Synthesis and Biological Evaluation of Chitooligosaccharides and Related Derivatives

A Thesis Submitted for the Degree of

DOCTOR OF PHILOSOPHY

In Chemistry

by **Ramana Niddana**

Reg. No. 10CHPH02

Under the Supervision of

Dr. R. Balamurugan

SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD HYDERABAD 500 046 INDIA

JUNE 2016

School of Chemistry University of Hyderabad P.O. Central University Hyderabad 500 046 India

Statement

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the supervision of **Dr. Rengarajan Balamurugan**.

In keeping with the general practice of reporting scientific observations, due acknowledgement has been made wherever the work described is based on the findings of other investigators. Any omission, which might have occurred by oversight or error, is regretted.

University of Hyderabad June, 2016 Ramana Niddana

10CHPH02

School of Chemistry University of Hyderabad P.O. Central University Hyderabad 500 046 India

Certificate

Certified that the work embodied in this thesis entitled "Synthesis and Biological Evaluation of Chitooligosaccharides and Related Derivatives" has been carried out by Mr. RAMANA NIDDANA under my supervision and the same has not been submitted elsewhere for a degree.

Dr. R. BALAMURUGAN (THESIS SUPERVISOR)

DEANSCHOOL OF CHEMISTRY

School of Chemistry University of Hyderabad P.O. Central University Hyderabad 500 046 India

Certificate

This is to certify that Mr. RAMANA NIDDANA has carried out the research work embodied in the present thesis under the supervision and guidance of Dr. R. Balamurugan for a full period prescribed under the Ph.D. ordinances of this University. I recommend his thesis entitled "Synthesis and Biological Evaluation of Chitooligosaccharides and Related Derivatives" for submission for the degree of Doctor of Philosophy of the University. Part of work (biological studies presented in Chapters 3 and 4) was done in the laboratory of Prof. B. M. Moerschbacher at the University of Muenster and Prof. Stefan W. Schneider at the University of Heidelberg (UMM), Germany in the framework of International Research Training Group in Molecular and Cellular Glycosciences (IRTG-MCGS). I, declare to the best of my knowledge that this work has not been submitted earlier for the award of degree or diploma from any other University or Institution.

Dr. R. BALAMURUGAN (THESIS SUPERVISOR)

Acknowledgements

First and foremost, I would like to thank my research supervisor **Dr. R. Balamurugan** for giving the freedom to work on various problems. I am grateful to him for constant guidance, encouragement and support, leading to the successful completion of this work. It has been a great privilege and honor to be associated with him.

I thank **Prof. Bruno M. Moershbacher**, who led the group MCGS in the best way, for his great knowledge and enthusiasm to the science. I extend my thanks to **Prof. N. Sivakumar** and **Prof. Appa Rao Podile** for coordinating the Indian (IRTG-MCGS) group.

I thank present and former deans of school of chemistry, Prof. M. Durga Prasad, Prof. M. V. Rajasekharan and Prof. D. Basavaiah for providing necessary research facilities. I am very much thankful to my doctoral committee members Prof. D. B. Ramachary and Dr. P. Ramu Sridhar for their encouragement and support during the doctoral tenure.

I express my sincere gratitude to my teachers S. Sattibabu, K. Yuvaraju, Sreeramulu. I extend my sincere thanks to my M.Sc Professors Dr. G. S. Moses, K. Ramesh Babu, V. Somasekhar Rao, B. Sujatha, M. Saroja, V. V. Prabhakar Rao, Ch. Udayasankaram, K. Durgamalleswari, R. Krishnakumari, Dr. V. Ranga Rao, for their excellent teaching and support.

I am grateful to all faculty members of School of Chemistry for their encouragement.

I am grateful to my labmates, Dr. Srinivasa Rao, Dr. Ganeshkumar, Dr. Raveendrababu, Dr. Vanajakshi Dr. Naveen, Dr. Manoj, Sakthivel, Tamilarasan, Chandrahas, Dr. Rangarajan, Moumandal, Ramesh, Sayyadbasha, for their support and creating friendly atmosphere in the lab.

I am very thankful to my friends, seniors and juniors in all other labs in School of Chemistry.

I am thankful to my dear schoolmates and friends, M. Narayana Rao, P. Sankar, P. Ramana, P. Sunil, N. Sriram, P. Raghu, G. Satyam, Gowrinaidu, Chkradhar, Cheeranjeevi, Madhavi, Shyamala, Narayana Rao, Pydithalli, Kanchinaidu, Suryanarayana, Jagadeesh, Ramakrishna, Appalanaidu, Brahmam, Vamsikumar, Babji, Sankararao, Nagaeshwararao, Santhu.

I am so thankful to my B.Sc friends D. Santhosh, R. Appalanaidu, A. Raminaidu, R. Narayana Rao, Sankar Rao, Vasanth, Murali, Ramakrishna, Sriram, and all my B.Sc seniors & juniors. I also thank my M.Sc friends Dr. Santhivardan Reddy, Dr. Laxmankumar, Veerabraham, Ramanjaneyudu, Veeranjaneyulu, Ravisankar, Ramakrishna, Rajandhra, Sreenu, Dhrmarao, Kumaraswamy, Ravi, Ramakrishna, Durgarao, Kishore, Prasad, Damodhar, Sridhar, Kishor, Sivaram, Ashok, Nagaraju, and all my M.Sc seniors & juniors.

I like to thank IRTG-MCGS, to its continuous support and cooperation. My special thanks to Dr. Julie Beneteau, Dr. Shoa, Dr. Christian Gorzelanny, Pilar, Mohr, Dr. Syam, Dr. Sampath, Dr. Archana, Dr. Chandhra.

I extend my sincere thanks to my friends, seniors and juniors in all other labs in School of Chemistry Gupta, Kishore, Nagaraju, Gurubrhamam, Ajay, Narayana, Bharani, Ramaraju, Madhavachary, Sivaprasad, Venkaiah, Sruthi, Narayana, Venukumar, Shashadri, Ramakrishna, Madhusudhanreddy, Sudharani, Obaiah, Vikranth, Sashi, Srinu, Krishnachari, Chandhrasekhar, Sudheer, Ramavathbabu, Naidu, Murali, Srinivas, Vijendar, Ramkumar, Sanatan, Majji, Rajendar, Krishna Chaitanya, Kishore, Arjun, Sathish, Showkth, Brijesh, Nandakishore, Tridib Sarma, Anup Rana, Monica, Lingaiah, Chandu, Haritha, Tamilarasi, Srinivas, Ashwini, Suresh, Ramesh, Ramakrishna, Kishorbabu, Hari, Das, Rambabu, Paparao, Pawan, Kavya.

I acknowledge the help and support provided by the technical and non-teaching staff of the School of Chemistry. I also thank Mallaiah Shetty, Satyanarayana, Vijayalaxmi, Turab, Asiaperwej, Bhaskararao, A. R. Setty, Durgesh, Venkateswarlu and Chittibabu for their timely help. I am thankful to academic and administrative staff of UoH for their assistance. I am thankful to IGM library for providing excellent books and journals.

I am deeply grateful to my parents, sisters, brother and all my relatives for their support, caring, love and affection throughout my life.

Financial assistance by CSIR (New Delhi) is gratefully acknowledged.

Ramana

Table of contents

List of abbreviations used		٧
Synopsi	s	vii
Chapte	r 1: Introduction to chitooligosaccharides	
1.1	Importance of carbohydrates	1
1.2	Carbohydrate polymers	1
1.3	Importance of oligosaccharides	3
1.3.1	Chitooligosaccharides and their derivatives	3
1.4	Chemical synthesis of chitooligosaccharides	4
1.4.1	Glycosidic bond formation	5
1.4.2	Glycosyl donors	5
1.4.2.1	Glycosyl halide donors	6
1.4.2.2	Glycosyl trichloroacetimidate donors	6
1.4.2.3	Thioglycoside donors	6
1.5	Amino protecting groups and stereoselective glycosidic bond formation	7
1.5.1	Acetyl group (N-acetyl) as amine protecting group	7
1.5.2	Phthalimide group (N-Phth) as amine protecting group	8
1.5.3	Dimethylmaleoyl (N-DMM) group as amine protecting group	8
1.5.4	Azide (N ₃) as masked amine group	9
1.6	Objective	9
1.7	References	10
Chapte	r 2: Synthesis and biological evaluation of mono N-acetylchitobioses	
2.1	Introduction	15
2.1.1	Enzymatic synthesis of fully and partially N-acetylated chitobioses	15
2.1.2	Chemical synthesis of fully and partially N-acetylated chitobioses	17
2.2	Results and discussion	19
2.2.1	Synthesis of N-Phth protected glycosyl donor	19
2.2.2	Synthesis of azido glycosyl acceptor	20
2.2.3	Synthesis of disaccharide building block	21
2.2.3.1	Synthesis of mono N-acetylchitobiose derivative (AD)	21

2.2.3.2	Synthesis of mono <i>N</i> -acetylchitobiose (DA)	22
2.2.4.	Biological activity profiles of mono N-acetylated chitobioses	23
2.2.4.1	ITC binding studies of partially N-acetylated chitobioses with PeCBM32	23
2.2.4.2	Thermodynamic parameters (n, ΔH , ΔG and K_b) obtained from ITC	24
2.3	Conclusions	25
2.4	Experimental section	25
2.4.1	General information	25
2.4.2	Experimental procedures, spectral data and analytical data	25
2.4.3	Isothermal titration calorimetry (ITC)	33
2.5	References	33
2.6	Representative spectra	36
Chapte	r 3: Synthesis of partially N-acetylated chitotrioses and their biological	
effects	on human endothelial cells	
3.1	Introduction	43
3.1.1	Chemical synthesis of chitotriose derivatives	45
3.2	Results and discussion	46
3.2.1	Synthesis of N-Phth protected acetimidate donor	46
3.2.2	Synthesis of monomer building blocks containing $\emph{N}\text{-Phth}$, $\emph{N}\text{-DMM}$ and \emph{N}_3	47
	groups	
3.2.3	Synthesis of partially <i>N</i> -acetylated chitotrioses (DDA, AAD, DAA, DAD, ADA)	49
3.2.3.1	Preparation of disaccharide building blocks via chemoselective glycosylation	49
3.2.3.2	Synthesis of partially N-acetylated chitotriose derivatives (DDA and AAD)	49
3.2.3.3	Synthesis of partially N-acetylated chitotriose derivative (DAA)	51
3.2.3.4	Synthesis of partially N-acetylated chitotriose derivatives (DAD, ADA)	52
3.2.4	Partially N-acetylated chitotrioses mediated endothelial cell surface	53
	modifications	
3.2.4.1	Analysis of COS purity: Inflammatory activity of chitooligosaccharides (COS)	53
	libraries on macrophages	
3.2.4.2	Cytotoxicity of chitooligosaccharides libraries on human endothelium cells	54
3.2.4.3	EC activation and formation of ultra-large VWF fibers on the EC surface	55
3.2.4.4	Chitooligosaccharide (COS) pretreatment improves platelet binding to	57

	HUVECs under flow	
3.3	Conclusions	59
3.4	Experimental section	59
3.4.1	Experimental procedures, spectral and analytical data	59
3.4.2	Materials and methods related to endothelial cells	76
3.5	References	79
3.6	Representative spectra	82
Chapte	r 4: Synthesis of <i>p</i> -nitrophenyl chitobiosides and their biological	
Evaluat	ion	
4.1	Introduction	103
4.1.1	Biological significance of <i>p</i> -nitrophenyl chitobiosides	104
4.1.2	Enzymatic and chemical synthesis of <i>p</i> -nitrophenyl chitobiosides	105
4.2	Results and discussion	108
4.2.1	Synthetic strategy for the preparation of <i>p</i> -nitrophenyl chitobiosides	108
4.2.2.	Synthesis of monomer building blocks	109
4.2.2.1	N-Phth protected thioglycoside donor	109
4.2.2.2	Synthesis of N-Phth and azide containing glycosyl acceptors	109
4.2.2.3	Synthesis of disaccharide building blocks	110
4.2.2.4	Synthesis of p-nitrophenyl chitobioside derivatives AA-pNP and DD-pNP	110
4.2.2.5	Synthesis of p-nitrophenyl chitobioside derivatives (DA- p NP and AD- p NP)	112
4.2.3	Biological activity profiles of p-nitrophenyl chitobiosides	113
4.2.3.1	Study of substrate specificities of chitinolytic enzymes	113
4.2.3.2	Glucosidase activity	114
4.3	Conclusions	115
4.4	Experimental section	115
4.4.1	Experimental procedures, spectral and analytical data	115
4.4.2	Enzyme assays for chitinolytic enzymes and glycosidases using $p{\sf NP}$ -	123
	chitobiosides as the substrates	
4.5	References	123
4.6	Representative spectra	126

Chapter 5: Towards the development of glycosidase inhibitors

5.1	Introduction	141
5.1.1	Allosamidins and aza sugars as glycosidase inhibitors	141
5.1.2	Chitooligosaccharide related glycosidase inhibitors	144
5.2	Results and discussion	145
5.2.1	Preparation of building blocks for the synthesis of target chitobioside mimics	145
5.2.1.1	Synthesis of azido tosyl derivative	145
5.2.1.2	Synthesis of azido alcohol derivatives 35 and 37	146
5.2.1.3	Etherification (coupling) of alcohol derivatives 35 and 37 with tosyl derivative	147
5.2.1.4	Preparation of acetimidate derivative	147
5.2.1.5	Synthesis of N-acetyl protected tosylate derivative	148
5.2.1.6	Attempted etherification of N-acetyl tosylate 42 with 35 and 37	148
5.2.1.7	Etherification with azido alcohol derivatives 32 of N-Phth protected tosylate	149
	derivative 44	
5.2.2	Synthesis of aryl esters having free or N-acetylated amine	150
5.2.2.1	Preparation of aryl esters having free amine (51-53)	150
5.2.2.2	Preparation of aryl esters having N-acetyl amine	151
5.2.3	Screening of aryl esters for chitinase inhibitor activities	151
5.3	Conclusions	154
5.4	Experimental section	154
5.4.1	Experimental procedures, spectral and analytical data	154
5.4.2.	Enzyme assays	163
5.5	References	164
5.6	Representative spectra	167
Appendi	Appendix	

List of Publications

Poster and Oral Presentations

List of abbreviations used

Ac acetyl

AcOH acetic acid

Ac₂O acetic anhydride

aq. aqueous
Anal. analysis
Ar aryl
Bn benzyl

br s broad singlet

n-Bu butyl

t-Bu tertiary-butylcalcd. calculatedcat. catalytic

DBU 1,8-diazabicyclo(5.4.0)undec-7-ene

DCC N,N'-dicyclohexylcarbodiimide

DIPC N,N'-diisopropylcarbodiimide

DCE 1,2-dichloroethane

DCM dichloromethane

dd doublet of doublets

DMAP dimethylaminopyridine

DMF N,N-dimethylformamide

dt doublet of triplets

DTBMP 2,6-di-tert-butyl-4-methylpyridine

equiv. equivalent (s)

Et ethyl

ELISA enzyme-linked immunosorbent assay

ESI electronspray ionization

gm gram (s) h hour (s)

HMPA hexamethylphosphoramide

HPLC high-performance liquid chromatography
HUVECs human umbilical vein endothelial cells

Hz hertz

KHMDS potassium hexamethyldisilazane

NIS *N*-iodosuccinimide

Lev levulonyl

LCMS liquid chromatography mass spectrometry

m multiplet M molarity

MALDI matrix-assisted laser desorption ionization

Me methyl

mg milligram (s)
mL milliliter
mmol millimole

NMR nuclear magnetic resonance

Ph phenyl

P protecting group
Ppm parts per million

py pyridine q quartet

rt room temperature

s singlet t triplet

td triplet of doublets

TBDMS tertiary butyl dimethyl silyl

TES triethylsilane

TFA trifluoroacetic acid

TFAA trifluoroacetic anhydride

Tf₂O trifluoromethanesulfonic anhydride

TfOH trifluoromethanesulfonic acid

THF tetrahydrofuran

TLC thin layer chromatography p-TsCl p-toluenesulphonyl chloride

p-TsOH *p*-toluenesulfonic acid

TMSOTf trimethylsilyl trifluoromethanesulfonate

TNF-α tumor necrosis factor alpha

ULVWF ultra-large von Willebrand factor

UV ultraviolet

WSTs water soluble tetrazolium salts

Synopsis

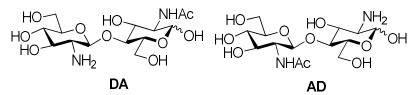
Synopsis of the Ph. D. thesis entitled "Synthesis and Biological Evaluation of Chitooligosaccharides and Related Derivatives" is divided into five chapters. Chapter 1 presents general introduction to chitooligosaccarides synthesis and biological importance. Other four chapters account the synthesis and biological evaluation of chitooligosaccharides and their derivatives (chitobioses, chitotrioses, *p*-nitrophenyl chitobiosides). Thioglycosides and glycosyl trichloroacetimidates were utilized as glycosyl donors in the synthesis of chitooligosaccharides and their derivatives. Each chapter is subdivided into six sections namely introduction, results and discussion, conclusions, experimental section, references along with representative spectra.

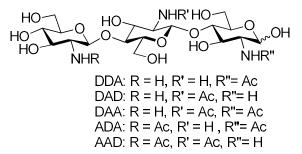
Chapter 1: Introduction to Chitooligosaccharides

Chapter 1 presents the general introduction emphasizing poly- and oligosaccharides. Majorly, oligosaccharides related to chitin and chitosan have been discussed in detail. More specifically, the synthesis and biological importance of chitooligosaccharides have been reviewed. A brief discussion on glycosyl donors containing different leaving groups pertaining to the thesis work is provided. Finally, the construction of stereoslective glycosidic linkage for the synthesis of chitooligosaccharides is discussed.

Chapter 2: Synthesis and Biological Evaluation of Mono N-Acetylchitobioses

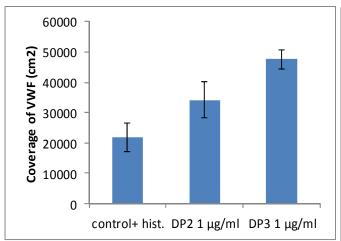
This chapter presents the chemical synthesis of mono N-acetylchitobioses **AD** and **DA** (Figure 1) and their binding studies on chitosan binding protein PeCBM32. For the synthesis of mono N-acetylchitobioses, thioglycoside was used as glycosyl donor can be activated under NIS/TfOH reagent system. N-Phth group serve as amine protecting group and azide acts as masked amine group. Directing ability of phthalimide group was exploited for the formation of β -glycosides.




Figure 1: Synthesized mono *N*-acetylchitobioses (AD, DA).

To investigate the biological effects of the synthesized mono *N*-acetylated chitobioses, binding studies on chitosan binding protein *Pe*CBM32 were performed using isothermal

titration calorimetry (ITC). Results suggest the 1:1 binding of chitobiose having different pattern of *N*-acetylation (GlcN-GlcNAc and GlcNAc-GlcN) with *Pe*CBM32. Binding constant (K_b) for the GlcN-GlcNAc (**DA**) is greater (almost double) than that with GlcNAc-GlcN (**AD**) indicating stronger binding affinity of **DA** than **AD** on *Pe*CBM32.


Chapter 3: Synthesis of Partially *N*-Acetylated Chitotrioses and Their Biological Effects on Human Endothelial Cells

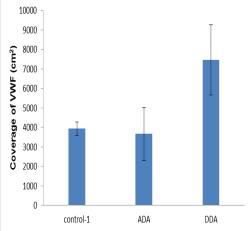

Synthesis of partially *N*-acetylated chitotrioses were achieved using chemoselective glycosylation strategy. Glycosyl trichloroactemidates and thioglycosides were used as glycosyl donors for the synthesis of partially *N*-acetylated chitotriose derivatives under chemoselective glycosylation conditions. Three kinds of D-glucosamine building blocks with different amine precursors (*N*-Phth, *N*-DMM, N₃) at C-2, were used in the synthesis. They were finally converted into free amino or acetamido groups. Synthesized chitotrioses having different *N*-acetylated pattern (**DDA**, **DAD**, **DAA**, **ADA**, and **AAD**) are shown in the Figure 2.

Figure 2: Synthesized partially *N*-acetylchitotrioses.

To investigate the biological effects of synthesized chitooligosaccharides [dimers (Chapter 2) and trimers] on human endothelium, studies were carried out in the context of coagulation and inflammation. Biological results suggest the impact of chitooligosaccharides (dimers and trimers) on the formation and immobilisation of ULVWF (Ultralarge von Willebrand factor) fibres on the luminal EC surface and chitooligosaccharide pre-treatment improves platelet binding to HUVECs (Human Umbilical Vein Endothelial Cells) under flow (Figure 3). This preliminary evidence of a non-toxic chitooligosaccharide-mediated change of the endothelial surface is most likely due to the direct interaction between the positively charged chitooligosaccharides and the negatively charged glycocalyx. This beneficial effect of VWF-mediated coagulation and biomedical application of chitoligosaccharides having different *N*-acetyl pattern might be valuable in treating bleeding disorders (Coagulation).

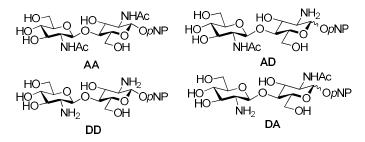


Figure 3: Entrapment of platelets to the endothelium under continuous and laminar flow conditions (shear stress = 6 dyne/cm²) is amplified upon pre-treatment with chitooligosaccharides.

Chapter 4: Synthesis of *p*-Nitrophenyl Chitobiosides and Their Biological Evaluation

To study the activities of chitinolytic enzymes we developed synthetic chitooligosaccharide related chromogenic substrates, for example, *p*-nitrophenyl chitobiosides (Figure 4). Using thioglycoside donor, the p-nitrophenyl chitobiosides having different N-acetylated patterns were synthesised. To know the structure-activity relationships, substrate specificity of chitinolytic enzymes and glycosidases was studied using the synthesised *p*-nitrophenyl chitobiosides.

Figure 4: Synthesized of *p*-nitrophenyl chitobioside derivatives.

The results of biological studies suggest that the chitinolytic enzymes such as chitinases (ChiG and Bli), chitosanases (CSN) and glycosidases (GlcNAcase/GlcNase) have specificities with the novel *p*-nitrophenyl chitobioside derivatives (Figure 5 and 6)

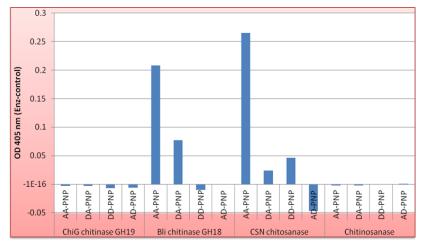
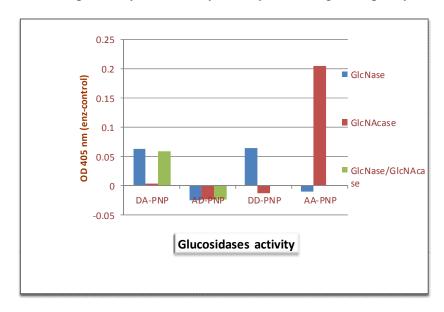



Figure 5: Substrate specificity of chitinolytic enzymes with p-nitrophenyl chitobiosides.

Figure 6: Glycosidases activity with different *p*-nitrophenyl chitobiosides.

Chapter 5: Towards the development of glycosidase inhibitors

With the aim to develop inhibitors for glycosidases, we designed molecules whose structure resembles the chitobioses having different N-acetylated patterns \mathbf{A} (Figure 7). These compounds are expected to act as inhibitors by resisting the enzymatic hydrolysis due to the absence of anomeric carbon. However, all our attempts to synthesize the planed target chitobioside mimics failed. Later on we focussed on the synthesis of aryl esters having free or N-acetylated amine \mathbf{B} as shown in the Figure 7.

HO HO O OH HO NHR HO NHAC NHAC R = H/Ac A

$$R = H/Ac$$
 $R_1 = H/Ac$, R_2 , R_3 , $R_4 = H/OH/NH_2$

B

Chitinase inhibitors???

Figure 7: Target chitobioside mimics and aryl ester derivatives.

To check the chitinase inhibitor activity of the synthesized substituted aromatic esters **B**, we chose highly active chitinases *Pe*Chi3 from *Paenibacillus elgii* and *Sp*ChiD from *Serratia proteamaculans*. These results indicated that the synthesized aromatic esters were not active as they are smaller in size and hence may not bind to the catalytic cleft of chitinases (*Pe*Chi3 and *Sp*ChiD) to inhibit their enzymatic activities.

Chapter 1

Introduction to chitooligosaccharides

1.1 Importance of carbohydrates

Carbohydrates are one of the important class of biomolecules present in living system. Apart from acting as source of energy, they are involved in many vital functions of biological system. They are involved in cell and protein recognition. They are structurally defined as polyhydroxy aldehydes or ketones. Carbohydrates can be classified into simple and complex carbohydrates. Examples of simple carbohydrates are monosaccharides such as glucose, fructose, galactose and mannose etc.

Complex carbohydrates can be classified as di- oligo- and polysaccharides based on the number of monosaccharide residues present in sugar. Glycoconjugates which are made of simple carbohydrates (mono, di, and oligosaccharides) linked with other biomolecules such as fatty acids, peptides involve in key biological functions.²

1.2 Carbohydrate polymers

Polysaccharides are large-sized carbohydrates made up of hundreds of monosaccharide residues. These carbohydrate polymers have potential application in the research areas such as chemistry, drug delivery, food, health, nanotechnology, bioenergy, bioplastics, biomaterials and biorefining etc.^{3,4} These polymers can be isolated from natural sources. Polysaccharides consisting of similar or different monomer units are linked *via* glycosidic bonds such as α -(1 \rightarrow 1), α -(1 \rightarrow 2), α -(1 \rightarrow 4), α -(1 \rightarrow 6), β -(1 \rightarrow 3), β -(1 \rightarrow 4). Many polysaccharides are homopolymers such as starch, glycogen, cellulose and chitin (Figure 1.1). Starch and glycogen are storage polysaccharides consisting of a large number of glucose units and are found in plants and animals.³ Starch is used in processed foods, and as thickening, stiffening or gluing agent and also adhesive in papermaking process. Other more common polysaccharide, cellulose consists of β -(1 \rightarrow 4) glycosidic linkages between glucose residues. Cellulose 1 is an important structural component present in the cell walls of plants, algae and comycetes. It is mainly obtained from cotton and wood pulp. Cellulose is mainly

used to produce paper. Using cellulosic ethanol as biofuel is under investigation as an alternative fuel source.⁴

Chitin 2, another naturally occurring polymer, can be described as a homopolymer of a β -(1 \rightarrow 4)-linked N-acetyl glucosamine (GlcNAc). Chitosan 3 which is a partially deacetylated derivative of chitin composed of randomly distributed β -(1 \rightarrow 4)-linked glucosamine (GlcN) and GlcNAc units.⁵ Chitin is a major constituent of the cell walls of fungi, exoskeletons of arthropods, such as crustaceans and insects and the beaks of cephalopods. Generally, chitin is obtained from the exoskeleton of crustaceans by industrial process.⁶ Both have been found to have important role in many biological applications due to their low cost, nontoxicity, biocompatibility and biodegradability.⁷ Especially, chitosan is present in skin-care creams, shampoos and hairsprays due to its antibacterial properties.^{8,9} Also it is a main component in food additives¹⁰ and environmental protecting agent.¹¹ Chitin and chitosan have poor solubility in water and most organic solvents under physiological pH conditions. This property makes chemical modification difficult and restricts their usage, particularly in medicine and food industry.¹²

- 1. X = OH (Cellulose)
- 2. X = NHAc (Chitin)
- 3. $X = NHAc/NH_2$ (Chitosan)

Figure 1.1: Structural representation of homopolysaccharides cellulose 1, chitin 2 and chitosan 3.

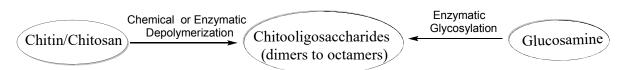
Heteropolysaccharides provide support to extracellular matrix that holds individual cells together in animal tissues and offer protection, shape and support to cells, tissues and organs in organisms from bacteria to humans. Fibrous proteins like collagen, elastin, fibronectin, laminin, hyaluronic acid, condroitin sulfate and dermatan sulfate are important heteropolysaccharides consist of amino sugar and acid sugar residues in the extracellular matrix. Another heteropolysaccharide namely heparin acts as a natural anticoagulant produced by basophils and mast cells.¹³

1.3 Importance of oligosaccharides

Glycoconjugates and oligosaccharides play a pivotal role in many biological processes. ^{14,15} Glycoconjugates can be subdivided into glycoproteins, glycolipids and proteoglycans. Glycan part in the glycoconjugates involves mainly in the antigen-antibody interactions, transport of toxins through the cell membrane and other molecular recognition. Cell membranes consisting of glycoconjugates involve in greater number of biological events such as cell-cell recognition, fertilization, cell growth and immune responses. ^{16,17} Oligosaccharides in the form of glycoconjugates such as glycolipids and glycoproteins involve in the transfer of information between the cells. This process is fundamental for life in all living systems. ^{18,19} There are two main classes of glycoproteins, namely *N*-linked and *O*-linked glycoproteins. The classification depends on whether the oligosaccharide side chain is linked to a protein *via* serine/threonine amino acid (*O*-linked) or asparagine (*N*-linked). Other glycoproteins such as *S*-linked, *P*-linked, *C*-linked are less abundant. ²⁰ Examples of *O*-linked glycoproteins are glycophorin, mucin and thrombospondin etc. Sialyl-Lewis^X is a tetrasaccharide attached to *O*-glycans found on the cell surface, which plays an important role in cell-cell recognition and fertilization. ²¹

1.3.1 Chitooligosaccharides and their derivatives

As already discussed, chitin/chitosan has poor solubility in water and most organic solvents which makes chemical modification on them difficult there by restricts their usage in medicine and food industry. Researchers have focused on partially hydrolyzed chitosans, i.e., chitooligosaccharides to improve the solubility for conducting biological studies. Chitooligosaccharides (COS) can be defined as β -(1 \rightarrow 4) linked homo- or hetero-oligomers of GlcNAc and/or GlcN are highly soluble in neutral aqueous solutions and exhibit strong biological functions. They show biological activities such as antibacterial, antifungal, antitumor, anticoagulant, wound healing and elicitors of plant defence. Fully and partially *N*-acetylated chitooligosaccharides are of interest for the study of the structure-activity relationships, determination of the substrate specificities and mechanism of action of chitinases and chitosanases which hydrolyze chitin and chitosan respectively. Interestingly, these bio functions strongly depend on the degree of polymerization (DP), degree of *N*-acetylation (DA) and pattern of *N*-acetylation (PA) of the COS. Due to the distinguished biological activities of chitooligosaccharides, different protocols have been developed to prepare different *N*-acetylated chitooligosaccharides.

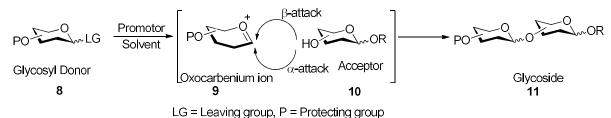

Chitooligosaccharide congeners have also showed important role in many biological processes. These derivatives such as lipochitooligosaccharides **5**, thiochitooligosaccharides **6**,

$$\begin{array}{c} \text{OH} \\ \text{HO} \\ \text{NHR} \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \end{array} \begin{array}{c} \text{OH}$$

Figure 1.2: Structural representation of chitooligosaccharides and related derivatives (4-7).

1.4 Chemical synthesis of chitooligosaccharides

Chitooligosaccharides can easily be produced by chemical and enzymatic depolymerization of chitin and chitosan. However, these methods produce heterogeneous COS mixtures. Disadvantages of these methods are the controlling of reaction, purification and characterization of products which are quite difficult task (Scheme 1.1). On the other hand glucosamine can be used as starting material to generate chitooligosaccharides by enzymatic glycosylation. Again the issue is the heterogeneity of the products.



Scheme 1.1: Ways of preparation of chitooligosaccharides.

In order to study the biological activities such as the substrate specificity, characterization and mechanism of different enzymes, sufficient quantities of pure COS are required. For that efficient chemical strategies are required to synthesize well-defined fully and partially *N*-acetylated chitooligosaccharides. However, chemical synthesis of chitooligosaccharides is less explored area. Considering the importance of complex oligosaccharides,³⁶ well-defined oligosaccharides are good candidates to study many biological activities.

1.4.1 Glycosidic bond formation

The construction of glycosidic linkages are very important in the synthesis of complex oligosaccharides.^{37,38} Glycosylation reactions involve formation of inter glycosidic linkage between glycosyl donor and glycosyl acceptor. A compound which donates a glycosyl moiety is called as glycosyl donor and the alcohol that receives it is known as acceptor. In these reactions glycosyl donors can be activated in the presence of promotors either in catalytic or stoichiometric amounts. Promoters initiate the formation of oxocarbenium ion intermediate 9 by activating the leaving group of glycosyl donor 8. Subsequently the nucleophilic attack of acceptor alcohol 10 on the intermediate 9 leads to the formation of glycoside 11 (Scheme 1.2).^{39,40}

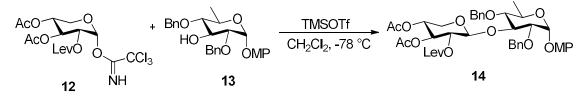
Scheme 1.2: Formation of glycosidic bond.

1.4.2 Glycosyl donors

Many glycosyl donors have been utilized for the synthesis of oligosaccharides and glycoconjugates. Among them, arguably, glycosyl halides, glycosyl trichloroacetimidates and thioglycosides have been extensively used because of the ease of preparation of them and their superior reactivity in the glycosylation reactions. Some of the glycosyl donors are given in Figure 1.3.

Figure 1.3: Different glycosyl donors.

1.4.2.1 Glycosyl halide donors


Glycosyl chlorides and bromides are effective donors which were introduced by Koenigs and Knorr in glycan synthesis. ⁴¹ This can be activated using heterogeneous catalysts such as Ag₂CO₃, Ag₂O or homogeneous catalysts like HgBr₂, Hg(CN)₂ and AgOTf. ^{41,42}

To overcome the problems associated with glycosyl chlorides, Mukiyama *et al.* utilized the stable glycosyl fluorides in the preparation of *O*-glycosides.⁴³ Glycosyl fluorides can be activated using agents like SnCl₂-AgClO₄, TMSOTf,⁴⁴ BF₃·Et₂O,⁴⁵ Cp₂MCl₂-AgClO₄ (M = Zr, Hf).^{46,47}

1.4.2.2 Glycosyl trichloroacetimidate donors

In 1980, Schmidt *et al.* reported glycosyl trichloroacetimidate as a very efficient alternative donor to the glycosyl halides. ^{48,49} This can be activated by catalytic amounts of TMSOTf, ⁵⁰ BF₃·Et₂O, ⁴⁸ AgOTf under mild reaction conditions. Anomeric configuration of trichloroacetimidates is crucial for stereoselective glycosidic bond formation. ⁴⁸

Li *et al.* have successfully utilized the donor capability of trichloroacetimidate donor 12 in the synthesis of pentasaccharide moiety of Thornasterside A.⁵² Formation of intermediate β -glycoside 14 depends on the anomeric configuration of acetimidate donor 12 and the participating ability of levulinate ester (Scheme 1.3).

Scheme 1.3: Utilization of trichloroacetimidate donor 12 in the oligosaccharide synthesis.

1.4.2.3 Thioglycoside donors

Ferrier *et al.* used thioglycosides in glycosylation reactions for the first time.⁵³ In the preliminary stages, these donors were activated with heavy metal salts like HgSO₄, Ag(I),

Cu(II), Pd(II) etc.⁵⁴ Some non-metal compounds have also been found to activate these donors such as DMTST,⁵⁵ methylsulfonyl triflate,⁵⁶ benzenesulfenyl triflate,⁵⁷ NIS/TfOH^{58,59} etc. Chemoselective oligosaccharides synthesis by using the activators like BSP/Tf₂O and DPSO/Tf₂O systems have also been reported.⁶⁰

Crich *et al.* utilized thioglycoside donor for the synthesis of β -mannosides selectively. In their methodology, first thioglycoside **15** was treated with PhSOTf and DTBMP at -78 °C to obtain α -mannosyl triflate intermediate and the reaction of this triflate with acceptor **16** resulted in β -anomeric glycoside **17** (β : α = 18:1) in good yield (Scheme 1.4).

Scheme 1.4: Preparation of β -mannosides using thioglycoside 15 as a donor.

Other donors such as *n*-pentenyl glycosides,⁶¹⁻⁶³ phosphate/phosphite derivatives,^{64,65} sulfoxides,⁶⁶ glycals,⁶⁷ 1-acyl,⁶⁸ 1-carbonates,⁶⁹ orthoesters,⁷⁰ 1,2-anhydro sugars,⁷¹ 1-hydroxyl sugars,⁷² and glycosyl thioimidates⁷³ have also been used in oligosaccharide synthesis.

1.5 Amino protecting groups and stereoselective glycosidic bond formation

N-Acetylglucosamine/glucosamine derivative is present in many glycoconjugates and oligosaccharides such as chitin and chitosan through β-glycosidic linkages. Construction of β-glycosidic linkage is a major challenge in the oligosaccharide synthesis. Amino protecting group in the glycosyl donor can favour the stereoselective glycosidic bond formation through the neighbouring group participation and their steric crowding nature. ^{74,75}

1.5.1 Acetyl group (N-acetyl) as amine protecting group

In earlier days, acetyl group was used as an amine protecting group for the preparation of simple glycosides in a stereoselective manner. In the mechanism, first step involves the formation of oxocarbenium ion 19 by the activation of leaving group in donor 18 in the presence of promotor. Participating group at C-2 position in 19 assists the formation of β -glyosidic linkages through the oxazoline intermediate 20. *N*-Acetyl derivative can serve as a glycosyl donor to construct the glycosidic linkage in a stereoselective manner.⁷⁴ But these

donors are not very effective in the oligosaccharide synthesis due to the stability of methyl oxazoline derivative **20** (Scheme 1.5). To avoid this problem, presence of electron withdrawing groups such as trifluoroacetyl, trichloroacetyl, and trichloroethoxycarbonyl groups in place of acetyl group offer better results.⁷⁵

Scheme 1.5: Stereoselective glycosidic bond formation *via* neighbouring group participation.

1.5.2 Phthalimide group (N-Phth) as amine protecting group

Phthalimide group is widely used as an amine protecting group in carbohydrate chemistry.⁷⁶ Preparation of phthalimide derivative can be achieved by reacting the amine with phthalic anhydride in the presence of a base. This can be deprotected using methylamine/hydrazine/ethylenediamine in refluxing methanol/ethanol/butanol (Scheme 1.6).⁷⁷

Conversion of *N*-Phth group into amine derivative followed by acetylation gives the *N*-acetyl derivatives in the oligosaccharides synthesis. *N*-Phth group is very useful for the formation of β -glycosidic linkages because of its both steric crowding nature and neighbouring group participation. 4,4,5,5-Tetrachlorophthaloyl (TCP) and 4,5-dichlorophthaloyl (DCPhth) groups have also been utilized in the stereoselective glycoside synthesis.⁷⁸

PO NO
$$\frac{NH_2NH_2\cdot H_2O}{EtOH, reflux}$$
 PO NHR + $\frac{N-N}{Ac_2O, Py}$ R= H or Ac GlcN/GlcNAc 23 24

Scheme 1.6: Deprotection of *N*-Phth protecting group.

1.5.3 Dimethylmaleoyl (N-DMM) group as amine protecting group

Schmidt *et al.* used dimethylmaleoyl (DMM) group as an amine protecting group in the *N*-acetyl oligosaccharides synthesis. *N*-DMM derivative can be accessed by the reaction of

amine with dimethylmaleic anhydride. Removal of DMM group by treatment with base followed by acid gives the free amine. This is a good alternative for the phthalimide protecting group (Scheme 1.7).⁷⁹

Scheme 1.7: Deprotection of DMM protecting group.

1.5.4 Azide (N₃) as masked amine group

Azides are versatile masked amine groups in the glycan synthesis. Azide containing trichloroacetimidates were widely used in α and β -glycoside synthesis. ⁸⁰ Interestingly, β -linked disaccharide 30 was obtained in the glycosylation of N₃ containing trichloroacetimidate 28 with 4-hydroxy free acceptor 29 (Scheme 1.8).

Scheme 1.8: Utilization of azides as masked amine groups.

Under catalytic hydrogenation conditions azides can be reduced along with the removal of benzyl groups and alkene functionality.⁸¹ Selective reduction of azido groups can also be achieved using PPh₃ in THF/water solvent mixture. Reductive acetylation of azide gives the *N*-acetyl derivatives in presence of AcSH/Py reagent system, which is useful in the synthesis *N*-acetyl oligosaccharides. *p*-Nitrobenzyloxycarbonyl,⁸² trichloroethoxycarbonyl (Troc) group⁸³ are also utilized in the *N*-aminoglycoside synthesis.

1.6 Objective

Our object was to develop methods for the synthesis of chitooligosaccharides with a specific N-acetylated pattern and evaluate their biological activities. Chapters 2-5 describe our efforts on the synthesis of chitobioses, chitotrioses pNP-chitobiosides and related compounds. Biological studies have been carried out using the synthesized compounds.

1.7 References

- 1. Bochkov, A. F.; Zaikov, G. E.; Afanasiev, V. A. Carbohydrates, Vsp, Netherlands. 1991.
- 2. Robyt, J. F. Essentials of Carbohydrate Chemistry, Springer, New york. 1998.
- 3. Ball, S. G.; Morell, M. K. Annu. Rev. Plant Biol. 2003, 54, 207.
- 4. Gray, H. L.; Gtaud, C. J. Chem. Rev. 1928, 4, 355.
- 5. Zikakis, J. P. Academic Press, Inc. New York. 1984.
- 6. Peter, M. G. Biopolymers 2002, 6, 481.
- 7. No, H. K.; Meyers, S. P. J. Aquatic Food Product Technol. 1995, 4, 27.
- 8. Kumar, M. N. V. R. React. Funct. Polym. 2000, 46, 1.
- 9. Anchisi, C.; Meloni, M. C.; Maccioni, A. M. J. Cosmet. Sci. 2006, 57, 205.
- 10. Agullo, E.; Rodriguez, M. S.; Ramos, V.; Albertengo, L. Macromol. Biosci. 2003, 3, 521.
- 11. Kittur, F. S.; Vishukumar, A. B.; Varadaraj, M. C.; Tharanathan, R. N. *Carbohydr. Res.* **2005**, *340*, 1239.
- 12. (a) Peter, M. G. *J. Macromol. Sci., Pure Appl. Chem.* **1995**, *A32*, 629. (b) Trombotto, S.; Ladaviere, C.; Delolme, F.; Domard, A. *Biomacromolecules* **2008**, *9*, 1731.
- 13. Sasisekharan, R.; Venkataraman, G. Curr. Opin. Chem. Biol. 2000, 4, 626.
- 14. Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
- 15. Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. *Science* **2001**, *291*, 2370.
- 16. McAuliffe, J. C.; Hindsgaul, O. Front. Mol. Biol. 2000, 30, 249.
- 17. Varki, A. *Glycobiology* **1993**, *3*, 97.
- 18. Lis, H.; Sharon, N. Eur. J. Biochem. 1993, 218, 1.
- 19. Kolter, T.; Sandhoff, K. Angew. Chem. Int. Ed. 1999, 38, 1532.
- 20. Taylor, C. M. Tetrahedron 1998, 54, 11317.

- 21. Dwek, R. A. Chem. Rev. 1996, 96, 683.
- (a) Aam, B. B.; Heggset, E. B.; Norberg, A. L.; Sorlie, M.; Vårum, K. M.; Eijsink, V. G. H. Mar. Drugs. 2010, 8, 1482.
 (b) Kim, S. K.; Rajapakse, N. Carbohydr. Polym. 2005, 62, 357.
- 23. Jeon, Y. J.; Park, P. J.; Kim, S. K. Carbohydr. Polym. 2001, 44, 71.
- 24. (a) Tokoro, A.; Tatewaki, N.; Suzuki, K.; Mikami, T.; Suzuki, S.; Suzuki, M. Chem. Pharm. Bull. 1988, 36, 784. (b) Liang, T. W.; Chen, Y. J.; Yen, Y. H.; Wang, S. L. Process Biochem. 2007, 42, 527.
- 25. Muraki, E.; Yaku, F.; Kojima, H. Carbohydr. Res. 1993, 239, 227.
- (a) Artan, M.; Karadeniz, F.; Karagozlu, M. Z.; Kim, M. M.; Kim, S. K. Carbohydr. Res.
 2010, 345, 656. (b) Fernandes, J. C.; Tavaria, F. K.; Soares, J. C.; Ramos, O. S.;
 Monteiro, M. J.; Pintado, M. E.; Malcata, F. X. Food Microbiol. 2008, 25, 922.
- 27. Honda, Y.; Tanimori, S.; Kirihata, M.; Kaneko, S.; Tokuyasu, K.; Hashimoto, M.; Watanabe, T.; Fukamizo, T. *FEBS Lett.* **2000**, *476*, 194.
- 28. Nordtveit, R. J.; Vårum, K. M.; Smidsrod, O. Carbohydr. Polym. 1996, 29, 163.
- 29. (a) Vander, P.; Vårum, K. M.; Domard, A. E. I.; Gueddari, N. E.; Moerschbacher, B. M. *Plant Physiol.* **1998**, *118*, 1353. (b) Akiyama, K.; Kawazu, K.; Kobayashi, A. *Z. Naturforsch. C* **1995**, *50*, 391.
- 30. Lerouge, P.; Roche, P.; Faucher, C.; Maillet, F.; Truchet, G.; Prome, J. C.; Denarie, J. *Nature* **1990**, *344*, 781.
- 31. Cooper, J. E. J. Appl. Microbiol. 2007, 103, 1355.
- 32. Usuki, H.; Nitoda, T.; Ichikawa, M.; Yamaji, N.; Iwashita, T.; Komura, H.; Kanzaki, H. *J. Am. Chem. Soc.* **2008**, *130*, 4146.
- 33. Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. **2009**, 131, 12076.
- 34. Wang, L. X.; Lee, Y. C. J. Chem. Soc., Perkin Trans. 1 1996, 581.
- 35. Fettke, A.; Peikow, D.; Peter, M. G.; Kleinpeter, E. Tetrahedron 2009, 65, 4356.

