moisio ([Mo]) where he obtains bounds for the cardinality of elements of F»
with prescribed trace and norm over [F, for arbitrary n. As a corollary we will
see a sharp bound in the case when n is a prime and the trace and norm are 0
and 1 respectively. Also we prove that the number of elements of F with trace
zero and norm one is non zero and multiple of /. The existence of trace zero
and norm one elements in Fs over I, is discussed in the following example.
Example 4.0.6. (Existence of trace zero and norm 1 elements)

There exist x € Fgs such that tmgqg /F, L =0 and N]Fqg JE, T = 1.

Proof. Consider polynomial f,(z) = X®+aX —1, a € F,. If a # b and
and zy are two roots of f, and f, respectively in F, then x; # 5. For suppose
11 = Ty. Then 23 + az; — 1 = 23 + bwy — 1 = 0, which implies a = b. Hence the
q different f!s can’t all have a root in I, (since 0 is never a root). Therefore

at least one polynomial of the form X? + aX — 1 must be irreducible. Then in

Fps = F,[X]/(X?+aX — 1), X has trace 0 and norm 1.
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4.1 Katz bound

We define for any positive integer ¢
Ni(0,0) = [{z € Fgt|Trr . r, () = 0 and Ny, /r, (z) = b}|
= the number of elements of F with trace 0 and norm b

over F,.

Then the following theorem is due to Moisio.
Theorem 4.1.1 (cf.[Mo], (Theorem.3.2)). Let ; be a primitive element of F .
Assume that p |7t and d|r where b = g". Then,

q€—1__ 1
qg—1

N,(0,b) = d( + é > %(TWZOJJS))

xeFﬁ

where s = ged(l,q — 1), d = ged(%,q — 1).

In case of t = ¢, we have the following corollary.

Corollary 4.1.2. Assume that p /7. Then,

ﬁ—l__l 1
Ny(0,1) = qq +E Z Yo(Trx®)

where s = ged(¢,q — 1).
Proof. Follows from the theorem when b =1, 7 =0 O]

Then we have the special case of the Katz bound (cf.[Mo],(1.2)) in case ¢ is a
prime.

Lemma 4.1.3 (see [Mo], corollary (3.3)).

/—1

q —-1 -2
< —1 2

= <(s—1)q

Ne(0,1) —

where s = ged((,q — 1).
Lemma 4.1.4. N,(0,1) is non zero for all odd primes (.
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Proof. By using above lemma we have the following:

q€—1 -1

Case (i): if ¢ fq — 1, then N,(0,1) = ]
q R

Case (ii): if s = £ (i.e., £|(¢ — 1)) and £ > 5, then

qﬁ—l -1

[Ne(0,1) — | < ((=1)g" 27

< qqD2 = g2 < gt

4—1_1

qg—1

Case (iii): if £ = 3, then

[N5(0,1) = (¢ + 1) < 2y/q.

Therefore, in all cases, we have

Ny(0,1) # 0.

However, if ¢ = 2 the following is easy to prove:

Lemma 4.1.5. If q is odd and ¢ = 2, then

0 ifg=1 mod (4)
2 if¢g=3 mod (4).

Ny(0,1) =

Proof. If ¢ =3 mod (4), then —1 is not a square in F, and 2%+ 1 is irreducible
over F,. Write
Fpe=F,+F,
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where a? = —1.

Let © = a+ba € Fp (a,b € Fy) such that Try , r, (z) = 0 and N ,r,(2) = 1.
Then a = 0 and —b%a? = 1, which implies that b = 1 i.e, b = £1. Therefore
Ny(0,1) = 2.

If g =1 mod (4), there exist an i € F, such that i* = —1. Choose a 8 € F,

which is not a square. Then 2? — 3 is irreducible over F,. So we write
Fpe=TF,+F,x

where o? = 8.

For a 4 ba to have trace 0 we must have a = 0. For it to then have norm 1 we
must have —b?3 = 1 which implies that 8 = (ib=!)? which contradicts the fact
that a is not a square. Therefore there are no elements of trace zero and norm

one. ]

Lemma 4.1.6. N,(0,1) =0 (mod ¢).