- 36. Koeller, K. M.; Wong, C. -H. Chem. Rev. 2000, 100, 4465.
- 37. Ragupathi, G.; Koide, F.; Livingston, P. O.; Cho, Y. S.; Endo, A.; Wan, Q.; Spassova, M. K.; Keding, S. J.; Allen, J.; Ouerfelli, O.; Wilson, R. M.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2006**, *128*, 2715.
- 38. Seeberger, P. H.; Werzl, D. B. *Nature* **2007**, *446*, 1046.
- 39. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.
- 40. (a) Schmidt, R. R. Angew. Chem. Int. Ed. 1986, 25, 212. (b) Zhu, X.; Schmidt, R. R. Angew. Chem. Int. Ed. 2009, 48, 1900.
- 41. Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957.
- 42. Wulff, G.; Röhle, G. Angew. Chem. Int. Ed. 1974, 13, 157.
- 43. Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 3, 431.
- 44. Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984, 25, 1379.
- 45. Nicolaou, K. C.; Chucholowski, A.; Dolle, R. E.; Randall, J. L. J. Chem. Soc., Chem. Commun. 1984, 1155.
- 46. Matsumoto, T.; Maeta, H.; Suzuki, K.; Tsuchihashi, G. Tetrahedron Lett. 1988, 29, 3567.
- 47. Nicolaou, K. C.; Caulfield, T. J.; Kataoka, H.; Stylianides, N. A. J. Am. Chem. Soc. 1990, 112, 3693.
- 48. Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. 1980, 19, 731.
- 49. Schmidt, R. R.; Grundler, G. Angew. Chem. Int. Ed. 1983, 22, 776.
- 50. Schmidt, R. R. Angew. Chem. Int. Ed. 1986, 25, 212.
- 51. Robina, I.; LópezBarba, E.; Fuentes, J. Tetrahedron 1996, 52, 10771.
- 52. Xiong, J.; Lu, Z.; Ding, N.; Ren, S.; Li, Y. Eur. J. Org. Chem. 2013, 6158.
- 53. Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. Carbohydr. Res. 1973, 27, 55.
- 54. Toshima, K.; Tatsuta, K. Chem. Rev. 1915, 93, 1503.

- 55. Fügedi, P.; Garegg, P. J. Carbohydr. Res. 1986, 149, C9.
- 56. Dasgupta, F.; Garegg, P. J. Carbohydr. Res. 1988, 177, C13.
- 57. Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29, 1061.
- 58. Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313.
- 59. Veeneman, G. H.; Leeuwen, S. H. V; Boom, J. H. V. Tetrahedron Lett. 1990, 31, 1331.
- 60. Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015.
- 61. Fraser-Reid, B.; Konradsson, P.; Mootoo, D. R.; Udodong, U. J. Chem. Soc., Chem. Commun. 1988, 823.
- 62. Mootoo, D. R.; Konradsson, P.; Fraser-Reid, B. J. Am. Chem. Soc. 1989, 111, 8540.
- 63. Mootoo, D. R.; Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583.
- 64. Hashimoto, S.; Honda, T.; Ikegami, S. J. Chem. Soc., Chem. Commun. 1989, 613.
- 65. Kondo, H.; Ichikawa, Y.; Wong, C. H. J. Am. Chem. Soc. 1992, 114, 8748.
- 66. Kahne, D.; Walker, S.; Cheng, Y.; Engen, D. V. J. Am. Chem. Soc. 1989, 111, 6881.
- 67. Lemieux, R. U.; Levine, S. Can. J. Chem. 1962, 40, 1926.
- 68. Helferich, B.; Schmitz-Hillebrecht, E. Chem. Ber. 1933, 66, 378.
- 69. Inaba, S.; Yamada, M.; Yoshino, T.; Ishido, Y. J. Am. Chem. Soc. 1973, 95, 2062.
- 70. Kochetkov, N. K.; Bochkov, A. F.; Sokolovsakaya, T. A. Carbohydr. Res. 1971, 16, 17.
- 71. Lemieux, R. U.; Huber, G. J. Am. Chem. Soc. 1953, 75, 4118.
- 72. Nguyen, H. M.; Chen, Y.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2001, 123, 8766.
- 73. Demchenko, A. V.; Malysheva, N. N.; Meo, C. D. Org. Lett. 2003, 5, 455.
- 74. (a) Banoub, J.; Boullanger, P.; Lafont, D. *Chem. Rev.* 1992, 92, 1167. (b) Bongat, A. F.
 G.; Demchenko, A. V. *Carbohydr. Res.* 2007, 342, 374.

- 75. (a) Crich, D.; Dudkin, V. J. Am. Chem. Soc. 2001, 123, 6819. (b) Liao, L.; Auzanneau, F. I. J. Org. Chem. 2005, 70, 6265. (c) Enugala, R.; Carvalho, L. C. R.; Pires, M. J. D; Marques, M. M. B. Chem. Asian J. 2012, 7, 2482.
- (a) Baker, B. R.; Joseph, J. P.; Schaub, R. E.; Williams, J. H. J. Org. Chem. 1954, 19, 1786.
 (b) Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
 (c) Wang, A.; Auzanneau, F. I. J. Org. Chem. 2007, 72, 3585.
- (a) Sato, S.; Ito, Y.; Ogawa, T. *Tetrahedron Lett.* 1988, 29, 5267. (b) Kanie, O.; Crawley,
 S. C.; Palcic, M. M.; Hindsgaul, O. *Carbohydr. Res.* 1993, 243, 139. (c) Srivastava, V.;
 Hindsgaul, O. *Carbohydr. Res.* 1989, 185, 163.
- 78. Debenham, J. S.; Fraser-Reid, B. J. Org. Chem. 1996, 61, 432.
- 79. Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E. -S. I.; El-Ashry, E. S. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 2305.
- 80. (a) Paulsen, H.; Kalar, C.; Stenzel, W. Chem. Ber. 1978, 111, 2358. (b) Tiruchinapally,
 G.; Yin, Z.; El-Dakdouki, M.; Wang, Z.; Huang, X. Chem. Eur. J. 2011, 17, 10106. (c)
 Paulsen, H. Angew. Chem. Int. Ed. 1982, 21, 155.
- 81. Sedinkin, S. L.; Zinin, A. I.; Malysheva, N. N.; Shashkov, A. S.; Torgov, V. I.; Shibaev, V. N. *Mendeleev Commun.* **2007**, *17*, 10.
- 82. Qian, X.; Hindsgaul, O. Chem. Commun. 1997, 1059.
- 83. Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R. Carbohydr. Res. 1996, 296, 135.

Chapter 2

Synthesis and biological evaluation of mono *N*-acetylchitobioses

2.1 Introduction

Chitobioses are the simplest derivatives among the chitooligosaccharides. There are four chitobiose derivatives based on the degree and position of N-acetylation. Chitobiose building blocks have been widely used in the preparation of complex glycoconjugates and amino glycosides. Above all, they are used to study the structure-activity relationships, substrate specificity of chitinases and chitosanases.^{1,2} Chitobioses are good substrates for the chitinolytic enzymes such as β-N-acetylglucosaminidases and lysozymes.^{3,4} In addition, these are also useful in the biological studies of chitin binding proteins such as lectins.^{5,6} homochitooligosaccharides Preparation of higher were achieved using N.N'diacetylchitobiose via transglycosylation methodology. Synthesis of hexa-N-acetylchitohexaose and hepta-N-acetylchitoheptaose from N,N'-diacetylchitobiose have been achieved through lysozyme catalysis in the presence of ammonium sulfate buffer. 7,8 Due to these biological importance, several methods have been reported for the synthesis of fully or partially N-acetylated chitobioses. These derivatives can be obtained by chemical, microbial or enzymatic degradation of chitin or chitosan. 10,11,12 Chemically, chitooligosaccharides can be obtained from depolymerization of chitin or chitosan polymers using acids such as HNO₂, ¹³ HF, ¹⁴ HCl, ¹⁵ sulfuric acid, ¹⁶ phosphoric acid, ¹⁷ and lactic acid. ¹⁸ These methods results in a mixture of chitooligosaccharides from dimers to chitooctamers. The homogeneity of the resulting chitooligosaccharide mixture makes characterization and purification of these mixtures very difficult to obtain pure form. 13,14 Substrate purity and sufficient quantities always matter for various biological studies. Only few methods are available in the literature to produce well defined structures of chitobiose derivatives either using chemical or enzymatic methods. They are documented below.

2.1.1 Enzymatic synthesis of fully and partially N-acetylated chitobioses

Kobayashi *et al.* reported a novel method to synthesize *N,N'*-diacetylchitobiose **3** *via* enzymatic glycosylation using oxazoline glycosyl donor **1** and *N*-acetylglucosamine **2**. ¹⁹ Here enzyme, chitinase from *bacillus sp.* is used for glycosylation reaction. Chitinase from *bacillus*

sp. has highly specific enzymatic activity at pH 7.8. This method involves the glycosidic bond formation which is highly stereo- and regioselective due to the high specificity of chitinase. Regioselective enzymatic glycosylation of the 4-hydroxy of N-acetyl glucosamine 2 with sugar oxazolinium intermediate 1 results the N,N-diacetylchitobiose 3 via β -glycosidic bond formation (Scheme 2.1).

Scheme 2.1: Synthesis of N,N-diacetylchitobiose 3 *via* enzymatic gloosylation using oxazoline 1 as a glycosyl donor.

Partially *N*-acetylchitobioses **4** and **5** were synthesized from *N*,*N*'-diacetylchitobiose by regioselective enzymatic mono-deacetylation. John *et al.* investigated the activity of NodB deacetylase for the deacetylation of *N*,*N*'-diacetylchitobiose **3** at the non-reducing end (Scheme 2.2). This enzyme is highly regioslective, deacetylates the *N*-acetyl group of the non-reducing end of the *N*,*N*'-diacetylchitobiose selectively. Chitin oligosaccharide deacetylase (COD) found in the species of *vibrio bacteria* is a class of enzyme that hydrolyses the amide bond at the reducing end of the chitooligosaccharides. Hirano *et al.* reported the preparation of GlcNAc- β -(1,4)-GlcN **5** from *N*,*N*'-diacetylchitobiose **3** using chitin deacetylase (Scheme 2.2).

Scheme 2.2: Synthesis of mono *N*-acetylchitobiose *via* enzymatic monodeacetylation.

Tokuyasu *et al.* described the methods for the preparation of monoacetylated chitobioses **4** and **5** using chitin deacetylases from *Colletotrichum lindemuthianum via* selective enzymatic deacetylation (Scheme 2.3).²²

Scheme 2.3: Preparation of mono *N*-acetylchitobiose (GlcN-GlcNAc) using chitin deacetylase.

Interestingly, the same group reported another chitin deacetylase for the enzymatic acetylation of chitobiose 6 for the preparation of GlcNAc-GlcN 5 (Scheme 2.4).²³

Scheme 2.4: Preparation of mono *N*-acetyl chitobiose (GlcNAc-GlcN) *via* enzymatic acetylation.

There are advantages and disadvantages associated with enzymatic methods in producing fully and partially *N*-acetylated chitobioses. Several protection-deprotection steps which are usually encountered in chemical synthesis are not required and the concern about anomeric configuration of non-reducing sugar is not required as the starting chitobiose is synthesized from naturally occurring chitin or chitosan.

Disadvantages of enzymatic reactions are the high cost of hydrolytic enzymes, controlling the rate of enzymatic reaction which is not easy. Also, limited scope of substrates accepted by enzymes and the associated difficulties in purification and characterization of the heterogeneous product mixture.

2.1.2 Chemical synthesis of fully and partially N-acetylated chitobioses

To avoid the problems associated with the enzymatic methods efficient chemical strategies are required to produce fully and partially *N*-acetylated chitobioses. These are chemical probes employed in the biological studies such as evaluating the substrate specificities of chitinases and chitosanases. Chemical methods are good for making good amount of pure products. Only a few chemical methods are available in the literature for the synthesis of chitobiose derivatives with defined *N*-acetylated pattern. They are discussed below.

Hansen and Skrydstrup reported the synthesis of β -(1,4)-linked chitobiose derivatives by exploiting the Crich's *O*-glycosylation conditions involving glycosyl triflate intermediate.

These disaccharide building blocks are useful in the synthesis of higher chitooligosaccharides. Selective activation of thioglycoside donor 7 using Crich's methodology followed by reaction with the 4-hydroxy free thioglycoside acceptors 8 and 9 separately result in the formation of protected disaccharides 10 and 11 respectively (Scheme 2.5).²⁴

BSP,
$$Tf_2O$$
, DTBMP

8, CH_2CI_2 , -78 °C

62%

AcO

NPhth

BSP, Tf_2O , DTBMP

9, CH_2CI_2 , -78 °C

ACO

NPhth

OBZ

10

BSP, Tf_2O , DTBMP

9, CH_2CI_2 , -78 °C

ACO

NPhth

OBZ

NHTroc

ACO

NPhth

OBZ

NHTroc

ACO

NPhth

OBZ

NHTroc

ACO

NPhth

OBZ

NHTroc

NPhth

OBZ

11

Scheme 2.5: Synthesis of fully protected chitobioses 10 and 11 via chemical glycosylation.

Cirillo *et al.* reported the synthesis of protected chitobiose derivative **14** by utilizing the N_3 containing trichloroacetimidate donor.²⁵ Generally, azide group acts as a masked amino group and plays a key role in the preparation of α -linked 2-amino glycosides. In some cases, it has been found that β -selectivity could also be attained with 2-azido glycosyl donor. Glycosylation of 4-hydroxy free sugar **13** with azide protected acetimidate donor **12** yielded the β -(1 \rightarrow 4)-linked chitobiose derivative **14** (Scheme 2.6).²⁵ These building blocks are employed in the preparation of well-defined hetero-chitotetroses.

PMBO
$$N_3$$
 N_4 N_5 N_6 N_6

Scheme 2.6: Preparation of chitobiose derivative 14 using trichloroacetimidate donor 12.

Schmidt and co-workers have reported the synthesis of fully protected chitobiose derivative 17. They found that dimethylmaleoyl group as a versatile amino protective group in the glucosamine containing oligosaccharide synthesis. Utilization of participating capability of N-DMM group leads to the stereoselective β -glycosidic linkage. N-DMM

protected trichloroacetimidate donor **15** was activated with catalytic TMSOTf to react with 4-hydroxy free glucosamine derivative **16** to obtain the fully protected chitobiose derivative **17** (Scheme 2.7). This is a versatile building block for the preparation of fully *N*-acetylated chitotetroses.

Scheme 2.7: Preparation of *N*-DMM protected chitobiose derivative **17**.

2.2 Results and discussion

With the intention to develop efficient strategy for the synthesis of chitooligosaccharides with well-defined acetylated pattern, we focused on the synthesis of chitobioses, i.e., 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranose and 2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy-D-glucopyranose as shown in Figure 2.1. These chitobioses can serve as useful substrates to characterize the chitinolytic enzymes (exo/endo) as well as study the structure and activity relationships. For the synthesis of mono N-acetylchitobioses, thioglycosides were used as glycosyl donor along with NIS/TfOH as activator. Phthalimide was used as the amine protecting group of the donor. The advantage of N-Phth is its ability to direct the acceptor to make β -glycosidic bond. Azide glycoside was used as acceptor. The advantage of azide is that it can be converted into NH₂/NHAc group whenever it is required.

Figure 2.1: Structural representation of mono *N*-acetylated chitobioses (**AD** and **DA**).

2.2.1 Synthesis of N-Phth protected glycosyl donor

Thioglycoside donor **20** was synthesized in three steps from commercially available glucosamine hydrochloride **18** (Scheme 2.8). Glucosamine hydrochloride **18** was converted into 2-phthalimido derivative **19** by first neutralizing the glucosamine hydrochloride with NaOMe and then treating the free amine with phthalic anhydride in methanol as solvent. *In situ* peracetylation of the resulting product with Ac₂O in the presence of pyridine resulted

1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido- α/β -D-glucopyranose 19 in 55% yield. Compound 19 was treated with p-thiocresol in the presence of BF₃·OEt₂ to get p-methylphenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside 20 in 77% yield as confirmed by NMR spectroscopy (Scheme 2.8).²⁹

Scheme 2.8: Preparation of *p*-methylphenyl 3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside **20**.

2.2.2 Synthesis of azido glycosyl acceptor

Glucosamine hydrochloride 18 was converted into azido glycoside by treating it with imidazole-1-sulfonyl azide hydrochloride in the presence of CuSO₄·5H₂O and base K₂CO₃ in methanol solvent. The resulting azido glycoside was peracetylated with Ac₂O in the presence of pyridine to obtain 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose 21 in 75% yield.³⁰ Compound 21 was treated with NH₄OAc in dry DMF to obtain anomeric unprotected sugar derivative 22, which on treatment with TBDMS-Cl and imidazole gave tertbutyldimethylsilyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-α/β-D-glucopyranoside 23. Compound 23 was deacetylated with NaOMe in MeOH and the resulting triol was treated with benzaldehyde dimetyl acetal in the presence of p-TsOH to yield the tert-butyldimethylsilyl 2azido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranoside **24** in 79% yield. Benzylidene derivative 24 was benzylated at the 3rd position with Ag₂O/BnBr reagent system in dry CH₂Cl₂ and the resulting product 25 was treated with TES and TFA to obtain tertbutyldimethylsilyl 2-azido-3,6-di-*O*-benzyl-2-deoxy-β-D-glucopyranoside 26 regioselectively in 78% yield (Scheme 2.9).31 This compound 26 was utilized as glycosyl acceptor in the preparation of partially N-acetylchtobioses (AD and DA).

Scheme 2.9: Preparation of *tert*-butyldimethylsilyl 2-azido-2-deoxy-3,6-di-*O*-benzyl-β-D-glucopyranoside **26**.

2.2.3 Synthesis of disaccharide building block

After successfully synthesizing the well-defined glycosyl donor **20** and 4-hydroxy free acceptor **26**, we focused on the synthesis of disaccharide building block **27**. This disaccharide derivative **27** was used in the preparation of mono *N*-acetylchitobiose derivatives **4** and **5**. Reaction glycosyl acceptor **26** with glycosyl donor **20** in the presence of NIS/TfOH activator system³⁰ yielded fully protected chitobioside **27** in 78% yield (Scheme 2.10). Stereoslective glycosidic linkage formation is due to the neighboring group participation and steric crowding effect exerted by the bulky *N*-Phth protecting group. ¹H NMR data confirms the formation of β -linked disaccharide (¹H NMR: δ 5.61, J = 8.4 Hz, 1H).

Scheme 2.10: Synthesis of fully protected chitobiose building block 27.

2.2.3.1 Synthesis of mono *N*-acetylchitobiose derivative (AD)

Synthesis of *N*-acetylchitobiose derevative **5** (**AD**) was achieved by following a sequence of steps as shown in the Scheme 2.11. It starts with the removal of *N*-Phth group in compound **27** by treatment with NH₂NH₂·H₂O in EtOH at 90 °C and the resulted amino

derivative was acetylated using Ac₂O/Py mixture (1:2) to get the *N*-acetyl derivative **28** in 87% yield. Desilylation of compound **28** was carried out using TBAF/AcOH in THF to provide the disaccharide derivative **29** in 84% yield. Finally *O*-deacetylation of compound **29** under Zemplén condition (NaOMe in MeOH) was performed. After completion of the reaction, the resulting mixture was neutralized with amberlite IR-120 resin. The filtrate was concentrated and the crude product was directly treated with H₂ under Pd/C conditions. Both reduction of azide and *O*-debenzylation occurred under the same condition (H₂, Pd/C) in one pot manner to give the *N*-acetylchitobiose **5** (**AD**) in 77% yield (Scheme 2.11).

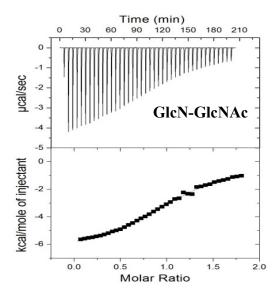
Scheme 2.11: Preparation of mono *N*-acetylchitobiose **5** (**AD**).

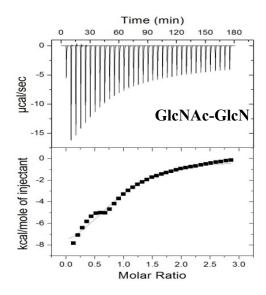
2.2.3.2 Synthesis of mono *N*-acetylchitobiose (DA)

N-Acetylchitobiose **4** (**DA**) was synthesized from disaccharide building block **27** by converting the azide function into N-acetyl followed by deprotection steps (Scheme 2.12). Reductive acetylation of azide in protected chitobioside **27** using thioacetic acid/Py reagent system gave the N-acetyl derivative **30** in 74% yield. Compound **30** was treated with TBAF/AcOH mixture to get the desilylated derivative **31** in 81% yield. To obtain the desired N-acetyl chitobiose **4** (DA), compound **31** was subjected to a sequence of deprotections as shown in Scheme 2.12. First O-deacetylation was carried out by NaOMe in MeOH. Then phthalimide was deprotected using NH₂NH₂·H₂O followed by debenzylation using H₂ under Pd/C in the same pot.

The mono *N*-acetylchitobioses (AD and DA) were characterized by NMR spectroscopy and MALDI-MS analysis. Synthesized partially *N*-acetylated chitobioses was used in the binding studies on chitosan binding protein *Pe*CBM32 using isothermal titration calorimetry (ITC). Also, these mono *N*-acetylchitobioses were utilized in the biological studies such as blood coagulation and inflammation in human endothelium (Chapter 3). These are also important

chemical probes to know the structure and biological activity relationships, substrate specificity and mechanism of function of chitinolytic enzymes (chitinases and chitosanases).


Scheme 2.12: Preparation of *N*-acetyl chitobioside derivative **33** (**DA**).


2.2.4. Biological activity profiles of mono N-acetylated chitobioses

Chitosanases which cleave chitosan have a single catalytic domain with no auxiliary domains, unlike chitinases and cellulases which are frequently associated with auxiliary domains in addition to carbohydrate binding modules (CBMs).³² CBMs play an important role in hydrolytic enzymes that mediate the recycling of carbon and nitrogen in the biosphere. The diversity of CBMs in terms of their sequence, specificity and mechanism of binding with ligand, offers an attractive model for studying CBM-carbohydrate interaction.³³ The mechanism of chitosan binding and degradation by chitosanases, in comparison to chitin and cellulose degradations, is not fully understood due to lack of well-defined chitosan substrates in terms of their degree of *N*-acetylation (DA) and pattern of acetylation (PA).³³

2.2.4.1 ITC binding studies of partially N-acetylated chitobioses with PeCBM32^{33,34}

To investigate the biological effects of the synthesized partially N-acetylated chitobioses, binding studies on chitosan binding protein PeCBM32 was carried out using isothermal titration calorimetry (ITC). The binding affinity (k_b) and stoichiometry (n) and other parameters (ΔH and ΔS) of PeCBM32 towards chitobiose derivatives were quantified by ITC (Figure 2.2). Thermodynamic parameters such as association constant (K_b), binding stoichiometry (n) and change in free energy (ΔG) were obtained by nonlinear least-squares fitting of experimental data using the *one set sites* binding model using ITC. Experimental data from ITC studies suggest that the difference in the binding affinity of different N-acetylated pattern of chitobioses with chitosan binding protein PeCBM32.

Figure 2.2: Upper panels show the raw ITC data obtained from successive automatic injections of the ligand from the syringe to the protein in the ITC cell. Lower panels show the integrated heats of binding obtained from raw data given in the upper panels together with binding isotherms to *one set sites* binding model. Results are shown for the binding of chitobiosides having different pattern of *N*-acetylation (GlcN-GlcNAc and GlcNAc-GlcN) to *Pe*CBM32. Titrations were performed at 25 °C and pH 5.6 using a MicroCal VP-ITC System (Microcal, Northampton, MA, USA).

2.2.4.2 Thermodynamic parameters (n, ΔH , ΔG and K_b) obtained from ITC³⁴

ITC data suggest the binding of partially N-acetylchitobioses on chitosan binding protein PeCBM32. It, further, suggests the 1:1 binding of chitobiose derivative on PeCBM32, i.e., binding stoichiometry (n) is one (Table 2.1). Binding constant (K_b) for the GlcN-GlcNAc (\mathbf{DA}) is greater (almost double) than that for the GlcNAc-GlcN (\mathbf{AD}) which indicates that \mathbf{DA} has stronger binding affinity than GlcNAc-GlcN (\mathbf{AD}) on PeCBM32 (Table 2.1). It is supported by free energy change (ΔG) shown in the table 2.1. In other words, the above data suggests that the chitobioses having different N-acetyl pattern have different binding efficiencies with the chitosan binding protein PeCBM32.

Ligand	N	$K_b \times 10^{-5}$ (M^1)	ΔG° (kcal.mol ⁻¹)	ΔH° (kcal.mol ⁻¹)	ΔS° (cal.mol ⁻¹ .K ¹)
GlcNAc-GlcN (AD)	1.13 (±0.32)	0.11 (±0.03)	-5.50	-8.58 (±1.68)	-10.33 (±5.76)
GlcNGlcNAc (DA)	1.01 (±0.10)	0.20 (±0.03)	-6.01	-7.53 (±0.51)	-5.75(±1.58)

Table 2.1: Thermodynamic parameters obtained from ITC.

2.3 Conclusions

We have developed efficient synthetic strategies for the preparation of mono N-acetylchitobioses (**AD** and **DA**) using thioglycosides as glycosyl donor. N-Phth group not only serves as amine protecting group, but also directs the formation of β -glycosides due to its bulky nature. To investigate the biological effects of the synthesized chitobioses, binding of them with chitosan binding module (PeCBM32) was studied. Biological data suggest that not only degree of N-acetylation but also the pattern of N-acetylation affects the binding of chitosan binding proteins.

2.4 Experimental section

2.4.1 General information

¹H and ¹³C spectra were recorded on a Bruker 400 MHz NMR spectrometer using CDCl₃ and D₂O as solvents with reference to tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in δ scale and coupling constants in Hz. All the reactions were carried out with freshly distilled solvents. Column chromatography was performed over silica gel (100-200 mesh) from Merck chemical company using ethyl acetate/hexanes and EtOH/CHCl₃ solvent mixtures as eluents. Organic extracts were dried over anhydrous Na₂SO₄. Solvents were removed under reduced pressure on a rotary evaporator. Thin Layer Chromatography was performed on commercial silica gel coated aluminum plates (Merck). The visualization of TLC plates was effected by 5% H₂SO₄ in methanol solution upon heating. Size-exclusion chromatography was carried out on Bio-Gel P-2 using water as eluent. MALDI-MS were recorded using 2,5-dihydroxybenzoic acid (DHB) as a matrix with a Bruker Reflex II mass spectrometer.

2.4.2 Experimental procedures, spectral data and analytical data

General procedure for synthesis of thioglycosides²⁹

Peracetylated sugar (1 equiv.) was dissolved in dry CH₂Cl₂ (5 mL/mmol). It was treated with BF₃·OEt₂ (1.4 equiv.) and then *p*-methyl thiophenol/thiophenol (1.5 equiv.) was added. The reaction mixture was stirred at room temperature for 22 h and diluted with CH₂Cl₂, washed with ice cold saturated NaHCO₃ solution. The organic extract was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulted residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to obtain required thioglycosides.

General procedure for *O*-deacetylation followed by benzylidine acetal protection³¹

Starting material (1 equiv.) was dissolved in dry methanol (5 mL/mmol) and treated with sodium methoxide (0.1 equiv.) at room temprature. After 1 h, the reaction mixture was neutralized with amberlite IR-120, filtered and evaporated to get sugar triol derivatives. The crude triol was used directly for next step. The crude triol was dissolved in dry CH₃CN (6 mL/mmol). Benzaldehyde dimethylacetal (5 equiv.) and *p*-TsOH (0.1 equiv.) were added to the reaction mixture. The reaction mixture was stirred for overnight and it was quenched with NEt₃ then concentrated. The residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to obtain benzylidene acetal derivatives.

General procedure for benzylation at 3rd position³¹

Benzylidine acetal (1 equiv.) was dissolved in dry CH₂Cl₂ (2 mL/mmol). Above solution was cooled to 0 °C, treated with Ag₂O (3 equiv.) or NaH (1.5 equiv.). After 10 min, BnBr (1.5 equiv.) was added to the reaction mixture stirred for overnight. Reaction mixture was filtered and concentrated under reduced pressure in case of Ag₂O. Excess NaH was quenched with CH₃OH and dried in vacuo. The residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to get the required products.

General procedure for regioselective benzylidine acetal opening³¹

Benzylidene acetal derivative (1 equiv.) was dissolved in CH₂Cl₂ (5 mL/mmol). To the above solution TEA (5 equiv.) was added at 0 °C. After 10 min, TFAA (3 equiv.) and TFA (5 equiv.) were added dropwise at 0 °C to the above reaction mixture. The reaction mixture was slowly warmed to room temperature and stirred for 3 h. After completion of the reaction, it was quenched with saturated NaHCO₃, extracted with dichloromethane. Organic extract was washed with brine solution, dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to get the 4-hydroxy free derivatives.

General procedure for deprotection of phthalimide protecting group followed by acetylation³⁵

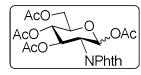
Hydrazine monohydrate or ethylenediamine (3 equiv.) was added to a stirred solution of the disaccharide (1 equiv.) in EtOH or *n*-BuOH (5 mL/mmol) at room temperature. The resultant reaction mixture was heated at 90 °C for overnight. After completion of the reaction, the solvent was removed by co-evaporation with toluene (3 times). The crude product was treated

with 2:1 pyridine-acetic anhydride (10 mL/mmol) and allowed to stir for overnight at room temperature. The residue was dissolved in EtOAc and washed with HCl (3%), water, saturated NaHCO₃ and water successively. The organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuo. The residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to get the required products.

General procedure for silyl ether deprotection³⁶

A stirred solution of silyl ether (28 and 30) (1 equiv.) in dry THF (5 mL/mmol) was treated with glacial acetic acid (1.2 equiv.) and TBAF (1equiv.) at 0 °C. After 1 h, the resultant mixture was diluted with aq. saturated NaCl and extracted with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by column chromatography (SiO₂, hexanes/EtOAc) to get required products (29 and 31).

General procedure for the reductive acetylation of azide³⁷

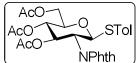

A solution of the compound (1 equiv.) in pyridine (5 mL/mmol) was treated with AcSH (2.5 mL/mmol) at room temperature under stirring. After overnight stirring, completion of the reaction was confirmed by TLC analysis and then the reaction mixture was co-evaporated with toluene (3 times). The crude product was purified by column chromatography (SiO₂, hexanes/EtOAc) to obtain the required derivatives.

General procedure for one pot deacetylation followed by debenzylation³⁸

A solution of 1 M NaOMe solution was added dropwise to a solution of compound (29 or 31) in dry MeOH (5 mL/mmol) with stirring. After completion of the reaction as confirmed by TLC, it was neutralized with Amberlite IR 120 (H⁺) then filtered and concentrated under vacuo. The crude product was dissolved in 2:1 EtOH-water and 10% Pd/C (25 mg) and 3 drops of AcOH was added under stirring. After 24 h, the resulting mixture was filtered through celite and concentrated under vacuo. The residue was purified by gel filtration on biogel P-2 column and then lyophilized to get the 5 and for 4 NH₂NH₂·H₂O treatment also involves as a mixture of α:β anomers.

Preparation of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-α/β-D-glucopyranose 19²⁹

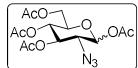
The compound **19** was prepared from glucosamine hydrochloride **18** (12.4 g, 57.3 mmol) by following the literature procedure.²⁹ Gummy liquid, yield = 15.1 g (55%), $R_f = 0.56$ in 1:1 EtOAc/hexanes:



¹H NMR (400 MHz, CDCl₃): δ 7.90-7.84 (m, 2H), 7.79-7.74 (m, 2H), 6.52 (d, J = 8.8 Hz,

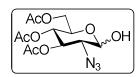
1H), 5.90 (m, 1H), 5.22 (dd, J = 10.2, 9.2 Hz, 1H), 4.51-4.45 (m, 1H), 4.38 (dd, J = 12.5, 4.5. Hz, 1H), 4.15 (dd, J = 12.3, 2.0 Hz, 1H), 4.07-4.01 (m, 1H), 2.12 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.87 (s, 3H, OAc). ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 170.1, 169.6, 168.7, 167.4, 134.5, 133.1, 132.0, 131.1, 130.9, 130.2, 129.8, 128.7, 123.8, 90.6, 89.7, 72.6, 70.5, 70.5, 70.1, 68.2, 61.5, 53.4, 52.8, 20.8, 20.6, 20.4.

Preparation of p-methylphenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside 20^{29}


The compound **20** was prepared from **19** (10 g, 21.1 mmol) by following the literature procedure.²⁹ Colourless foam; Yield = 8.8 g (77%); $R_f = 0.60$ in 1:2 EtOAc/hexanes; ¹H NMR (400 MHz,

CDCl₃): δ 7.89-7.86 (m, 2H), 7.77-7.76 (m, 2H), 7.30 (d, J = 7.6 Hz, 2H), 7.07 (d, J = 7.6 Hz, 2H), 5.78 (t, J = 10.4 Hz, 1H), 5.68 (d, J = 10.4 Hz, 1H), 5.13 (t, J = 9.2 Hz, 1H), 4.36-4.29 (m, 3H), 3.88 (br s, 1H), 2.32 (s, 3H), 2.11 (s, 3H), 2.02 (s, 3H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 169.9, 169.3, 167.7, 166.9, 138.6, 134.4, 133.8, 131.5, 129.5, 126.9, 123.6, 83.0, 77.3, 77.0, 76.7, 75.7, 71.6, 68.6, 62.1, 53.5, 21.1, 20.7, 20.5, 20.3.

Preparation of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α/β-D-glucopyranoside 21³⁰


The compound **21** was prepared from glucosamine hydrochloride **18** (9.3 g, 43.2 mmol)) by following the literature procedure.³⁰ Gummy liquid; Yield = 12 g (75%); $R_f = 0.62$ in 1:1

EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 5.55 (d, J = 8.6 Hz, 1H), 5.13-5.01 (m, 2H), 4.31 (dd, J = 12.8, 4.4 Hz, 1H), 4.15-4.04 (m, 2H), 3.83-3.80 (m, 1H), 3.69-3.65 (m, 1H), 2.2 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 170.0, 169.8, 168.6, 92.5, 89.9, 77.4, 77.1, 76.7, 72.7, 72.6, 70 .7, 69.7, 67.8, 67.7, 62.5, 61.4, 60.3, 20.9, 20.7, 20.6, 20.5.

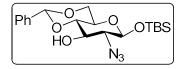
Preparation of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-α/β-D-glucopyranoside 22³¹

The compound **22** was prepared from **21** (5 g, 13.4 mmol) by following the literature procedure.³¹ Gummy yellow liquid; Yield = 3.02 g (68%); $R_f = 0.41 \text{ in } 1:1 \text{ EtOAc/hexanes;}$ ¹H NMR (400 MHz,

CDCl₃): δ 5.53 (t, J = 9.7 Hz, 1H), 5.40 (s, 1H), 5.08-5.01 (m, 2H), 4.74 (d, J = 8.0 Hz, 1.6H), 4.31-4.10 (m, 5H), 3.74 (s, 0.5H), 3.52-3.48 (m, 0.6H), 3.41 (dd, J = 10.5, 2.1 Hz,

1H), 2.42 (br s, 1H), 2.10 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.2, 169.8, 169.7, 96.0, 91.8, 72.5, 71.6, 70.4, 68.5, 68.3, 67.2, 64.7, 61.9, 61.3, 20.6, 20.5.

Preparation tert-butyldimethylsilyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido-α/β-Dof glucopyranoside 23³¹

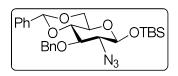

The compound 23 was prepared from 22 (3 g, 9.11 mmol) by following the literature procedure.³¹ Colourless solid; Yield = 3.3 g (82%); $R_f = 0.75$ in 1:2 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 5.84 (d, J = 3.8 Hz, 0.3H), 5.39 (d, J = 4.4 Hz, 0.4H) 5.29-5.18 (m, 2H), 5.04 (s, 0.7H), 4.86 (dd, J = 7.6, 2.6 Hz, 2H), 4.53 (d, J = 7.6 Hz, 1H), 4.16 (d, J = 6.2 Hz, 0.8H), 4.11-3.99 (m, 4H), 3.59-3.55 (m, 1H), 3.33 (dt, J = 7.5, 2.7 Hz, 1H), 1.99-1.97 (m, 13H), 0.84(s, 12H), 0.07 (s, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.5, 170.3, 169.9, 169.6,

2-azido-4,6-O-benzylidene-2-deoxy-β-D-**Preparation** of tert-butyldimethylsilyl glucopyranoside 24³¹

140.1, 109.7, 107.3, 97.1, 89.2, 88.9, 72.2, 71.8, 68.8, 67.1, 65.9, 65.8, 62.9, 62.3, 25.6, 25.5,

The compound 24 was prepared from 23 (3 g, 6.79 mmol) by following the literature procedure.³¹ Light yellow liquid; Yield = 2.2 g (79%); $R_f = 0.52$ in 1:3 EtOAc/hexanes; ¹H NMR

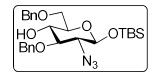
20.9, 20.7, 20.6, 20.5, 17.9, -4.5, -5.3.



OTBS,

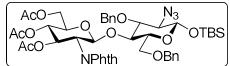
 $(400 \text{ MHz}, \text{CDCl}_3)$: δ 7.48-7.37 (m, 5H), 5.53 (s, 1H), 4.64 (d, J = 7.5 Hz, 1H), 4.29 (dd, J =10.6, 4.8 Hz, 1H), 3.78 (t, J = 10.2 Hz, 1H), 3.64-3.54 (m, 2H), 3.41-3.31 (m, 2H), 2.70 (s, 1H), 0.94 (s, 9H), 0.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 129.5, 128.4, 128.2, 126.7, 126.3, 103.1, 101.9, 97.5, 80.7, 71.7, 68.9, 68.5, 66.3, 52.7, 25.3, 17.9, -4.4, -5.2.

Preparation of tert-butyldimethylsilyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-B-**D-glucopyranoside** 25³¹


The compound 25 was prepared from 24 (2.0 g, 4.87 mmol) by following the literature procedure.³¹ Colourless solid; Yield = 2.1 g (83%); $R_f = 0.72$ in 1:5 EtOAc/hexanes; ¹H NMR (400

MHz, CDCl₃): δ 7.38-7.27 (m, 10H), 5.59 (s, 1H), 4.92 (d, J = 11.8 Hz, 1H), 4.80 (d, 11.4) Hz, 1H), 4.60-4.58 (m, 2H), 3.81 (t, J = 10.1 Hz, 1H), 3.73 (t, J = 9.4 Hz, 1H), 3.53 (t, J = 9.4Hz, 1H), 3.40-3.36 (m, 2H), 0.95 (s, 9H), 0.17 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 138.2, 137.9, 137.2, 129.0, 128.4, 128.3, 128.2, 128.1, 127.8, 127.6, 126.0, 101.3, 97.5, 81.6, 78.8, 74.8, 72.1, 69.7, 68.7, 68.6, 66.3, 25.5, 17.9, -4.4, -5.2.

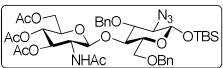
Preparation of *tert*-butyldimethylsilyl 2-azido-3,6-di-*O*-benzyl-2-deoxy-β-D-glucopyranoside 26³¹


The compound **26** was prepared from **25** (2.0 g, 4.04 mmol) by following the literature procedure.³¹ Oily liquid; Yield = 1.57 g (78%); $R_f = 0.63$ in 1:2 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃):

δ 7.38-7.30 (m, 10H), 4.91 (d, J = 11.4 Hz, 1H), 4.76 (d, J = 11.3 Hz, 1H), 4.56 (d, J = 3.7 Hz, 2H), 4.52 (d, J = 7.7 Hz, 1H) 3.70 (d, J = 4.6 Hz, 2H), 3.63 (t, J = 8.9 Hz, 1H), 3.42-3.38 (m, 1H), 3.33-3.29 (m, 1H), 3.23-3.18 (m, 1H) 2.65 (br s, 1H), 0.94 (s, 9H), 0.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 137.7, 128.6, 128.4, 128.0, 127.9, 127.7, 97.2, 82.3, 74.9, 73.9, 73.6, 71.9, 70.3, 68.1, 25.6, 17.9, -4.3, -5.2.

Preparation of *tert*-butyldimethylsilyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1 \rightarrow 4)-2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 27

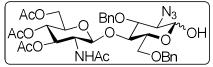
Glycosyl donor 20 (1.57 g, 2.91 mmol) and glycosyl acceptor 26 (1.24 g, 2.48 mmol) were dissolved in dry CH₂Cl₂ (15 mL) and dried over 4 Å



molecular sieves at room temperature for an hour. The suspension was cooled to -30 °C and treated with NIS (1.1 g, 4.96 mmol) under N₂ atmosphere, and TfOH (11 μ L, 0.124 mmol) was added slowly dropwise. After completion of reaction, the reaction mixture was quenched with saturated Na₂S₂O₃ solution and was extracted with dichloromethane. Organic layer was washed with saturated brine solution dried over anhydrous Na₂SO₄, filtered and then the solvent was evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc) which gave the pure disaccharide **27** as colourless foam. Yield = 1.77 g (78%); R_f = 0.52 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.71 (dd, J = 5.4, 3.1 Hz, 2H), 7.45-7.37 (m, 4H), 7.32-7.23 (m, 6H), 5.73 (dd, J = 10.6, 9.1 Hz, 1H), 5.61 (d, J = 8.4 Hz, 1H), 5.12 (t, J = 10.0 Hz, 1H), 4.96 (d, J = 11.6 Hz, 1H) 4.85 (d, J = 11.6 Hz, 1H), 4.43-4.34 (m, 3H), 4.26 (dd, J = 10.7, 8.4 Hz, 1H), 4.10-4.03 (m, 2H), 3.85 (dd, J = 12.4, 2.0 Hz, 1H), 3.45-3.40 (m, 3H), 3.31-3.28 (m, 2H), 3.19-3.17 (m, 1H), 1.99 (s, 6H), 1.83 (s, 3H), 0.88 (s, 9H), 0.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.1, 169.4, 138.6, 138.1, 134.3, 131.3, 128.3, 128.2, 127.4, 127.2, 123.6, 97.2, 97.0, 80.9, 75.1, 74.4, 74.3, 72.7, 71.6, 70.6, 68.5, 68.3, 67.7, 61.5, 55.2, 25.5, 20.7, 20.6, 20.4,

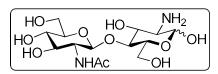
17.9, -4.4, -5.3. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{46}H_{56}N_4O_{14}Si$ 939.3460, found 939.3461.

Preparation of *tert*-butyldimethylsilyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 28


The compound **28** was prepared from disaccharide **27** (0.89 g, 0.97 mmol) using general procedure for deprotection of phthalimide protecting group followed

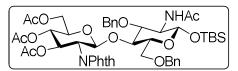
by acetylation. Colourless solid; Yield = 0.7 g (87%); $R_f = 0.42$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.23 (m, 10H), 5.01-4.82 (m, 4H), 4.84 (d, J = 12.0 Hz, 1H), 4.71 (d, J = 11.4 Hz, 1H), 4.53 (d, J = 8.5 Hz, 1H), 4.46-4.41 (m, 2H), 4.09 (dd, J = 12.3, 4.5 Hz, 1H), 3.95-3.85 (m, 3H), 3.65 (dd, J = 11.1, 2.8 Hz, 1H), 3.57 (dd, J = 10.9, 1.3 Hz, 1H), 3.46-3.43 (m, 1H), 3.33-3.30 (m, 3H), 2.00 (s, 6H), 1.95 (s, 3H), 1.74 (s, 3H), 0.93 (s, 9H), 0.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 170.6, 169.8, 169.3, 138.7, 137.6, 128.8, 128.7, 128.6, 128.1, 127.4, 127.3, 100.6, 97.0, 80.7, 74.8, 74.3, 73.9, 72.9, 71.5, 68.4, 68.3, 67.9, 61.8, 54.4, 25.5, 23.1, 20.6, 17.9, -4.4, -5.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₄₀H₅₆N₄O₁₃Si 851.3511, found 851.3515.

Preparation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 29


The azido derivative **29** was prepared from compound **28** (0.5 g, 0.6 mmol) using general procedure for silyl ether deprotection. Yellow liquid; Yield = 0.36 g (84%);

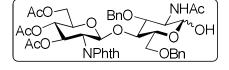
 $R_f = 0.75$ in 1:20 EtOH/CHCl₃; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.22 (m, 10H), 5.27 (d, J = 2.1 Hz, 1H), 5.11 (d, J = 11.3 Hz, 1H), 5.03-4.94 (m, 2H), 4.87-4.82 (m, 2H) 4.75 (d, J = 9.4 Hz, 1H), 4.71-4.66 (m, 1H), 4.39-4.35 (m, 1H), 4.12-4.08 (m, 1H), 3.96-3.86 (m, 4H), 3.60 (t, J = 10.9 Hz, 1H), 3.49-3.42 (m, 2H), 3.40-3.33 (m, 1H), 2.02 (s, 3H), 1.99 (s, 3H), 1.92 (s, 3H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 170.7, 170.2, 169.3, 138.6, 138.4, 137.4, 129.1, 129.0, 128.9, 128.4, 128.1, 127.4, 100.6, 96.0, 91.8, 80.9, 77.8, 74.9, 74.1, 73.7, 72.6, 71.4, 69.7, 68.4, 68.2, 67.4, 67.1, 63.5, 61.8, 54.3, 23.0, 20.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₄H₄₂N₄O₁₃Si 737.2646, found 737.2645.

Preparation of 2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy-D-glucopyranose 5^{22}


The mono N-acetylchitobiose **5** was prepared from compound **29** (40 mg, 0.056 mmol) by general procedure for one pot deacetylation followed by debenzylation.

Colourless amorphous solid; Yield = 15 mg (77%); 1 H NMR (400 MHz, D₂O): δ 5.07 (s, 0.5H), 4.83 (d, J = 4.1 Hz, 0.6H), 4.59 (dd, J = 2.0, 8.3 Hz, 1.4H), 3.83-3.34 (m, 18H), 1.93 (s, 4H). MALDI-MS (positive mode, DHB/MeOH matrix); [M+Na] $^{+}$ (m/z) 405.49.

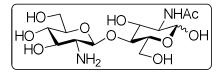
Preparation of *tert*-butyldimethylsilyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 30


The compound **30** was prepared from disaccharide **27** (0.50 g, 0.54 mmol) using general procedure for the reductive acetylation of azide. Light yellow solid; Yield

= 0.37 g (74%); R_f = 0.42 in 10:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 5.1, 3.2 Hz, 2H), 7.75 (dd, J = 5.3, 2.9 Hz, 2H), 7.37-7.29 (m, 10H), 5.82 (t, J = 9.9 Hz, 1H), 5.58-5.52 (m, 2H), 5.15 (t, J = 9.8 Hz, 1H), 4.90-4.87 (m, 2H), 4.66 (d, J = 12.0 Hz, 1H), 4.48 (q, J = 12.1 Hz, 2H), 4.32 (dd, J = 10.5, 8.4 Hz, 1H), 4.20 (dd, J = 12.3, 4.1 Hz, 1H), 3.99-3.93 (m, 2H), 3.58-3.53 (m, 2H), 3.45-3.34 (m, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.87 (s, 3H), 1.84 (s, 3H), 0.82 (s, 9H), 0.02 (s, 3H), -0.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.1, 169.9, 169.5, 138.8, 138.3, 134.4, 131.3, 128.3, 128.2, 127.7, 127.4, 123.6, 96.9, 94.6, 77.7, 75.2, 74.0, 73.2, 72.7, 71.6, 70.5, 68.7, 68.4, 61.6, 57.7, 55.5, 25.5, 23.4, 20.7, 20.6, 20.4, 17.8, -4.5, -5.5. HRMS-ESI (m/z): [M+H]⁺ calcd for C₄₈H₆₀N₂O₁₅Si 933.3841, found 933.3835.

Preparation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 31

The compound **31** was prepared from compound **30** (200 mg, 0.21 mmol) by general procedure for silyl ether deprotection. Yellow liquid; Yield = 139 mg (81%); R_f =



0.72 in 1:20 EtOH/CHCl₃; ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.75 (m, 1H), 7.56-7.47 (m, 3H), 7.33-7.25 (m, 10H), 5.93 (d, J = 11.6 Hz, 1H), 5.33 (d, J = 8.3 Hz, 1H), 5.15-5.05 (m, 2H), 4.91-4.81 (m, 1H), 4.69-4.38 (m, 4H), 4.17-3.85 (m, 5H), 3.75 (d, J = 10.3 Hz, 1H) 3.59-3.32 (m, 3H), 2.04-1.94 (m, 9H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.5, 170.2, 168.1, 167.3, 143.9, 138.7, 132.8, 129.8, 128.4, 128.3, 128.2, 127.8, 127.6,

123.6, 123.3, 97.5, 91.0, 72.5, 71.2, 70.3, 69.8, 68.9, 68.6, 61.6, 61.1, 60.4, 52.3, 23.1, 20.6, 20.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₄₂H₄₆N₂O₁₅ 841.2796, found 841.2790.

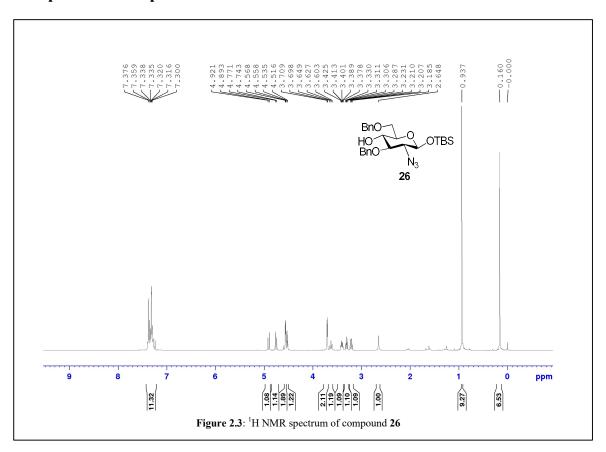
Preparation of 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranose 4^{23}

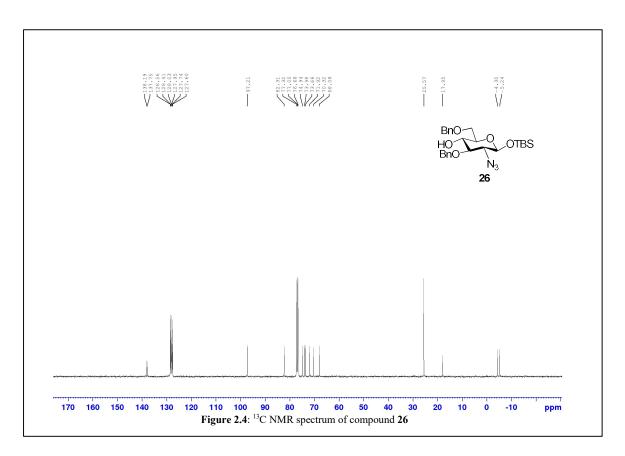
The compound **4** was prepared from compound **31** (48 mg, 0.057 mmol) using general procedure for deprotection of phthalimide and followed by one pot deacetylation and debenyylation. Colourless solid: Vield = 17 mg (75%): ¹H J

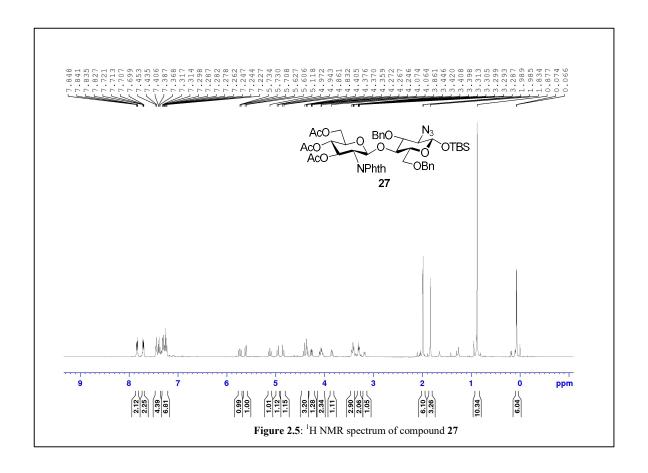
debenzylation. Colourless solid; Yield = 17 mg (75%); 1 H NMR (400 MHz, D₂O): δ 5.11 (s, 1H), 4.50-4.39 (m, 0.5H), 4.03-3.31 (m, 16H), 2.76-2.43 (m, 2H), 1.96 (s, 4H). MALDI-MS (positive mode, DHB/MeOH matrix); [M+Na]⁺ (m/z) 405.73.

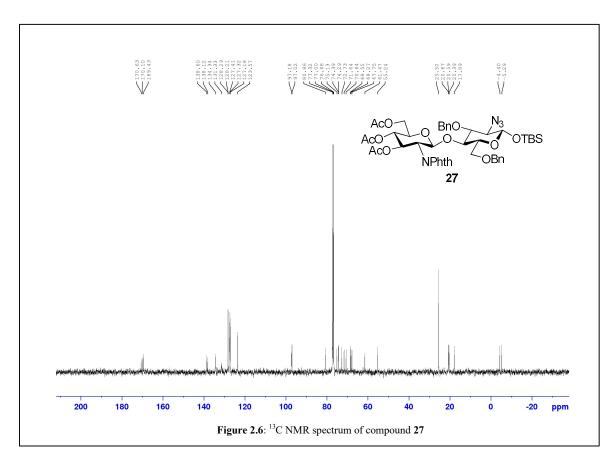
2.4.3 Isothermal titration calorimetry (ITC)³³

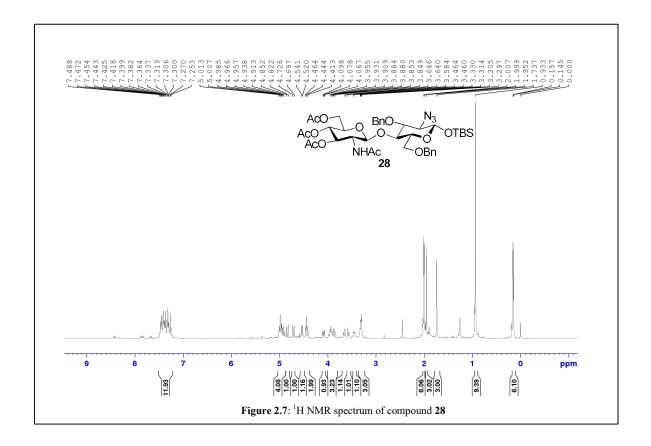
The binding affinity and stoichiometry of PeCBM32 with respect to the chitobioses were quantified by ITC. Titrations were performed on a VP-ITC isothermal titration calorimeter from MicroCal (Northampton, MA, USA). All purified proteins used in ITC measurements were dialysed extensively in a surplus of 50 mM sodium acetate buffer (pH 5.6). The buffer from the final dialysate was filtered through a 4 μ M filter and used to dissolve ligands and also for titrations at 25 °C. PeCBM32 and chitosan disaccharide solutions were degassed under vacuum. The reaction cell contained PeCBM32 at 80-340 μ M and the syringe contained the chitobioside derivatives at a concentration of 2-15 mM. A constant stirring speed of 300 rpm was maintained. The data were analyzed using MicroCal Origin ITC software. Thermodynamic parameters such as change in enthalpy (ΔH), association constant (K_b) and binding stoichiometry (n) were obtained by nonlinear least-squares fitting of experimental data using the *one set sites* binding model in the MicroCal Origin software provided by the ITC manufacturer.

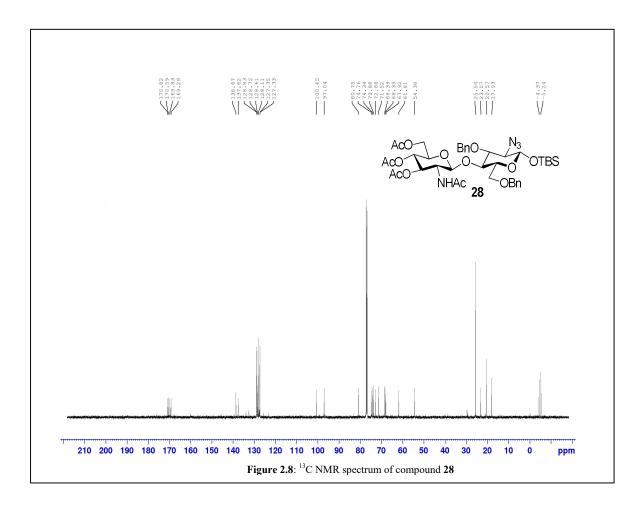

2.5 References

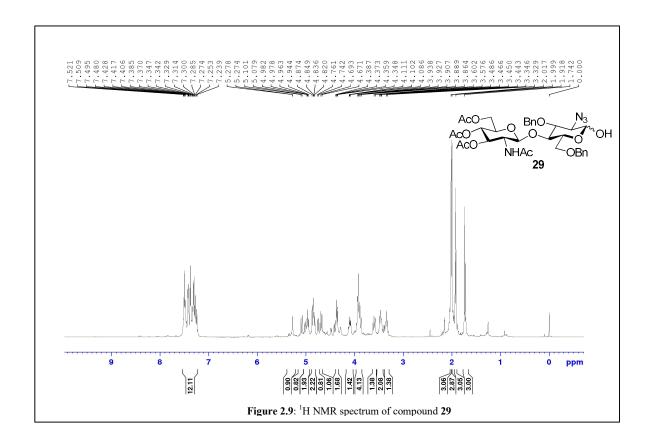

- 1. Mitsutomi, M.; Ohtakara, A.; Fukamizo, T.; Goto, S. Agric. Biol. Chem. 1990, 54, 871.
- 2. Honda, Y.; Tanimori, S.; Kirihata, M.; Kaneko, S.; Tokuyasu, K.; Hashimoto, M.; Watanabe, T.; Fukamizo, T. *FEBS Lett.* **2000**, *476*, 194.
- 3. Nordtveit, R. J.; Vårum, K. M.; Smidsrod, O. Carbohydr. Polym. 1996, 29, 163.

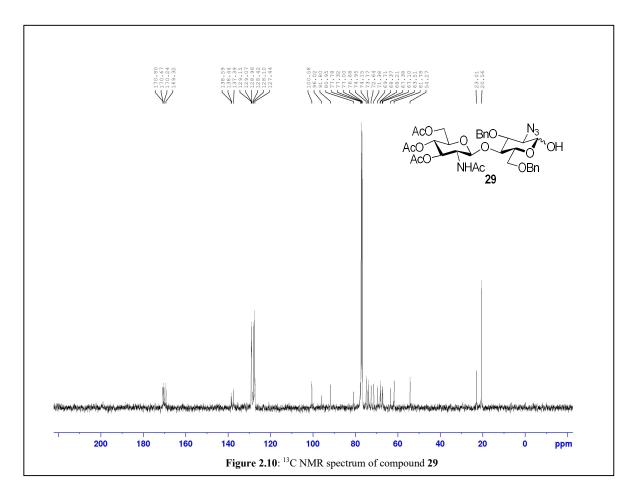

- 4. Kristiansen, A.; Vårum, K. M.; Grasdalen, H. Biochim. Biophys. Acta 1998, 1425, 137.
- 5. Bains, G.; Lee, R. T.; Lee, Y. C.; Freire, E. Biochemistry 1992, 31, 12624.
- 6. Kochibe, N.; Matta, K. L. J. Biol. Chem. 1989, 264, 173.
- 7. Usui, T.; Matsui, H.; Isobe, K. Carbohydr. Res. 1990, 203, 65.
- 8. Singh, S.; Gallagher, R.; Derrick, P. J.; Crout, D. H. G. *Tetrahedron: Asymmetry* **1995**, *6*, 2803.
- 9. Aam, B. B.; Heggset, E. B.; Norberg, A. L.; Sørlie, M.; Varum, K. M.; Eijsink, V. G. H. *Mar. Drugs.* **2010**, *8*, 1482.
- 10. Mourya, V. K.; Inamdar, M. N.; Choudhari, Y. M. Polym. Sci., Ser. A 2011, 53, 583.
- 11. Kim, S. K.; Rajapakse, N. Carbohydr. Polym. 2005, 62, 357.
- 12. Jeon, Y. J.; Shahidi, F.; Kim, S. K. Food Rev. Int. 2000, 16, 159.
- 13. Sashiwa, H.; Saimoto, H.; Shigemasa, Y.; Tokura, S. Carbohydr. Res. 1993, 242, 167.
- 14. Defaye, J.; Gadelle, A.; Pedersen, C. Carbohydr. Res. 1994, 261, 267.
- 15. Rupley, J. A. Biochim. Biophys. Acta 1964, 83, 245.
- 16. Nagasawa, K.; Tohira, Y.; Inoue, Y.; Tanoura, N. Carbohydr. Res. 1971, 18, 95.
- 17. Hasegawa, M.; Isogai, A.; Onabe, F. Carbohydr. Polym. 1993, 20, 279.
- 18. Ilina, A. V.; Varlamov, V. P. Appl. Biochem. Microbiol. 2004, 40, 300.
- 19. Kobayashi, S.; Kiyosada, T.; Shoda, S. Tetrahedron Lett. 1997, 38, 2111.
- 20. John, M.; Rdhrig, H.; Schmidt, J.; Wieneke, U.; Schell, J. *Proc. Natl. Acad. Sci.* **1993**, *90*, 625.
- 21. Hirano, T.; Uehara, R.; Shiraishi, H.; Hakamata, W.; Nishio, H. *J. Appl. Glycosci.* **2015**, 62, 153.
- 22. Tokuyasu, K.; Ono, H.; Ohnishi-Kameyama, M.; Hayashi, K.; Mori, Y. *Carbohydr. Res.* **1997**, *303*, 353.

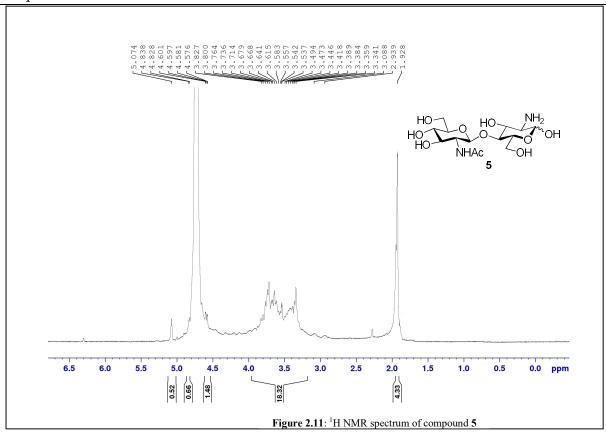

- 23. Tokuyasu, K.; Ono, H.; Hayashi, K.; Mori, Y. Carbohydr. Res. 1999, 322, 26.
- 24. Hansen, S. G.; Skrydstrup, T. Eur. J. Org. Chem. 2007, 3392.
- 25. Cirillo, L.; Bedini, E.; Molinaro, A.; Parrilli, M. Tetrahedron Lett. 2010, 51, 1117.
- Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E. S. I.; El-Ashry, E. S. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 2305.
- 27. Sato, S.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29, 5267.
- 28. Fuente, J. M.; Penade's, S. Tetrahedron: Asymmetry 2002, 13, 1879.
- 29. Zhang, Z.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H. *J. Am. Chem. Soc.* **1999**, *121*, 734.
- 30. Goddard-Borger, E. D.; Stick, R. V. Org. Lett. 2007, 9, 3797.
- 31. Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R. E. J. N.; Palmacci, E. R.; Seeberger, P. H. *Chem. Eur. J.* **2003**, *9*, 140.
- 32. Boraston, A. B.; Bolam, D. N; Gilbert, H. J.; Davies, G. J. Biochem. J. 2004, 382, 769.
- 33. Das, S. N.; Podile, A. R. Ph.D designation, University of Hyderabad, School of Life Sciences, 2016.
- 34. Das, S. N.; Wagenknecht, M.; Nareddy, P. K.; Bhuvanachandra, B.; Niddana, R.; Balamurugan, R.; Swamy, M. J.; Moerschbacher, B. M; Podile, A. R. *J. Biol. Chem.* **2016**, DOI 10.1074/jbc.M116.727750.
- 35. Bowers, S. G.; Coe, D. M.; Boons, G. J. J. Org. Chem. 1998, 63, 4570.
- 36. Ogilvie, K. K.; Thompson, E. A.; Quilliam, M. A.; Westmore, J. B. *Tetrahedron Lett.* 1974, 2865.
- 37. Ren, B.; Wang, M.; Liu, J.; Ge, J.; Zhang, X.; Dong, H. Green Chem. 2015, 17, 1390.
- 38. Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53, 1580.


2.6 Representative spectra









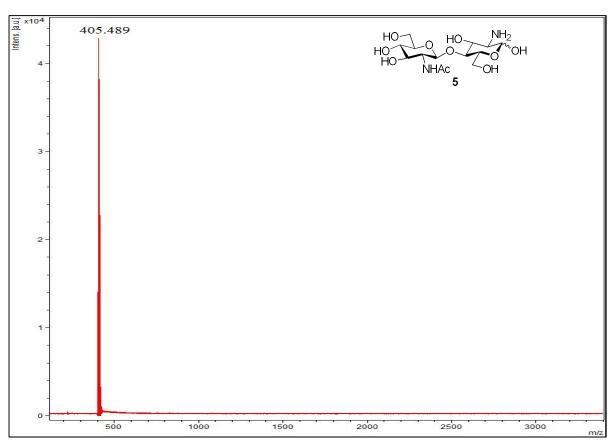
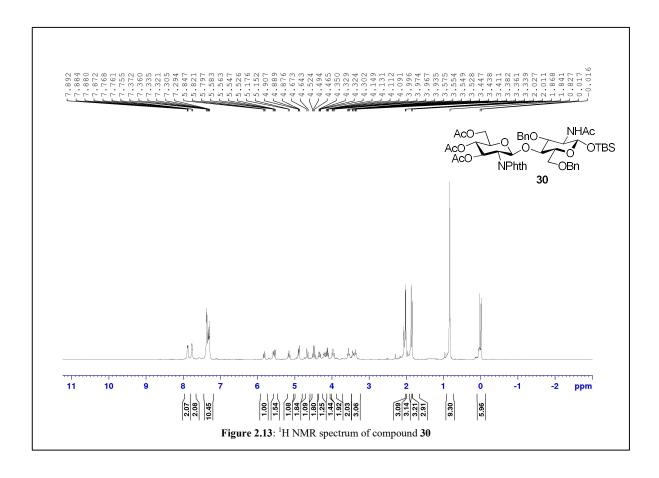
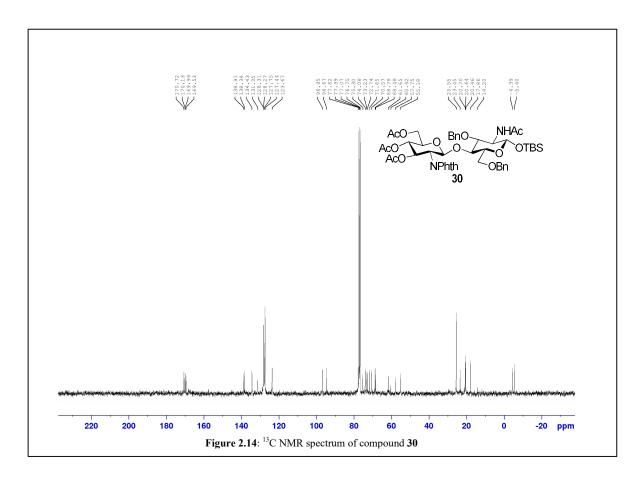
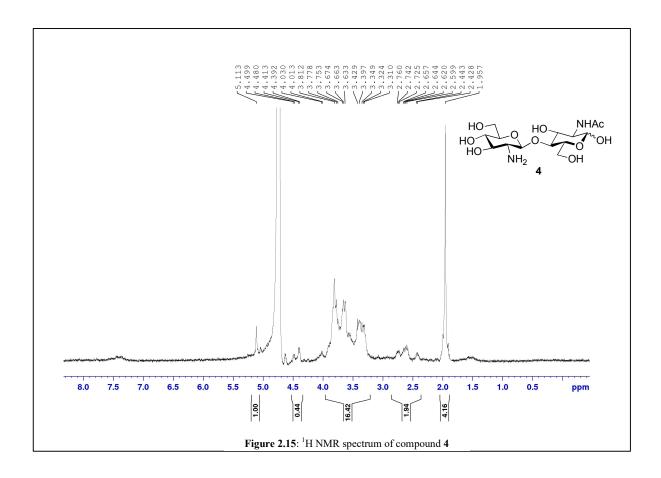





Figure 2.12: MALDI-MS spectrum of compound 5

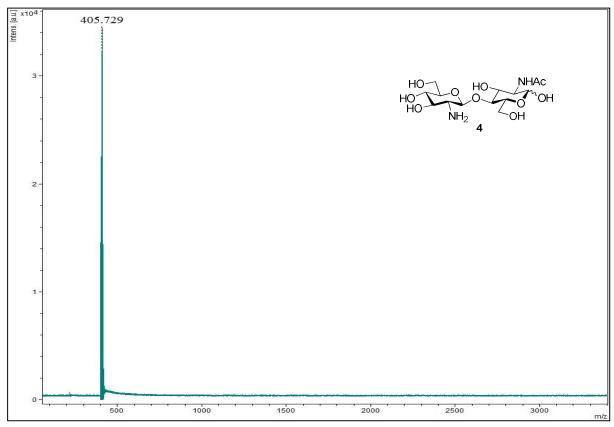


Figure 2.16: MALDI-MS spectrum of compound 4

Chapter 3

Synthesis of partially N-acetylated chitotrioses and their biological effects on human endothelial cells

3.1 Introduction

Polycationic nature of chitosan makes it useful in a range of potential applications in medicine as a hemostatic agent^{1,2} in tissue engineering³ and drug delivery.^{4,5} Several research groups have been working in the context of coagulation by utilizing the hemostatic properties of chitosan.² Chitosan has been suggested as a therapeutic agent to treat bleeding disorders, due to its haemostatic properties.^{6,7} Blood coagulation is a process coordinated by contact activation on material surface, involving activation of a series of coagulatory factors. This results in thrombin generation followed by fibrin formation as well as EC and platelet activation at the site of injury.^{8,9} Quite some amount work has been done on the effect of chitosan and its oligosaccharides on haemostasis. Various in vitro studies have been performed to understand the molecular effect of chitosan and its derivatives on haemostasis. 10,11 It was reported that platelets and leukocytes become activated via surface adsorption interactions of plasma and extracellular matrix proteins such as von Willebrand factor (vWF), fibrinogen, fibronectin, and collagen with the chitosan oligosaccharides. 12 This adsorption interactions mainly depends on the degree of hydrophobicity and the presence of positive charges on the biomaterial surface. This in turn influences the activation and adsorption of platelets as well as adsorption of proteins and leukocytes. 13,14

Moerschbacher and co-workers studied plant elicitor activities of chitooligosaccharides in white leaves. They found that partially *N*-acetylated chitooligosaccharides show strong effects than homooligomers of *N*-acetyl glucosamine and glucosamine.¹⁵ Akiyama and co-workers studied (+)-pisatin-inducing activities of oligomers of chitosan fully and partially *N*-acetyl chitooligosaccharides in pea epicotyl elicitor assay.¹⁶ These studies clearly show that the partially *N*-acetyl chitooligosaccharide pentamer and hexamer shows strong elicitor activities than the other chitosan oligomers. Chitooligosaccharides have been used as probes in the biological studies on chitin binding lectins.¹⁷ Furthermore, fully and partially *N*-acetylated chitooligosaccharides are useful substrates for the examination of the substrate

specificities and mechanism of action of chitinase, chitosanases and lysozymes.^{18,19} These substrates have also been utilized in the preparation of higher chitooligosaccharides using lysozymes by transglycosylation strategy.¹⁶ Chitooligosaccharides show significantly strong antimicrobial effect against bacteria and fungi than that of chitosan. Biological activities of chitooligosaccharides increase with increase of degree of deacetylation (DD), but decrease with increase of degree of polymerization (DP).

Singh *et al.* reported the synthesis of *N*-acetyl chitooligosaccharides using glycosidases. Production of *N*-acetyl chitooligosaccharides from N,N',N''-triacetylchitotriose (GlcNAc)₃ **1** was achieved using β -*N*-acetylhexosaminidase from Aspergillus oryzae (Scheme 3.1).²⁰

$$(GlcNAc)_3 \xrightarrow{\beta-N-Acetylhexosaminidase} from A. oryzae \xrightarrow{\qquad GlcNAc} GlcNAc)_4 (GlcNAc)_2 (GlcNAc)_3$$

$$(GlcNAc)_4 (GlcNAc)_5 (GlcNAc)_6$$

Scheme 3.1: Production of *N*-acetyl chitooligosaccharides from chitotriose **1** using β -*N*-acetylhexosaminidase.

Akiyama *et al.* developed a method for the synthesis of higher chitooligosaccharides *via* chemo-enzymatic transglycosylation strategy. This method involves the synthesis of homoand heterochitooligosaccharides using lysozyme-catalyzed transglycosylation of N,N',N''-triacetylchitotriose **1** and N,N',N''-tri(monochloro)acetylchitotriose **2** followed by base-catalyzed removal of N-monochloroacetyl groups (Scheme 3.2). This method clearly shows that chitotrioses can act as good substrates for making higher chitooligosaccharides by transglycosylation method.¹⁶

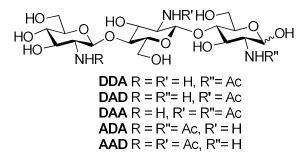
Scheme 3.2: Synthesis of homo- and heterochitooligosaccharides from chitotrioses 1 and 2 *via* enzymatic transglycosylation method.

R = H or Ac, N-deacetylated chitin oligomers (from 1 and 2), n = 2-10

3.1.1 Chemical synthesis of chitotriose derivatives

Currently different research groups have been developing strategies for the efficient synthesis oligosaccharides. The challenging task in oligosaccharide synthesis is the construction of stereoselective glycosidic linkage. At present researchers utilize the concept of chemoselective activation in glycosylation, which exploits the difference in reactivities of glycosyl donors which can be achieved by having different protecting groups (ether/ester) and leaving groups.²¹ A wide range of glycosyl donors (leaving groups) such as glycosyl halides, glycosyl trichloroacetimidates and thioglycosides and *n*-pentenyl glycosides are commonly used in glycosylation reactions. Of them, one can selectively be activated over the other under mild conditions for the synthesis of oligosachharides especially the glucosamine containing oligosaccharides and glycoconjugates.^{21,22}

Ogawa and co-workers described a method for the synthesis of fully protected chitotriose using orthogonal glycosylation strategy. Donor/acceptor capabilities of thioglycosides and glycosyl fluorides were successfully utilized in the oligosaccharide synthesis. Synthesis of fully protected chitotriose **8** was achieved by orthogonal activation of thioglycoside **4** and glycosyl fluoride **5** donors (Scheme 3.3). Synthesis of a heptasaccharide was also achieved using chitotriose building block **8** through the stereoselective β -glycoside formation.²¹


Scheme 3.3: Synthesis of fully protected chitotriose **8** by chemoselective activation in an orthogonal glycosylation strategy.

Bednarski and co-workers synthesised the protected chitotriose derivative **13** (Scheme 3.4). This trisaccharide **13** is a versatile building block in the amino oligosaccharide synthesis. Glycosylation of *N*-Phth protected trichloroacetimidate donor **9** with 4-free sugar alcohol **10** provided the disaccharide building block **11**. Fully protected chitotriose **13** was obtained from the desilylated derivative **12** by glycosylating it with the same glycosyl donor **9**.²²

Scheme 3.4: Synthesis of fully protected chitotriose **13** using glycosyl trichloroacetimidate donor **9**.

3.2 Results and discussion

After achieving the synthesis of chitobioses using phthalimide and azide containing monomer building blocks (Chapter 2), we focused our attention on the synthesis of partially N-acetylated chitotrioses by using chemoselective glycosylation strategy. Trichloroactemidates and thioglycosides were used as glycosyl donors for the synthesis of partially N-acetylated chitotriose derivatives. Three kinds of D-glucosamine based building blocks with different amine precursors (N-Phth, N-DMM, N_3) at C-2, were prepared and used in the glycosylation reactions. Finally they were converted into free amino or acetamido groups selectively. Due to neighbouring group participation and steric hindrance, the protecting groups N-Phth and N-DMM were expected to favour β -glycosylation. We have successfully achieved the synthesis of chitotrioses having different N-acetylated pattern **DDA**, **DAA**, **ADA**, **AAD** (Figure 3.1).

Figure 3.1: Structural representation of partially *N*-acetylchitotriose derivatives.

3.2.1 Synthesis of N-Phth protected acetimidate donor

Acetimidate donor **16** was synthesized in three steps from commercially available glucosamine hydrochloride (Scheme 3.5). For the synthesis of *N*-Phth protected acetimidate

donor, glucosamine hydrochloride **14** was first converted into its *N*-Phth derivative by neutralization followed by treatment with phthalic anhydride in methanol as solvent. The crude product was peracetylated using excess of 1:2 mixture of Ac₂O and pyridine to get the 1,3,4,6-tetra-*O*-acetyl-2-deoxy-2-phthalimido-α/β-D-glucopyranose **15** in 55% yield. Then anomeric deacetylation of compound **15** by using hydrazine acetate yielded the anomeric free sugar derivative which was directly converted into the imidate donor **16** in 75% yield by treatment with trichloroacetonitrile in presence of K₂CO₃ base.²³ Trichloroacetimidate donor **16** was utilized further as glycosyl donor in the synthesis of partially *N*-acetylated chitotrioses.

Scheme 3.5: Preparation of glycosyl trichloroacetimidate donor 16.

3.2.2 Synthesis of monomer building blocks containing N-Phth, N-DMM and N₃ groups

The synthesis of peracetylated phthalimido and azido derivatives 15, 18 have already been discussed in Chapter 2. For the preparation of dimethylmalemido derivative 17, glucosamine hydrochloride 14 was converted into its free amine derivative by neutralization. Treatment of this with dimethylmaleic anhydride in methanol followed by peracetylation using a 1:2 mixture of Ac₂O/Py gave 17 in 65% yield (Scheme 3.6). Compounds 15, 17 and 18 were glycosylated with thiophenol/p-methyl thiophenol in the presence of BF₃·OEt₂ to get the corresponding thioglycoside derivatives 19, 20 and 21 in 77%, 74%, 73% yields, respectively. These thioglycoside derivatives were deacetylated under basic conditions (NaOMe/MeOH) and then treated with PhCH(OMe)₂ in the presence of p-TsOH to get the corresponding benzylidene derivatives 22 (75%), 23 (77%) and 24 (80%). Acetylation of the 3-OH group of the benzylidene derivatives 22, 23 were carried out using Ac₂O in the presence of NEt₃, DMAP in CH₂Cl₂ to get the acetyl benzylidene derivatives 25 (96%) and 26 (90%).²⁴ Benzyl benzylidene derivative 27 was prepared in 89% yield by the benzylation of azide protected derivative 24 using BnBr/NaH in THF.²⁵ Similar benzyl derivatives obtained from 22 and 23 resulted in low yields during the selective benzylidene ring-opening. Hence acetylation was done in these two cases. Regioselective benzylidene ring-opening in 25, 26 and 27 using TES/TFAA/TFA system resulted in 4-OH free derivatives 28, 29, and 30

respectively. The *N*-Phth, N₃ containing glycosyl acceptors **35** and **36** could be synthesized in a three steps sequence as shown in Scheme 3.6. Levulinoylation²⁶ of 4-free hydroxyl group in compounds **28** and **30** with levulinic acid, *N*,*N*'-diisopropylcarbodiimide (DIPC) and 4-(dimethylamino)pyridine (DMAP) afforded levulinoyl protected thioglycoside derivatives **31** and **32** respectively, which underwent glycosylation with BnOH under NIS/TfOH promoter system to give the fully protected derivatives **33** and **34** in good yields. Finally, glycosyl acceptors **35** and **36** were obtained from the compounds **33** and **34** respectively by the hydrolysis of levulinate ester²⁷ using NH₂NH₂·H₂O in AcOH/Py mixture (Scheme 3.6). These compounds were utilized as glycosyl acceptors in the synthesis of chitotrioses having different *N*-acetylated pattern. *N*-Phth and *N*-DMM protecting groups were very useful in the stereoselctive synthesis of β-glycosides due to the neighbouring group participation ability and their steric bulkiness.²⁸⁻³¹

For 17: (i) NaOMe, MeOH DMMA, NEt₃ (ii)
$$A_{O}$$
, P_{V} , RT For 15 and 18 ref: chapter 2 14 15 \times = NPhth (55%) 19 \times = NPhth; A_{F} = Tol (77%) 17 \times = NDMM (65%) 18 \times = N₃ (79%) 21 \times = NPhth; A_{F} = Tol (77%) 21 \times = NPhth; A_{F} = Tol (75%) NaOMe, MeOH (ii) PhCH(OMe)₂ PTSOH PhO SAr HO NET PhO SAr Photh; A_{F} = Tol (75%) 25 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 26 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 27 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 28 \times = NPhth; A_{F} = Tol; A_{F} = Ac (90%) 29 \times = NDMM; A_{F} = Tol; A_{F} = Ac (90%) 31 \times = NPhth; A_{F} = Ph; A_{F} = Bn (81%) 30 \times = N₃; A_{F} = Ph; A_{F} = Bn (87%) 36 \times = N₂; A_{F} = Bn (87%)

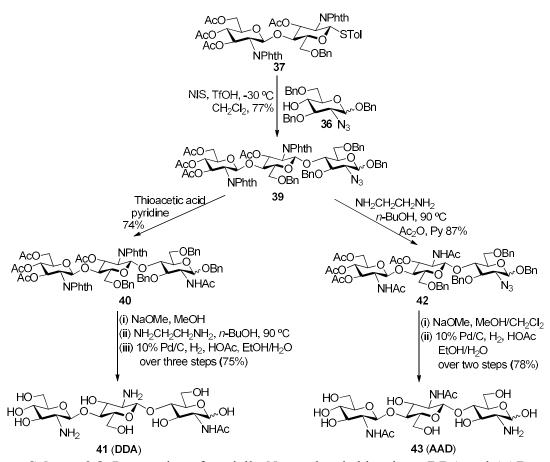
Scheme 3.6: Preparation of monomer building blocks 28, 29, 35 and 36.

3.2.3 Synthesis of partially *N*-acetylated chitotrioses (DDA, AAD, DAA, DAD, ADA)

The monomer building blocks 16, 28, 29, 35, 36 were used in glycosylation reactions to make different chitotrioses. These chitotrioses were subjected to a series of deprotection steps in certain order to make chitotrioses with specific *N*-acetylated pattern. These synthetic details are discussed in the subsequent sections.

3.2.3.1 Preparation of disaccharide building blocks *via* chemoselective glycosylation

Disaccharide building blocks **37** and **38** were synthesized using chemoselective glycosylation³² strategy by selective activation of trichloroacetimidate donor **16** in presence of *p*-methylphenyl thioglycoside donors **28** and **29** separately (Scheme 3.7). Glycosylation of the acceptors **28** and **29** with trichloroacetimidate donor **16** using TMSOTf (0.1 equiv.) as a promotor in CH_2Cl_2 at -30 °C afforded the β-linked glycosides **37** (75%) and **38** (72%) respectively. Stereoslective formation of the β-anomer was observed, which was confirmed by ¹H NMR spectroscopy. Synthesized disaccharide thioglycosides **37** and **38** were utilized as glycosyl donors in the preparation of chitotrioses having different *N*-acetylated pattern.


Scheme 3.7: Synthesis of disaccharide building blocks **37** and **38** *via* chemoselective glycosylation.

3.2.3.2 Synthesis of partially N-acetylated chitotriose derivatives (DDA and AAD)

After successfully synthesizing of disaccharide thioglycosides **37** and **38**, synthesis of partially *N*-acetylated chitotrioses **41** (**DDA**) and **43** (**AAD**) were undertaken (Scheme 3.8). Synthesis of fully protected trisaccharide precursor **39** was achieved from the glycosyl donor

37 by reacting it with glycosyl acceptor 36 under glycosylation conditions using NIS/TfOH as promoter system³³ at -30 °C. Sequential deprotection steps were followed to obtain the partially *N*-acetyl chitotriose derivatives 41 and 43. For the synthesis of chitotriose derivative 41 (DDA), the trisaccharide precursor 39 was first treated with 1:2 mixture of thioacetic acid and Py which furnished the 40 in 74% yield. Then, *O*-deacetylation of 40 under Zemplén conditions³⁴ and removal of *N*-Phth group by treatment with ethylenediamine at 90 °C in *n*-BuOH were carried out. The crude product obtained at the end of the above two steps was subjected to catalytic hydrogenolysis to remove the benzyl groups³⁵ to provide the desired chitotriose derivative 41 (DDA) in 75% yield.

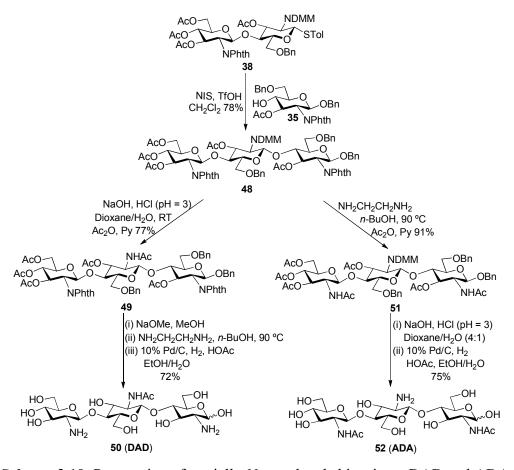
Synthesis of *N*,*N*'-diacetylchitotriose **43** (AAD) was achieved by the removal of *N*-Phth, *O*-acetyl and benzyl groups in a sequential manner from the trisaccharide derivative **39** (Scheme 3.8). Conversion of *N*-Phth groups of compound **39** into *N*-acetyl was achieved using ethylenediamine at 90 °C in *n*-BuOH solvent followed by acetylation in presence of

Scheme 3.8: Preparation of partially *N*-acetylated chitotrioses **DDA** and **AAD**.

 Ac_2O/Py (1:2) mixture to provide the N,N'-diacetyl derivative **42** in 87% yield. O-Deacetylation of compound **42** was carried out with NaOMe/MeOH. Finally the azide and

benzyl groups of the crude product were converted into free amine and hydroxy groups using H₂, 10% Pd/C to obtain the desired chitotriose derivative **43** (**AAD**) in 78% yield over two steps.

3.2.3.3 Synthesis of partially *N*-acetylated chitotriose derivative (DAA)


Trisaccharide precursor **44** was synthesized from the disaccharide thioglycosyl donor **38** and azide containing acceptor **36** under standard glycosylaton conditions (NIS/TfOH) in CH₂Cl₂ at -30 °C (Scheme 3.9).

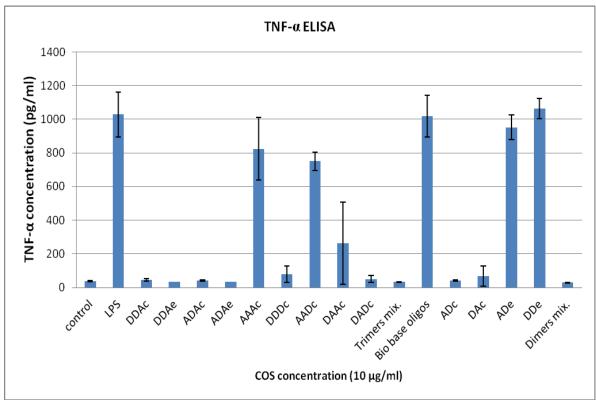
For the synthesis of N,N'-diacetylchitotriose derivative 47 (**DAA**), conversion of N-DMM group into required N-acetyl was achieved by treating 44 with 1.5 M NaOH in dioxane-water mixture (4:1), followed by addition of HCl to adjust pH to 3. Ethanolamine was used when the pH lowered below 3 to bring it back to 3. The crude product was N-acetylated using Ac_2O/Py (1:2) mixture to obtain N-acetylchitotriose derivative 45 in 76% yield. To convert azide into N-acetyl group, compound 45 was treated with thioacetic acid/Py (1:2) which resulted the N,N'-diacetylchitotrose derivative 46 in 74% yield. Finally, deprotection of O-acetyl groups and N-Phth groups were achieved by treating the trisaccharide derivative 46 with NaOMe in MeOH followed by ethylenediamine at 90 °C in n-BuOH solvent. After the completion of reaction as indicated by TLC, the crude product was subjected to catalytic hydrogenolysis to deprotect the benzyl ethers using H_2 on Pd/C to obtain the desired partially N,N'-diacetylchitotriose 47 (**DAA**) in 77% yield.

Scheme 3.9: Preparation of *N*,*N'*-diacetylchitotriose **47** (**DAA**).

3.2.3.4 Synthesis of partially N-acetylated chitotriose derivatives (DAD and ADA)

Protected trisaccharide derivative **48** was first obtained by the glycosylation of *N*-Phth protected acceptor **35** with thioglycoside donor **38** using NIS/TfOH reagent system at -30 °C in 78% yield. This fully protected trisaccharide building block was utilized for the synthesis of chitotriose derivatives **50** (**DAD**) and **52** (**ADA**) (Scheme 3.10). Synthesis of mono *N*-acetylchitotriose derivative **50** (**DAD**) was achieved by the sequential deprotection of protecting groups from the fully protected trisaccharide precursor **48** as follows. Conversion of *N*-DMM group in compound **48** into *N*-acetyl was done by treating **48** with NaOH followed by the addition of HCl/ethanolamine to adjust the pH to 3 and then acetylation using Ac₂O/Py (1:2) mixture to get the *N*-acetylchitotriose derivative **49** in 77% yield. Deacetylation of compound **49** using NaOMe and subsequent dephthalolation using ethylenediamine in *n*-BuOH under heating conditions gave the crude product which was subjected to catalytic hydrogenolysis using 10% Pd/C in EtOH:H₂O for the removal of benzyl groups to obtain the *N*-acetylchitotriose derivative **50** (**DAD**) in 72% yield.

Scheme 3.10: Preparation of partially *N*-acetylated chitotrioses **DAD** and **ADA**.

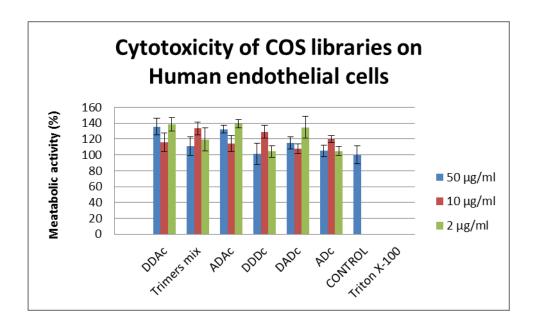

For the synthesis of N,N'-diacetylchitotriose derivative **52** (**ADA**), N-Phth groups in **48** were converted into N-acetyl group by treating it with ethylenediamine and Ac_2O :Py mixture (1:2) to obtain the intermediate **51** in 91% yield. The compound **51** was treated with NaOH/HCl in dioxane/water mixture (1:2) for the deprotection of N-DMM group. Finally, the desired N,N'-diacetylchitotriose **52** (**ADA**) was obtained in 75% yield by the removal of benzyl groups under hydrogenolytic conditions (H₂, 10% w/v Pd/C) (Scheme 3.10).