Proof. By using the lemma above (4.1.4) and Theorem (3.2) in [Mo], when ¢ is

a prime we have the following:

-1 _
qq—ll if ¢ # 1 (mod /);
NK(O’ 1) = l—1 1 1
qu + - Z ?ﬂo(Trqu/Fq(:BZ)) if g=1 (mod ¢).
CCE]FqZ

Case (i): ¢ Z 1 (mod ¢). By using elementary properties of finite group Z,, we

/-1 1
a =0 (mod ¢).

can show that
qg—1
qé—l -1
Case (ii): ¢ = 1 (mod ¢). We note that N
q J—
the proof, we prove that > @ZJO(TrFqZ sr,(2h)) =
wEqu

group of Fy consisting of th roots of unity and let Fe = \U; ;A be the left

= —1 (mod ¢). To complete
1 (mod /). Let A be the sub-

coset decomposition of A in F ;Z. Then
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S to(Tre m,(2) = 14 % vo(Trs, e, (2))

*
wE]qu :EGFqZ

=143 > do(Trr , /r, ((zi2)"))

i teA

=1+ 3 qu(Trqu/Fq(ff))

i t€EA

=1+/ Z ¢0(Trqu/Fq (wf))

=1 (mod /).

[ ; bo(Trs,, /v, (27)) € Z]

Thus, we have

Ny(0,1) =0 (mod ¢).
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5 Multiplicity Theorem

5.1 Multiplicity Theorem

We are now ready to state and prove our multiplicity theorems. For a subfield
K embedded in D, for the trivial representation of K* to occur in an irre-
ducible representation 7w of D* it is necessary that the central character of =

should be trivial. If 7 is parametrized by the admissible pair (F,#) then the

central character is 0| p«. Hence we assume from now on that 0|g« is trivial. By
Lemma 2.1.4 above (¢ being an odd prime) we know that 6 is generic. In this
section we assume that the conductor of the generic pair (E,6) is m + 1. Recall
also that our representations of D* are representations of a finite quotient of

D*. For a finite group GG and for complex valued functions f, g on G we define

1 -
“Uf.0)e = g 2 1)l

zeG

The following theorem give the dimension of zero weight space of the irreducible
representations attached to unramified tori.

Theorem 5.1.1. Let E/F be an unramified extension of degree { and 7 be the
irreducible representation of D* attached to the generic pair (E, ). Assume that

the extension K/F is degree { embedded in D. Then

0 if K/F is an unramified extension
d(m, K) =

q%“’l)(Z’Z)m if K/F is a totally ramified extension.
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Proof. Note that dimension of 7 is £g2¢¢—1m (see §2.2). The proof divided into
two cases.

Case (I): Suppose that K/F is unramified. Without loss of generality, we may
assume that K = E. We may consider 7 as a representation of D*/F *UKDerl
where m 4+ 1 is the conductor of . Since E* N F*UL™ = F*UP™ (see Lemma
3.2.3). By the definition of d(m, E') we have :

d(m, E) = (O,

E*, :[]_E*>E*/F*U7En+1

1
T Ch
R

zeB* /FrUpH

1 it N
- EEE LY 3 sl

z€C7 oeGal(E/F)

FE ST S o))

2€CH o€Gal(E/F)
We note that for 0 < j < m, C,’s are finite groups (see Theorem (3.1.1)). Thus

> O(o(x) =0

:EGCj

and hence

> 0(a(z)) =0.

*
xeCj

Thus we have,

(Ox

B, 1pe)pr = 0.

Case (II): Suppose that K/F' is totally ramified extension. since 7|+ is trivial
on

K*NFUg™ = FrUZ ™ (see Lemma 3.2.3).

Then we have

d(m, K) = (67

K*, ]]-K* >K*/F*Uf(m+1

1
- |K*/F*Uf(m+l\ Z @“(x)

zEK* /FrUM !

1
= Jg—m ©,(1) (see Lemma 3.2.4 & Theorem 3.1.2 )
q m

= W dimm
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_ q%(671)(272)m. =

We next look at representations m of D* (with trivial central character) parametrized

by the generic pair (E, ) where E/F is totally ramified extension of degree /.

The following proposition give the dimension of zero weight space of irreducible
representation attached to totally ramified tori when it restricted to unramified
tori.