3.2.4 Partially N-acetylated chitotrioses mediated endothelial cell surface modifications

Endothelial surface is coated with glycocalyx which consists of a thick and dense meshwork of carbohydrates. The stability of glycocalyx depends on the type of endothelial cell and the extent of its presence on the cell surface.^{37,38} Physiologically, the glycocalyx functions as a large storage for compounds such as growth factors or cytokines.³⁸ It mainly consists of polysaccharides such as negatively charged hyaluronan and heparan sulphate.³⁸ There may be charge-mediated interaction between the negatively charged glycocalyx and positively charged amino sugars at a physiological pH of 7.4.³⁹ Previous literature support the interaction of chitosan, COS and heparin with glycocalyx^{40,41} In this context, we wished to study the effects of the synthesized chitotrioses with specific acetylated pattern on endothelial cell surface modification using fluorescence spectroscopy. The enzymatic generation of dimers and trimers was achieved by selective *N*-deacetylation of fully *N*-acetylated dimers and trimers by chitin deacetylases (Chapter 2). This part of work was carried out in the University of Heidelberg, Germany (UMM).

3.2.4.1 Analysis of COS purity: Inflammatory activity of chitooligosaccharides (COS) libraries on macrophages

Supernatants from human peripheral blood derived monocytes/macrophages were analyzed for the levels of TNF- α by using a sandwich ELISA. The obtained data suggest that few chitooligosaccharides (at 10 μ g/mL) show very strong inflammatory effects on the macrophages. This may be due to contamination of COS by endotoxins or bacteria (Figure 3.2).

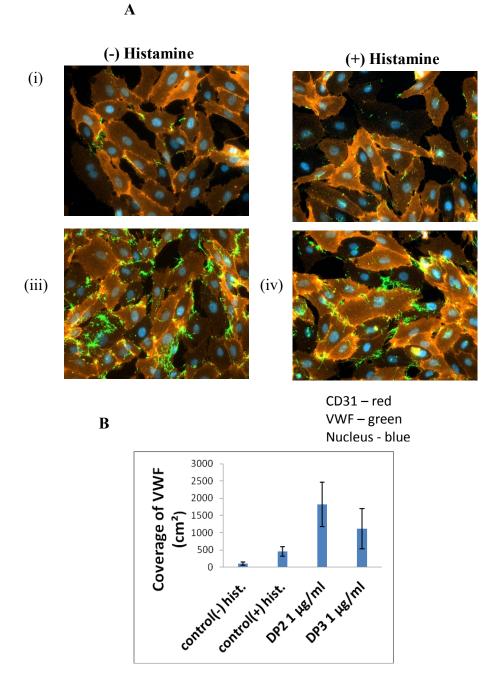


(c-chemically produced COS, e-enzymatically produced COS)

Figure 3.2: Quantification of cytokines: Supernatants from human peripheral blood derived monocytes/macrophages were analyzed for levels of TNF-α by using a sandwich ELISA according to manufacturer instruction using commercially available ELISA kit (R&D)

3.2.4.2 Cytotoxicity of chitooligosaccharides libraries on human endothelium cells

To know the potential toxic effects of chitooligosaccharides (dimers and trimers) on human ECs, HUVECs were treated with different concentrations of COS (50, 10, 2 μ g/mL). Cell viability was quantified by measuring the mitochondrial activity (WST-1 assay) after incubating the mixtures for 24 h. There was not much change in the metabolic activity irrespective of the dose of chitooligosaccharides. Mitochondrial activity of untreated HUVECs was taken as control and normalised to 100% (Figure 3.3).


Figure 3.3: Metabolic activity of HUVEC upon treatment with 50, 10, 2 μ g/mL chitooligosaccharides. Cellular metabolism was measured using the WST-1 assay and is shown relatively to untreated HUVECs (100%, control). Values are expressed as mean \pm SD of three independent experiments.

3.2.4.3 EC activation and formation of ultra-large VWF fibers on the EC surface

Non-toxic concentrations of partially *N*-acetyl chitooligosaccharides (DP2 and DP3) were used to check the influence on the physiological behaviour of human ECs in the context of coagulation. HUVECs were treated with partially *N*-acetyl chitooligosaccharides (DP2 and DP3) and then stimulated with histamine. Histamine activates the cell surface and initiates a physiological response combined with a receptor. Then the effect on ECs was studied. Since the acute non-transcriptional regulated release of VWF to the luminal site of HUVECs is due to the rapid exocytosis of Weibel-Palade bodies, this is a characteristic physiological feature of ECs.⁴²

The above data suggest that the impact of COS (dimers and trimers) on the formation and immobilisation of ULVWF fibres on the luminal EC surface. ULVWF deposition was completely absent on the non-stimulated HUVECs (without histamine) as shown in A (Figure 3.4). But only in the histamine stimulated cells, we found a strongly increased deposition of ULVWF fibres on the HUVECs after pre-treatment with 1µg/ml of either mixtures of chitobioses or trioses (Figure 3.4 A). Quantitative analyses of the ULVWF coverage revealed a statistically significant increase of amount of fibers on pre-treated HUVECs (Figure 3.4 B). Degree of polymerization has an effect on the formation and immobilisation of ULVWF

fibres, i.e., dimers mixture (DP2) show stronger effect than trimers mixture (DP3) of COS (Figure 3.4 B). These experiments were carried out in university of Heidelberg (UMM).

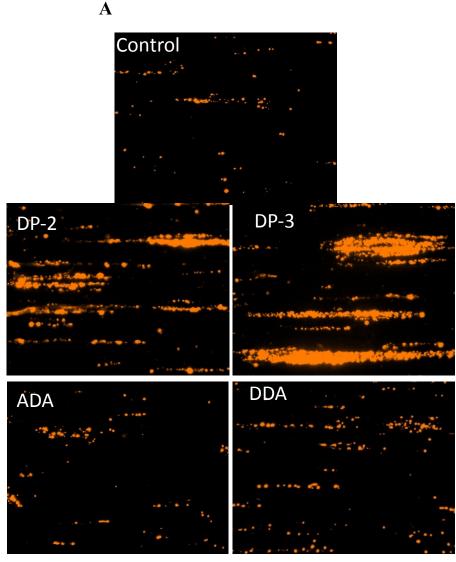


Figure 3.4: Pre-treatment of HUVEC with 1 µg/mL chitooligosaccharides (mixtures of DP2 and DP3) increases the formation of ULVWF at the cellular surface after histamine stimulation. Deposition of ULVWF on the surface of HUVECs was visualized by fluorescence microscopy (A). ULVWF was not detectable on non-treated EC (without histamine). ULVWF was only formed on histamine stimulated HUVECs (with histamine). Excessive ULVWF formation was found on the HUVECs pre-treated with COS mixtures for 16 h prior to the histamine stimulation. Scale bars correspond to 100 μ m (A). Quantitative evaluation of ULVWF immobilized on HUVEC (B). Values are expressed as mean \pm SD of three independent experiments.

3.2.4.4 Chitooligosaccharide (COS) pre-treatment improves platelet binding to HUVECs under flow

As seen in the last section chitooligosaccharides enhance the formation of ULVWF on the EC surface (Figure 3.5). This suggests an increased binding of platelets to the endothelium. Therefore, we further investigated the adhesion of platelets to ECs via ULVWF by applying a microfluidic device mimicking physiological blood flow conditions.⁴³ Adherence of fluorescence-labeled platelets to ULVWF was followed by fluorescence microscopy in real time. Extend of ultra-large VWF deposition on the EC surface and binding of platelets depend on the COS pre-treatment, and the DP and DA of the COS used. The data suggest that chitobioses or trioses mixture pretreatment is effective in supporting ULVWF formation (Figure 3.5). We measured an elevated platelet adhesion on histamine stimulated ECs pretreated with 1µg/mL COS (dimers and mixtures) and also partially N-acetylated chitotrioses (DDA and ADA) in comparison to ECs stimulated with histamine alone (Figure 3.5). Quantification of the amounts of platelets strings revealed a two-fold increase in binding of platelets to the endothelium after COS treatment (Figure 3.5 B). Interestingly, adhesion of platelets to ECs depends on the degree of polymerization and degree of N-acetylation. It is clear that N-acetylchitotriose (**DDA**) shows strong effect than the N,N'-diacetylchitotriose (ADA).

These studies suggest that COS (mixtures of dimers or trimers) pre-treatment of HUVECs followed by an acute activation with histamine led to an increased deposition of VWF on the cellular surface under static conditions as well as under laminar flow conditions as indicated by an increased entrapment of platelets to the endothelium (Figure 3.5). Degree of *N*-acetylation also has an effect on the entrapment of platelets to the endothelium, i.e., mono *N*-acetyl chitotriose (**DDA**) shows stronger effect than the *N*,*N*'-diacetylchitotriose (**ADA**) (Figure 3.5 B).

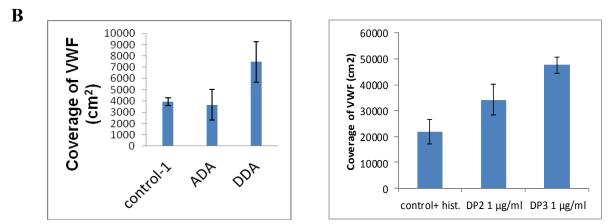


Figure 3.5: Entrapment of platelets to the endothelium under continuous and laminar flow conditions (shear stress = 6 dyne/cm²) is amplified upon pre-treatment with COS. HUVECs were either pre-treated with COS ($1\mu g/mL$) for 16 h prior to histamine stimulation (COS), or only stimulated with histamine (control) (A). Binding of fluorescent-labelled platelets (red) was visualised by fluorescence microscopy (A) and quantitatively evaluated (10-20 fields of view/experiment) (B). Values are expressed as mean \pm SD of three independent experiments.

3.3 Conclusions

We have successfully synthesized five partially *N*-acetylchitotriose derivatives by using chemoselective glycosylation strategy. To investigate biological effects of the synthesized chitooligosaccharides [dimers (Chapter 2) and trimers] on human endothelium was studied in the context of coagulation and inflammation (UMM, Mannheim). Biological results suggest the evidence of a non-toxic COS-mediated change of the endothelial surface most likely due to a direct interaction between the positively charged COS and the negatively charged glycocalyx. Interestingly, the increased deposition of ULVWF at the luminal site of HUVECs upon chitooligosaccharide treatment appears to merely be related to an alteration of the cellular surface and not due to an additional activation of the ECs. This beneficial effect of VWF-mediated coagulation, biomedical application of chitoligosaccharides having different *N*-acetyl pattern might be worthwhile in treating bleeding disorders (coagulation).

3.4 Experimental section

For general information refer Chapter 2, Section 2.4.1.

3.4.1. Experimental procedures, spectral and analytical data

General procedure for acetylation at 3rd position

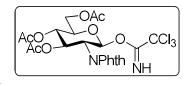
To a solution of benzylidene acetal **22/23** (1 equiv.) in dry CH₂Cl₂ (2 mL/mmol), NEt₃ (3 equiv.), DMAP (5 mol%) and Ac₂O (1.5 equiv.) were added. After 5 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, hexanes/EtOAc) to get the required products **25/26**.

General procedure for chemoselective glycosylation with trichloroacetimidate donor³²

A solution of trichloroacetimidate donor **16** (1.2 equiv.) and thioglycoside acceptor **28/29** (1 equiv.) in CH₂CI₂ (6 mL/mmol) dried over 4 Å molecular sieves powder was allowed to stir at room temperature. After 1 h, the reaction mixture was cooled to -30 °C then TMSOTf (0.1 equiv.) was added slowly dropwise with continuous stirring. After completion of reaction as revealed by TLC, the reaction mixture was diluted with EtOAc and saturated NaHCO₃ was added to it. The organic layer was separated, dried over anhydrous Na₂SO₄, and concentrated

in vacuo. The resulting syrup was purified by column chromatography (silica gel, hexanes/EOAc) to avail compounds 37 and 38.

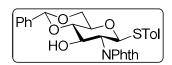
General procedure for glycosylation with thioglycosides


Glycosyl donor 37/38 (1.2 equiv.) and glycosyl acceptor 35/36 (1 equiv.) were dissolved in dry CH₂Cl₂ (9 mL/mmol). It was dried over 4 Å molecular sieves and allowed to stir at room temperature for an hour. The suspension was cooled to -30 °C, treated with NIS (1.5 equiv.). After 10 min TfOH (0.1 M in CH₂Cl₂, 0.1 equiv.) was added dropwise. After completion of reaction, the reaction mixture was quenched with saturated Na₂S₂O₃ solution and was extracted with dichloromethane. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EOAc) to obtain compounds 39, 44 and 48.

General procedure for conversion of N-DMM to N-acetyl group

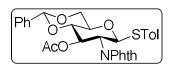
A suspension of *N*-DMM derivative (1 equiv.) in 4:1 dioxane-water (20 mL/mmol) was added NaOH (11 equiv.) at room temperature and allowed to stir for overnight. Then, the pH of the reaction mixture was adjusted to 5 using 3 N HCl in the presence of ethanolamine. After 1 day, the solution was neutralized with HOCH₂CH₂NH₂ and concentrated in vacuo. The crude product was directly treated with 2:1 pyridine-acetic anhydride (10 mL/mmol) and stirred at room temperature overnight. After completion of the reaction, the residue was purified by column chromatography (SiO₂, hexanes/EtOH) to obtain *N*-acetyl derivative.

$\it O$ -[3,4,6-Tri- $\it O$ -acetyl-2-deoxy-2-phthalimido- $\it β$ -D-glucopyranosyl]trichloroacetimidate


The compound **16** was prepared from **15** (2.74 g, 5.7 mmol) by following the literature procedure.²³ Light yellow foam; Yield = 2.5 g (75%); R_f = 0.70 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 7.95–7.78 (m, 4H), 6.58 (d, J

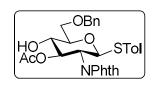
= 8.8 Hz, 1H), 5.95 (dd, J = 11.6, 3.5 Hz, 1H), 5.76 (d, J = 3.6 Hz, 1H), 4.93 (dd, J = 11.5, 9.1 Hz, 1H), 4.33–4.13 (m, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.1, 169.4, 167.4, 160.5, 134.7, 134.7, 131.1, 124.0 123.7, 93.5, 72.7, 70.4, 68.4, 61.5, 53.5, 20.8, 20.6, 20.5.

Preparation of p-methylphenyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-Dglucopyranoside 22


The compound 22 was prepared from 19 (4.4 g, 8.9 mmol) by general procedure for O-deacetylation followed by benzylidene acetal protection (Chapter 2). Colourless foam; Yield = 3.36 g

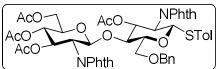
(75%); $R_f = 0.50$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.81 (m, 2H), 7.70 (br s, 2H), 7.49-7.44 (m, 2H), 7.34-7.33 (m, 3H), 7.28-7.24 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.59 (d, J = 10.8 Hz, 1H), 5.53 (s, 1H), 4.57 (t, J = 9.6 Hz, 1H), 4.37-4.33 (m, 1H), 4.27 (t, J = 10.4 Hz, 1H), 3.78 (t, J = 10.4 Hz, 1H), 3.65-3.60 (m, 1H), 3.59-3.51 (m, 1H), 2.78 (br)s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.2, 167.5, 138.4, 136.9, 134.1, 133.2, 131.6, 129.7, 129.3, 128.3, 127.8, 126.8, 123.8, 123.3, 101.8, 84.4, 81.8, 77.3, 77.0, 76.7, 70.2, 69.6, 68.5, 55.6, 21.1. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{28}H_{25}NO_6S$ 526.1300, found 526.1294.

Preparation of p-methylphenyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1thio-β-D-glucopyranoside 25


The compound 25 was prepared from 22 (3.31 g, 6.56 mmol) by general procedure for acetylation at 3rd position. Light yellow foam; Yield = 3.44 g (96%); $R_f = 0.50$ in 1:1 EtOAc/hexanes; ¹H

NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.74-7.71 (m, 2H), 7.45-7.42 (m, 2H), 7.34-7.32 (m, 3H), 7.28 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 5.88 (t, J = 9.6 Hz, 1H), 5.76 (d, J = 10.4 Hz, 1H), 5.52 (s, 1H), 4.43-4.40 (m, 1H), 4.34 (t, J = 10.4 Hz, 1H), 3.84-3.71 (m, 1H)3H), 2.31 (s, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 167.8, 167.2, 138.6, 134.4, 134.1, 133.6, 131.6, 131.2, 129.7, 129.1, 128.2, 127.2, 126.2, 123.6, 123.5, 101.6, 83.9, 78.9, 77.3, 77.0, 76.7, 70.6, 70.5, 68.5, 54.3, 21.1, 20.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₀H₂₇NO₇S 568.1406, found 568.1408.

Preparation of p-methylphenyl 3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 28


The compound 28 was prepared from 25 (3 g, 5.49 mmol) by using general procedure for regioselective benzylidene ring opening (Chapter 2). Colourless oil; Yield = 2.44 g (81%); $R_f = 0.60$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 7.2, 2.0 Hz, 2H), 7.66 (t, J =

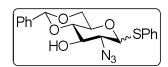
7.2 Hz, 1H), 7.55 (t, J = 6.8 Hz, 1H), 7.33-7.28 (m, 7H), 6.97 (d, J = 8.0 Hz, 2H), 5.84 (d, J = 10.4 Hz, 1H), 5.75 (t, J = 9.6 Hz, 1H), 4.58 (s, 2H), 4.30 (t, J = 10.4 Hz, 1H), 3.90-3.78 (m, 3H), 3.71 (t, J = 9.2 Hz, 1H), 3.45 (br s, 1H), 2.23 (s, 3H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 167.7, 167.1, 137.9, 134.2, 134.0, 133.0, 131.3, 130.9, 129.4, 128.2, 127.6, 127.4, 123.5, 123.3, 82.8, 78.9, 77.3, 77.0, 76.7, 74.2, 73.4, 70.2, 69.8, 53.6, 20.9, 20.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₀H₂₉NO₇S 570.1567, found 570.1558.

Preparation of *p*-methylphenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside 37

The compound 37 was prepared from 16 (0.69 g, 1.18 mmol) and 28 (0.54 g, 0.99 mmol) by following general procedure for the chemoslective glycosylation

with trichloroacetimidate donor. Colourless solid; Yield = 0.72 g (75%); R_f = 0.40 in 1:1 EtOAc/hexanes; 1H NMR (400 MHz, CDCl₃): δ 7.84 (br s, 4H), 7.74-7.71 (m, 4H), 7.37-7.23 (m, 7H), 6.96 (d, J = 7.9 Hz, 2H), 5.70 (q, J = 10.8 Hz, 2H), 5.53 (d, J = 10.5 Hz, 1H), 5.45 (d, J = 8.4 Hz, 1H), 5.10 (t, J = 9.4 Hz, 1H), 4.47 (q, J = 11.8 Hz, 2H), 4.37 (dd, J = 12.2, 3.7 Hz, 1H), 4.23-4.18 (m, 2H), 4.11 (d, J = 8.7 Hz, 1H), 3.93 (m, 1H), 3.60-3.52 (m, 3H), 3.50 (dd, J = 11.2, 3.3 Hz, 1H), 2.25 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.81 (s, 3H). 13 C NMR (100 MHz, CDCl₃): δ 170.5, 170.0, 169.9, 169.3, 167.7, 167.1, 138.3, 138.2, 134.3, 134.0, 133.7, 131.6, 131.2, 129.4, 128.2, 127.3, 127.1, 123.5, 96.9, 82.7, 78.4, 73.7, 72.6, 71.8, 71.5, 70.5, 70.0, 68.3, 68.0, 67.7, 61.7, 61.3, 54.8, 53.8, 21.04, 20.7, 20.5, 20.4, 20.3. HRMS-ESI (m/z): $[M+H]^+$ calcd for $C_{50}H_{48}N_2O_{16}S$ 965.2803, found 965.2820.

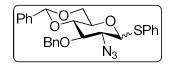
Preparation of phenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-thio- α/β -D-glucopyranoside 21


The compound **21** was prepared from **18** (6.83 g, 18.3 mmol) by following general procedure for synthesis of thioglycosides (Chapter 2). Colourless foam; Yield = 5.64 g (73%); $R_f = 0.43$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.20 (m, 5H, Ar-H), 5.65 (d, J = 5.6 Hz, 1H), 5.32 (m, 1H), 4.97 (t, J = 9.8 Hz, 1H), 4.54 (ddd, J = 10.2, 5.2, 2.1 Hz, 1H), 4.30 (dd, J = 12.4, 5.2 Hz, 1H), 4.08 (dd, J = 10.5, 5.6 Hz, 1H), 3.96 (dd, J = 12.4, 2.2 Hz, 1H),

2.08 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.02 (s, 3H, OAc). ¹³CNMR (100 MHz, CDCl₃): δ

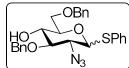
170.0, 169.9, 169.4, 169.2, 168.1, 133.6, 132.1, 131.5, 128.7, 128.6, 127.7, 89.6, 86.0, 85.2, 75.2, 73.9, 71.6, 68.4, 68.2, 62.2, 61.6, 61.2, 61.0, 59.8, 20.2.

Preparation of phenyl 2-azido-4,6-O-benzylidene-2-deoxy-1-thio- α/β -D-glucopyranoside 24


The compound **24** was prepared from **21** (2.34 g, 5.53 mmol) by general procedure for O-deacetylation followed by benzylidene acetal protection (Chapter 2). Colourless solid; Yield = 1.71 g

(80%); $R_f = 0.61$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.30 (m, 10H, Ar-H), 5.54-5.47 (m, 2H), 4.34 (m, 1H), 4.20 (dd, J = 10.3, 5.0 Hz, 1H), 3.98 (t, J = 9.4 Hz, 1H), 3.84 (dd, J = 10.0, 5.6 Hz, 1H), 3.71 (t, J = 10.3 Hz, 1H), 3.52 (t, J = 9.3 Hz, 1H), 3.46-3.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 136.7, 133.6, 132.4, 131.8, 129.4, 129.1, 128.4, 127.9, 126.3, 102.1, 101.8, 87.7, 86.7, 81.6, 80.1, 73.9, 70.6, 65.0, 63.7, 63.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₁₉N₃O₄S 408.0994, found 408.0988.

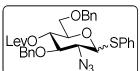
Preparation of phenyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-1-thio- α/β -D-glucopyranoside 27


The compound **27** was prepared from **24** (1.7 g, 4.39 mmol) by general procedure for benzylation at 3^{rd} position. Colourless solid; Yield = 1.86 g (89%); $R_f = 0.69$ in 1:1 EtOAc/hexanes; ¹H NMR

(400 MHz, CDCl₃): δ 7.44-7.28 (m, 15H), 5.59 (s, 1H), 5.56 (d, J = 4.0 Hz, 1H), 4.98 (d, J = 10. 8 Hz, 1H, CH₂Ph), 4.83 (d, J = 10.8 Hz, 1H, CH₂Ph), 4.43 (m, 1H), 4.22 (dd, J = 10.4, 4.9 Hz, 1H), 4.00-3.93 (m, 2H), 3.80-3.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 137.0, 133.9, 132.8, 132.4, 131.9, 129.1, 129.0, 128.4, 128.3, 128.2, 127.9, 127.9, 101.1, 87.7, 86.5, 82.6, 81.2, 77.8 ,75.2, 70.4, 68.5, 64.5, 63.7, 63.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₆H₂₅N₃O₄S 498.1463, found 498.1457.

Preparation of phenyl 2-azido-3,6-di-O-benzyl-2-deoxy-1-thio-α/β-D-glucopyranoside 30

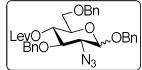
The compound **30** was prepared from **27** (1.5 g, 3.15 mmol) by using general procedure for regioselective benzylidene ring opening (Chapter 2). Colourless oil; Yield = 1.19 g (79%); $R_f = 0.63$ in 1:1



EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.21 (m, 15H, Ar-H), 5.56 (d, J = 5.4 Hz, 1H), 4.94 (d, J = 11.1 Hz, 1H), 4.83 (d, J = 11.0 Hz, 1H), 4.57 (d, J = 12.1 Hz, 1H), 4.49 (d, J = 12.1 Hz, 1H), 4.33 (m, 1H), 3.89 (dd, J = 10.1, 5.4 Hz, 1H), 3.74 (dd, J = 10.3, 5.5

Hz, 2H), 3.70-3.62 (m, 2H), 2.59 (br s, 1H, OH). 13 C NMR (100 MHz, CDCl₃): δ 137.8, 137.6, 133.5, 133.3, 132.1, 131.9, 129.0, 128.6, 128.4, 128.2, 128.1, 127.8, 127.7, 87.2, 81.3, 75.4, 73.6, 72.2, 71.0, 69.6, 63.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{26}H_{27}N_3O_4S$ 500.1620, found 500.1617.

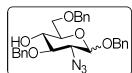
Preparation of phenyl 2-azido-3,6-di-O-benzyl-2-deoxy-4-O-levulinoyl-1-thio- α/β -D-glucopyranoside 32


The compound **32** was prepared from **30** (0. 91 g, 1.88 mmol) by using literature procedure.²⁶ Gummy liquid; Yield = 0.88 g (81%); $R_f = 0.60$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz,

CDCl₃): δ 7.58-7.52 (m, 2.6H), 7.25-7.22 (m, 19H), 5.58 (d, J = 5.4 Hz, 1H), 5.17 (t, J = 9.4 Hz, 1H), 4.96 (t, J = 9.2 Hz, 0.3H), 4.84 (d, J = 11.2 Hz, 1.3H), 4.68 (d, J = 11.1 Hz, 1.4H), 4.52-4.46 (m, 4.3H), 3.96 (dd, J = 10.3, 5.5 Hz, 1H), 3.81 (t, J = 9.5 Hz, 1H), 3.58-3.56 (m, 3.4H), 3.38 (t, J = 9.5 Hz, 0.3H), 2.69-2.52 (m, 3.3H), 2.47-2.37 (m, 1.6H), 2.32-2.25 (m, 1.4H), 2.11 (s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 206.1, 171.4, 137.9, 137.8, 137.4, 133.3, 132.8, 132.3, 130.9, 129.0, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 127.4, 86.8, 85.9, 82.3, 79.2, 77.5, 77.2, 75.1, 75.0, 73.4, 70.9, 70.6, 70.1, 69.2, 68.6, 64.6, 63.5, 37.6, 29.6, 27.7. LCMS (m/z): [M+H]⁺ calcd for C₃₁H₃₃N₃O₆S 576.22, found 576.65. Anal. calcd. for C₃₁H₃₃N₃O₆: C, 64.68; H, 5.78; N, 7.30, found C, 64.56; H, 5.71; N, 7.39.

Preparation of benzyl 2-azido-3,6-di-*O*-benzyl-2-deoxy-4-*O*-levulinoyl-α/β-D-glucopyranoside 34

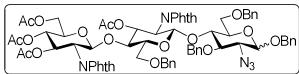
The compound **34** was prepared from **32** (0.67 g, 1.16 mmol) by using general procedure for glycosylation with thioglycosides. Colourless liquid; Yield = 0.53 g (79%); $R_f = 0.60$ in 1:1



EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.25 (m, 29H), 5.15 (t, J = 9.1 Hz, 0.7H), 5.02-4.98 (m, 1.7H), 4.92 (d, J = 11.9 Hz, 1H), 4.80 (d, J = 9.4 Hz, 1H), 4.74 (d, J = 12.5 Hz, 1.3H), 4.69-4.59 (m, 5H), 4.53-4.50 (m, 3.4H), 4.34 (d, J = 8.0 Hz, 1H), 4.02 (t, J = 9.2 Hz, 0.8H), 3.94-3.90 (m, 0.8H), 3.61-3.56 (m, 2H), 3.51 (t, J = 8.6 Hz, 3.3H), 3.42-3.35 (m, 1.8H), 2.61-2.48 (m, 3.8H), 2.43-2.32 (m, 2H), 2.29 (m, 2H), 2.08 (s, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 206.1, 206.0, 171.4, 171.3, 140.9, 138.0, 137.7, 136.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 126.8, 100.2, 96.4, 80.2, 77.7, 74.6, 74.5, 73.4, 73.4, 70.9, 70.8, 70.8, 69.5, 69.3, 69.2, 68.5, 65.8, 64.9, 62.8, 37.5, 29.6, 27.8,

27.7. LCMS (m/z): $[M+H]^+$ calcd for $C_{32}H_{35}N_3O_7$ 574.26, found 574.40 Anal. calcd. for $C_{32}H_{35}N_3O_7$: C, 67.00; H, 6.15; N, 7.33, found C, 67.13; H, 6.08; N, 7.42.

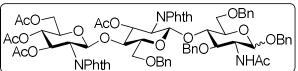
Preparation of benzyl 2-azido-3,6-di-O-benzyl-2-deoxy-α/β-D-glucopyranoside 36


The compound **36** was prepared from **34** (0.35 g, 0.61 mmol) by using literature procedure.²⁷ Colourless oil; Yield = 0.251 g (87%); R_f = 0.60 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.27 (m, 2.7H), 4.95 (d, J = 3.6 Hz, 1H), 4.92-4.86 (m, 2.7H), 4.80 (

7.27 (m, 2.7H), 4.95 (d, J = 3.6 Hz, 1H), 4.92-4.86 (m, 2.7H), 4.80 (d, J = 11.1 Hz, 0.7H), 4.74 (d, J = 11.2 Hz, 1.3H), 4.67 (t, J = 12.1 Hz, 1.5H), 4.60-4.50 (m, 5.5H), 4.32 (d, J = 8.1 Hz, 1H), 3.89 (dd, J = 10.1, 8.6 Hz, 0.7H), 3.73-3.58 (m, 3H), 3.63-3.59 (m, 1.7H), 3.43 (dd, J = 9.9, 8.1 Hz, 1H), 3.38-3.33 (m, 1H), 3.30 (dd, J = 10.2, 3.6 Hz, 0.7H), 3.21 (t, J = 8.9 Hz, 1H), 2.83 (br s, 1H), 2.74 (br s, 0.6H). ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 138.0, 137.6, 136.6, 128.5, 128.4, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 126.8, 100.4, 96.8, 82.5, 79.8, 75.0, 74.1, 73.6, 73.5, 71.9, 71.6, 70.8, 70.3, 69.9, 69.5, 65.6, 65.1, 62.7. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{27}H_{29}N_3O_5$ 498.2005, found 498.2060.

Preparation of benzyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-2-azido-3,6-di-*O*-benzyl-2-deoxy-α/ β -D-glucopyranoside 39

The compound **39** was prepared from **37** (0.50 g, 0.51 mmol) and **36** (0.208 g, 0.42 mmol) by using general procedure for



glycosylation with thioglycosides. Colourless solid; Yield = 0.43 g (77%); R_f = 0.34 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.69 (m, 12H), 7.35-7.03 (m, 22H), 5.72-5.64 (m, 1.7H), 5.58 (t, J = 9.4 Hz, 1H), 5.48-5.35 (m, 2.5H), 5.27 (t, J = 6.0 Hz, 0.4H), 5.10 (q, J = 8.5 Hz, 1H), 4.98 (d, J = 11.1 Hz, 0.3H), 4.87-4.68 (m, 3H), 4.56-4.34 (m, 8H), 4.15 (q, J = 7.9 Hz, 5H), 4.04-3.98 (m, 1H), 3.92 (d, J = 12.9 Hz, 1H), 3.84 (t, J = 9.2 Hz, 0.5H), 3.51 (t, J = 11.5 Hz, 2H), 3.43-3.34 (m, 2.7H), 3.28-3.22 (m, 1.8H), 3.13 (d, J = 9.6 Hz, 0.6H), 3.07-3.04 (m, 1H), 2.03 (s, 4H), 1.98 (s, 3.6H), 1.91 (s, 4H), 1.81 (s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 170.0, 169.9, 169.3, 168.1, 167.5, 138.3, 138.2, 138.0, 136.8, 136.6, 134.3, 134.0, 133.6, 131.3, 129.9, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1, 123.5, 123.4, 100.2, 97.0, 96.7, 96.5, 81.0, 77.9, 74.6, 74.3, 74.0, 73.4, 72.6, 72.5, 72.2, 71.5, 71.4, 70.9, 70.6, 70.1, 69.4, 68.2, 67.6, 66.8, 65.8, 62.7, 61.3, 60.3, 55.6, 54.9, 54.8, 29.6, 20.5, 20.4, 20.4, 20.3. HRMS-ESI (m/z):

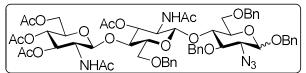
 $[M+K]^+$ calcd for $C_{70}H_{69}N_5O_{21}$ 1354.4122, found 1354.4124. Anal. calcd. for $C_{70}H_{69}N_5O_{21}$: C, 63.87; H, 5.28; N, 5.32, found C, 63.97; H, 5.21; N, 5.26.

Preparation of benzyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-3,6-di-*O*-benzyl-2-deoxy-α/ β -D-glucopyranoside 40

The compound **40** was prepared from **39** (210 mg, 0.16 mmol) using general procedure for reductive acetylation of azide

(Chapter 2). Colourless solid; Yield = 160 mg (74%); $R_f = 0.30$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 5.3, 3.1 Hz, 2H), 7.82 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.2 Hz, 2H), 7.70 (dd, J = 5.5, 3.2 Hz, 2H), 7.34-7.07 (m, 25H), 5.71-5.63 (m, 2H), 5.59 (dd, J = 10.4, 8.9 Hz, 0.5H), 5.54 (d, J = 8.3 Hz, 1H), 5.42 (d, J = 8.4 Hz, 1H),5.31 (d, J = 8.3 Hz, 1H), 5.13 (d, J = 11.3 Hz, 0.6H), 5.09 (d, J = 9.9 Hz, 1H), 4.88 (d, J =12.6 Hz, 0.3H), 4.81 (d, J = 3.8 Hz, 0.4H), 4.73 (d, J = 12.1 Hz, 1H), 4.69 (d, J = 12.1 Hz, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 6.6 Hz, 1H), 4.52 (t, J = 5.0 Hz, 1H), 4.49 (d, J =5.8 Hz, 1H), 4.39-4.29 (m, 5H), 4.21-4.15 (m, 4H), 4.03 (t, J = 7.0 Hz, 1H), 3.94-3.91 (m, 1.3H), 3.78 (t, J = 7.3 Hz, 1H), 3.66 (q, J = 7.4 Hz, 1H), 3.59 (dd, J = 10.6, 3.7 Hz, 1H), 3.50-3.42 (m, 3.5H), 3.36-3.34 (m, 2H), 3.21 (dd, J = 11.2, 2.7 Hz, 1H), 3.05 (d, J = 9.8 Hz, 1H), 2.03 (s, 3.7H), 1.98 (s, 4H), 1.92 (s, 4H), 1.82 (s, 6.5H). 13 C NMR (100 MHz, CDCl₃): δ 170.5, 170.1, 169.9, 169.8, 169.3, 167.9, 167.7, 139.0, 138.5, 138.3, 138.2, 138.1, 137.4, 134.4, 131.3, 128.9, 128.3, 128.2, 128.2, 128.1, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1, 127.0, 125.2, 123.5, 99.1, 96.8, 96.7, 96.5, 96.4, 77.6, 74.5, 74.2, 74.0, 73.7, 73.5, 73.1, 72.6, 72.4, 71.5, 70.7, 70.6, 70.4, 70.3, 69.4, 68.6, 68.3, 67.9, 67.1, 61.3, 55.4, 54.8, 53.9, 5, 29.6, 23.3, 20.6, 20.5, 20.4, 20.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₇₂H₇₃N₃O₂₂ 1354.4583, found 1354.4584.

Preparation of 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranose 41


The compound **41** is prepared from **40** (41 mg, 0.033 mmol) by general procedure for general procedure for one pot *O*-deacetylation and phthalimide deprotection followed by

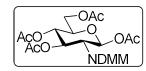
debenzylation (Chapter 2). Colourless solid; Yield = 12.7 mg (75%); ¹H NMR (400 MHz,

D₂O): δ 4.91-4.86 (m, 0.4H), 4.63-4.52 (s, 3H), 4.17-4.16 (m, 1H), 3.95-3.44 (m, 16H), 3.13-3.10 (m, 2.6H), 2.78 (d, J = 4.7 Hz, 1.8H), 1.95 (s, 3.8H). MALDI-MS (m/z): [M+H]⁺ (positive mode, DHB/MeOH matrix); 544.24.

Preparation of benzyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3-O-acetyl-6-O-benzyl-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-deoxy- α/β -D-glucopyranoside 42

The compound **42** was prepared from **39** (184 mg, 0.14 mmol) by general procedure for deprotection of phthalimide

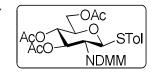
protecting group followed by acetylation (Chapter 2). Colourless solid; Yield = 139 mg (87%); $R_f = 0.34$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.28 (m, 24H), 5.99 (d, J = 9.6 Hz, 0.2H), 5.39-5.28 (m, 1H), 5.17 (d, J = 11.4 Hz, 0.3H), 5.06 (t, J = 7.9 Hz, 1.3H), 4.96 (d, J = 9.6 Hz, 1H), 4.93-4.85 (m, 3H), 4.79 (d, J = 12.0 Hz, 1H), 4.73 (d, J = 12.0 Hz, 1H), 4.69-4.64 (m, 1.4H), 4.57 (dd, J = 12.2, 2.2 Hz, 1H), 4.53 (d, J = 11.9 Hz, 1H), 4.46 (d, J = 5.4 Hz, 1H), 4.34-4.29 (m, 4H), 4.27 (d, J = 8.0 Hz, 1H), 4.15-4.09 (m, 1.8H), 3.99 -3.76 (m, 6H), 3.65 (br s, 2H), 3.52-3.21 (m, 7.3H), 2.05 (s, 4H), 2.01-1.98 (m, 12H), 1.75 (s, 3.6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 170.6, 170.5, 170.4, 169.5, 169.8, 169.2, 141.3, 138.7, 137.5, 137.4, 137.3, 137.1, 136.6, 128.8, 128.7, 128.5, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 127.4, 127.2, 127.2, 127.1, 101.1, 100.3, 100.0, 99.9, 96.7, 81.1, 78.0, 74.8, 74.6, 74.3, 74.2, 74.0, 73.6, 73.3, 73.2, 72.4, 71.3, 70.8, 70.2, 69.6, 68.1, 67.5, 65.9, 54.3, 54.0, 29.5, 22.9, 20.5, 20.4. LCMS (m/z): [M+H]⁺ calcd for C₅₈H₆₉N₅O₁₉ 1140.47, found 1140. 64. Anal. calcd. for C₅₈H₆₉N₅O₁₉: C, 61.10; H, 6.10; N, 6.14, found C, 61.26; H, 6.05; N, 6.23.


Preparation of 2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy-D-glucopyranose 43

The compound **43** is prepared **42** (41 mg, 0.036 mmol) by general procedure for one pot deacetylation followed by debenzylation (Chapter 2). Colourless solid: Viold = 16 mg

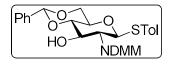
(Chapter 2). Colourless solid; Yield = 16 mg (78%); ^{1}H NMR (400 MHz, D₂O): δ 5.40 (s, 0.2H), 5.16 (s, 0.3H), 4.54-4.52 (m, 3H), 3.89-3.45 (m, 22H), 3.24 (s, 0.6H), 3.10-2.97 (m, 1.8H), 2.03 (s, 4H), 1.90 (s, 4H). MALDI-MS (m/z): [M+Na]⁺ (positive mode, DHB/MeOH matrix); 608.21.

Preparation of 1,3,4,6-tetra- $\it O$ -acetyl-2-deoxy-2-dimethylmalemido- $\it \beta$ -D-glucopyranose 17


The compound 17 was prepared from 14 (4.51 g, 20.92 mmol) by following the literature procedure. Gummy liquid; Yield = 6.2 g (65%); $R_f = 0.44$ in 1:1 EtOAc/hexanes; 1H NMR (400 MHz,

CDCl3); δ 6.25 (d, J = 8.9 Hz, 1H), 5.60 (dd, J = 10.4, 9.2 Hz, 1H), 5.20 (dd, J = 10.0, 9.2 Hz, 1H), 4.54 (dd, J = 9 5, 4.4 Hz, 1H), 4.10 (dd, J = 10.4, 8.9 Hz, 1H), 4.09 (dd, J = 12.5, 2.5 Hz, 1H), 3.95-3.93 (m, 1H), 2.10 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.96 (s, 3H), 1.82 (s, 6H). 13 C NMR (100 MHz, CDCl3): δ 171.9, 170.8, 169.8, 169.3, 168.8, 138.9, 90.8, 72.5, 70.8, 68.3, 63.5, 54.5, 20.8, 20.7, 20.5, 20.4, 8.8.

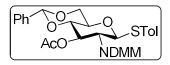
Preparation of *p*-methylphenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-dimethylmalemido-1-thio-β-D-glucopyranoside 20


The compound **20** was prepared from **17** (6.2 g, 13.16 mmol) by general procedure for synthesis of thioglycosides (Chapter 2). Colourless solid; Yield = 5.06 g (74%); $R_f = 0.60$ in 1:1

EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 5.60 (t, J = 10.1 Hz, 1H), 5.48 (d, J = 10.4 Hz, 1H), 5.05 (t, J = 9.6 Hz, 1H), 4.27-4.15 (m, 2H), 4.08 (t, J = 8.0 Hz, 1H), 3.83-3.78 (m, 1H), 2.34 (s, 3H), 2.09 (s, 3H), 2.00-1.97 (m, 9H), 1.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 170.6, 170.1, 169.4, 138.6, 138.0, 137.0, 133.8, 129.6, 126.9, 83.0, 77.3, 77.0, 76.7, 75.7, 71.7, 68.6, 62.1, 53.4, 21.1, 20.7, 20.6, 20.4, 8.7.

Preparation of p-methylphenyl 4,6-benzylidene-2-deoxy-2-dimethylmalemido-1-thio- β -D-glucopyranoside 23

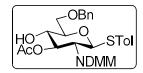
The compound 23 was prepared from 20 (3 g, 5.77 mmol) by general procedure for O-deacetylation followed by benzylidene acetal protection (Chapter 2). Colourless foam; Yield = 2.14 g



(77%); $R_f = 0.50$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 2H), 7.36-7.34 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 5.51 (s, 1H), 5.43 (d, J = 10.4 Hz, 1H), 4.43 (t, J = 9.2 Hz, 1H), 4.33 (m, 1H), 4.05 (t, J = 10.4 Hz, 1H), 3.75 (t, J = 10.4 Hz, 1H), 3.60-3.54 (m, 1H), 3.50-3.46 (m, 1H), 2.61 (s, 1H), 2.33 (s, 3H), 1.96 (br s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 171.2, 138.3, 137.4, 136.9, 133.2, 129.7, 129.3,

128.3, 127.9, 126.3, 101.8, 84.5, 81.8, 77.3, 77.0, 76.7, 70.1, 69.8, 68.5, 60.3, 55.4, 21.1, 14.1, 8.7. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₆H₂₇NO₆S 504.1457, found 504.1456.

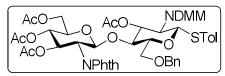
Preparation of *p*-methylphenyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-deoxy-2-dimethylmalemido-1-thio-β-D-glucopyranoside 26


The compound **26** was prepared from **23** (1.03 g, 2.08 mmol) by general procedure for acetylation at 3^{rd} position. Colourless foam; Yield = 0.98 g (90%); $R_f = 0.53$ in 1:1 EtOAc/hexanes; ¹H

NMR (400 MHz, CDCl₃): δ 7.41-7.40 (m, 2H), 7.32-7.28 (m, 5H), 7.10 (d, J = 8.0 Hz, 2H), 5.70 (t, J = 9.6 Hz, 1H), 5.60 (d, J = 10.4 Hz, 1H), 5.48 (s, 1H), 4.38-4.34 (m, 1H), 4.09 (t, J = 10.4 Hz, 1H), 3.79-3.62 (m, 3H), 2.32 (s, 3H), 1.95 (s, 6H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 170.7, 169.9, 138.5, 138.0, 136.8, 133.5, 129.6, 128.9, 128.1, 127.2, 126.1, 101.4, 83.8, 78.7, 77.3, 77.2, 77.0, 76.7, 70.6, 70.3, 68.4, 54.0, 21.0, 20.4, 8.7. LCMS (m/z): [M+Na]⁺ calcd for C₂₈H₂₉NO₇S 546.16, found 546.50. Anal. calcd. for C₂₈H₂₉NO₇S: C, 64.23; H, 5.58; N, 2.68, found C, 64.13; H, 5.52; N, 2.61.

Preparation of *p*-methylphenyl 3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-dimethylmalemido-1-thio-β-D-glucopyranoside 29

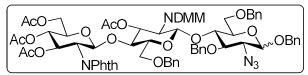
The compound **29** was prepared from **26** (0.91 g, 1.74 mmol) by using general procedure for regioselective benzylidene ring opening (Chapter 2). Colourless solid; Yield = 0.7 g (77%); $R_f = 0.50$ in 1:1



EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.27 (m, 7H), 7.02 (d, J = 7.6 Hz, 2H), 5.57 (d, J = 10.4 Hz, 1H), 5.57 (d, J = 10.4 Hz, 1H), 5.51 (t, J = 8.4 Hz, 1H), 4.59-4.52 (m, 2H), 4.03 (t, J = 10.4 Hz, 1H), 3.84-3.75 (m, 2H), 3.68-3.64 (m, 2H), 3.25 (br s, 1H), 2.28 (s, 3H), 1.93-1.90 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.9, 170.8, 137.9, 137.8, 136.7, 133.1, 129.4, 128.2, 127.6, 127.5, 82.9, 78.6, 77.3, 77.0, 76.7, 74.3, 73.4, 70.2, 69.7, 53.4, 20.9, 20.5, 8.7, 8.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₈H₃₁NO₇S 548.1719, found 548.1712.

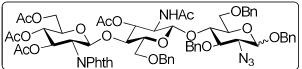
Preparation of *p*-methylphenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-dimethylmaleimido- β -D-glucopyranoside 38

The compound **38** was prepared from **16** (0.54 g, 0.92 mmol) and **29** (0.41 g, 0.77 mmol) by using general procedure for the chemoselective glycosylation with trichloroacetimidate


donor. Colourless foam; Yield = 0.52 g (72%); R_f = 0.47 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz,

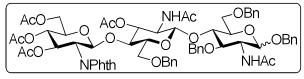
2H), 7.34-7.24 (m, 8H), 6.98 (d, J = 8.1 Hz, 1H), 5.71 (dd, J = 10.6, 9.1 Hz, 1H), 5.51 (t, J = 9.5 Hz, 1H), 5.43 (d, J = 8.3 Hz, 1H), 5.36 (d, J = 10.6 Hz, 1H), 5.15-5.05 (m, 1H), 4.51-4.46 (m, 1H), 4.40 (t, J = 3.6 Hz, 1H), 4.36 (d, J = 8.1, 4.2 Hz, 1H), 4.19 (dd, J = 10.6, 8.3 Hz, 1H), 4.11 (d, J = 7.1 Hz, 1H), 4.04 (d, J = 9.4 Hz, 1H), 3.96-3.91 (m, 1H), 3.57-3.54 (m, 2H), 3.45 (m, 2H), 2.26 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H), 1.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 170.1, 169.9, 169.4, 138.4, 138.3, 134.3, 133.8, 131.3, 129.5, 128.2, 127.8, 127.4, 127.2, 123.7, 96.8, 82.9, 78.4, 73.7, 72.7, 72.0, 71.6, 70.6, 68.4, 67.8, 61.4, 54.8, 53.8, 21.1, 20.7, 20.6, 8.9, 8.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₄₈H₅₀N₂O₁₆S 965.2779, found 965.2781.

Preparation of benzyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -3-O-acetyl-6-O-benzyl-2-deoxy-2-dimethylmaleimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-deoxy- α/β -D-glucopyranoside 44


The compound **44** was prepared using **38** (0.39 g, 0.41 mmol) and **36** (0.170 g, 0.34 mmol) by using general procedure for

the glycosylation with thioglycoside donor. Colourless liquid; Yield = 0.33 g (74%); $R_f = 0.40$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.83 (m, 3H), 7.79-7.72 (m, 3H), 7.32-7.25 (m, 18H), 7.10 (t, J = 7.35 Hz, 4H), 5.66 (t, J = 9.7 Hz, 1H), 5.40 (d, J = 8.8 Hz, 2H), 5.26 (d, J = 8.4 Hz, 1H), 5.12-5.06 (m, 1.6H), 4.97-4.90 (m, 0.8H), 4.84 (dd, J = 12.3, 2.6 Hz, 1.5H), 4.77-4.65 (m, 1.8H), 4.60 (d, J = 12.3 Hz, 1H), 4.54-4.44 (m, 4.8H), 4.38-4.31 (m, 3H), 4.20- 4.06 (m, 4H), 3.99 (t, J = 9.1 Hz, 1.3H), 3. 93-3.83 (m, 3H), 3.59-3.35 (m, 5.7H), 3.29-3.18 (m, 2.8H), 3.04 (d, J = 9.7 Hz, 1H), 2.03 (s, 3.8H), 1.98 (s, 7H), 1.87 (br s, 8H), 1.81 (s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 170.3, 169.9, 169.8, 169.2, 167.5, 148.0, 138.3, 138.1, 138.0, 137.0, 136.6, 134.3, 133.4, 131.2, 129.9, 128.2, 128.1, 127.9, 127.9, 127.7, 127.6, 127.5, 127.3, 127.1, 127.1, 127.0, 123.5, 100.1, 97.1, 96.7, 96.6, 96.3, 80.9, 77.7, 74.5, 74.4, 74.3, 74.0, 73.9, 73.4, 73.2, 72.7, 72.6, 72.5, 72.1, 71.4, 71.3, 71.1, 71.0, 70.9, 70.8, 70.5, 70.1, 69.4, 68.3, 68.2, 67.8, 67.5, 66.8, 66.7, 65.7, 62.7, 61.3, 61.2, 55.4, 54.7, 52.6, 29.5, 20.5, 20.4, 20.2, 8.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{68}H_{71}N_5O_{21}$ 1316.4539, found 1316.4543.

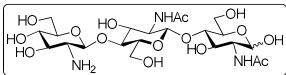
Preparation of benzyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3-O-acetyl-6-O-benzyl-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside 45


The compound **45** was prepared from **44** (0.28 g, 0.21 mmol) by general procedure for conversion of *N*-DMM to *N*-acetyl

group. Colourless oil; Yield = 0.196 g (76%); $R_f = 0.27$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 5.5, 3.0 Hz, 2H), 7.77 (dd, J = 5.3, 3.0 Hz, 2H), 7.36-7.11 (m, 20H), 5.71 (t, J = 8.9 Hz, 1H), 5.34 (d, J = 8.4 Hz, 1H), 5.11 (t, J = 9.3 Hz, 1H), 5.04 (dd, J = 11.2, 8.9 Hz, 1H), 4.95-4.88 (m, 2H), 4.77 (dd, J = 11.0, 8.1 Hz, 1H), 4.72-4.54 (m, 3H), 4.43-4.29 (m, 3H), 4.27-4.11 (m, 4H), 4.06-3.80 (m, 4.7H), 3.67-3.55 (m, 2.4H), 3.42-3.34 (m, 3H), 3.27 (dd, J = 12.0, 8.8 Hz, 1H), 3.20-3.15 (m, 1H), 3.00 (d, J = 9.5 Hz, 1H), 2.07 (s, 7H), 2.01 (s, 4H), 1.84 (s, 3H), 1.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.6, 170.4, 170.0, 169.9, 169.8, 169.4, 167.2, 138.5, 138.4, 138.3, 138.2, 138.1, 137.3, 137.1, 137.0, 136.6, 136.5, 134.4, 131.2, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.3, 127.2, 127.1, 127.0, 126.9, 123.5, 100.6, 100.4, 99.5, 96.9, 96.8, 96.7, 80.9, 77.9, 77.2, 76.5, 74.8, 74.2, 74.1, 73.7, 73.4, 72.9, 72.2, 71.4, 70.8, 70.4, 69.6, 68.2, 67.6, 67.6, 65.9, 62.8, 61.2, 60.3, 54.8, 54.1, 29.6, 23.1, 20.6, 20.5, 20.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{64}H_{69}N_5O_{20}$ 1250.4434, found 1250.4439.

Preparation of benzyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy- α/β -D-glucopyranoside 46

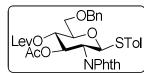
The compound **46** was prepared from **45** (152 mg, 0.124 mmol) using general procedure for reductive acetylation of azide



to *N*-acetyl group (Chapter 2): Colourless oil; Yield = 114 mg (74%); $R_f = 0.27$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 5.5, 3.1 Hz, 3H), 7.75 (dd, J = 5.5, 3.1 Hz, 3H), 7.38-7.16 (m, 24H), 5.76-5.71 (m, 1.5H), 5.60 (t, J = 7.7 Hz, 1H), 5.41 (dt, J = 13.4, 8.3 Hz, 1.5H), 5.14-5.09 (m, 2H), 4.88-4.77 (m, 3.6H), 4.70 (d, J = 12.1 Hz, 1H), 4.60-4.54 (m, 2H), 4.49 (d, J = 12.2 Hz, 2H), 4.46-4.30 (m, 6.5H), 4.21 (dd, J = 8.0, 2.5 Hz, 1.8H), 4.15 (dd, J = 12.4, 3.9 Hz, 1.7H), 4.06 (t, J = 9.3 Hz, 2H), 4.00-3.89 (m, 4H), 3.71 (d, J = 5.4 Hz, 1H), 3.66 (t, J = 5.0 Hz, 1H), 3.63-3.59 (m, 1.6H), 3.53-3.39 (m, 4.7H), 3.03-3.21

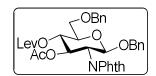
(m, 1.7H), 3.08-3.01 (m, 1H), 2.32 (s, 3H), 2.06 (s, 7H), 2.00 (s, 8H), 1.83 (s, 4.4H). 13 C NMR (100 MHz, CDCl₃): δ 171.2, 170.7, 170.6, 170.3, 170.2, 169.9, 169.8, 169.6, 169.3, 139.4, 138.4, 138.1, 137.9, 137.7, 137.5, 137.0, 134.4, 134.3, 131.2, 128.3, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 127.3, 127.2, 123.5, 100.6, 99.9, 99.7, 99.6, 97.0, 96.8, 77.7, 77.2, 74.3, 74.2, 73.9, 73.8, 73.6, 73.5, 73.3, 72.03, 72.7, 72.6, 72.4, 72.2, 71.5, 70.4, 70.0, 69.6, 69.5, 68.4, 67.4, 61.4, 54.8, 54.0, 53.6, 52.2, 50.5, 29.5, 22.5, 20.6, 20.5, 20.4, 20.2. LCMS (m/z): [M+Na]⁺ calcd for C₆₆H₇₃N₃O₂₁ 1266.46, found 1266.42. Anal. calcd. for C₆₆H₇₃N₃O₂₁: C, 63.71; H, 5.91; N, 3.38, found C, 63.85; H, 5.81; N, 3.45.

Preparation of 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranose 47


The compound **47** is prepared from **46** (41 mg, 0.032 mmol) by general procedure for one pot deacetylation and dephthaloylation followed by debenzylation. A colourless solid;

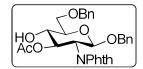
followed by debenzylation. A colourless solid; Yield = 13.8 mg (77%); ¹H NMR (400 MHz, D₂O): δ 5.15 (s, 0.2H), 4.59 (s, 3H), 4.15-4.05 (m, 1.5H), 3.87-3.46 (m, 10H), 3.51-3.42 (m, 3.8H), 3.03-3.00 (m, 1.5H), 2.89-2.82 (m, 1H), 2.02 (s, 4H), 1.90 (s, 4H). MALDI-MS (m/z): [M+H]⁺ (positive mode, DHB/MeOH matrix); 586.27.

Preparation of *p*-methylphenyl 3-*O*-acetyl-6-*O*-benzyl-2-deoxy-4-*O*-levulinoyl-2-phthalimido-1-thi-β-D-glucopyranoside 31


The compound **31** was prepared from **28** (720 mg, 1.31 mmol) by using literature procedure.²⁶ Colourless liquid; Yield = 693 mg (82%); $R_f = 0.50$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz,

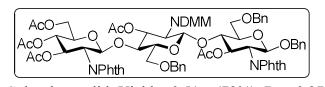
CDCl₃): δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 7.35-7.30 (m, 7H), 7.00 (d, J = 8.1 Hz, 2H), 5.79 (t, J = 9.8 Hz, 1H), 5.68 (d, J = 10.5 Hz, 1H), 5.14 (t, J = 10.0 Hz, 1H), 4.54 (s, 2H), 3.33 (t, J = 10.4 Hz, 3.89-3.85 (m, 1H), 3.69-3.61 (m, 1H), 2.64 (q, J = 7.1 Hz, 2H), 2.40 (q, J = 7.0 Hz, 2H), 2.28 (s, 3H), 2.11 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.9, 171.2, 170.3, 167.7, 138.7, 137.9, 134.3, 134.1, 133.7, 133.4, 131.6, 131.1, 129.6, 128.2, 127.7, 127.5, 127.3, 123.5, 83.0, 73.4, 72.7, 71.4, 69.5, 69.1, 53.7, 37.5, 29.5, 27.7, 21.0, 20.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₅H₃₅NO₉S 668.1930, found 668.1932.

Preparation of benzyl 3-O-acetyl-6-O-benzyl-2-deoxy-4-O-levulinoyl-2-phthalimido-β-Dglucopyranoside 33


The compound 33 was prepared from 31 (600 mg, 0.93 mmol) by using general procedure for the glycosylation with thioglycoside donor. Gummy liquid; Yield = 443 mg (76%); $R_f = 0.47$ in 1:1

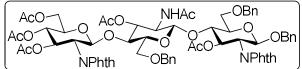
EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.70 (m, 4H), 7.36-7.28 (m, 5H), 7.11-7.08 (m, 5H), 5.79 (t, J = 9.9 Hz, 1H), 5.38 (d, J = 8.4 Hz, 1H), 5.18 (t, J = 9.7 Hz, 1H), 4.85 (d, J = 12.2 Hz, 1H), 4.61-4.52 (m, 3H), 4.36 (dd, J = 10.6, 8.4 Hz, 1H), 3.87-3.82 (m, 1H),3.70-3.62 (m, 2H), 2.64 (q, J = 6.3 Hz, 2H), 2.40 (q, J = 6.7 Hz, 2H), 2.12 (s, 3H), 1.89 (s, 3H), 1.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.1, 171.3, 170.4, 138.0, 136.8, 134.1, 131.4, 128.3, 128.2, 127.8, 127.7, 127.6, 123.5, 97.1, 73.6, 73.3, 71.1, 70.5, 69.9, 69.0, 54.7, 37.6, 29.6, 27.8, 20.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₅H₃₅NO₁₀ 652.2159, found 652.2161.

Preparation benzyl 3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido-β-Dof glucopyranoside 35


The compound 35 was prepared from 33 (429 mg, 0.68 mmol) by using literature procedure. ²⁷ Colourless oil; Yield = 334 mg (92%); R_f = 0.55 in 1:1 EtOAc/hexanes; 1 H NMR (400 MHz, CDCl₃): δ 7.77 (br

s, 2H), 7.68 (dd, J = 5.3, 2.8 Hz, 2H), 7.38-7.29 (m, 5H), 7.10-7.04 (m, 5H), 5.67 (dd, J =10.7, 8.4 Hz, 1H), 5.40 (d, J = 8.5 Hz, 1H), 4.84 (d, J = 12.2 Hz, 1H), 4.64 (q, J = 12.1 Hz, 2H), 4.54 (d, J = 12.2 Hz, 1H), 4.30 (dd, J = 10.7, 8.5 Hz, 1H), 3.86-3.74 (m, 4H), 3.19 (s, 1H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 167.6, 137.7, 136.9, 134.0, 131.4, 128.4, 128.1, 127.7, 127.6, 127.5, 123.4, 97.2, 74.3, 73.6, 73.4, 71.1, 71.1, 70.0, 54.6, 20.6. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{30}H_{29}NO_8$ 554.1791, found 554.1793.

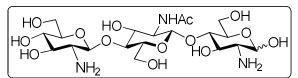
Preparation of benzyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1\rightarrow 4)$ -3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-dimethylmaleimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -3-O-acetyl-6-O-benzyl-2-deoxy-2- phthalimido-β-D-glucopyranoside 48


The compound 48 was prepared from **38** (0.55 g, 0.58 mmol) and **35** (257 mg, 0.48 mmol) by using general procedure for the glycosylation with thioglycoside donor. Colourless solid; Yield = 0.51 g (78%); $R_f = 0.37$

in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 5.2, 3.2 Hz, 2H), 7.76 (dd, J = 5.3, 3.0 Hz, 2H), 7.71-7.65 (m, 4H), 7.36-7.24 (m, 10H), 7.11-7.02 (m, 5H), 5.65-5.59 (m, 2H), 5.36 (d, J = 7.0 Hz, 1H), 5.33 (d, J = 4.5 Hz, 1H), 5.25 (d, J = 8.7 Hz, 1H), 5.12 (d, J = 8.4 Hz, 1H), 5.06 (t, J = 9.5 Hz, 1H), 4.76 (d, J = 12.2 Hz, 1H), 4.55 (q, J = 12.1 Hz, 2H), 4.48 (d, J = 11.9 Hz, 1H), 4.42 (d, J = 9.2 Hz, 1H), 4.32 (dd, J = 12.5, 3.7 Hz, 1H), 4.22 (dd, J = 10.3, 8.7 Hz, 1H), 4.16-4.03 (m, 4H), 3.87 (d, J = 11.3 Hz, 1H), 3.78 (dd, J = 10.4, 8.6 Hz, 1H), 3.64 (d, J = 10.6 Hz, 1H), 3.57-3.44 (m, 4H), 3.30 (d, J = 11.1 Hz, 1H), 2.02 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.90 (br s, 6H), 1.79 (s, 3H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 170.3, 170.0, 169.9, 169.8, 169.2, 167.4, 148.4, 138.2, 138.0, 137.4, 136.8, 134.3, 133.9, 131.2, 128.1, 127.9, 127.8, 127.4, 127.3, 127.1, 127.0, 123.5, 123.2, 105.1, 97.0, 96.2, 96.2, 77.2, 76.5, 74.2, 73.5, 73.0, 72.7, 72.6, 72.1, 71.1, 7, 71.3, 70.8, 70.6, 70.5, 68.1, 67.7, 67.3, 61.1, 60.2, 54.9, 54.7, 54.7, 20.5, 20.4, 20.3, 20.2, 8.7. HRMS-ESI (m/z): [M+H]⁺ calcd for $C_{71}H_{71}N_3O_{24}$ 1350.4506, found 1350.4563. Anal. calcd. for $C_{71}H_{71}N_3O_{24}$: C, 63.15; H, 5.30; N, 3.11, found C, 63.26; H, 5.23; N, 3.18.

Preparation of benzyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-2-phthalimido-3,6-di-*O*-benzyl-2-deoxy- β -D-glucopyranoside 49

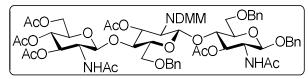
The compound **49** was prepared from **48** (210 mg, 0.15 mmol) by general procedure for conversion of *N*-DMM to *N*-



acetyl group. Colourless oil; Yield = 148 mg (77%); $R_f = 0.30$ in 1:1 EtOAc/hexanes; 1H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 5.2, 3.1 Hz, 2H), 7.78 (dd, J = 5.2, 3.1 Hz, 2H), 7.72-7.67 (m, 4H), 7.37-7.26 (m, 10H), 7.09-7.05 (m, 5H), 5.69 (t, J = 10.0 Hz, 1H), 5.62 (t, J = 10.2 Hz, 1H), 5.31 (dd, J = 12.4, 8.4 Hz, 2H), 5.08 (t, J = 9.7 Hz, 1H), 5.01 (d, J = 9.2 Hz, 1H), 4.85-4.77 (m, 3H), 4.48 (dd, J = 12.3, 4.4 Hz, 2H), 4.41 (d, J = 12.1 Hz, 1H), 4.33 (d, J = 11.5 Hz, 2H), 4.29 (d, J = 8.4 Hz, 1H), 4.25-4.17 (m, 2H), 4.01 (t, J = 9.3 Hz, 1H), 3.91-3.86 (m, 2H), 3.69-3.64 (m, 3H), 3.60 (d, J = 9.9 Hz, 1H), 3.53 (d, J = 10.4 Hz, 1H), 3.32 (t, J = 11.0 Hz, 2H), 3.17 (d, J = 8.3 Hz, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.83 (s, 3H), 1.75 (s, 3H), 1.72 (s, 3H). 13 C NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 170.2, 170.0, 169.8, 169.4, 167.5, 137.9, 137.6, 136.9, 134.5, 134.0, 131.2, 128.6, 128.5, 128.3, 128.1, 127.6, 127.5, 127.5, 127.1, 123.6, 123.2, 114.8, 100.0, 97.3, 96.4, 75.1, 74.1, 73.7, 73.5, 72.8, 72.6, 72.2, 71.4, 71.1, 70.5, 70.5, 68.2, 67.9, 67.3, 61.2, 60.3, 54.8, 54.7, 54.3, 29.6, 23.1, 20.9, 20.6, 20.5, 19.5. LCMS (m/z): $[M+H]^+$ calcd for $C_{67}H_{69}N_3O_{23}$ 1284.44,

found 1284.72. Anal. calcd. for $C_{67}H_{69}N_3O_{23}$: C, 62.66; H, 5.42; N, 3.27, found C, 62.52; H, 5.48; N, 3.32.

Preparation of 2-amino-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy-D-glucopyranose 50


The compound **50** is prepared from **49** (40 mg, 0.05 mmol) by general procedure for one pot deacetylation and dephthaloylation

followed by debenzylation (Chapter 2). Colourless solid; Yield = 17.6 mg (72%); 1 H NMR (400 MHz, D₂O): δ 5.93 (s, 0.2H), 4.60-4.58 (m, 2H), 3.91-3.04 (m, 20H), 2.75-2.68 (m, 1.2H), 1.90 (s, 4H). MALDI-MS (m/z): [M+H]⁺ (positive mode, DHB/MeOH matrix); 544.24.

Benzyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -3-O-acetyl-6-O-benzyl-2-deoxy-2-dimethylmaleimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3-O-acetyl-6-O-benzyl-2-deoxy- β -D-glucopyranoside 51

The compound **51** was prepared from **48** (189 mg, 0.14 mmol) by general procedure for deprotection of phthalimide protecting

group followed by acetylation (Chapter 2). Colourless solid; Yield = 146 mg (91%); $R_f = 0.70$ in 1:30 EtOAc/CHCl₃; ¹H NMR (400 MHz, CDCl₃+CD₃OD): δ 7.45-7.29 (m, 15H), 5.11 (t, J = 10.3 Hz, 1H), 4.98-4.93 (m, 2H), 4.87 (d, J = 12.2 Hz, 1H), 4.73 (d, J = 11.8 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.60 (d, J = 12.3 Hz, 2H), 4.56-4.41 (m, 4H), 4.34 (dd, J = 12.6, 3.8 Hz, 1H), 3.95-3.88 (d, J = 9.1 Hz, 4H), 3.76-3.68 (m, 5H), 3.62-3.59 (m, 1H), 3.49 (d, J = 9.1 Hz, 1H), 3.39-3.29 (m, 4H), 2.05 (s, 3H), 2.01-1.99 (m, 12H), 1.91 (s, 6H), 1.82 (s, 6H). ¹³C NMR (100 MHz, CDCl₃+CD₃OD): δ 171.2, 171.1, 170.9, 170.8, 170.7, 170.6, 170.5, 169.5, 137.5, 137.4, 136.9, 133.9, 128.4, 128.3, 128.0, 127.9, 127.8, 127.4, 122.9, 100.2, 99.6, 99.2, 74.4, 73.8, 73.6, 73.4, 72.9, 72.8, 71.9, 71.0, 70.2, 68.1, 67.6, 67.3, 61.4, 54.4, 53.8, 53.1, 29.3, 22.3, 22.2, 20.3, 20.1, 20.0, 8.1. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₅₉H₇₁N₃O₂₂ 1196.4427, found 1196.4428.

Preparation of 2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranose 52

The compound **52** is prepared from **51** (43 mg, 0.037 mmol) by general procedure for one pot *O*-deacetylation and conversion of

N-DMM to *N*-acetyl followed by *O*-debenzylation. Colourless solid; Yield = 15.8 mg (75%); 1 H NMR (400 MHz, D₂O): δ 5.16 (s, 0.5H), 4.62-4.58 (m, 3H), 3.87-3.48 (m, 18H), 2.04-2.01 (s, 6H). MALDI-MS (m/z): [M+Na]⁺ (positive mode, DHB/MeOH matrix); 608.21.

3.4.2 Materials and methods related to endothelial cells

Cell culture

ECs from collagenase-digested human umbilical veins (HUVECs) were isolated and cultured to confluency at 37 °C with 5% CO₂ in gelatin coated flasks containing M199 medium (Invitrogen, Darmstadt, Germany) supplemented with 10% heat inactivated fetal calf serum (FCS) (PAA laboratories GmbH, Pasching, Austria), 5 U/mL heparin (Biochrom, Berlin, Germany), 1% penicillin and streptomycin, (PAA Laboratories GmbH, Pasching, Austria) and 1% growth supplement derived from bovine retina as described previously.⁴⁴

Wst-1 Assay

To measure the influence of COS on the viability of HUVECs, 15000 cells/well were seeded and further cultivated for 24 h in gelatine coated 96-well plates (Becton Dickinson GmbH, Heidelberg, Germany) containing 100 μ L of growth medium. Cell viability was determined by adding 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium salt (Wst-1 reagent) (Roche, Mannheim, Germany) to the cells treated with different concentrations (2, 10 and 50 μ g/mL) of dimers and partially *N*-acetylchitotrioses for 24 h. Cell viability is related to the cellular reduction of Wst-1 reagent by mitochondrial dehydrogenases into an intensely coloured and soluble formazan. Adsorption was measured at a wavelength of 440 nm.

HUVEC treatment

HUVECs were seeded in gelatine coated cover slips and cultivated to confluence in M199 medium. For pre-treatment, 1 μg/mL of COS was added to the medium and cells were incubated overnight at 37 °C and 5% CO₂. Where indicated, ECs were stimulated with 100 μM histamine (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) for 15 min.

Subsequently, cells were prepared for immunofluorescence staining, and the supernatants were used for enzyme linked immunosorbent assay (ELISA).

VWF ELISA

VWF ELISA was performed as described previously. In brief, supernatants of the HUVECs were added for 1 h at 37 °C to a 96-well plate pre-coated with polyclonal rabbit anti-human VWF antibody (DAKO, Hamburg, Germany) at a final concentration of 6 μg/mL in phosphate buffered saline (PBS, pH 7.4). After washing the wells with washing buffer (PBS, 0.1% Tween 20, pH 7.4), samples were incubated for 1 h at 37 °C with polyclonal rabbit anti-human VWF antibody/HRP (1.1 mg/mL) (DAKO, Hamburg, Germany) at a final dilution of 1:500. The enzyme reaction was started upon addition of ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt; Roche Diagnostics, Mannheim, Germany). The reaction mixture was incubated for 30 min and the absorption was measured at 405 nm. Serially diluted human plasma (800 ng/mL stock concentrations) was used as a standard. Concentrations of VWF measured in the supernatants of HUVECs were expressed in ng/mL.

Immunofluorescence staining

HUVECs were fixed with 4% paraformaldehyde dissolved in PBS. Cells were washed and blocked with 2% bovine serum albumin (BSA) in incubation buffer (100 mM sodium phosphate buffer pH 7.4 containing 4% sucrose) for 1 h at room temperature. Immunofluorescence staining was performed with a rabbit anti-human VWF antibody (3 mg/mL) (DAKO, Hamburg, Germany) at a final dilution of 1:200 in incubation buffer containing 0.5% BSA overnight at 4 °C. After washing, cells were incubated with FITCconjugated goat anti-rabbit antibody (0.5 mg/mL) (Becton Dickinson GmbH, Heidelberg, Germany) at a final dilution of 1:400 in incubation buffer containing 0.5% BSA at room temperature for 1 h. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI) (1 mg/mL) with a dilution of 1:10,000 in PBS for 10 min. Finally, cover slips were embedded with mowiol-glycol solution which was freshly supplemented with 50 mg/mL DABCO (1,4diazabicyclo-[2.2.2]-octane; Sigma-Aldrich Chemie GmbH, Steinheim, Germany). Fluorescence microscopy was performed using a 40x oil-immersion objective and appropriate fluorescence filters (Zeiss, Jena, Germany). To quantify the amount of VWF fiber attached to the endothelium, 10-20 fields of view per experiment were analyzed using ImageJ software.

Preparation of platelets

Platelets were prepared as described previously.⁴⁷ In brief, blood was drawn on sodium citrate coated tubes (Sarstedt, Nuembrecht, Germany) and centrifuged at 120 x g for 15 min at room temperature to obtain platelet rich plasma (PRP). PRP was supplemented with apyrase (75 microunits/mL; Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and prostaglandin E1 (100 nM; Sigma-Aldrich Chemie GmbH, Steinheim, Germany), and centrifuged at 1200 x g for 15 min. The platelet pellet was resuspended in wash buffer (36 mM citric acid, 5 mM glucose, 5 mM KCl, 1 mM MgCl₂, 103 mM NaCl, 2 mM CaCl₂, 75 microunits/mL apyrase, 100 nM PGE1, 3.5 mg/mL bovine serum albumin, pH 6.5) containing calcein red (5 μM) (life technologies, Darmstadt, Germany) at a final dilution of 1:1000 and incubated for 30 min in the dark at room temperature. Subsequently, platelets were centrifuged for 12 min at 1200 x g and washed twice with wash buffer. Finally, the pellet was resuspended in Hepes/Tyrode's buffer (137 mM NaCl, 2 mM KCl, 3 mM NaH₂PO₄, 1 mM MgCl₂, 5.5 mM glucose, 5 mM Hepes, 12 mM NaHCO₃, pH 7.4).

Platelet adhesion to HUVECs under continuous-unidirectional flow conditions

Setup and usage of the applied microfluidic device (IBIDI GmbH, Munich, Germany) has been described previously. ⁴³ In brief, HUVECs (1 x 10⁷ cells/cm²) were grown on gelatine coated μ-slide 0.2 Luer (IBIDI GmbH, Munich, Germany) for 48 h under slight flow (1 dyne/cm²). Cells were pre-treated with 1 μg/mL of COS (mixtures of DP2 and DP3) supplemented in EGM2 medium (Lonza, Basel, and Switzerland) over night. The slide was then connected to the fluidic unit and the perfusion set was filled with HEPES-buffered Ringer solution (10 mM HEPES, 5 mM glucose, 1 mM CaCl₂, 1 mM MgCl₂, 5 mM KCl, 140 mM NaCl) containing 100 μM histamine, 25% washed erythrocytes and fluorescent labelled platelets (4x10⁶ cells/mL). Perfusion was performed with a shear stress of 6 dyne/cm² for 10 min. Calcein red labelled platelets were excited at a wavelength of 555 nm, allowing the visualisation of platelet decorated VWF strings in real time using fluorescence microscopy with 40 X objective (Zeiss, Jena, Germany). Adhesion was quantified at 10-20 fields of view for each microfluidic slide and analysed using ImageJ software.

3.5 References

- 1. Ong, S. Y.; Woochhala, S. M.; Tan, M. H.; Lu, J. Biomaterials 2008, 29, 4323.
- 2. Millner, R. W.; Lockhart, A. S.; Bird, H.; Alexiou, C. Ann. Thorac. Surg. 2009, 87, 13.
- 3. Zakhem, E.; Raghavan, S.; Gilmont, R. R.; Bitar, K. N. Biomaterials 2012, 33, 4810.
- 4. Lubben, I. M. V; Verhoef, J. C.; Borchard, G.; Junginger, H. E. Eur. J. Pharm. Sci. 2001, 14, 201.
- 5. Prabaharan, M.; Mano, J. F. Drug Deliv. 2005, 12, 41.
- 6. Malette, W. G.; Quigley, H. J.; Gaines, R. D.; Johnson, N. D.; Rainer, W. G. *Ann. Thorac. Surg.* **1983**, *36*, 55.
- 7. Ueno, H.; Yamada, H.; Tanaka, I.; Kaba, N.; Matsuura, M.; Okumura, M. *Biomaterials* **1999**, *20*, 1407.
- 8. Sperling, C.; Fischer, M.; Maitz, M. F.; Werner, C. Biomaterials 2009, 30, 4447.
- 9. Vogler, E. A.; Siedlecki, C. A. Biomaterials 2009, 30, 1857.
- 10. Janvikul, W.; Uppanan, P.; Thavornyutikarn, B.; Krewraing, J.; Prateepasen, R.; *J. Appl. Polym. Sci.* **2006**, *102*, 445.
- 11. Lee, K.Y.; Ha, W.S.; Park, W. H. Biomaterials 1995, 16, 1211.
- 12. Thatte, H. S.; Zagarins, S.; Khuri, S. F.; Fischer, T. H. J. Trauma. 2004, 57, S13.
- 13. He, Q.; Gong, K.; Ao, Q.; Ma, T.; Yan, Y.; Gong, Y.; J. Biomater. Appl. 2013, 27, 1032.
- 14. Weinbaum, S.; Tarbell, J. M.; Damiano, E. R. Annu. Rev. Biomed. Eng. 2007, 9, 121.
- 15. Vander, P.; Vårum, K. M.; Domard, A.; Gueddari, N. E. E.; Moerschbacher, B. M. *Plant Physiol.* **1998**, *118*, 1353.
- 16. Akiyama, K.; Kawazu, K.; Kobayashi, A. Carbohydr. Res. 1995, 279, 151.
- 17. Anantharam, V.; Patanjali, S. R.; Swamy, M. J.; Sanadi, A. R.; Goldstein, I. J.; Surolia, A. *J. Biol. Chem.* **1986**, *261*, 14621.
- 18. Nordtveit, R. J.; Vårum, K. M.; Smidsrod, O. Carbohydr. Polym. 1996, 29, 163.

- 19. Kristiansen, A.; Vårum, K. M.; Grasdalen, H. Biochim. Biophys. Acta. 1998, 1425, 137.
- 20. Singh, S.; Gallagher, R.; Derrick, P. J.; Crout, D. H. G. *Tetrahedron: Asymmetry* **1995**, *6*, 2803.
- 21. Kanie, O.; Ito, Y.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 12073.
- 22. Lamberth, C.; Nagy, J. O.; Kasper, C.; Bednarski, M. D. *J. Carbohydr. Chem.* **1994**, *13*, 819.
- 23. Sarkar, S.; Roy, N. J. Carbohydr. Chem. 2000, 22, 285.
- 24. Shih, H.; Chen, K.; Cheng, T.; Wong, C.; Cheng, W. Org. Lett. 2011, 13, 4600.
- 25. Ngoje, G.; Li, Z. Org. Biomol. Chem. 2013, 11, 1879.
- 26. Ho, T. L.; Wong, C. M. Synth. Commun. 1975, 5, 91.
- 27. Melean, L. G.; Love, K. R.; Seeberger, P. H. Carbohydr. Res. 2002, 337, 1893.
- 28. Kanie, O.; Crawley, S. C.; Palcic, M. M.; Hindsgaul, O. Carbohydr. Res. 1993, 243, 139.
- 29. Sato, S.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29, 5267.
- 30. Debenham, J. S.; Maden, R.; Roberts, C.; Fraser-Reid, B. J. Am. Chem. Soc. 1995, 117, 3302.
- Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E. S. I.; El-Ashry, E. S. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 2305.
- 32. Liew, S.-T.; Wei, A. Carbohydr. Res. 2002, 337, 1319.
- 33. Xia, J.; Xue, J.; Locke, R. D.; Chandrasekaran, E. V.; Srikrishnan, T.; Matta, K. L. *J. Org. Chem.* **2006**, *71*, 3696.
- 34. Zemplén, G. Ber. Dtsch. Chem. Ges. 1927, 60B, 1555.
- 35. Donohoe, T. J.; Logan, J. G.; Laffan, D. D. P. Org. Lett. 2003, 5, 4995.
- 36. Nokami, T.; Isoda, Y.; Sasaki, N.; Takaiso, A.; Hayase, S.; Itoh, T.; Hayashi, R.; Shimizu, A.; Yoshida, J. *Org. Lett.* **2015**, *17*, 1525.

- 37. Ebong, E. E.; Macaluso, F. P.; Spray, D. C.; Tarbell, J. M. *Arterioscler. Thromb. Vasc. Biol.* **2011**, *31*, 1908.
- 38. Weinbaum, S.; Tarbell, J. M.; Damiano, E. R. Annu. Rev. Biomed. Eng. 2007, 9, 121.
- 39. Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A. Biomacromolecules 2001, 2, 765.
- 40. Uygun, B. E.; Stojsih, S. E; Matthew, H. W. Tissue Eng. Part A. 2009, 15, 3499.
- 41. Chen, Y. L.; Chen, H. C.; Lee, H. P.; Chan, H. Y.; Hu, Y. C. *Biomaterials* **2006**, *27*, 2222.
- 42. Hamilton, K. K.; Sims, P. J. J. Clin. Invest. 1987, 79, 600.
- 43. Pappelbaum, K. I.; Gorzelanny, C.; Grassle, S.; Suckau, J.; Laschke, M. W.; Bischoff, M. *Circulation* **2013**.
- 44. Goerge, T.; Niemeyer, A.; Rogge, P.; Ossig, R.; Oberleithner, H.; Schneider, S. W. J. Membr. Biol. 2002, 187, 203.
- 45. Takamatsu, N. Nihon Ronen Igakkai Zasshi. 1998, 35, 535.
- 46. Desch, A.; Strozyk, E. A.; Bauer, A. T.; Huck, V.; Niemeyer, V.; Wieland, T. Am. J Pathol. 2012, 181, 693.
- 47. Ceunynck, K. D.; Rocha, S.; Feys, H. B.; Meyer, S. F. D.; Uji, H.; Deckmyn, H. *J. Biol. Chem.* **2011**, *286*, 36361.

3.6 Representative spectra

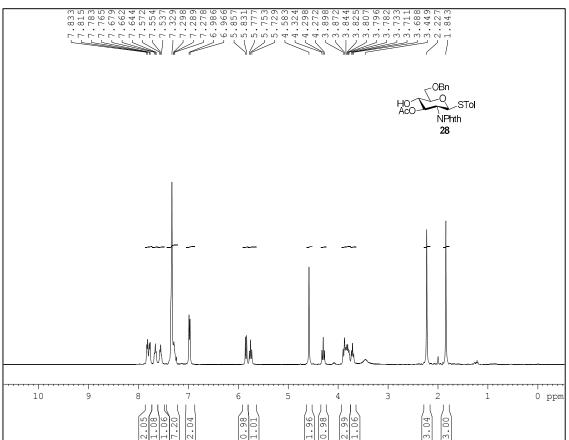
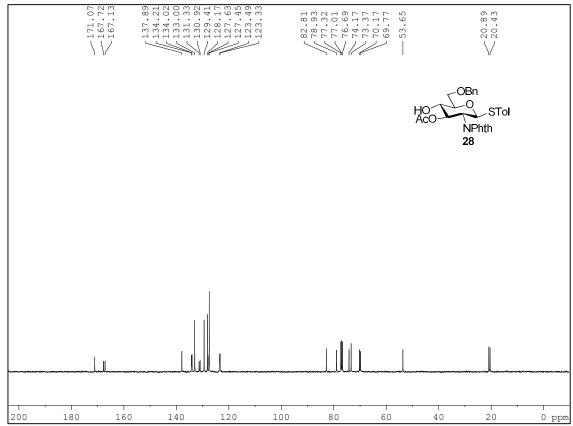
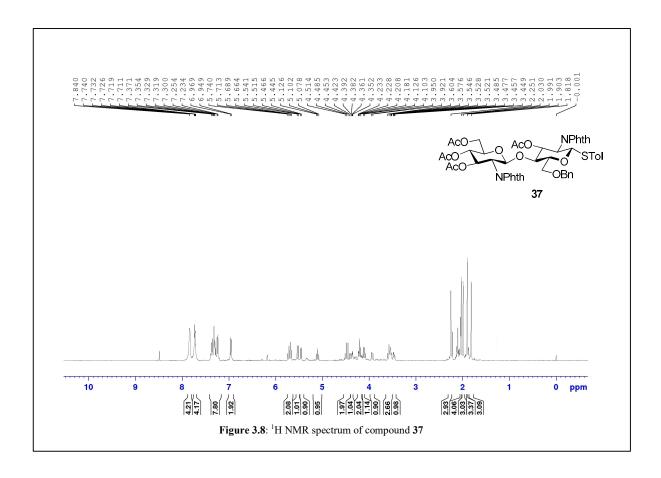
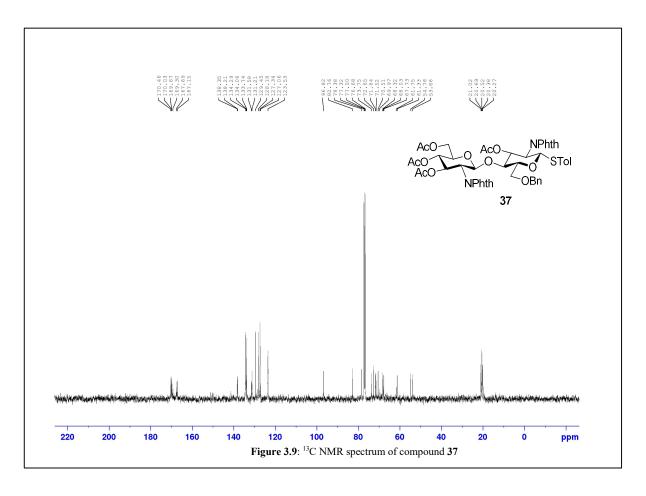
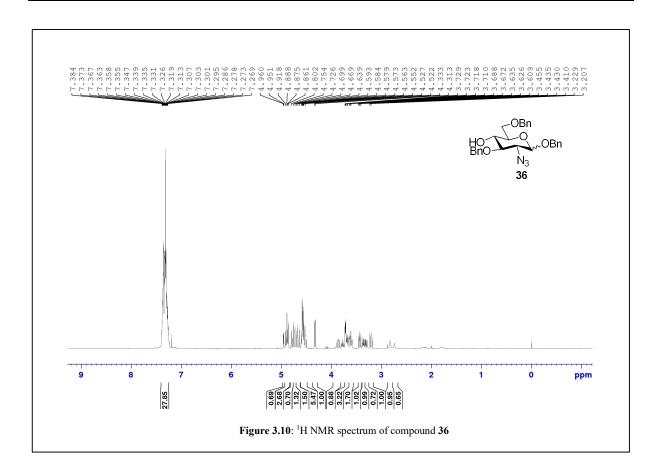
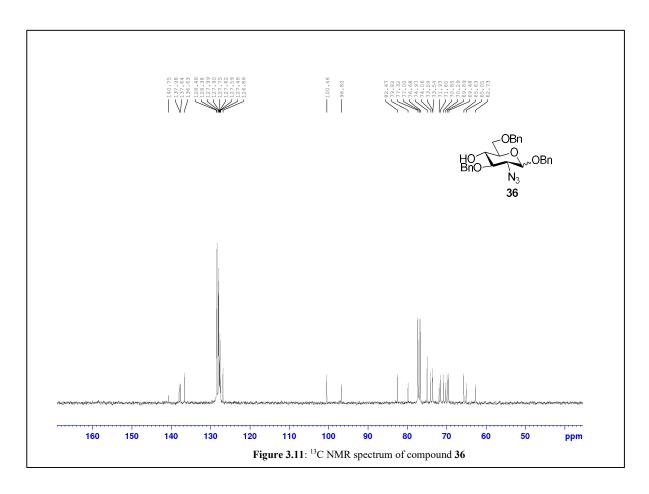
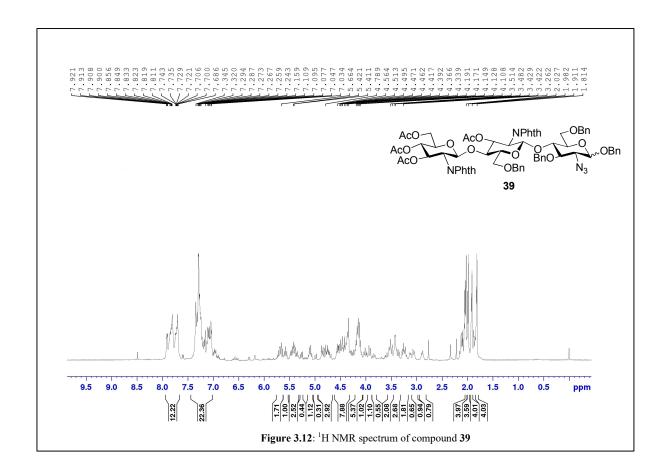
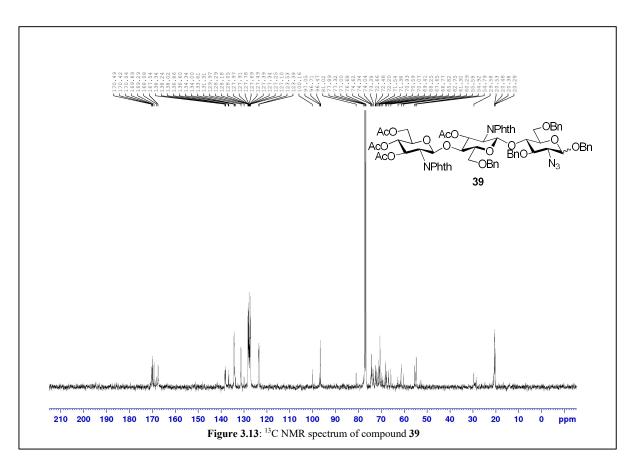
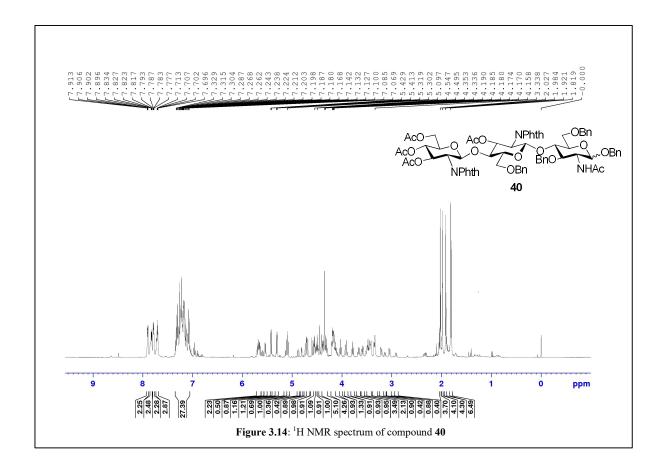


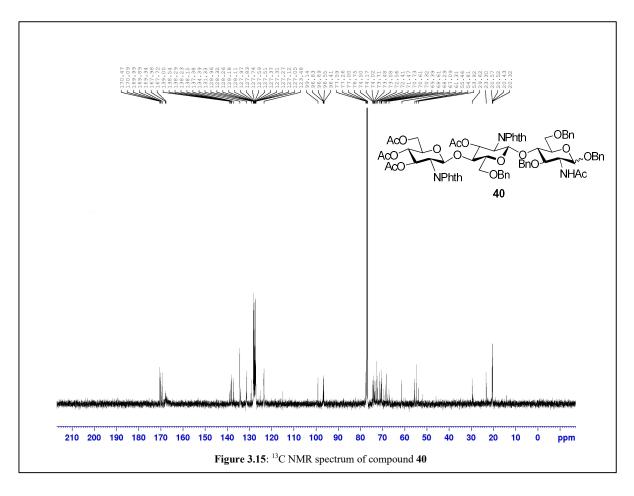
Figure 3.6: ¹H NMR spectrum of compound 28