Proposition 5.1.2. Let E/F be a totally ramified extension of degree ¢ and 7
be a representation of D* attached to the generic pair (E,0). Let K/F be an

unramified extension of degree £ embedded in D. Then

m—1 _[m—l])

d(m, K) = ¢V 1%

¢
-1
Proof. We note that dimension of 7 is q—lq%(e_l)(m_l) and K* N F*UpH =
q —
F*UI[(T}H for £1m (see Lemma 3.2.3). Hence we consider 7

K+ as a representa-

tion of the group K*/F*U[[?]H. From the definition of d(w, K), we have

d(ﬂ-, K) = <@ﬂ- K*, 1K*>K*/F*UI[<%]+1
1
B K+ Ul 2. Ol
[FUE vk /Pt
By using Theorem 3.2.2 (case 2) and Lemma 3.2.4, we have
1
d(m, K) = pEp=E) ©-(1)
q—1
dim 7w

-1 (-1
quq( 7]

e ) 0

Suppose £|(qg — 1) so that E/F is a Galois extension. Let F; be another totally
ramified extension of degree ¢ in D such that F; 2 E. Recall that we have a
primitive (¢¢—1)st root ¢ of unity and a prime element @ such that w(w ! = (9.
Without loss of generality, we may assume that £ = F(w) and F; = F(('w)
for some i. The element wg, = ('w is a prime element of E;. Furthermore F
consists of the intersection with F' of the cyclic group < ( > generated by (

together with 0.
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Then the following two lemmas are useful.
Lemma 5.1.3. Let E, 7 be as in the previous proposition and the extension

K/F is totally ramified of degree { not isomorphic to E. Then

ST Ox(u) = Ni(0, 1)gH D,

weURUR /ULURT!

Proof. Let wyx = (;w be a prime element in K for some (¢ — 1) st roots of

unity ¢ and write u = 1+ awi = 1+ all 7 @™ , where a € F. Then

2 Or(u) = Ox(1) + 2. Ox(u)

weURUR /ULURT! 1£ueURUR ULURT!

L U EWEL T S SRS N RT)

a€F* §eker Np/p
(case 4 of Theorem 3.2.2)

_ ey [4 =1 /
4 L=+ S wolaTms))]

q—1
a€lF* §'€ker Npr

:q;<m—1)<e—1)[qe__1+z< > dolaTrps(d)+ Y %(aTrD/F(é))ﬂ

—1
q acF*  Npp(8')=1 Np/r(d')=1
Trpr(8')=0 Trpr(8')#0

_ q;(e_mm—l){‘f;_;ll (g — 1)Ng(0,1) + (—1) [f__ll — Ny(0, 1)}}

Né(o’ 1)q%(€71)(m71)+1. 0

Lemma 5.1.4. Let E,w be as in the previous proposition. Then

Y7 Oal(w) = Ny(0,1)gz "D

zeUL/ULURH

Proof. For 1 < 7 < m, write
C; = ULV UL

and

O} = UpUR/URUR™ = URUE™ JURUR™.



5.1. Multiplicity Theorem 35

Then
m+1
> oedn=x | X 6
zeUL/ULUR T =1 “zevl /UurUgptt
vo(z)=j
m—1 1 .
=X ¢V Y 3 Glo(@).0)(o(x))
j=1 v€C? 0€Gal(E/F)

+ D=0 S S Yy (anTrpw(9)) + Ox(1).

z€CY, 6€ker Np r
Using case 3 of Theorem 3.2.2, we simplify the right hand side terms of above

equation.

If m and j have opposite parities then G(o(z),6) = 1. Then we have

Z Z O(o(z)) =0 for1<j<m

z€C7 oeGal(K/k)

(since > O(o(x)) =0 for o € Gal(E/F) and hence ) 6(co(z)) =0).
zeC; zeCy
If m and j have the same parities, then

G(o(x),6) =Y vo(ayTrpss(7”

yeT

For 1 <j <m,

> ol Tro(y™™ (77 =7))8(o(x))

z€C7 oeGal(E/F) veT

= 22 2 Yol Tromw(y” = (v —7))9(0(1+; a;@’))

a; 7#0
m+j )
- Z Yooy Trpe(y (v —))0(a(1 + aj’))
c€Gal(E/F)
o EF—{0}neT
x > O(c(l+ ) da))
(CYTBPRCTNIS Sl i=j+1

= (. the later sum is 0).
Thus
Z On(z)=0for 1 <j<m.

zeUL/ULURH
vo(x)=j
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Therefore, we have

Or(z) = > O ()

zeUL/ULURT? reULUR ULUZT!