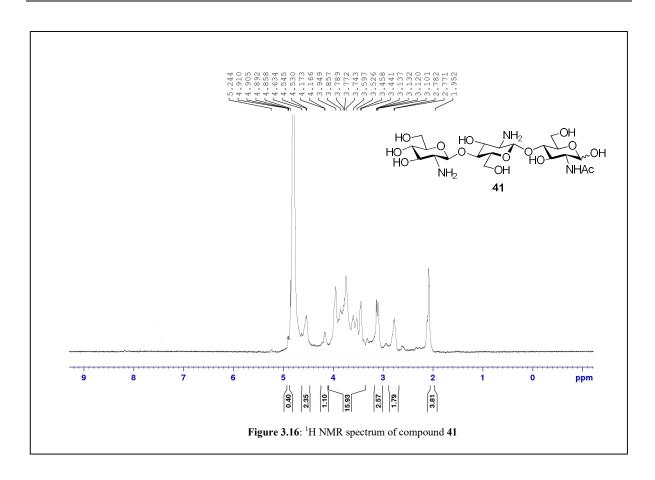






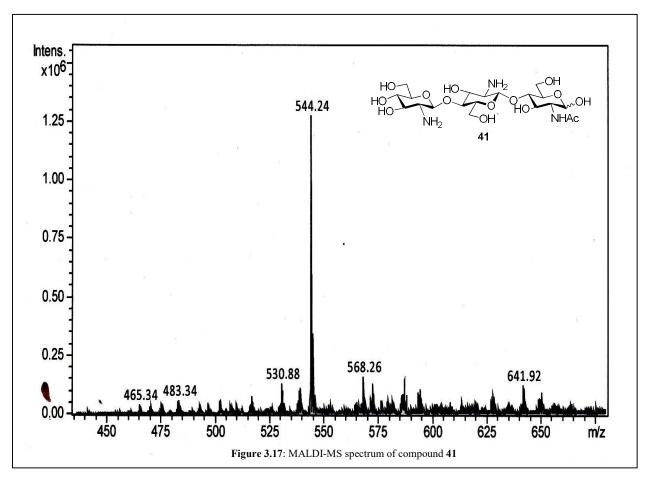

Figure 3.7: ¹³C NMR spectrum of compound 28

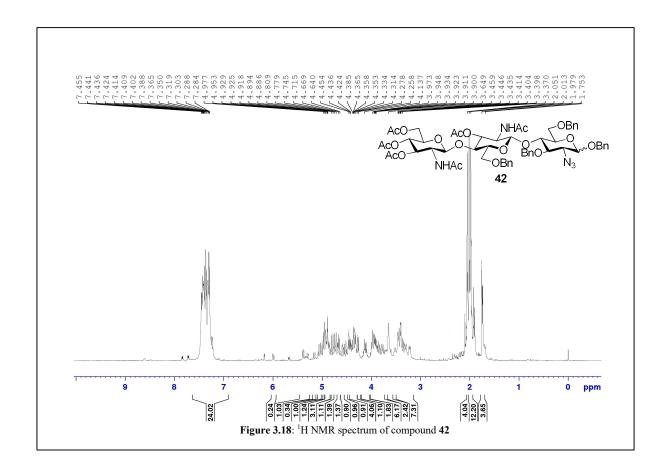


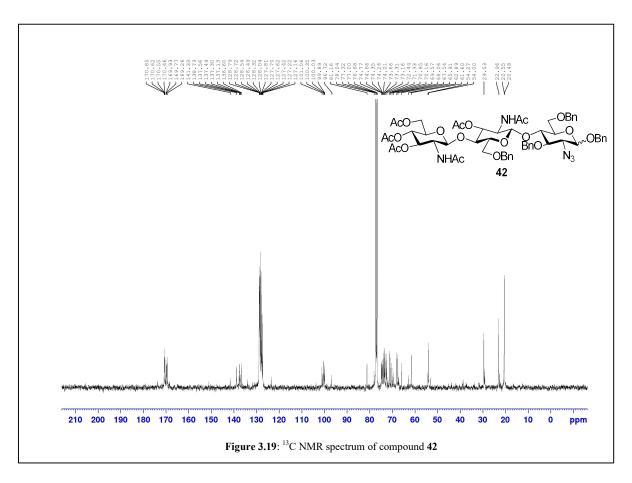


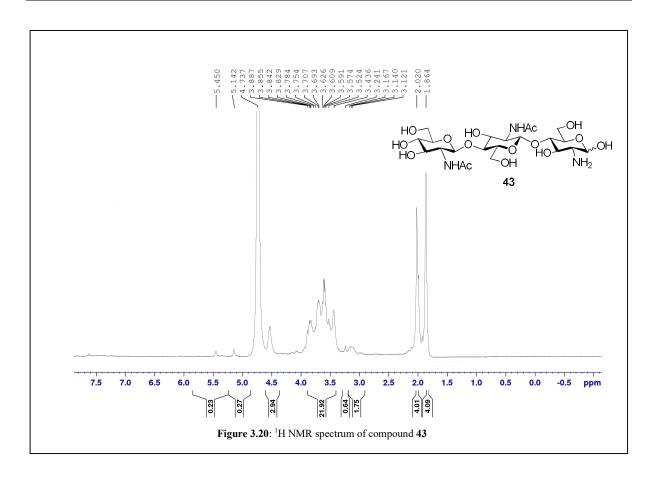


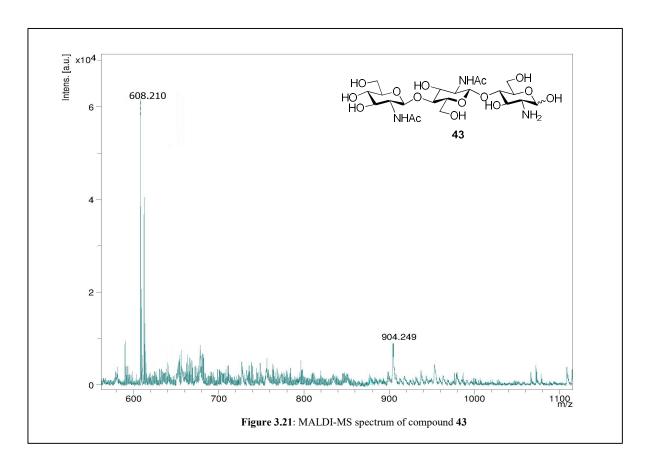












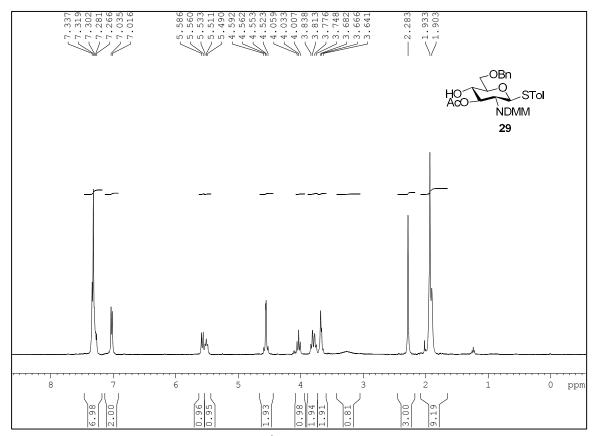
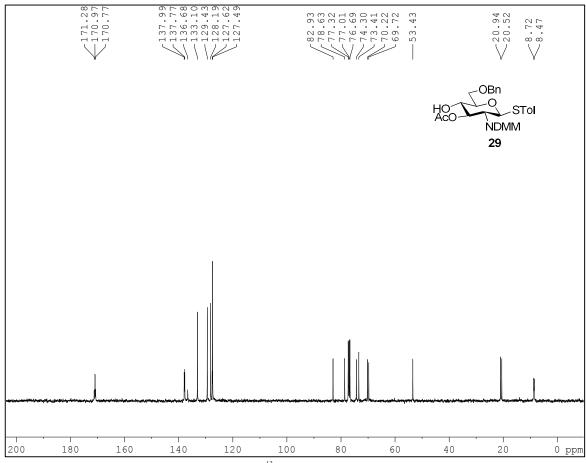
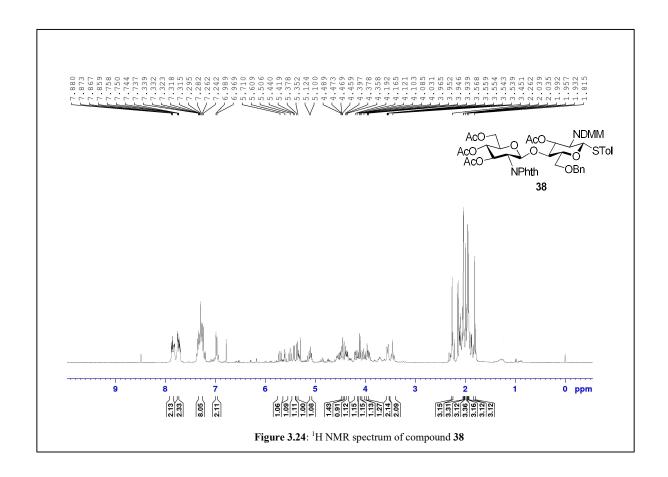
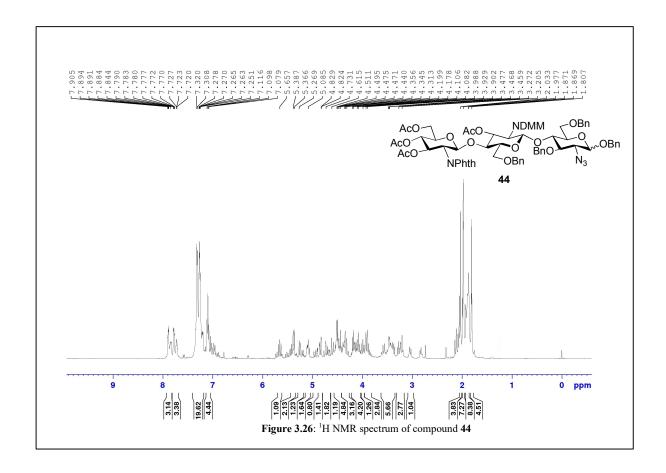
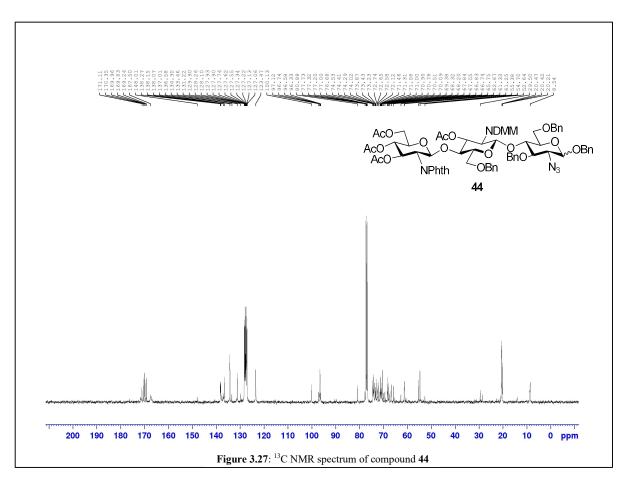
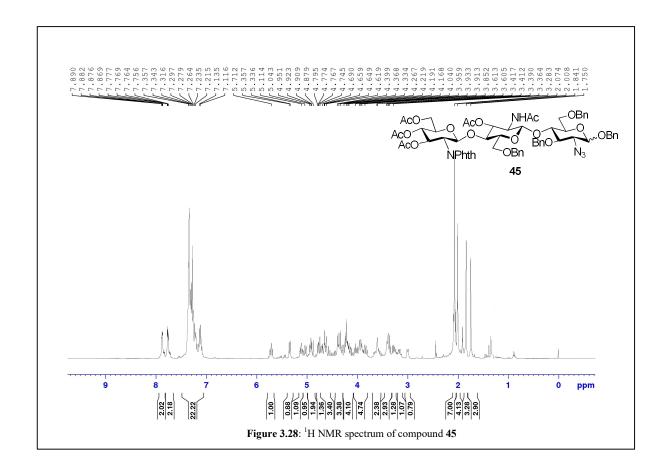
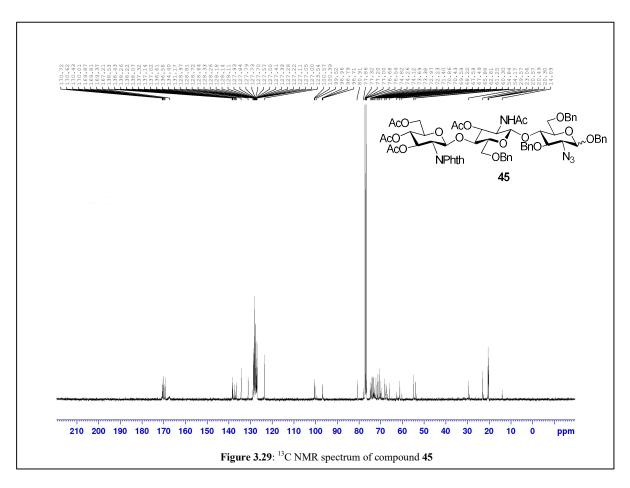
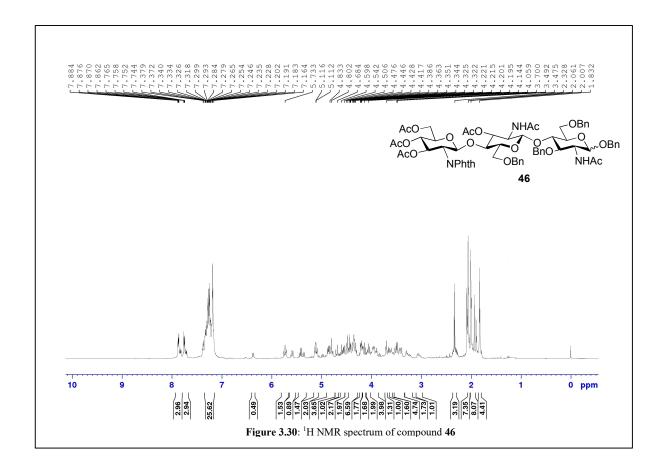


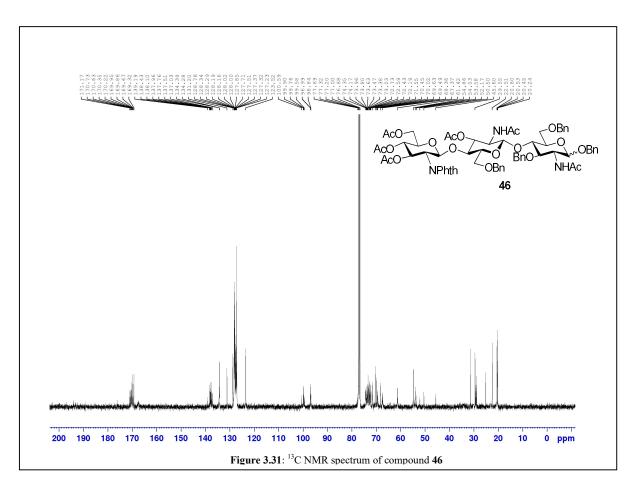
Figure 3.22: ¹H NMR spectrum of compound 29

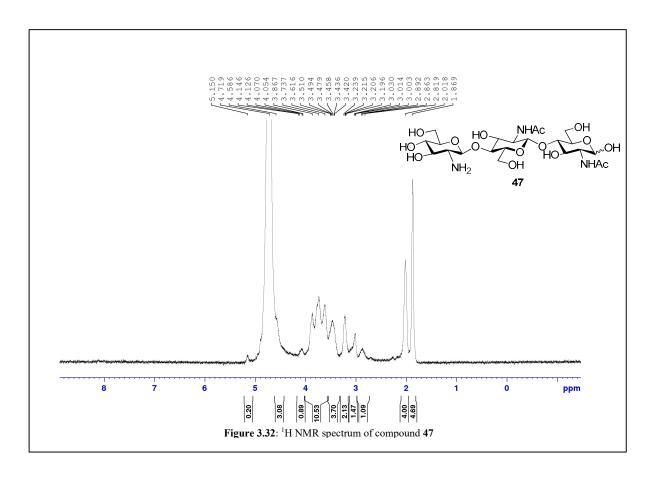





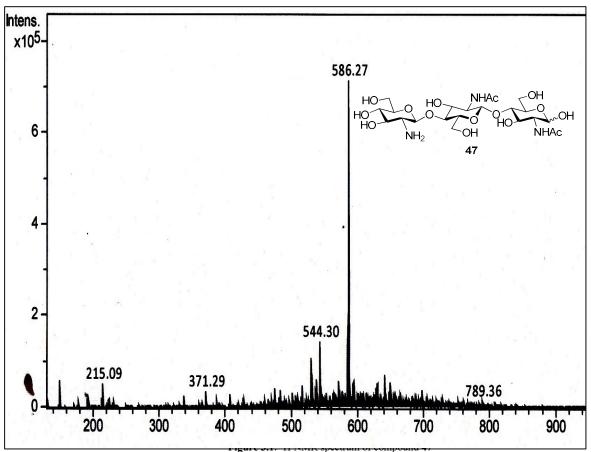
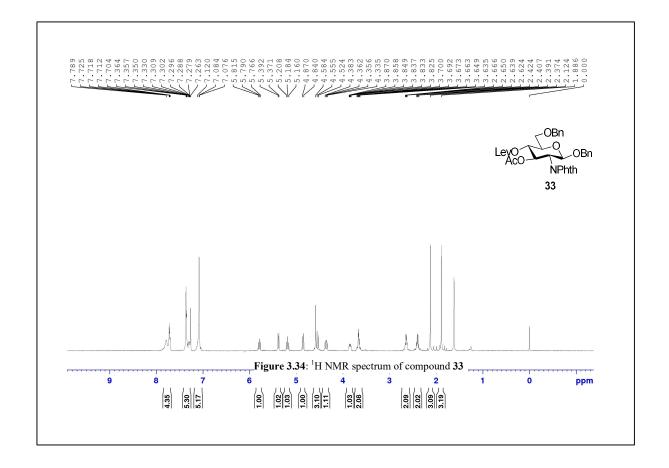
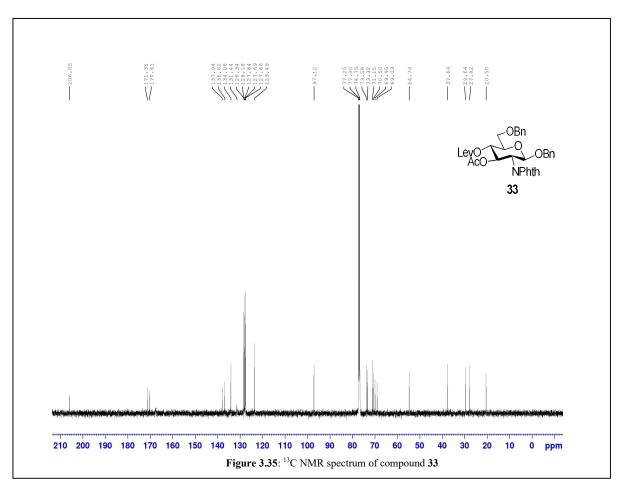
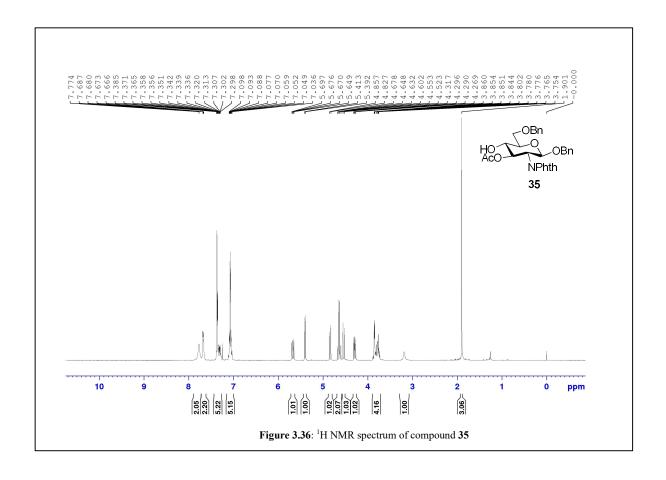
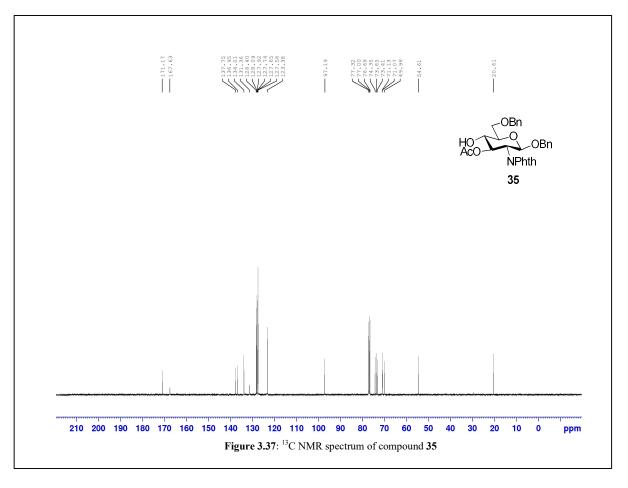

Figure 3.23: ¹³C NMR spectrum of compound 29

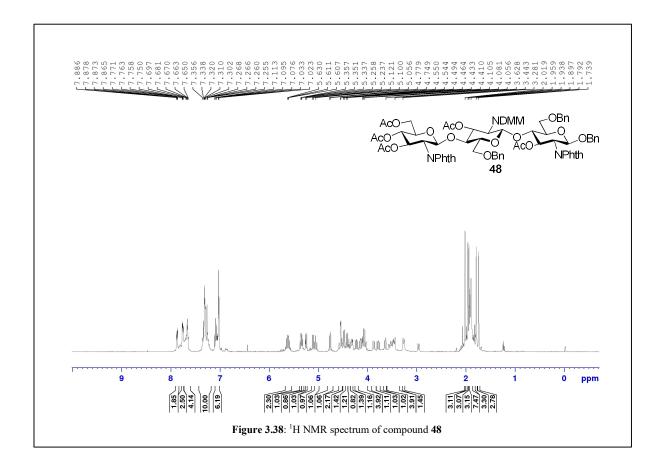


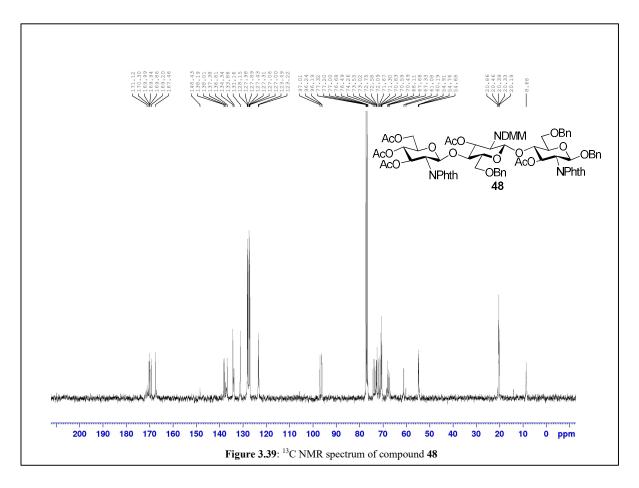


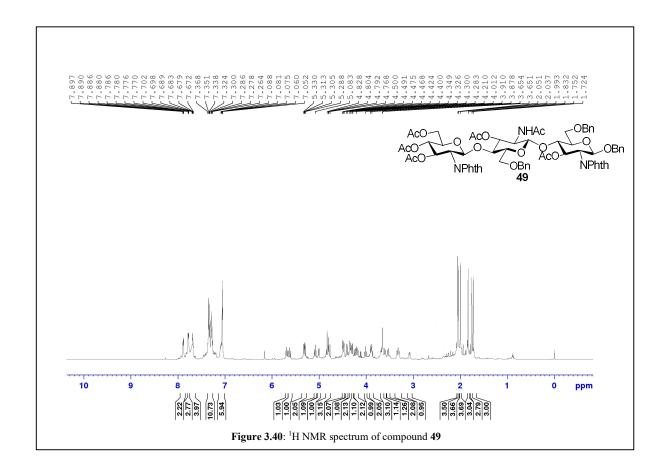


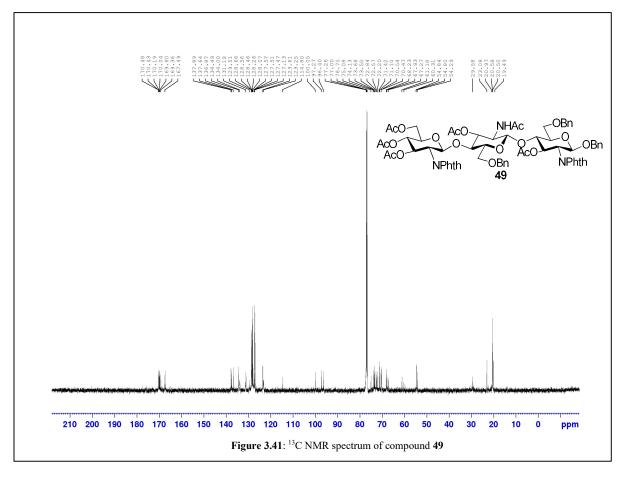


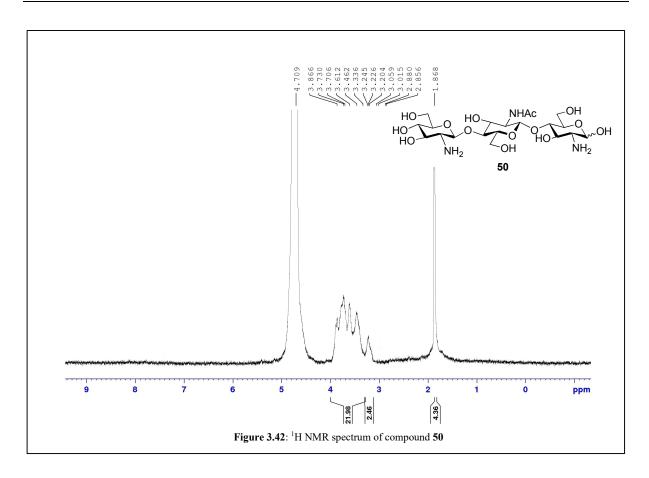






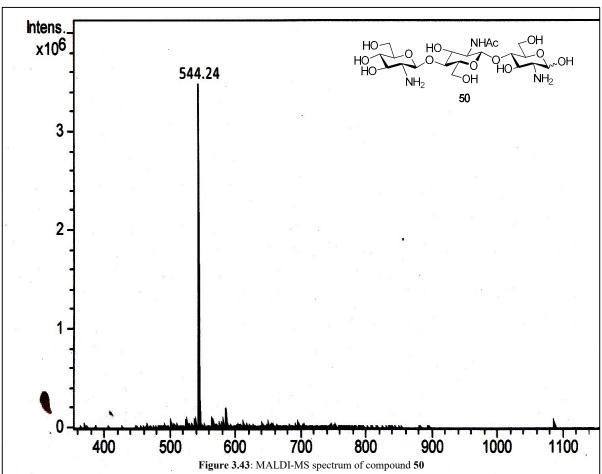

Figure 3.33: MALDI-MS spectrum of compound 47

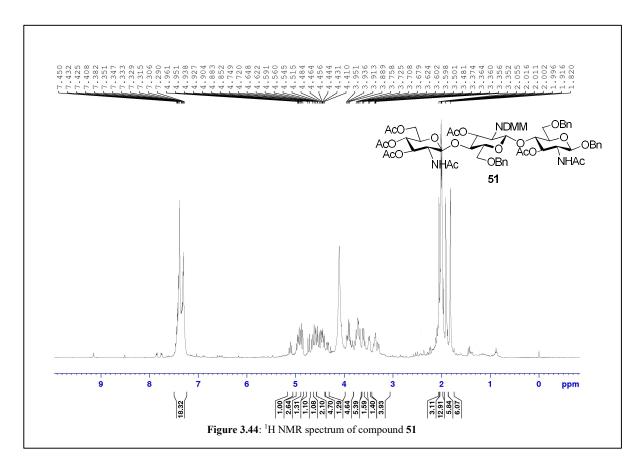


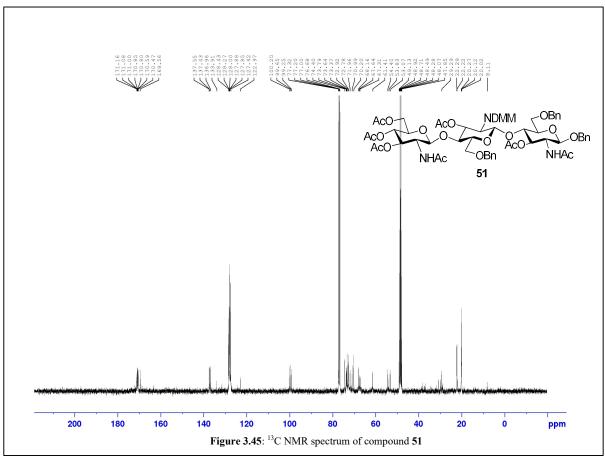


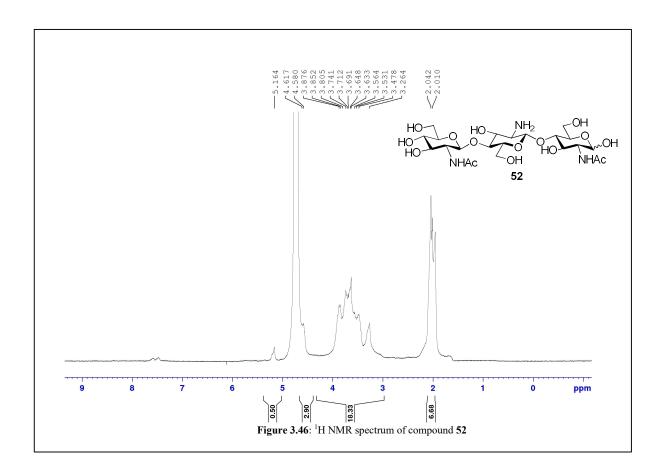


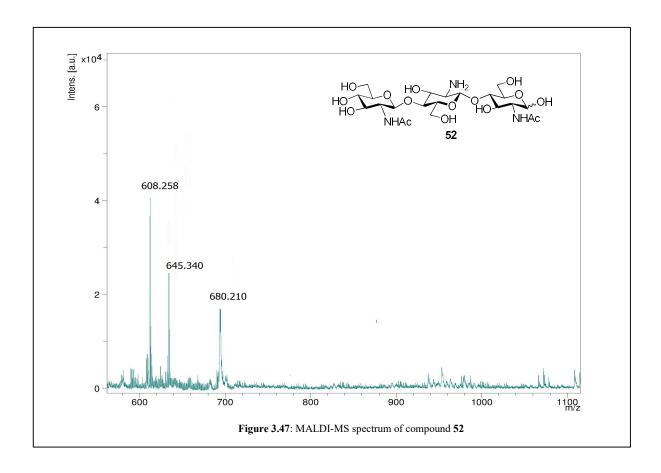












Chapter 4

Synthesis of *p*-nitrophenyl chitobiosides and their biological evaluation

4.1 Introduction

Glycosidases are a class of enzymes that involve in the metabolism of glycoconjugates, thereby playing a crucial role in many biological processes happening in living organisms. This activity is of great significance in the field of glycobiology and biotechnology.^{1,2} Glycosidases can cleave the glycosidic bonds with high substrate specificity.³ These enzymes can be categorised based on their substrate specificity, glycosidic cleavage site, and catalytic mechanism.⁴ Based on the cleavage site of glycosidic bonds, these can be classified as *exo* glycosidases which specifically act on the termini of oligosaccharides, whereas *endo* glycosidases hydrolyze the internal glycosidic linkages. The cleavage may end up with either retention or inversion of configuration at the anomeric centre based on the mechanism of enzymatic hydrolysis (Figure 4.1).^{4,5,6}

Figure 4.1: General mechanism of enzymatic hydrolysis of a glycosidic bond (a) inversion of anomeric configuration (b) retention of anomeric configuration.

Development of synthetic strategies for the synthesis of chemical probes such as glycoconjugates and oligosaccharides to study the function of glycosidases is of great importance. Particularly, these chemical probes are very useful in the detection and mechanism of glycosidase enzymes. These synthetic probes may be chromogenic substrates, fluorogenic substrates, lanthanide complexes, gels gels and gold nanoparticles. Upon activation by the enzymes (glycosidases) these probes release the reporter molecule that can be detected. p-Nitrophenyl substrate 1 is a very good synthetic probe for the characterization of glycosidase enzymes. Here the enzyme acts on the substrate 1 and releases p-nitrophenol 2 which can be detected and quantified colorimetrically. Measuring the absorbance at 405 nm gives the quantitative information about the extend of release of p-nitrophenol and thus the enzyme activity.

Ruan *et al.* reported that indolyl glycoside derivative **4** can also serve as chromogenic enzyme substrates through the formation of blue indigoid dye **5**. Hence, these substrates can be used for alkaline phosphatase enzyme assays (Scheme 4.1).¹³

Scheme 4.1: Glycosidase activity on chromogenic substrates (1 and 4)

4.1.1 Biological significance of *p*-nitrophenyl chitobiosides

p-Nitrophenyl glycosides substrates generally serve as very good substrates for glycosidases. β-N-Acetylhexoaminidases are a class of enzymes which are highly specific and active towards the p-nitrophenyl N-acetylglucosamine and N, N'-diacetylchitobiose. This p-nitrophenyl glucosamine derivative is used extensively as glycosyl donors in the synthesis of higher chitooligosaccharides via enzymatic transglycosylation. 14

Tokuyasu. *et al.* reported the chitin deacetylase isolated from *C. lindemuthianum* which can selectively deacetylate at the non-reducing end of the *p*-nitrophenyl N,N'-diacetylchitobioside 7. Enzymatic deacetylation of $(GlcNAc)_2$ -pNP 7 at the non-reducing end

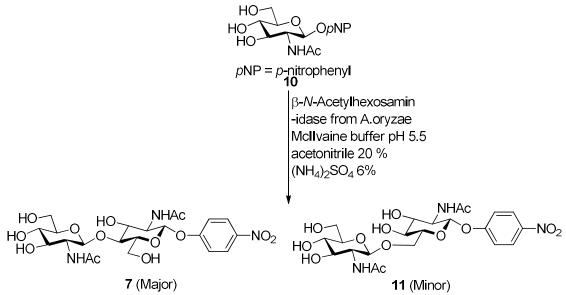
quantitatively yields the GlcNGlcNAc-pNP **8** (Scheme 4.2). These substrates are useful to differentiate chitin deacetylase from the chitinases which degrades (GlcNAc)₂-pNP based on their mode of action. ¹⁵

Scheme 4.2: Mono deacetylation of p-nitrophenyl N,N-diacetylchitobioside 7 using chitin deacetylase from C. lindemuthianum.

In 1999, the same research group reported the synthesis of GlcNAcGlcNAc-pNP 7 from the GlcNGlcNAc-pNP 8 by N-acetylation using another chitin deacetylase (Scheme 4.3). These results suggest that p-nitrophenyl chitobiosides 7 and 8 can serve as useful substrates for the production of well-defined chitooligosacharides by using chitin deacetylases.

Scheme 4.3: Preparation of *p*-nitrophenyl chitobioside 7 using chitin deacetylase *via* enzymatic acetylation.

Substrate specificity of β -N-acetylhexosaminidase was evaluated using p-nitrophenyl chitobioside 7 as the substrate. These enzymes are specifically active on N,N-diacetylchitobiose derivative by the cleavage of β -glycosidic linkages between the GlcNAc residues (Scheme 4.4). 16


Scheme 4.4: Substrate specificity of β -*N*-acetylhexosaminidase on *p*-nitrophenyl chitobioside 7.

4.1.2 Enzymatic and chemical synthesis of p-nitrophenyl chitobiosides

Development of synthetic strategies for the preparation of *p*-nitrophenyl chitobiosides with different *N*-acetylated pattern has great application in the characterization and mode of action of hydrolytic enzymes such as chitinases and glucosaminidases. Till now, there is no direct synthetic method available for the preparation of partially *N*-acetylated *p*-nitophenyl chitobiosides in the literature *via* chemical glycosylation. In that sense there is a need for the development of efficient synthetic strategies to make these chemical probes. In the following

section different enzymatic and chemical methods available in the literature for the synthesis of related *p*-nitrophenyl disaccharides are discussed.

Kubisch *et al.* described a method for the synthesis of *p*-nitrophenyl chitobioside derivative 7 *via* enzymatic glycosylation. ¹⁷ β-N-Acetylhexoaminidases from *Aspergillus oryzae* acts on *p*-nitrophenyl 2-acetamido-2-O-deoxy-β-D-glucopyranoside 10 to generate *p*-nitrophenyl chitobioside 7. In addition a β-($1\rightarrow 6$)-linked regioisomer 11 was also obtained as a minor by-product (Scheme 4.5). Addition of organic co-solvents such as acetonitrile or dioxane and (NH₄)₂SO₄ was found to improve the yield.

Scheme 4.5: Synthesis of N,N'-diacetyl p-nitrophenyl chitobioside 7 using β -N-acetylhexosaminidase from A.oryzae.

Uzawa and co-workers described a method for the synthesis of p-nitrophenyl 6-sulfated chitobiosides via enzymatic transglycosylation reaction. ^{18,19} β -N-acetylhexosaminidase from Aspergillus oryzae mediated transfer of β -D-(6-sulfo)-GlcNAc unit from 13 to 12 and afforded the p-nitrophenyl chitobioside derivative 14 (Scheme 4.6).

Scheme 4.6: Synthesis of *p*-nitrophenyl chitobioside derivative **14** *via* enzymatic transglycosylation raction.

Few reports have been found in the literature for the chemical synthesis of p-nitrophenyl chitobiosides and its related derivatives. Osawa et al. reported the chemical synthesis of p-

nitrophenyl N,N'-diacetyl- β -D-chitobioside 7 using chitobiose octaacetate **15** (Scheme 4.7). N,N'-diacetylchitobiose derived from chitin was hydrolyzed by acid and then peracetylated to get **15** which on conversion into glycosyl halide followed by treatment with sodium salt of p-nitrophenol in acetone yielded the chitobioside derivative **7**. This synthesized substrate was utilized to study the substrate specificities of egg-white lysozyme.

Scheme 4.7: Synthesis of *p*-nitrophenyl chitobioside 7 from chitobiose octaacetate **15**.

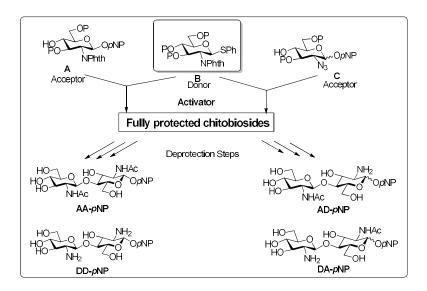
Hollinger *et al.* described a method for the synthesis of a related disaccharide building block having β -(1 \rightarrow 3) linkage derivative. This *p*-nitrophenyl disaccharide is the core structure in the mucin *O*-glycan. Glycosylation of thioglycosyl donor **16** with 3-hydroxy free acceptor **17** under NIS/TMSOTf activation resulted in the β -(1 \rightarrow 3) linked disaccharide building block **18** (Scheme 4.8).²¹

AcO SEt + NPhth
$$\frac{16}{N_3OpNP}$$
 NIS, TMSOTf, 4 Å MS ACO NPhth $\frac{AcO}{N_3OpNP}$ NS, TMSOTf, 4 Å MS ACO NPhth $\frac{AcO}{N_3OpNP}$ 18

 $\frac{pNP = p\text{-nitrophenyl}}{pMP = p\text{-methoxyphenyl}}$

Scheme 4.8: Synthesis of *p*-nitrophenyl chitobiose related derivative **18** using thioglycoside donor **16**.

Sato and co-workers reported a simple method for the synthesis of p-nitrophenyl T-antigen analogue. N-Phth protected thioglycosyl donor 19 upon glycosylation with DTBS protected acceptor 20 gave the intermediate disaccharide 21 (Scheme 4.9). Here the stereoselectivity achieved during the formation of exclusive β -linkage is due to neighbouring group participation from N-Phth group.


Scheme 4.9: Synthesis of *p*-nitrophenyl *T*-antigen precursor **21** using *N*-Phth protected thioglycoside donor **19**.

4.2 Results and discussion

After successful synthesis of partially *N*-acetylated chitooligosaccharides (chitobioses and trioses), we shifted our efforts to make chromogenic chitooligosaccharide derivatives, in particular *p*-nitrophenylchitobiosides. The main driving force for making such compounds is the unavailability of chemical methods for the synthesis of *p*-nitrophenyl chitobiosides with different *N*-acetylated pattern. Also they will be useful in evaluating the biological activities of glycosidases and chitinolytic enzymes.

4.2.1 Synthetic strategy for the preparation of *p*-nitrophenyl chitobiosides

For the synthesis of p-nitrophenyl chitobiosides having different N-acetylated pattern (**AA-pNP**, **DD-pNP**, **DA-pNP** and **AD-pNP**), thioglycoside **B** was employed as a glycosyl donor. N-Phth and azide containing p-nitrophenyl glycosyl derivatives (**A** and **C**) were used as glycosyl acceptors.

Figure 4.2: Synthetic strategy for the preparation of *p*-nitrophenyl chitobiosides having different *N*-acetylated pattern.

4.2.2. Synthesis of monomer building blocks

4.2.2.1 N-Phth protected thioglycoside donor

Compound 23 (1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranose) was prepared in 55% yield from commercially available glucosamine hydrochloride 22 in two steps as described in chapter 2. Compound 23 was treated with thiophenol in the presence of BF₃·OEt₂ to obtain phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside 19 in 78% yield (Scheme 4.10).²³

Scheme 4.10: Preparation of phenyl 3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside **19**.

4.2.2.2 Synthesis of N-Phth and azide containing glycosyl acceptors

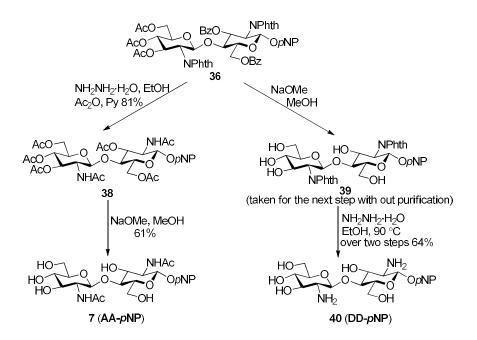
Synthesis of N-Phth protected and azido glycosyl acceptors 28 and 35 were accomplished from glucosamine hydrochloride 22 by using selective protection-deprotection strategy. Glucosamine hydrochloride was converted into peracetylated phthalimido 23 and azide derivative **29** as described in Chapter 2. ^{24,25} Compounds **23** and **29** were treated separately with thiophenol in the presence of BF₃·OEt₂ to get, respectively, 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 19, phenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1thio- α/β -D-glucopyranoside 30 (Scheme 4.11). ²⁶ p-Nitrophenyl derivatives 24 and 31 were obtained by the glycosylation of thioglycosyl donors 19 and 30 respectively with pnitrophenol under NIS/TfOH activator system at 0 °C in CH₂Cl₂. Both the p-nitrophenyl derivatives 24 and 31 were treated separately with NaOMe in MeOH to get the corresponding O-deacetyl derivatives. The crude triols were treated separately with anisaldehyde dimethyl acetal in the presence of PTSA to get respective N-Phth and N₃ containing benzylidene protected glucosides 25 and 32 in 81% and 79% respectively. Benzoylation at 3rd position in compounds 25 and 32 using BzCl in dry pyridine and treatment of the resulting products 26 and 33 with 80% AcOH gave the mono benzovlated derivatives 27 and 34 in 74% and 78% yields respectively. Finally regioselective benzoylation at 6th position²⁷ of compounds 27 and 34 with benzoyl cyanide in Py/CH₂Cl₂ mixture provided the 4-hydroxy free glycosyl

acceptors **28** and **35** in moderate yields (Scheme 4.11). The products were analysed using different spectral techniques.

Scheme 4.11: Preparation of N-Phth and azide containing glycosyl acceptors 28 and 35.

4.2.2.3 Synthesis of disaccharide building blocks

After successfully synthesizing the glycosyl donor 19 and acceptors 28 and 35, we concentrated on the synthesis of disaccharide building blocks 36 and 37 which are the key intermediates for the synthesis of the desired p-nitrophenyl chitobiosides. In presence of NIS/TfOH activator system, 28 glycosylation was carried between glycosyl acceptors 28 and 35 separately with glycosyl donor 19 to obtain the fully protected disaccharides 36 and 37 in 71% and 74% yields respectively. These building blocks were subjected to sequential deprotection steps as described in the following schemes to prepare the desired pNP derivatives.

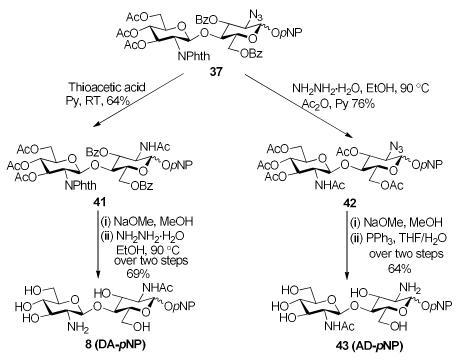

4.2.2.4 Synthesis of p-nitrophenyl chitobioside derivatives AA-pNP and DD-pNP

Synthesis of *p*-nitrophenyl N,N'-diacetylchitobioside 7 (**AA-pNP**) was achieved from **36** by following a sequence of steps as shown in the Scheme 4.12. Removal of two N-Phth groups in the disaccharide derivative **36** was done by treating it with hydrazine hydrate in EtOH at 90 °C. The crude diamine derivative was acetylated using 1:2 Ac₂O/Py mixture to

get the *N,N*'-diacetyl derivative **38** in 81% yield. It has to be noted that during the deprotection of phthalimide group benzoyl group also got deprotected. However, subsequent acetylation protected the generated hydroxyl group into its acetate. Finally, deprotection of *O*-acetyl groups from compound **38** under Zemplén condition (NaOMe/MeOH) provided the desired *p*-nitrophenyl *N,N*'-diacetylchitobioside **7** (**AA-***p***NP**) in 61% yield (Scheme 4.12).

Scheme 4.11: Synthesis of disaccharide building blocks 36 and 37.

For the synthesis of *p*-nitrophenyl chitobioside **40** (**DD**-*p***NP**), deprotection of acetyl and benzoyl groups in compound **36** by treatment with NaOMe in MeOH solvent was performed first. The crude product **39** underwent smooth dephthalolation on treatment with hydrazine hydrate in EtOH under reflux conditions to give the desired *p*-nitrophenyl chitobioside **40** (**DD**-*p***NP**) in 64% yield over two steps (Scheme 4.12). The final products **7** and **40** were characterized by ¹H NMR spectroscopy and HRMS-MS.

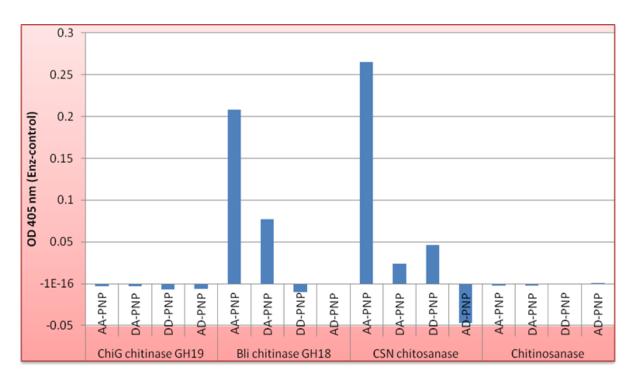


Scheme 4.12: Preparation of *p*-nitrophenyl chitobioside derivatives (AA-*p*NP and DD-*p*NP).

4.2.2.5 Synthesis of p-nitrophenyl chitobioside derivatives (DA-pNP and AD-pNP)

The synthesis of *p*-nitrophenyl *N*-acetylchitobioside **8** (**DA-***p***NP**) was started with the reductive acetylation of azide in disaccharide **37** by treating it with 1:2 mixture of thioacetic acid/Py²⁹ to get the *p*-nitrophenyl *N*-acetylated derivative **41** in 64% yield. Deprotection of acetyl and benzoyl groups in compound **41** was achieved under basic conditions (NaOMe in MeOH).³⁰ Finally, the *N*-Phth group was deprotected using hydrazine hydrate in EtOH at 90 °C to get the *p*-nitrophenyl chitobioside derivative **8** (**DA-***p***NP**) in 69% (Scheme 4.13).

For the synthesis of mono *N*-acetyl *p*-nitrophenyl chitobioside **43** (**AD-pNP**), deprotection of *N*-Phth group in compound **37** using NH₂NH₂·H₂O³¹ was carried out first followed by acetylation of the crude amine derivative using Ac₂O/Py (1:2) mixture which yielded the *N*-acetyl derivative **42** in 76% yield. It has to be noted that during the deprotection of phthalimide group, benzoyl groups also got deprotected. However, subsequent acetylation protected the generated hydroxyl groups into its acetate. Compound **42** was deacetylated under basic conditions (NaOMe in MeOH) and the hydrolysis of all the ester groups was confirmed by TLC analysis. Finally, the azide was converted into amine in the crude product by treatment with PPh₃³² in THF/H₂O mixture to get the *p*-nitrophenyl *N*-acetylchitobiose **43** (**AD-pNP**) in 64% (Scheme 4.13).


Scheme 4.13: Preparation of p-nitrophenyl chitobiosides derivatives (**DA-pNP** and **AD-pNP**).

4.2.3 Biological activity profiles of *p*-nitrophenyl chitobiosides

Chitinolytic enzymes are generally two kinds of glycosyl hydrolases viz. chitinases and β -N-acetyl-hexosaminidases. In insect chitin catabolism, chitinases are responsible for chitin degradation into chitooligosaccharides, whereas glycosidases (GlcNAcase and GlcNase) are involved in chitooligosaccharide hydrolysis into GlcNAcs and GlcNs. Chitinase activity has been estimated using colorimetric method on p-nitrophenyl N,N-chitobiosides. Enzymatic activity was measured in terms of quantification of liberated yellow coloured p-nitrophenol which gives absorbance at 405 nm. 15

4.2.3.1 Study of substrate specificities of chitinolytic enzymes

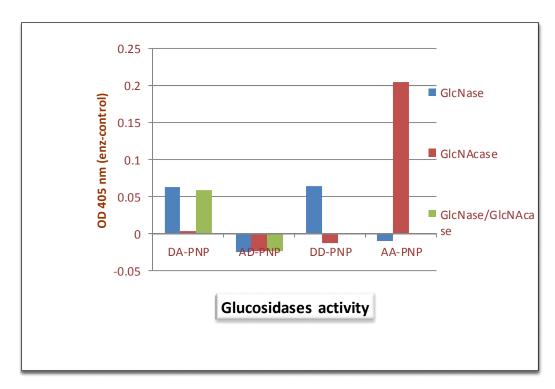

We then proceeded to study the structure-activity relationships of chitinases and glucosaminidases using the synthesized p-nitrophenyl chitobioside derivatives (AA-pNP, DD-pNP, AD-pNP and DA-pNP). For this study, two chitinases (ChiG and Bli), chitosanase (CSN) and chitinosanase which acts on both chitin and chitosan were chosen. Our data suggest that the ChiG chitinase from streptomyces (GH19) is inactive on all the four pnitrophenyl chitobiosides as there was no absorbance at 405 nm. Interestingly, Bli chitinase from bacillus licheniformis (GH18) showed strong activity on the p-nitrophenyl N,Ndiacetylchitobioside AA-pNP and moderate activity on mono N-acetyl chitobioside DA-pNP. The same enzyme is inactive towards the other two substrates DD-pNP and AD-pNP as inferred from the Figure 4.3. These results summarise that substrates containing GlcNAcpNP at the reducing end is highly specific for the chitinase GH18 family. CSN chitosanase from bacillus sp (GH8) showed strong activity on AA-pNP and weak activity towards DApNP and DD-pNP. No significant activity of chitinosanase from Streptomyces (GH46) on any of the p-nitrophenyl chitobioside derivatives was noted. These results suggest that the specificity of CSN chitosanase and Bli chitinase with the p-nitrophenyl derivatives can differentiate them from the ChiG and chitinosanase.

Figure 4.3: Substrate specificity of chitonolytic enzymes with *p*-nitrophenyl chitobiosides.

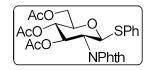
4.2.3.2 Glucosidase activity

Glucosidase activities of GlcNAcase and GlcNase were studied with the synthesized pNP probes. β-N-acetylglucosaminidase (GlcNAcase) was active on the substrate (GlcNAc)₂-pNP stepwise from its non-reducing end. In the same way glucosaminidases (GlcNase) degrade (GlcN)₂-pNP from non-reducing end side in a stepwise manner. Finally, the activity was quantified by measuring the absorbance at 405 nm due to the liberation of p-nitrophenol using a microplate reader. 15,16 GlcNAcase showed strong activity on the AA-pNP by the cleavage from the non-reducing end and eventually releases the p-nitrophenol and GlcNAc residues, whereas GlcNase was inactive on the AA-pNP (Figure 4.4). On the other hand DDpNP was cleaved by GlcNase to release the GlcN residues and the liberation of p-nitrophenol as confirmed and quantified by UV-absorbance at 405 nm, while GlcNAcase showed no activity on DD-pNP (Figure 4.4). Interestingly, GlcNcase showed moderate activity on DApNP by cleaving finally the GlcNAc and pNP units at the reducing end. But it is inactive on AD-pNP substrate. In case of AD-pNP none of the glycosidase (GlcNAcase/GlcNase) showed any activity. A mixture of both glycosidases is active on DA-pNP but inactive on AD-pNP. These observations suggest that substrate specificities of glucosidases (GlcNAcase or GlcNase) with different N-acetylated p-nitrophenyl chitobiosides. Therefore these compounds might find application for the screening glycosidase inhibitors which can serve as a drugs and pesticides.

Figure 4.4: Glucosidases activity on *p*-nitrophenyl chitobiosides having different *N*-acetylated pattern.

4.3 Conclusions

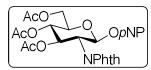
We have developed efficient synthetic strategies for the preparation of p-nitrophenyl chitobiosides having different N-acetylated pattern. These synthesized pNP chitobiosides were used to study the substrate specificities of chitinases/chitosanases and glucosidases. Biological data suggests that different N-acetylated pNP chitobiosides (AA-pNP, DA-pNP, DD-pNP) are good chromogenic substrates to differentiate chitinolytic enzymes and could in principle be used as substrates for screening glycosyl hydrolases inhibitors.


4.4 Experimental section

For general information refer Chapter 2, Section 2.4.1.

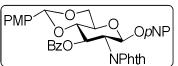
4.4.1 Experimental procedures, spectral and analytical data

Preparation of phenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 19


The compound 19 was prepared from 23 (4.0 g, 7.75 mmol) by following the literature procedure. 20 Colourless foam; Yield = 6.8 g

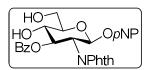
(78%); $R_f = 0.65$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.01-7.70 (m, 4H, *N*-Phth), 5.81 (t, J = 9.7 Hz, 1H), 5.72 (d, J = 10.5 Hz, 1H), 5.14 (t, J = 9.7 Hz, 1H), 4.35 (t, J = 10.3 Hz, 1H), 4.30 (dd, J = 12.3, 5.5 Hz, 1H), 4.21 (dd, J = 12.3, 2.3 Hz, 1H), 3.87 (m, 1H), 2.10 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.84 (s, 3H, OAc). ¹³CNMR (100 MHz, CDCl₃): δ 170.7, 170.2, 169.5, 167.8, 134.5, 133.9, 133.3, 132.9, 132.2, 129.0, 128.9, 128.4, 123.7, 123.4, 83.0, 75.9, 71.6, 68.7, 62.2, 53.5, 20.7, 20.6, 20.4.

Preparation of *p*-nitrophenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 24


The compound **24** is prepared from **19** (6.0 g, 11.01 mmol) by using general procedure for glycosylation with thioglycosides (Chapter 3). Yellow solid; Yield = 4.2 g (69%); $R_f = 0.31$ in 1:3

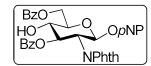
EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (m, 2H), 7.66 (dd, J = 7.0, 4.1 Hz, 2H) 5.81 (t, J = 9.7 Hz, 1H), 5.72 (d, J = 10.5 Hz, 1H), 5.14 (t, J = 9.7 Hz, 1H), 4.35 (t, J = 10.3 Hz, 1H), 4.30 (dd, J = 12.3, 5.5 Hz, 1H), 4.21 (dd, J = 12.3, 2.3 Hz, 1H), 3.87 (m, 1H), 2.10 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.84 (s, 3H, OAc). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.1, 169.4, 167.8, 138.7, 138.1, 134.4, 131.3, 129.0, 128.2, 128.1, 127.4, 127.3, 127.1, 97.2, 80.8, 75.1, 74.4, 74.2, 72.7, 71.6, 70.6, 68.5, 68.2, 61.4, 55.2, 20.7, 20.5, 20.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₆H₂₄N₂O₁₂ 579.1227, found 579.1229.

Preparation of *p*-nitrophenyl 3-*O*-benzoyl-4,6-*O*-*p*-methoxybenzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside 26


The compound **26** is prepared from **24** (3 g, 5.43 mmol) by following the literature procedure. Light yellow solid; Yield = 2.87 g (81%); $R_f = 0.54$ in 1:1 EtOAc/hexanes; ¹H

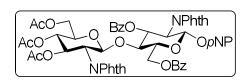
NMR (400 MHz, CDCl₃): δ 8.14-8.11 (m, 4H), 7.88 (d, J = 7.6 Hz, 1H), 7.77 (t, J = 7.5 Hz, 2H), 7.58 (t, J = 7.4 Hz, 2H), 7.47-7.44 (m, 2H), 7.37-7.32 (m, 3H), 7.04 (d, J = 9.2 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 6.31 (d, J = 8.4 Hz, 1H), 5.57-5.52 (m, 1H), 4.82 (dd, J = 10.1, 8.4 Hz, 1H), 4.47 (dd, J = 10.9, 4.2 Hz, 1H), 4.05 (d, J = 8.3 Hz, 1H), 3.93-3.85 (m, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 168.0, 167.1, 166.8, 166.7, 161.0, 142.8, 134.4, 133.5, 133.4, 132.4, 131.5, 131.3, 131.0, 129.9, 129.7, 128.9, 128.6, 128.5, 128.3, 128.0, 125.6, 123.6, 116.4, 95.1, 83.1, 79.8, 76.3, 75.0, 73.7, 69.9, 69.7, 62.2, 61.8, 60.4, 54.2, 53.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₅H₂₈N₂O₁₁ 675.1591, found 675.1583.

Preparation of *p*-nitrophenyl 3-*O*-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside 27


The compound **27** is prepared from **26** (1.0 g, 1.53 mmol) by following the literature procedure. ⁹ Light yellow liquid; Yield = 0.60 g (74%); $R_f = 0.30$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃):

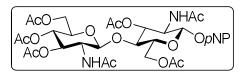
 δ 8.08 (d, J = 9.0 Hz, 2H), 7.85-7.75 (m, 5H), 7.67-7.64 (m, 2H), 7.24-7.23 (m, 2H), 7.06 (d, J = 9.2 Hz, 2H), 6.35 (d, J = 8.5 Hz, 1H), 6.10 (dd, J = 10.4, 8.6 Hz, 1H), 6.00 (t, J = 9.9 Hz, 1H), 5.90 (d, J = 10.5 Hz, 1H), 4.75 (dd, J = 10.6, 8.5 Hz, 1H), 4.50 (t, J = 10.4 Hz, 1H), 4.10-3.90 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 166.9, 160.9, 142.9, 134.5, 133.6, 132.5, 131.1, 130.1, 129.8, 129.0, 128.4, 125.7, 123.6, 123.6, 116.4, 95.1, 83.1, 79.8, 76.3, 75.1, 73.9, 69.9, 61.9, 54.1, 53.6. LCMS (m/z): [M+Na]⁺ calcd for C₂₇H₂₂N₂O₁₀ 557.12, found 557.24. Anal. calcd. for C₂₇H₂₂N₂O₁₀: C, 60.67; H, 4.15; N, 5.24, found C, 60.53; H, 4.19; N, 5.32.

Preparation of *p*-nitrophenyl 3,6-di-*O*-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside 28


The compound **28** is prepared from **27** (0.6 g, 1.13 mmol) by following the literature procedure. Colourless solid; Yield = 0.48 g (66%); $R_f = 0.42$ in 1:1 EtOAc/hexanes; H NMR (400 MHz,

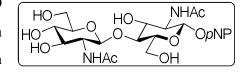
CDCl₃): δ 8.10-8.05 (m, 3H), 8.00 (d, J = 9.2 Hz, 2H), 7.87 (d, J = 7.6 Hz, 2H), 7.78 (t, J = 4.5 Hz, 2H), 7.50-7.45 (m, 5H), 7.34 (t, J = 7.6 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 6.33-6.30 (m, 1H), 6.13-6.08 (m, 1H), 4.86-4.78 (m, 2H), 4.72 (d, J = 12.2, 6.8 Hz, 1H), 4.31-4.27 (br s, 1H), 4.01 (t, J = 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 167.8, 166.5, 160.9, 142.9, 134.5, 133.7, 133.5, 132.9, 131.1, 130.1, 129.8, 129.8, 129.7, 129.4, 128.8, 128.5, 128.4, 125.5, 123.7, 116.6, 95.2, 83.0, 78.3, 74.8, 73.9, 70.4, 63.6, 60.4, 54.1. HRMS-ESI (m/z): [M+K]⁺ calcd for C₃₄H₂₆N₂O₁₁ 677.1174, found 677.1134. Anal. calcd. for C₃₄H₂₆N₂O₁₁: C, 63.95; H, 4.10; N, 4.39, found C, 63.85; H, 4.03; N, 4.48.

Preparation of *p*-nitrophenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside 36


The compound **36** was prepared from **19** (0.46 g, 0.84 mmol) and **28** (0.4 g, 0.70 mmol) by using general procedure for glycosylation with thioglycosides (Chapter

3). Colourless foam; Yield = 0.63 g (71%); R_f = 0.41 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.5 Hz, 4H), 7.85-7.58 (m, 12H), 7.48-7.43 (m, 4H), 6.91 (d, J = 8.7 Hz, 1H), 6.27-6.14 (m, 2H), 5.66 (d, J = 8.2 Hz, 1H), 5.59 (t, J = 10.3 Hz, 1H), 5.01 (t, J = 9.3 Hz, 1H), 4.68-4.57 (m, 2H), 4.30-4.22 (m, 3H), 4.17-4.10 (m, 2H), 3.83 (d, J = 11.2 Hz, 1H), 3.60 (d, J = 11.9 Hz, 1H), 2.01 (s, 3H), 1.90 (s, 3H), 1.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.7, 170.5, 170.1, 169.2, 164.9, 160.7, 142.9, 134.4, 133.3, 131.2, 130.8, 129.6, 128.7, 128.4, 125.5, 123.7, 116.7, 114.0, 97.5, 95.1, 76.1, 72.9, 71.8, 71.6, 70.3, 67.9, 62.3, 60.8, 54.8, 54.5, 29.6, 20.6, 20.4, 20.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₅₄H₄₅N₃O₂₀ 1078.2494, found 1078.2488.

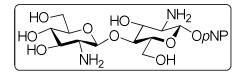
Preparation of *p*-nitrophenyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3,6-di-*O*-acetyl-2-deoxy-β-D-glucopyranoside 38


The compound **38** is prepared from **36** (0.4 g, 0.38 mmol) by using general procedure for deprotection of phthalimide protecting group followed by acetylation

(Chapter 2). Light yellow solid; Yield = 0.23 g (81%); $R_f = 0.27$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H), 5.26 (t, J = 6.4 Hz, 1H), 5.17 (t, J = 9.8 Hz, 1H), 5.02 (t, J = 10.1 Hz, 1H), 4.53 (d, J = 8.1 Hz, 1H), 4.45-4.30 (m, 5H), 4.07-4.04 (m, 2H), 3.83 (d, J = 7.2 Hz, 1H), 3.68 (d, J = 9.0 Hz, 2H), 2.01-1.97 (m, 21H). ¹³C NMR (400 MHz, CDCl₃): δ 177.5, 170.4, 169.3, 169.2, 166.6, 165.2, 142.9, 129.8, 129.1, 116.3, 98.1, 97.9, 75.4, 74.9, 72.8, 72.2, 71.9, 70.3, 69.3, 68.1, 67.9, 61.9, 60.8, 54.9, 52.3, 29.6, 23.3, 23.0, 21.1, 20.7, 20.5, 20.3. LCMS (m/z): [M+Na]⁺ calcd for $C_{32}H_{41}N_3O_{18}$ 778.23, found 778.35. Anal. calcd. for $C_{32}H_{41}N_3O_{18}$: C, 50.86; H, 5.47; N, 5.56, found C, 50.72; H, 5.53; N, 5.48.

Preparation of *p*-nitrophenyl 2-acetamido-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy- α /β-D-glucopyranoside 7

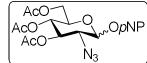
The compound 7 is prepared from 36 (35 mg, 0.059 mmol) by using general procedure for *O*-deacetylation (Chapter 2). The crude product was purified by flash



column chromatography on RP C18 silica gel (H_2O -MeOH) afforded a colourless solid; Yield = 13 mg (61%); ${}^{1}H$ NMR (400 MHz, D_2O): δ 8.15 (d, J = 8.9 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 5.23 (d, J = 8.3 Hz, 1H), 4.53 (d, J = 8.3 Hz, 1H), 3.97 (t, J = 8.3 Hz, 1H), 3.86-3.79

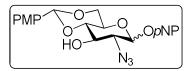
(m, 2H), 3.68-3.60 (m, 6H), 3.51-3.39 (m, 5H), 1.99 (s, 3H), 1.92 (s, 3H). HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{22}H_{31}N_3O_{13}$ 568.1755, found 568.1725.

Preparation of *p*-nitrophenyl 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy- β -D-glucopyranoside 40


The compound **40** is prepared from **36** (40 mg, 0.056 mmol) by using general procedure for *O*-deacetylation and deprotection of phthalimide protecting

group (Chapter 2). The crude product was purified by flash column chromatography on RP C18 silica gel (H₂O–MeOH) afforded as a colourless solid. Yield = 16 mg (64%); 1 H NMR (400 MHz, D₂O): δ 8.23 (d, J = 9.1 Hz, 2H), 7.20 (d, J = 9.2 Hz, 2H), 5.16 (d, J = 7.8 Hz, 1H), 4.45 (d, J = 7.9 Hz, 1H), 4.05 (d, J = 7.0 Hz, 1H), 3.83-3.57 (m, 8H), 3.47-3.43 (m, 2H), 3.37-3.33 (m, 3H). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₇N₃O₁₁ 484.1543, found 484.1524.

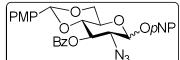
Preparation of *p*-nitrophenyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- α/β -D-glucopyranoside 31


The compound **31** is prepared from **30** (4 g, 9.45 mmol) by following the literature procedure. Yellow solid; Yield = 2.78 g (65%); $R_f = 0.47$ in 1:1 EtOAc/hexanes; H NMR (400 MHz,

CDCl₃): δ 8.23 (d, J = 9.1 Hz, 2.6H), 7.23 (d, J = 9.2 Hz, 2.3H), 6.28 (d, J = 3.4 Hz, 1H), 5.71 (d, J = 3.3 Hz, 1H), 5.68-5.63 (m, 1H), 5.58-5.54 (m, 0.3H), 5.15 (t, J = 10.3, 1H), 5.10-5.05 (m, 1.2H), 4.29-4.20 (m, 2.4H), 4.11-4.03 (m, 3H), 3.71-3.64 (m, 0.8H), 3.60 (dd, J = 10.6, 3.3 Hz, 1H), 2.04 (s, 4H), 2.03 (s, 7H). ¹³C NMR (100 MHz, CDCl₃): δ 176.3, 170.3, 169.9, 169.5, 160.3, 143.3, 132.2, 129.9, 129.3, 125.9, 116.6, 96.5, 70.0, 69.0, 67.9, 62.5, 61.3, 60.5, 28.5, 20.6, 20.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₀N₄O₁₀ 475.1077, found 475.1071.

Preparation of *p*-nitrophenyl 2-azido-4,6-*O-p*-methoxybenzylidene-2-deoxy- α/β -D-glucopyranoside 32

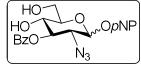
The compound **32** is prepared from **31** (2.5 g, 5.52 mmol) by following the literature procedure. Light yellow liquid; Yield = 1.94 g (79%); $R_f = 0.57$ in 1:1 EtOAc/hexanes; H



NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 9.1 Hz, 1.5H), 7.81 (s, 1.6H), 7.40-7.25 (m, 5H), 7.08-7.06 (m, 2H), 6.77 (d, J = 8.6 Hz, 1H), 5.53-5.41 (m, 2H), 4.42 (dd, J = 10.3, 3.9 Hz,

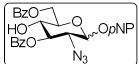
0.3H), 4.30 (m, 1H), 4.12-4.04 (m, 1H), 3.81-3.77 (m, 0.7H), 3.67 (s, 3H), 3.57-3.52 (m, 1.5H), 3.43 (dt, J = 8.1, 3.8 Hz, 0.7H). ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 142.5, 136.6, 132.9, 129.1, 128.8, 128.7, 128.5, 127.9, 127.3, 126.0, 125.4, 124.1, 116.2, 115.9, 113.2, 101.6, 96.6, 81.0, 80.9, 68.1, 67.9, 63.6, 62.5, 54.9. HRMS-ESI (m/z): [M+K]⁺ calcd for $C_{20}H_{20}N_4O_8$ 483.0918, found 483.0953.

Preparation of *p*-nitrophenyl 2-azido-3-*O*-benzoyl-4,6-*O*-*p*-methoxybenzylidene-2-deoxy-α/β-D-glucopyranoside 33


The compound **33** is prepared from **32** (1.90 g, 4.27 mmol) by following the literature procedure. Colourless solid; Yield = 1.87 g (80%); $R_f = 0.55$ in 1:1 EtOAc/hexanes; H NMR (400

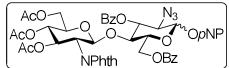
MHz, CDCl₃): δ 8.22 (d, J = 9.2 Hz, 2H), 8.13 (d, J = 7.3 Hz, 3H), 7.63-7.57 (m, 2H), 7.49-7.41 (m, 5H), 7.36-7.27 (m, 3H), 7.22 (d, J = 9.1 Hz, 2H), 6.10 (dt, J = 9.9, 4.1 Hz, 1H), 5.81 (s, 1H), 5.58-5.54 (m, 1H), 4.30-4.24 (m, 1H), 4.27 (dt, J = 9.8, 4.9 Hz, 1H), 4.15-4.08 (m, 1H), 3.97 (q, J = 9.2 Hz, 1H), 3.87-3.80 (m, 1.4H), 3.73 (s, 3.7H). CNMR (100 MHz, CDCl₃): δ 165.3, 160.3, 143.0, 133.5, 133.3, 129.9, 129.7, 129.0, 128.3, 128.0, 127.3, 125.9, 125.7, 116.4, 113.7, 101.6, 97.2, 78.8, 69.1, 68.2, 68.1, 61.3, 55.0. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₇H₂₄N₄O₉ 571.1441, found 571.1447.

Preparation of p-nitrophenyl 2-azido-3-O-benzoyl-2-deoxy-α/β-D-glucopyranoside 34


The compound **34** is prepared from **33** (1.8 g, 3.29 mmol) by following the literature procedure. Colourless solid; Yield = 1.1 g (78%); $R_f = 0.33$ in 1:1 EtOAc/hexanes; H NMR (400 MHz,

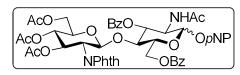
CD₃OD+CDCl₃): δ 8.34 (d, J = 9.3 Hz, 2H), 8.22-8.19 (m, 2H), 7.72 (t, J = 6.1 Hz, 1H), 7.63-7.57 (m, 2H), 7.49-7.44 (m, 2H), 7.29-7.17 (m, 1H), 6.02 (dd, J = 5.9, 3.8 Hz, 1H), 5.89-5.83 (m, 1H), 4.67 (d, J = 5.4 Hz, 0.3H), 3.97-3.93 (m, 1H), 3.86-3.80 (m, 4H), 3.40-3.38 (m, 3H), 2.39 (br s, 1H). ¹³C NMR (100 MHz, CD₃OD+CDCl₃): δ 166.0, 160.7, 142.5, 133.0, 129.3, 129.0, 127.9, 125.4, 116.3, 96.7, 73.3, 72.6, 67.4, 60.6, 59.9. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₁₈N₄O₈ 453.1022, found 453.1032.

Preparation of *p*-nitrophenyl 2-azido-3,6-di-*O*-benzoyl-2-deoxy- α/β -D-glucopyranoside 35


The compound **35** is prepared from **34** (0.9 g, 2.1 mmol) by following the literature procedure. Colourless solid; Yield = 0.75 g (67%); $R_f = 0.58$ in 1:1 EtOAc/hexanes; H NMR (400 MHz, CDCl₃):

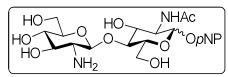
δ 8.29 (d, J = 8.9 Hz, 0.6Hz), 8.13 (t, J = 7.4 Hz, 2H), 8.00-7.89 (m, 1.9H), 7.78 (t, J = 7.8 Hz, 1.8H), 7.64-7.49 (m, 3H), 7.44-7.36 (m, 7.4H), 7.29-7.27 (m, 1H), 6.18 (t, J = 9.7 Hz, 0.2H), 5.29-5.83 (m, 1.1H), 5.62 (t, J = 9.6 Hz, 0.2H), 3.90-3.81 (m, 1H), 3.71-3.65 (m, 2H), 3.36 (br s, 1.9H), 2.71 (dd, J = 10.6, 4.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 167.8, 167.1, 160.9, 143.0, 134.5, 133.8, 133.6, 131.2, 129.9, 129.5, 128.6, 125.6, 123.8, 116.7, 95.3, 90.6, 74.9, 74.1, 70.5, 63.5, 54.1, 53.5. HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₆H₂₂N₄O₉ 535.1465, found 535.1461.

Preparation of *p*-nitrophenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-*O*-benzoyl-2-deoxy-D-glucopyranoside 37


The compound **37** is prepared **19** (0.62 g, 1.13 mmol) and **35** (0.5 g, 0.94 mmol) by using general procedure for glycosylation with thioglycosides (Chapter 3). Light

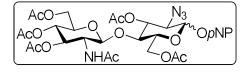
yellow solid; Yield = 0.66 g (74%); R_f = 0.48 in 1:1 EtOAc/hexanes; ${}^{1}H$ NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 7.7 Hz, 2H), 8.13-8.09 (m, 2H), 7.74-7.66 (m, 6H), 7.60-7.55 (m, 5H), 7.44-7.39 (m, 4H), 7.12 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.1 Hz, 1H), 6.19 (d, J = 8.9 Hz, 0.5H), 6.12 (d, J = 9.1 Hz, 1H), 5.87-5.82 (m, 1H), 5.71 (d, J = 8.3 Hz, 1H), 5.64-5.56 (m, 2H), 5.28 (d, J = 6.6 Hz, 0.5H), 5.08-5.00 (m, 1H), 4.57-4.51 (m, 2H), 4.31-4.11 (m, 3H), 3.73 (d, J = 11.3 Hz, 1H), 3.55-3.49 (m, 1H), 3.26 (d, J = 10.1 Hz, 0.7H), 2.02 (s, 4H), 1.90 (s, 5H), 1.83 (s, 4H). 13 C NMR (100 MHz, CDCl₃): δ 177.4, 170.4, 169.9, 169.1, 166.5, 165.1, 161.1, 160.2, 142.8, 134.3, 134.2, 133.3, 129.8, 129.5, 129.0, 128.3, 125.8, 125.5, 123.6, 116.2, 98.0, 97.8, 95.3, 75.3, 74.9, 72.7, 72.1, 71.8, 70.2, 69.3, 68.1, 67.7, 61.7, 60.7, 54.9, 52.2, 29.5, 22.9, 20.7. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{46}H_{41}N_5O_{18}$ 974.2344, found 974.2378. Anal. calcd. for $C_{46}H_{41}N_5O_{18}$: C, 58.04; H, 4.34; N, 7.36, found C, 58.16; H, 4.30; N, 7.45.

Preparation of *p*-nitrophenyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-3,6-di-*O*-benzoyl-2-deoxy-D-glucopyranoside 41


The compound **41** is prepared from **37** (0.3 g, 0.32 mmol) by using general procedure for reductive

acetylation of azide group (Chapter 2). Yellow solid; Yield = 0.198 g (64%); R_f = 0.32 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.19-8.04 (m, 4H), 7.96 (d, J = 9.2 Hz, 1.3H), 7.72 (t, J = 8.3 Hz, 5.7H), 7.58-7.53 (m, 6.5H), 7.43-7.40 (m, 3H), 7.12 (d, J = 8.9 Hz, 1H), 6.91 (d, J = 9.1 Hz, 1H), 6.21 (d, J = 9.4 Hz, 0.6H), 6.10 (d, J = 8.9 Hz, 0.4H), 6.00 (d, J = 8.6 Hz, 0.3H), 5.86-5.81 (m, 1H), 5.70 (t, J = 8.6 Hz, 1H), 5.65-5.56 (m, 2.6H), 5.28 (d, J = 6.5 Hz, 0.5), 5.07-4.96 (m, 1.5H), 4.58-4.39 (m, 2H), 4.33-4.17 (m, 4H), 3.98-3.91 (m, 2.5H), 2.03 (s, 3.6H), 1.95 (s, 3.8H), 1.90 (s, 3.4H), 1.8 (s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 176.4, 169.2, 167.3, 160.1, 132.3, 129.9, 129.4, 128.8, 128.4, 128.6, 125.9, 125.7, 123.8, 116.5, 98.0, 96.7, 89.7, 72.5, 71.9, 71.7, 71.0, 70.4, 70.3, 69.5, 68.2, 67.9, 61.8, 60.8, 54.8, 29.6, 28.5, 20.7, 20.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{48}H_{45}N_3O_{19}$ 990.2545, found 990.2540.

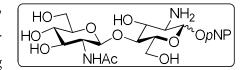
Preparation of *p*-nitrophenyl 2-amino-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranoside 8


The compound **8** is prepared from **41** (40 mg, 0.04 mmol) by using general procedure for *O*-deacetylation and deprotection of phthalimide protecting group

(Chapter 2). The crude product was purified by flash column chromatography on RP C18 silica gel (H₂O–MeOH) afforded as a colourless solid. Yield = 13.3 mg (69%); 1 H NMR (400 MHz, D₂O): δ 8.14 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.9 Hz, 2H), 5.68 (s, 1H), 4.41 (d, J = 7.0 Hz, 1H), 4.12-4.05 (m, 2H), 3.85-3.68 (m, 7H), 1.93 (s, 3H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₀H₂₉N₃O₁₂ 504.1829, found 504.1819.

Preparation of *p*-nitrophenyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-β-D-glucopyranosyl- $(1\rightarrow 4)$ -2-azido-3,6-di-*O*-acetyl-2-deoxy-D-glucopyranoside 42

The compound **42** is prepared from **37** (0.25 g, 0.27 mmol) by using general procedure for deprotection of phthalimide protecting group followed by acetylation



(Chapter 2). Light yellow solid; Yield = 0.15 g (76%); $R_f = 0.34$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 8.3 Hz, 2.8H), 7.10 (d, J = 9.0 Hz, 2H), 6.08 (d, J = 8.6 Hz, 1H), 5.95 (d, J = 8.4 Hz, 1H), 5.67-5.64 (m, 11H), 5.33 (td, J = 9.8, 5.0 Hz, 2H), 5.07-5.20 (m, 3H), 4.76 (t, J = 8.0 Hz, 1H), 4.46-4.39 (m, 3H), 4.25-4.19 (m, 2H), 4.07-4.05 (m, 2H), 3.81-3.68 (m, 5H), 3.55 (dd, J = 10.9, 3.5 Hz, 1H), 2.06-1.88 (m, 25H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.5, 169.8, 169.4, 160.4, 143.2, 125.9, 116.6, 100.5, 99.2, 96.4, 71.8, 68.1, 61.7, 60.6, 29.6, 29.3, 23.1, 20.8, 20.7, 20.6. LCMS (m/z): [M+Na]⁺ calcd

for $C_{30}H_{37}N_5O_{17}$ 762.21, found 762.60. Anal. calcd. for $C_{30}H_{37}N_5O_{17}$: C, 48.72; H, 5.04; N, 9.47, found C, 48.65; H, 5.12; N, 9.36.

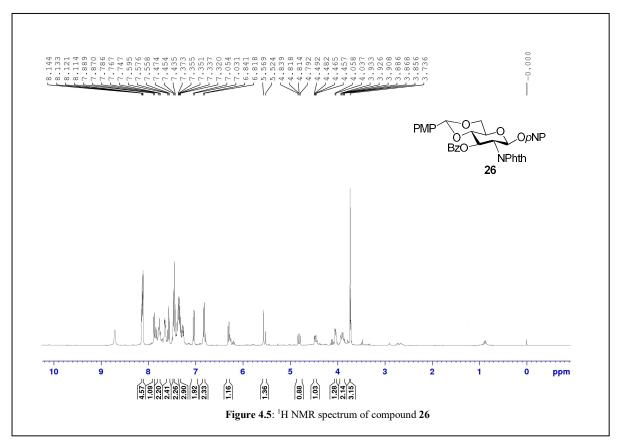
Preparation of *p*-nitrophenyl 2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2-amino-2-deoxy-D-glucopyranose 43

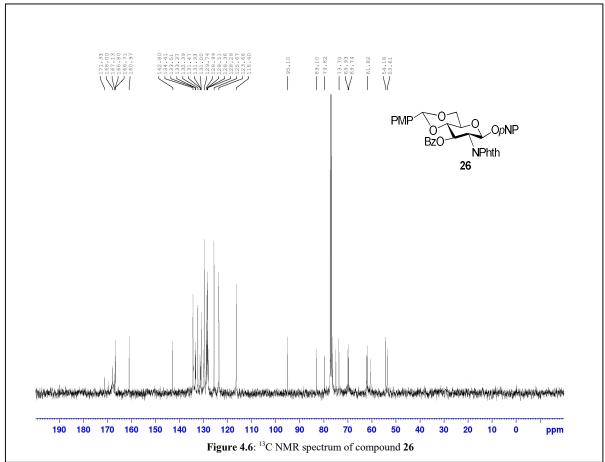
The compound **42** is prepared from **41** (41 mg, 0.056 mmol) by using general procedure for *O*-deacetylation (Chapter 2) and reduction of azide using

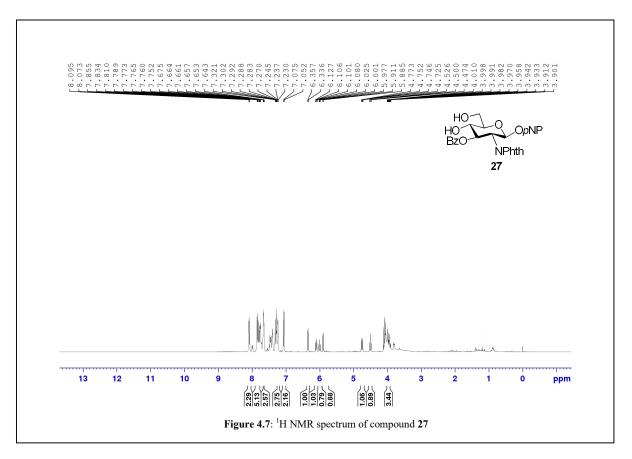
PPh₃ in THF/H₂O.³³ The crude product was purified by flash column chromatography on RP C18 silica gel (H₂O–MeOH) afforded as a colourless solid. Yield = 17 mg (64%); ¹H NMR (400 MHz, D₂O): δ 8.18 (br s, 2H), 7.20 (d, J = 6.8 Hz, 2H), 5.73-5.68 (m, 1H), 4.51 (br s, 1H), 4.07-3.66 (m, 10H), 3.51-3.33 (m, 4H), 1.92 (s, 3H). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₀H₂₉N₃O₁₂ 526.1649, found 526.1631.

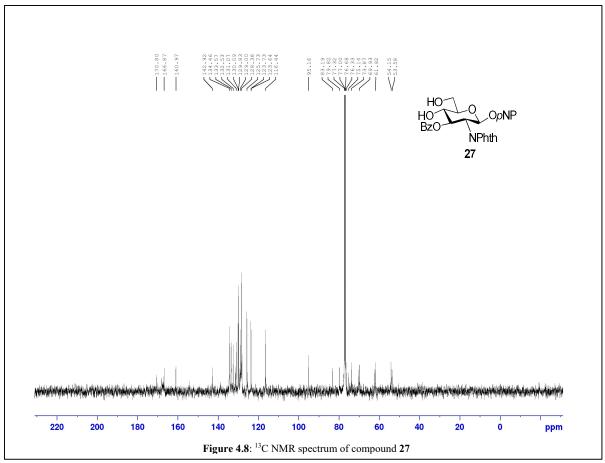
4.4.2 Enzyme assays for chitinolytic enzymes and glycosidases using pNPchitobiosides as the substrates¹⁵

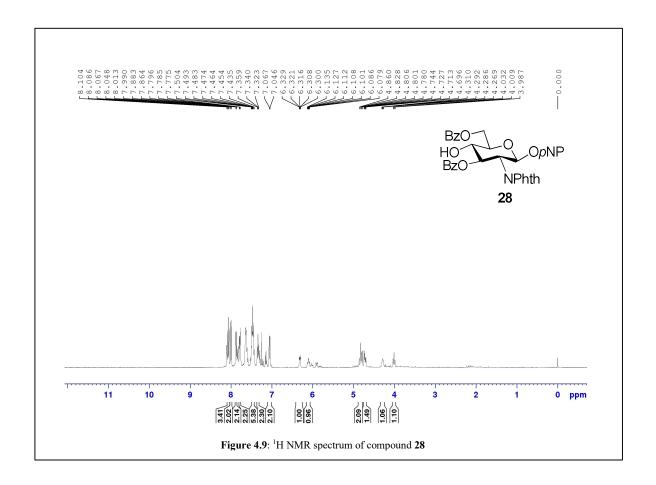
p-Nitrophenyl chitobioside derivatives were used as substrates for chitinolytic enzymes (chitinases/chitosanases) and glycosidases (GlcNAcase/GlcNase) assays at the final concentration of 2 mM. The reaction mixture (25 μL) composed of the substrate (2 mM), 20 mM TEA buffer (pH 8.0) in case of ChiG and Bli chitinase and an aliquot of the enzyme was incubated for 60 min at 37 °C. NaOAc buffer (pH 6.0 and 4.2) was used for the CSN and chitosanases at 30 °C. Both the buffers have been used to know the activity of glycosidases (GlcNAcase/GlcNase). Finally 25 mL of 0.1 M NaOH was added to stop the reaction and to increase the pH. Measurement of absorbance of the liberated *p*-nitrophenol was measured at 405 nm using a microplate reader (model 3550, Bio Rad).

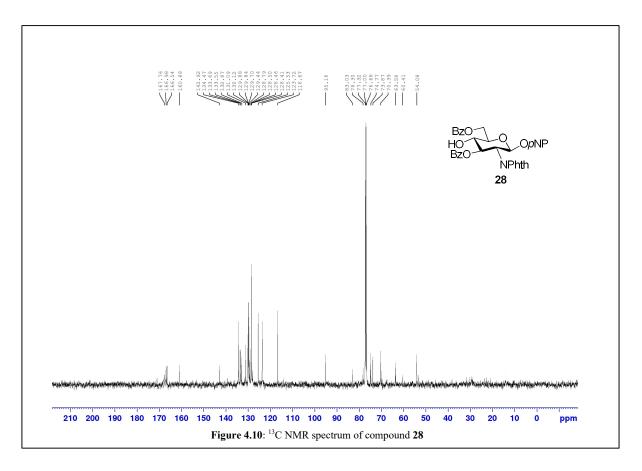

4.5 References

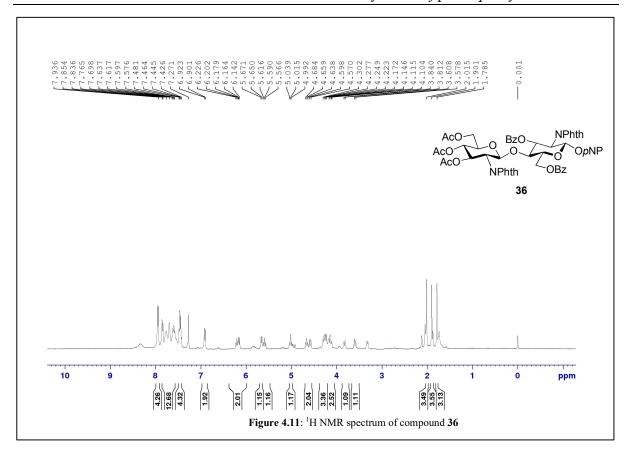

- 1. Thuan, N. H.; Sohng, J. K. J. Ind. Microbiol. Biotechnol. 2013, 40, 1329.
- 2. Hers, H. G. Biochem. J. 1963, 86, 11.
- 3. Wolfenden, R.; Lu, X.; Young, G. J. Am. Chem. Soc. 1998, 120, 6814.
- 4. Stubbs, K. A. Carbohydr. Res. 2014, 390, 9.
- 5. Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11.

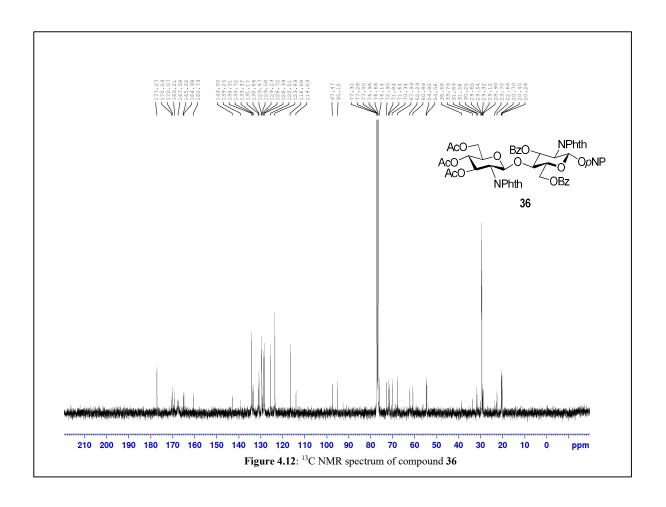

- 6. Rye, C. S.; Withers, S. G. Curr. Opin. Chem. Biol. 2000, 4, 573.
- 7. Aamlid, K. H.; Lee, G.; Smith, B. V.; Richardson, A. C.; Price, R. G. Carbohydr. Res. 1990, 205, C5.
- 8. Kiyose, K.; Kojima, H.; Nagano, T. Chem. Asian J. 2008, 3, 506.
- 9. Wagner, B. D. Molecules 2009, 14, 210.
- 10. (a) Mcmahon, B. K.; Gunnlaugsson, T. *Tetrahedron Lett.* **2010**, *51*, 5406. (b). Ochi, R.; Kurotani, K.; Ikeda, M.; Kiyonaka, S.; Hamachi, I. *Chem. Commun.* **2013**, *49*, 2115.
- 11. Zeng, Z.; Mizukami, S.; Kikuchi, K. Anal. Chem. 2012, 84, 9089.
- 12. Tangkuaram, T.; Gerlach, J. Q.; Xiang, Y.; Kawde, A. -N.; Dai, Z.; Bhavanandan, V. P.; La-Belle, J. T.; Veerasai, W.; Joshi, L.; Wang, J. *Analyst* **2006**, *131*, 889.
- 13. Ruan, C.; Wang, W.; Gu, B. Anal. Chem. 2006, 78, 3379.
- 14. Singh, S.; Packwood, J.; Samuel, C. J.; Critchley, P.; Crout, D. H. G. *Carbohydr. Res.* **1995**, *279*, 293.
- 15. Tokuyasu, K.; Ono, H.; Kitagawa, Y.; Ohnishi-Kameyama, M.; Hayashi, K.; Mori, Y. *Carbohydr. Res.* **1999**, *316*, 173.
- 16. Tokuyasu, K.; Ono, H.; Hayashi, K.; Mori, Y. Carbohydr. Res. 1999, 322, 26.
- 17. Kubisch, J.; Weignerova, L.; Ktter, S.; Lindhorst, T. K.; Sedmera, P.; Kfen, V. J. Carbohydr. Chem. 1999, 18, 975.
- 18. Zeng, X.; Sun, Y.; Ye, H.; Liu, J.; Uzawa, H. Biotechnol. Lett. **2007**, 29, 1105.
- 19. Uzawa, H.; Toba, T.; Nishida, Y.; Kobayashi, K.; Minoura, N.; Hiratani, K. *Chem. Commun.* **1998**, 2311.
- 20. Osawa, T. Carbohydr. Res. 1966, 1, 435.
- 21. Hollinger, M.; Abraha, F.; Oscarson, S. *Carbohydr. Res.* **2011**, *346*, 1454.
- 22. Sato, T.; Imamura, A.; Ando, H.; Ishida, H.; Kiso, V. Glycoconj. J. 2009, 26, 83.
- 23. Fuente, M.; Penade, S. Tetrahedron: Asymmetry 2002, 13, 1879.