= Ny(0,1)q2“" D=1+ (see Lemma 5.1.3). O

Now the following proposition give the dimension of zero weight space in totally
ramified case.

Proposition 5.1.5. Let E, 7 be as in the last proposition and K/F be the
totally ramified extension of degree . Then

d(m,K) = Ne(0, 1) 3(m=1)(=3)+["7]

Proof. Case (I): Assume that K 2 E. Since w
and F*UST N K* = F*URT. Then by the definition of d(, K), we have the

k- is a representation of K*/F*Upt!

following;:
d(Tr, K) — <@7r K*y ]]_K*>K*/F*U;?+l
1
~epup 2 O
K ek pruptt
1
= m( Z @w(U)> (" Ox(x) = 0 for yy(xz) < m,
1 uweURUR /ULURT!
Th.3.2.2.(2))
= mNe(O, 1)q2¢=Dm=D+1 (see Lemmal(5.1.3))
q [
_ Ne0.1) se-gym-nrim
l

Case (II): Assume that K = E. Without loss of generality, we may assume that
E =K.
Again by the definition of d(7, K), we have

d(m, K) = (Or|xce, Lg+) oo eyt

1
S, 2 O

zEK* /FUptt
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1 -1 A
:eqm—mz; > 6=

uel} JULURT!
1 —1
sir= QD DENLEOED DEED DI NCO)E
uweUL /ULURT! =1 yeul /uLUpt!

Since vy(w'u) = 0 for 1 < i < £, by case 3 of Theorem 3.2.2, we have

O (w'u) = (%)9(@%)
Then ,
_ 1 - q i
o) —gmm( X e+l 3 i)
-1
—mm( X ewe o) X o).

ueU} JULUR ueU} JULURT!

Note that 6 is a non trivial character of the group U} /U }U}?H, and hence

> ) =o.

ueUh JULURT!

Thus in view of Lemma 5.1.4, we have

d(m, K) = — S 6w

0q™ 7]
1 ueU} JULURT!

1
g (a0 N0, )

_ Mqé(m—w—:’wm

l—1 1
Remark 5.1.6. If ¢ f q— 1, we have Ny(0,1) = q (see Lemma 4.1.6)
then
d( K) qf—l —1 l('m—l)(f—?))-‘r[%]
T, K) = q2 .
t(qg—1)

]

Thus in view of Propositions 5.1.2 and 5.1.5, we proved the following theorem.
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Theorem 5.1.7. Let E/F be a totally ramified extension of degree ¢ and (E,0)
be the admissible pair of conductor m + 1 with trivial central character. Let m
be the irreducible representation of D* attached to the pair (E,0). If K/F be an

extension of degree ¢ embedded in D. Then

q(e—l)(mf;l—[mT_l]) if K/F is unramified;
d(m, K) =

wqé(m—n(z—g)ﬂmgl] if K/F are totally ramified.
Theorem (5.1.1) and theorem (5.1.7) together give the proof of our main theo-
rem.

Let K/F be any field extension of degree ¢, we denote K(n) = K* N U}, for
n > 0. We express our theorem in terms of the dimension of 7 (see §2.2).
Theorem 5.1.8. Let D be a division algebra of odd prime index ¢ over the
non-archimedean local field F with residue characteristic p, £ # p and w be an
irreducible representation of D* attached to the admissible pair (E,0) of con-

ductor m—+1 with central character w, = 1p«. If K/F be any extension of degree

¢ in D. Then

0 if E=K and K/F is
unramified,

dim
|K*/F*K({m +1)|

if E/F unramified and

K/F totally ramified;

d(m, K) = dim 7

|K*/F*K(m+ 1)

if EJF totally ramified and

K/F unramified;

q(q —1)Ny(0,1) dim

if both E/F, K/F are

totally ramified.

Note that in the cases above F*K(n) is the largest subgroup of K* on which 7

is trivial.
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In conclusion we remark that in view of Lemma 4.1.5 our formulae agree entirely

with those of Prasad [P2] in case D is a tame quaternion division algebra over F.
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