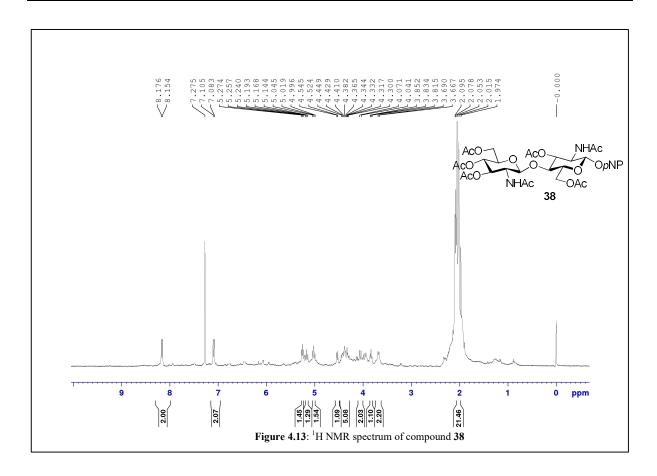

- 24. Zhang, Z.; Ollmann, I. R.; Ye, X. -S.; Wischnat, R.; Baasov, T.; Wong, C. H. *J. Am. Chem. Soc.* **1999**, *121*, 734.
- 25. Goddard-Borger, E. D.; Stick, R. V. Org. Lett. 2007, 9, 3797.
- 26. Chang, S.; Lin, C.; Li, Y.; Mong, K. T. Carbohydr. Res. 2009, 344, 432.
- 27. Chen, H.; Withers, S. G. Carbohydr. Res. 2010, 345, 2596.
- 28. Robina, I.; López-Barba, E.; Fuentes, J. Tetrahedron 1996, 52, 10771.
- 29. Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53, 1580.
- 30. Ren, B.; Wang, M.; Liu, J.; Ge, J.; Zhang, X.; Dong, H. Green Chem. 2015, 17, 1390.
- 31. Bowers, S. G.; Coe, D. M.; Boons, G. J. J. Org. Chem. 1998, 63, 4570.
- 32. Kramer, K. J.; Koga, D. Insect Biochem. 1986, 16, 851.

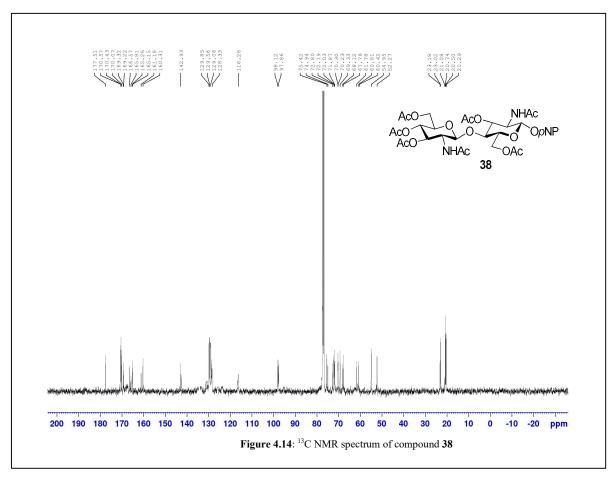

4.6 Representative spectra

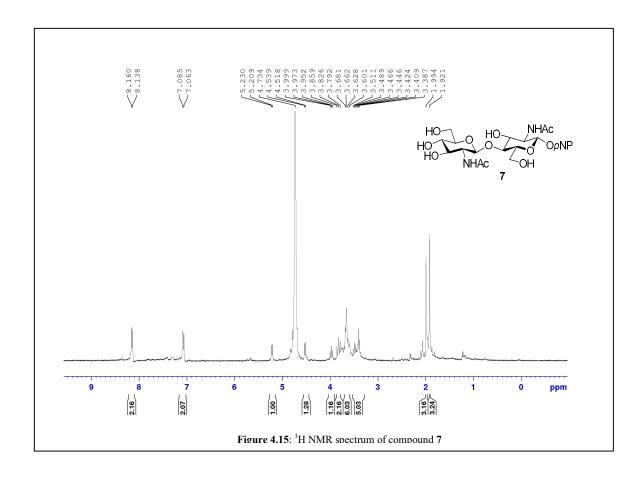












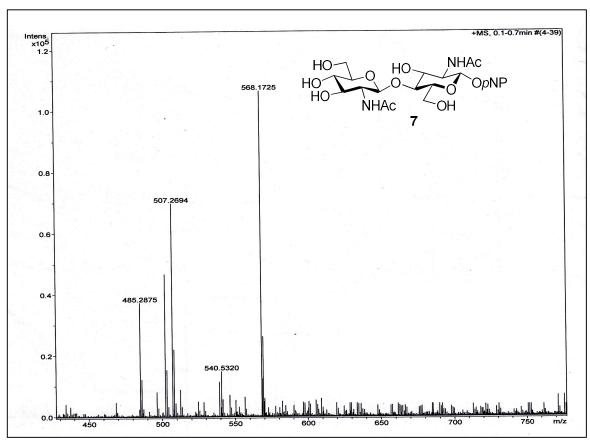
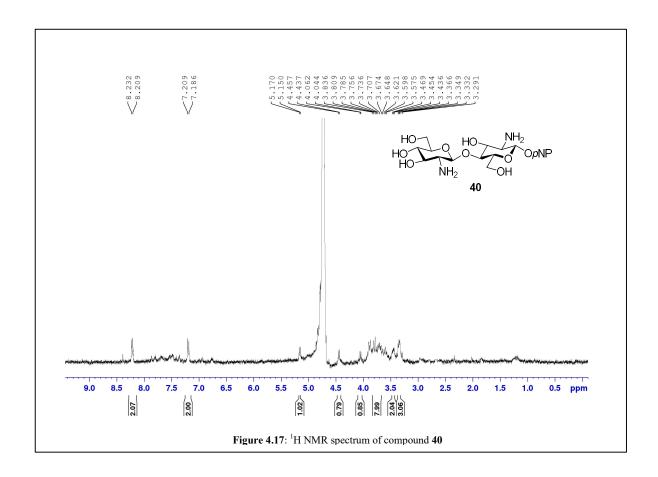
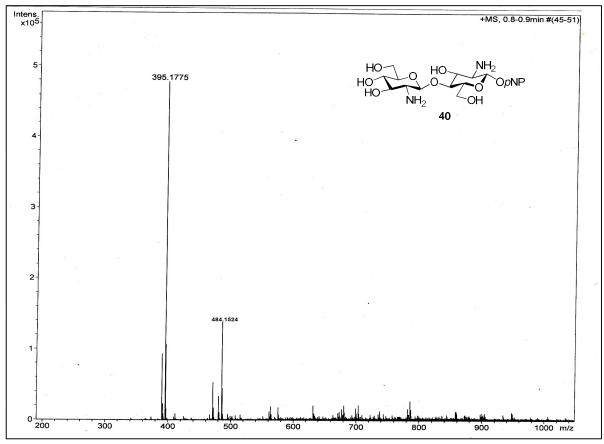
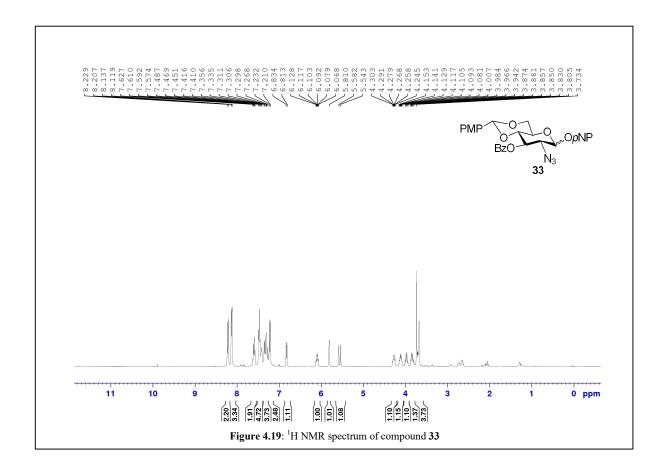
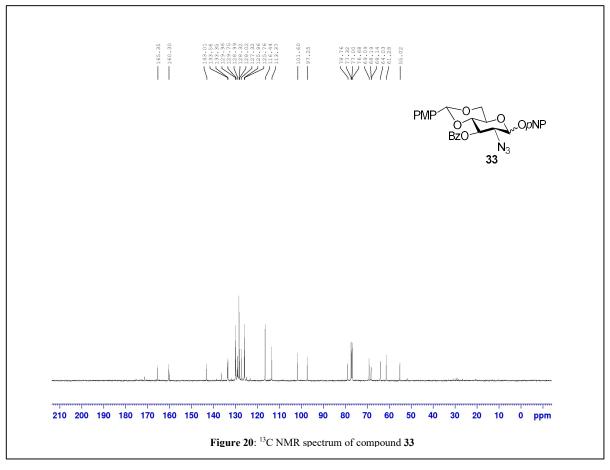
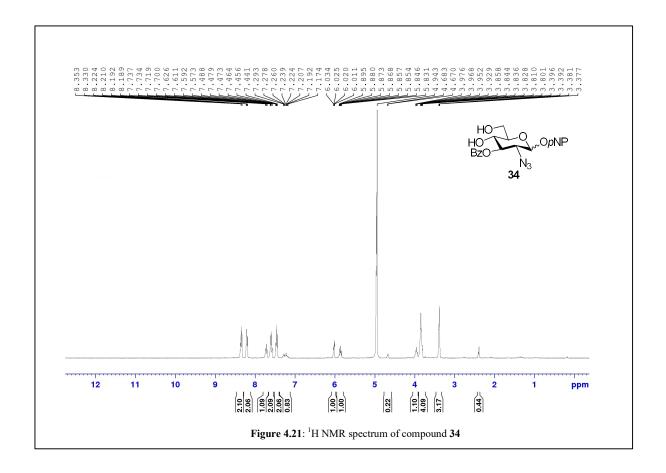
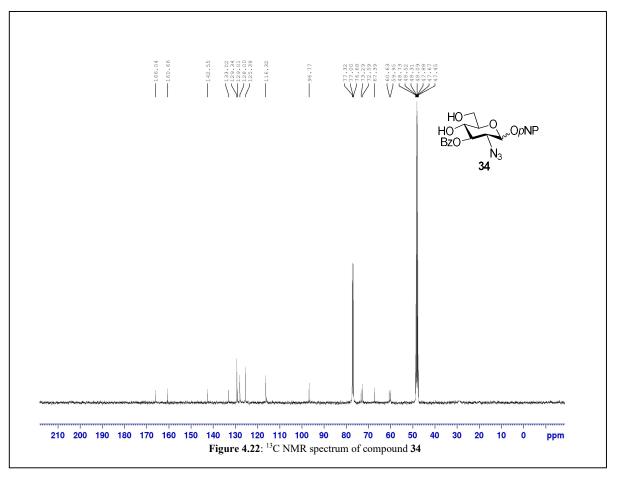
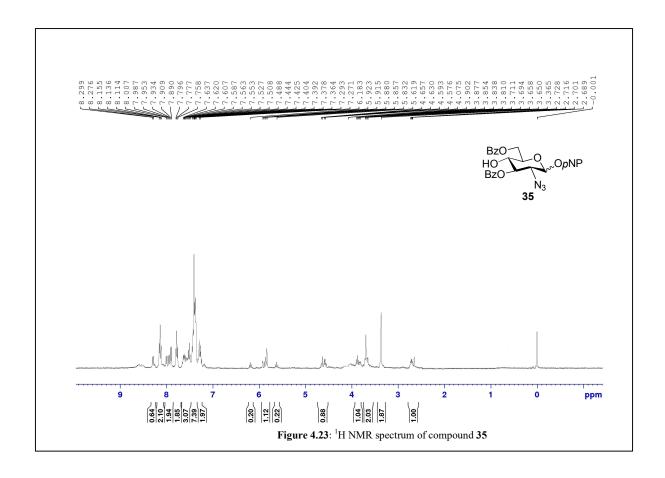
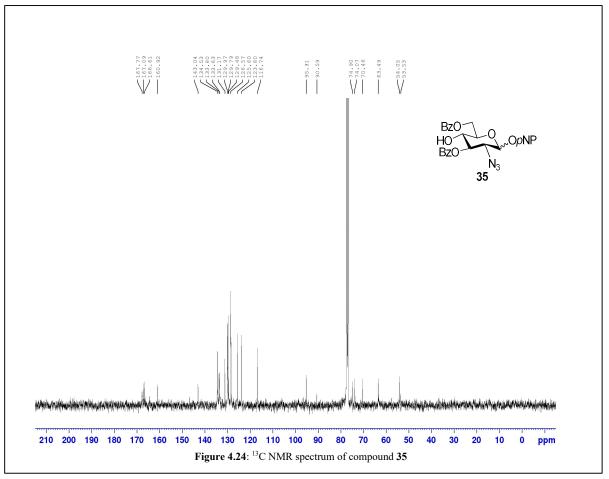
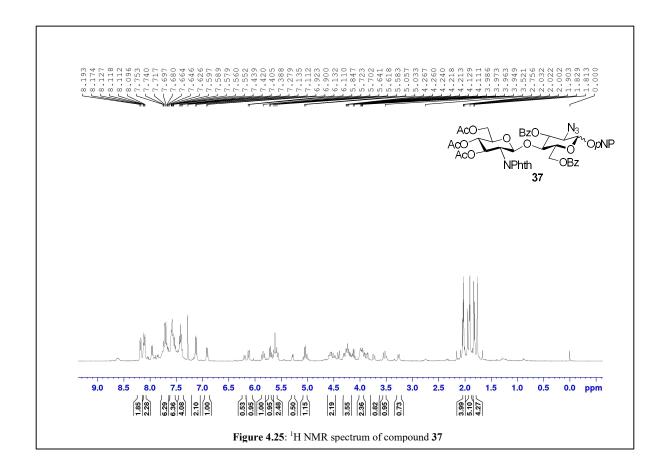



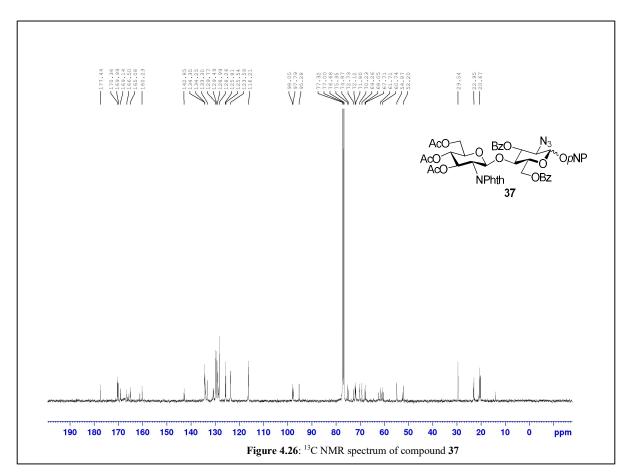
Figure 4.16: HRMS spectrum of compound 7

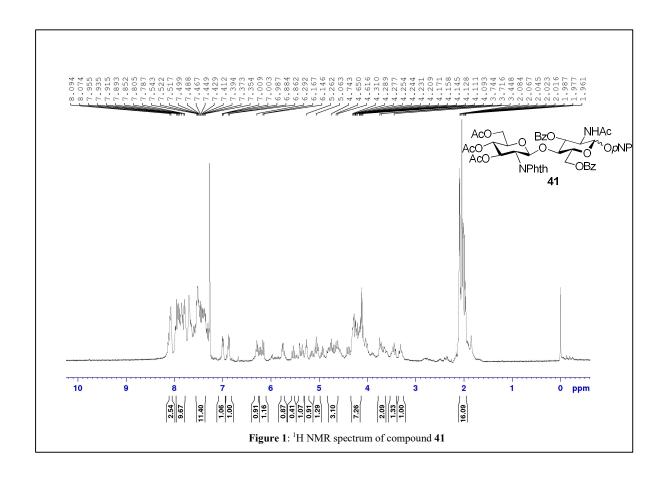






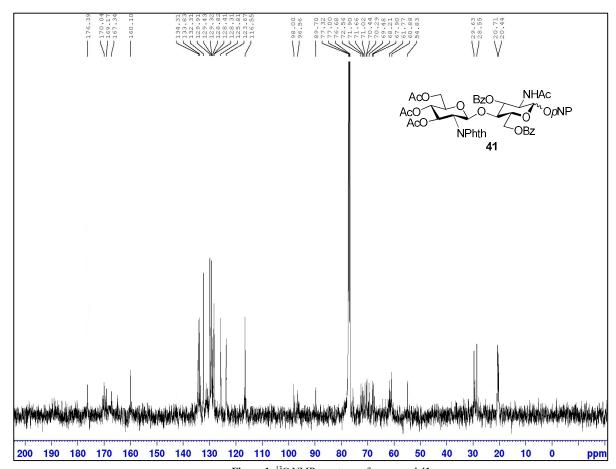
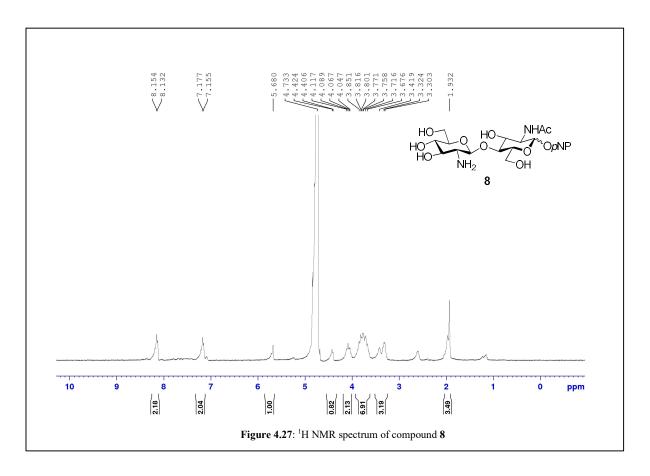
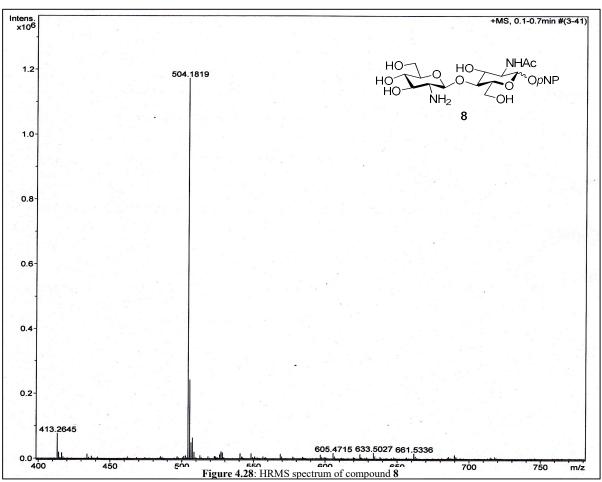
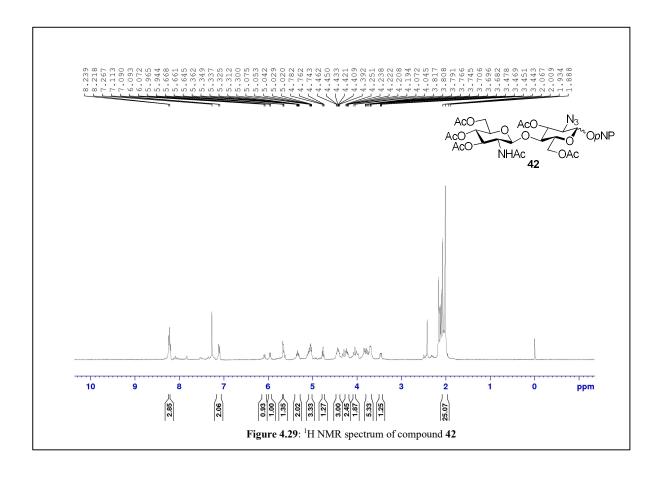
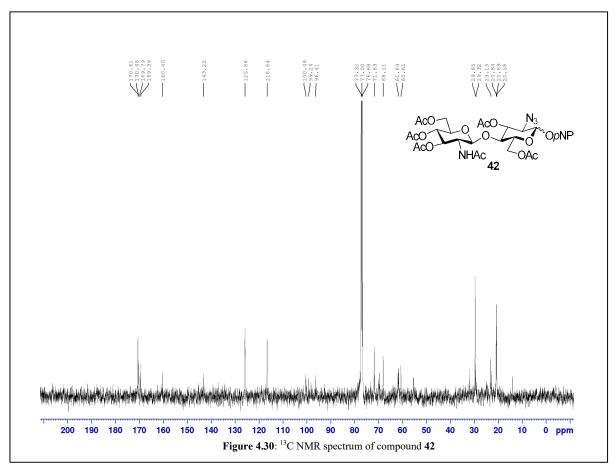

Figure 4.18: HRMS spectrum of compound 40

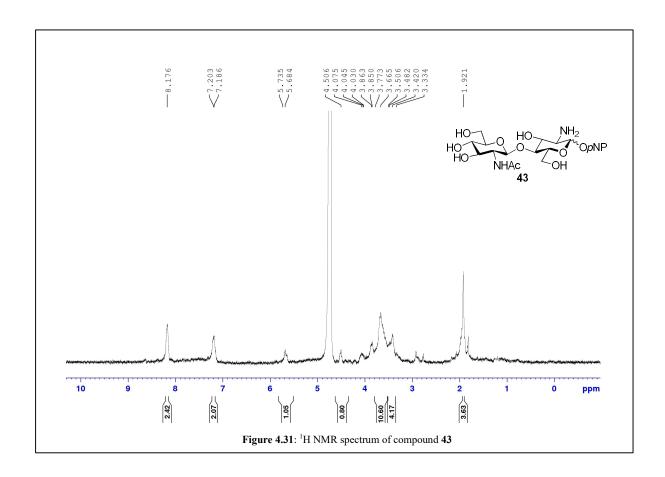


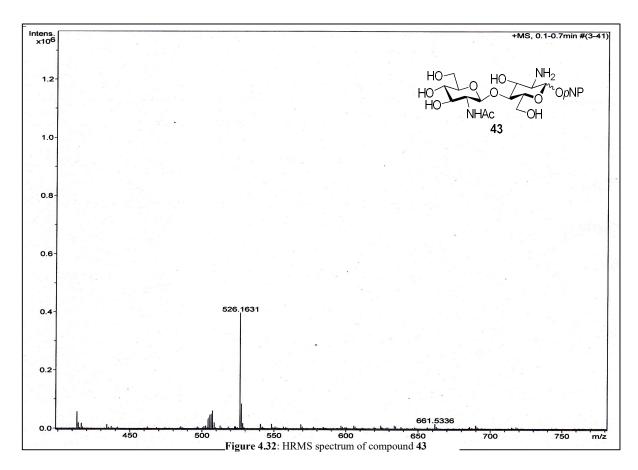







Figure 1: 13 C NMR spectrum of compound 41 13 7



Chapter 5

Towards the development of glycosidase inhibitors

5.1 Introduction

Glycosidases are a class of enzymes that hydrolyze the glycosidic linkages in glycans such as glycoconjugates and oligosaccharides. Glycosidase inhibitors play an important role in the investigation and treatment of many diseases. Stable and selective structures that can inhibit therapeutically important glycosidase enzymes are desired for this purpose. Many synthetic and biomedical research groups have been doing intensive research on the design and biological evaluation of glycosidase inhibitors. These inhibitors find application in the treatment of HIV, cancer, diabetes, viral infections, and lysosomal storage diseases by modifying cellular functions. N-acetyl- glucosamine and galctosamine are present in certain glycoconjugates and amino glycosides which play impotant roles in many biologial processes. These substrates are highly active towards the hexosaminidases. Chitinase inhibitors acts as selective insecticides and fungicides.

5.1.1 Allosamidins and aza sugars as glycosidase inhibitors

Allosamidins (1-3) and aza sugars (7-13) are good inhibitors of glycosidases due to their structural similarity with the *N*-acetyl glucosamine derivatives. Allosamidin 2 acts as a powerful insect chitinase inhibitor¹⁰ due to its structural similarities with β -(1 \rightarrow 4) linked chitobiose derivatives (Figure 5.1). Recently, several allosamidin derivatives having structural similarities with chitooligosaccharides were reported to exhibit strong inhibition towards the activities chitinases.^{11,12}

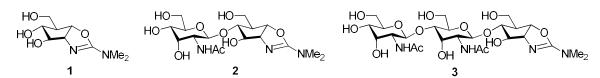
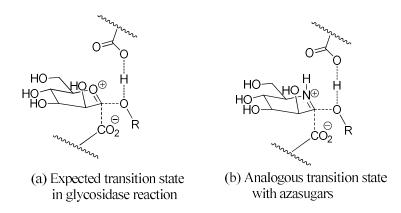


Figure 5.1: Structures of allosamidins (1-3) as potential chitinase inhibitors.

Griffith *et al.* reported an efficient total synthesis of allosamidin derivatives and explored their biological activities.¹³ Coupling of chitobioside derivative **4** with oxazoline derivative **5** through the formation of 1,2-sulfonylaziridine intermediate in the prsence of strong base


KHMDS in DMF solvent is the key step in the preparation of allosamidin derivative **3** (Scheme 5.1).

Scheme 5.1: Synthesis of allosamidin derivative **6** using chemical protection-deprotection strategy.

Iminosugars and their derivatives are well studied substrates as glycosides inhibitors. Their strong activities make them good candidates for the treatment of a broad spectrum of carbohydrates related diseases and disorders. These are analogues of sugars in which nitrogen atom replaces the endocyclic oxygen atom of the ring. Well known azasugar alkaloids such as 1-deoxy nojirimycin and its derivatives 7-13 serve as glycosidase inhibitors (Figure 5.2). Castanospermine iminosugar 13 shows strong inhibitory activity towards α -glucosidases, thereby exhibits antitumoral and antiviral activities but with lack of selectivity. Iminosugars based glycosidase inhibitors are generally six- or seven-membered rings in size.

Figure 5.2: structural representation of iminosugars 7-13.

A strong inhibitory activity of azasugars was explained based on the transition state structures of the enzyme with the active substrate and inhibitors (Figure 5.3). They act as strong and stable inhibitors due to the formation of transition state similar to the stable oxacarbenium ion with regular glycosidase substrates.

Figure 5.3: Comparison of transition states of (a) active substrate and (b) inhibitor in glycosidase catalyzed hydrolysis.

Fleet and co-workers synthesized the azetidine iminosugars from L-arabinose and ribose sugars. This synthetic strategy involves ring-closure of stable 3,5-di-O-triflyl pentose **15** with the alkyl and aralkyl amines to give the four-membered iminosugar **16** (Scheme 5.2). Preliminary studies suggest that these substrates show significant and specific inhibition of non-mammalian α -glucosidases.¹⁹

HOH₂C
$$\xrightarrow{\text{Tf}_2\text{O}, \text{Py}}$$
 $\xrightarrow{\text{Tf}_2\text{O}, \text{Py}}$ $\xrightarrow{\text{Tf}_2\text{O}, \text{Py}$

Scheme 5.2: Synthesis of azetidine iminosugar 16 from protected L-arabinose 14.

Croucher *et al.* reported an efficient method for the synthesis of 2-acetamido-1,2,4-trideoxy-1,4-imino-D-galactitol **19** and its epimer from *N*-acetyl glucosamine **17** (Scheme 5.3). Syntheses of these compounds were achieved using the Fleet's methodology of making imino-alditols. In the context of biological evaluation, these compounds show strong inhibitory activities towards hexosamindases.²⁰

Scheme 5.3: Synthesis of 2-acetamido-1,2,4-trideoxy-1,4-imino-D-galactitol **19** from *N*-acetyl glucosamine **17**.

5.1.2 Chitooligosaccharide related glycosidase inhibitors

Thiochitooligosaccharides have the potential to resist the enzymatic hydrolysis due to the presence of stronger thioglycosidic linkage.²¹ Wang *et al.* reported a stereoselective synthesis of thiochitobioside **22** by the coupling of triflate **21** with *N*-acetylglucosamine thiol derivative **20** in presence of NaH in DMF solvent (Scheme 5.4).²²

Scheme 5.4: Synthesis of thiochitobiose derivative 22.

TMG-chitotriomycin is a structural mimic of chitotetrose having N,N',N''-trimethyl-D-glucosamine (TMG) linked to N,N',N''-triacetylchitotriose at its non-reducing end. It is a potent and selective inhibitor of N-acetyl- β -glucosaminidases (GlcNAcases) of insects and fungi. Interestingly it does not show inhibition towards the GlcNAcases of plants and mammals.²³ Yang *et al.* achieved the total synthesis of TMG-chitotriomycin *via* Au(I)-catalyzed glycosylation of glycosyl *ortho*-hexynylbenzoate donors (Scheme 5.5).²⁴

Scheme 5.5: Synthesis of TMG-chitotriomycin using glycosyl *ortho*-hexynylbenzoates as donors.

5.2 Results and discussion

With the aim to prepare glycosidase inhibitors, we have designed the target molecules which mimic the structures of chitobiosides having different *N*-acetylated patterns. These molecules are expected to show inhibitor activity by resisting the enzymatic hydrolysis due to absence of anomeric carbon. The planed target chitobioside mimics **A** are shown in the Figure 5.4.

Figure 5.4: Structural representation of planed target chitobioside mimics A.

5.2.1 Preparation of building blocks for the synthesis of target chitobioside mimics

5.2.1.1 Synthesis of azido tosyl derivative

For the synthesis of proposed glycosidase inhibitors, we concentrated first on the synthesis of tosylate building block **33** and alcohol derivatives **35** and **37**. Synthesis of tosyl derivative **33** was achieved from the commercially available (+)-diethyl L-tartrate in 7 steps. To begin the synthesis, (+)-diethyl tartrate **27** was converted in to its azido derivative **28** by treating it with thionyl chloride followed by NaN₃ in DMF. Reduction of the ester groups in **28** was carried out in presence of NaBH₄/LiCl conditions which yielded the azido triol **29** under literature reported condition. ²⁵ Selective benzoylation of azido triol **29** with *n*-Bu₂SnO/BzCl reagent system gave the mono benzoyl azide derivative **30** *via* the formation of stannylene acetal intermediate in 75% yield. ²⁶ This is the key intermediate for the preparation of building block **33** utilized in the subsequent steps. Silylation of the primary alcohol function in **30** followed by debenzoylation and benzylation with BnBr in presence of NaH in one pot yielded the fully protected silyl derivative **31** in 77% yield. ²⁷

The tosyl building block 33 was finally obtained by desilylation²⁸ of compound 31 using TBAF in THF solvent and subsequent tosylation using p-TsCl/NaOH²⁹ in 78% yield (Scheme 5.6). This was utilized for the coupling (etherification³⁰) reactions.

Scheme 5.6: Preparation of azido tosyl derivative **33**.

5.2.1.2 Synthesis of azido alcohol derivatives 35 and 37

Benzylidene derivative **35** was synthesized from the key benzoylated intermediate **30** in 2 steps. Initially, compound **30** was treated with PhCH(OMe)₂ in presence of p-TsOH to get benzylidene acetal derivative **34** in 90% yield. Debenzoylation of **34** was carried out using K_2CO_3 in MeOH solvent to get the required **35** in 95% (Scheme 5.7).²⁷

HO
$$\frac{N_3}{OH}$$
 OBz $\frac{PhCH(OMe)_2, p\text{-TsOH}}{CH_3CN, RT}$ OBz $\frac{K_2CO_3}{MeOH, RT}$ OH Ph 30 35

Scheme 5.7: Preparation of azido alcohol derivative 35.

For the synthesis of acetonide derivative **37**, mono benzoylated derivative **30** was treated with 2,2-dimethoxypropane in CH₃CN solvent to get the intermediate derivative **36**. Debenzoylation of compound **36** yielded the derivative **37** in 91% yield (Scheme 5.8). Primary alcohol derivatives **35** and **37** were employed in the etherification reaction with tosylate derivative **33**.

Scheme 5.8: Preparation of acetonide derivative 37.

5.2.1.3 Etherification (coupling) of alcohol derivatives 35 and 37 with tosyl derivative 33

Having successfully made the building blocks tosylate 33 and alcohol derivatives 35 and 37, we focused on the synthesis of protected mimics of chitobiose. Unfortunately, when the oxyanion derived from 35 or 37 was treated with the tosylate 33 in DMF or THF solvent it underwent elimination instead of substitution to yield the vinyl azide derivative 38. Reason for the elimination may be the acidic nature of proton adjacent to the azide group. Several attempts were made by changing the reaction conditions. However, all the reactions resulted in the product 38 along with quantitative recovery of the alcohol derivative 35/37 (Scheme 5.9).

Scheme 5.9: Attempted etherification reaction using tosyl derivative **33**.

5.2.1.4 Preparation of acetimidate derivative

Due to the unsuccessful attempts with tosylate 33, acetimidate building block 39 was synthesized for the coupling reaction. The reason for choosing acetimidate leaving group is that the coupling reaction could be carried out under Lewis acidic conditions thereby base which created problem with 33 is avoided. The reaction of azido alcohol derivative 32 with CCl₃CN in presence of DBU yielded the acetimidate derivative 39 in 87% yield. The activation of acetimidate derivative 39 in presence of alcohol derivatives 35 and 37 under different Lewis acid catalyst resulted in a mixture of unidentified products (Scheme 5.10). The alcohol derivatives were recovered quantitatively.

Scheme 5.10: Attempted etherification *via* acetimidate derivative **39**.

5.2.1.5 Synthesis of *N*-acetyl protected tosylate derivative

The failures of the above attempts were believed to be due to the presence of azide group next to the leaving group. Therefore, it was planned to convert it into NHAc group before coupling. Accordingly the synthesis of required 42 was started from intermediate 31. Reduction of azide in compound 31 using Zn dust under neutral conditions followed by acetylation of the resulting free amine gave the *N*-acetyl derivative 40 in 74% yield. Desilylation of silyl group in derivative 40 using TBAF in THF solvent at room temperature yielded the primary alcohol derivative 41 in 94% yield. Finally tosylation of the primary alcohol 41 under standard tosylation conditions yielded the tosyl derivative 42 in 79% yield (Scheme 5.11).

Scheme 5.11: Preparation of *N*-acetyl protected tosyl derivative **42**.

5.2.1.6 Attempted etherification of *N*-acetyl tosylate 42 with 35 and 37

We tested the etherification of alcohol derivatives **35** and **37** with the *N*-acetyl protected tosyl derivative **42** separately (Scheme 5.12). Under basic conditions tosylate **42** decomposed to give a complex product mixture along with the unreacted alcohol derivatives **35** or **37**.

Scheme 5.12: Attempted etherification of *N*-acetyl tosylate **42**.

After unsuccessful etherification using tosyl derivative 42, we wished to use the triflate derived from 32 or 41 for etherification reaction considering the higher reactivity of triflates. But preparation triflate derivative itself was problematic using Tf₂O/DTBP as it resulted in a complex mixture of products (Scheme 5.13).

HO
OBn
$$Tf_2O$$
, DTBP
 CH_2CI_2

Complex mixture

32: $X = N_3$
41: $X = NHAc$

Scheme 5.13: Attempts to prepare N_3 or N-acetyl containing triflate derivatives.

5.2.1.7 Etherification with azido alcohol derivatives 32 of N-Phth protected tosylte derivative 44

After unsuccessful etherification with azido and *N*-acetyl derivatives, we looked on to the synthesis of *N*-Phth protected derivative **44** from the benzylidene derivative **34**. This way the roles of the coupling partners are reversed, i.e., leaving group is placed on the hydroxyl derivative used in the earlier attempts. First step involves the reduction of azide in compound **34** under Zn/NH₄Cl conditions followed by phthalimide protection of the free amine to get protected primary alcohol derivative **43** in 65% yield. Tosylation of the primary alcohol function in **43** yielded the required *N*-Phth protected tosyl derivative **44** in 68% yield (Scheme 5.14). Synthesised tosyl derivatives **44** and azido alcohol **32** were utilized in the coupling reactions.

Scheme 5.14: Preparation of *N*-Phth protected tosyl derivative 44.

Under etherification conditions (NaH in DMF), decomposition of both the tosyl derivative **44** and alcohol derivative **32** was observed. Even in the presence of HMPA which can selectively solvate the cation (Na⁺) to accelerate the reaction did not help (Scheme 5.15).

Scheme 5.15: Etherification attempt with N-Phth protected tosylate derivative 44.

5.2.2 Synthesis of aryl esters having free or *N*-acetylated amine

Since all our efforts to make the designed substrates failed we turned our attention to make simple analogues having the core unit. With this intention we planned the synthesis of the benzoic ester derivatives **B** as shown in Figure 5.5. In this structure aryl ring will provide certain rigidity and when it has hydroxyl or amino groups H-bonding interaction can be facilitated.

$$R_2$$
 R_2
 R_2
 R_2
 $R_1 = H/Ac, R_2 = H/OH/NH_2$
 $R_3 = H/OH/NH_2$

Figure 5.5: Structural representation of target aryl esters **B**.

5.2.2.1 Preparation of aryl esters having free amine (51-53)

Building block **32** was used for the syntheses of aryl esters **51-53**. Firstly substituted benzoic acids **45-47** were esterified with the azido alcohol **32** separately in presence of DCC and DMAP to get the protected aryl esters **48-50** in 78%, 82% and 81% yields respectively. Treatment of **48-50**, with H₂ in the presence of 10% Pd/C resulted the desired aryl esters **51-53** (Scheme 5.16). Nitro groups in the substrate **49** also got reduced to primary amine group under the reaction condition to give the expected **52**.

5.2.2.2 Preparation of aryl esters having N-acetyl amine

For the synthesis of N-acetyl aryl esters 57-59 the syntheses were started from N-acetamido primary alcohol 43. Like in the previous case, esterification followed by treatment with H_2 in the presence of 10% Pd/C resulted the desired aryl esters 57-59 in good yields (Scheme 5.18).

5.2.3 Screening of aryl esters for chitinase inhibitor activities

To check the inhibitory activities of the synthesized esters 51-53 and 57-59 we chose highly active chitinases PeChi3 from Paenibacillus elgii and SpChiD from Serratia proteamaculans. In the presence of free amino/N-acetyl containing phenyl esters (51 and 53), PeChi3 activity was measured using colloidal chitin polymer (1%) as substrate. There was no loss of activity of PeChi3 on colloidal chitin in the presence of substituted phenyl esters (Figure 5.6). The absence of any observable effect on the activity of PeChi3 may be due to the aryl ester derivatives are smaller in size, thereby, not fitting in the extended catalytic binding cleft of PeChi3 enzyme.

Scheme 5.18: Preparation of aryl esters having *N*-acetyl amine (57-59).

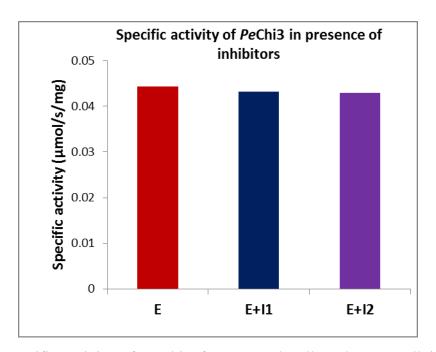
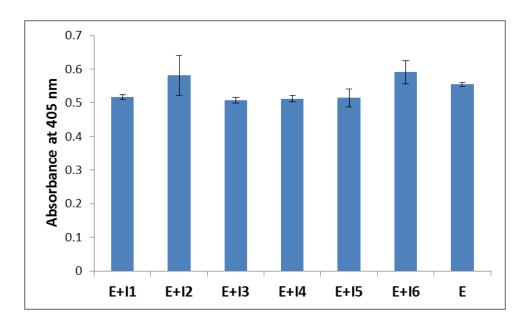



Figure 5.6: Specific activity of PeChi3 from Paenibacillus elgii on colloidal chitin in presence of aryl esters I1 = 51 and I2 = 53.

As PeChi3 requires the chitin oligomer of minimum chain length of three, we wanted to test the inhibitory activity on an enzyme which has chitobiase activity. Therefore, we checked the chitinase inhibitory activity on SpChiD using the aryl esters (51-53 and 57-59). SpChiD is active on the higher chitooligosaccharides and also exhibited chitobiase activity by hydrolysing (GlcNAc)₂ to GlcNAc. Activity of SpChiD on p-nitrophenyl tetra Nacetylchitotetrose was tested in the presence of aryl esters. Absorption at 405 nm due to the release of p-nitrophenol from the p-nitrophenyl tetra N-acetylchitotetrose was the base for the measurement of activity of SpChiD. Here also no significant reduction of the activity of SpChiD in cleaving the pNP tetramer was observed in presence of phenyl esters (Figure 5.7). These results clearly indicate that the synthesized aryl esters do not bind to the catalytic cleft of SpChiD to affect its enzymatic activity significantly. These experiments were carried out in the lab of Prof. Appa Rao, School of Lifesciences, University of Hyderabad with the enzymes generated in their lab. With this we can conclude that phenyl esters are not showing inhibitory activities on chitinases having larger catalytic cleft. However, they might show activity on glycosidases such as glucosaminidases and N-acetyl glucosaminidases having smaller catalytic cleft.

Figure 5.7: Activity of *Sp*ChiD on *p*-nitrophenyl tetra *N*-acetylchitotetrose in the presence of putative inhibitors (Inhibitors: I1 = 51, I2 = 52, I3 = 53, I4 = 57, I5 = 58, I6 = 59).

5.3 Conclusions

With the aim to make glycosidase inhibitors, we attempted to synthesize chitobioside mimics which do not have anomeric carbon. However, all our attempts to synthesize the planed target chitobioside mimics failed. Later aryl esters having free or *N*-acetylated amine were prepared and their activities were checked. These compounds, however, do not show any significant inhibitory activities against *Pe*Chi3 and *Sp*ChiD perhaps due to the larger catalytic binding cleft of chitinases (*Pe*Chi3 and *Sp*ChiD). It is anticipated that these compounds might have inhibitory activity against glucosaminidases and *N*-acetyl glucosaminidases. Efforts should be made on these fronts.

5.4 Experimental section

For general information refer Chapter 2, Section 2.4.1.

5.4.1 Experimental procedures, spectral and analytical data

General procedure for tosylation³⁰

Primary alcohol (1 equiv.) and tetra-*n*-butylammonium hydrogen sulfate (0.2 equiv.) were dissolved in THF (10 mL/mmol). The reaction mixture was cooled to 0 °C, slow dropwise addition of NaOH solution (1.2 equiv.) in water (1 mL/mmol) followed by the addition of tosylchloride (1.2 equiv.) dissolved in THF (2 mL/mmol) to the reaction mixture. After 15 h, completion of the reaction was confirmed by TLC. Organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. silicagel column chromatography using EtOAc/hexanes mixture as eluent to obtain tosylate derivatives.

General procedure for coupling reaction (etherification)³⁵

Primary alcohol derivative (1 equiv.) was dissolved in dry THF (5 mL/mmol) or DMF (3 mL/mmol). The solution was cooled to 0 °C, then addition of 60% NaH (1.2 equiv.) suspended in mineral oil with constant stirring. After 30 min, slow dropwise addition of tosyl derivative in dry THF or DMF to the reaction mixture was carried out at same temperature. The mixture was warmed to room temperature and allowed to stir for 3 h. The resulted residue was quenched with MeOH and the mixture was diluted with EtOAc, washed with saturated NaCl, dried over anhydrous Na₂SO₄, and the organic layer evaporated to afford the

crude product. Purification was carried out on silicagel column chromatography using EtOAc/hexanes mixture as eluent.

General procedure for esterification³⁵

A suspension of primary alcohol derivative (2 equiv.), DCC (1.2 equiv.), and substituted benzoic acid (1 equiv.) in CH₂Cl₂ (8 mL/mmol) were treated with DMAP (0.1 equiv.) and stirred at room temperature for 24 h. Colourless solid dicyclohexyl urea formation was observed in the reaction, which was removed by filtration and washed with CH₂Cl₂. The filtrate was evaporated under reduced pressure and purified by using on silicagel column chromatography using EtOAc/hexanes mixture as eluent to obtain the aryl ester.

Diethyl (2R,3S)-3-azido-3-deoxy-tartrate 28

The compound **28** was prepared from diethyl-(D)-tartrate **27** (4 g, 19.39 mmol) in 2 steps using literature reported method.²⁵ Oily liquid; Yield = 2.9 g (64%); $R_f = 0.45$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 4.56 (d, J = 2.0 Hz, 1H), 4.35 (d, J = 2.6

Hz, 1H), 4.31-4.26 (m, 4H), 3.65 (br s, 1H), 1.33-1.29 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 166.9, 71.9, 64.2, 62.4, 62.2, 13.8.

(2R,3R)-3-azido-2,4-dihydroxybutyl benzoate 30

The compound **30** was prepared from compound **28** (2.0 g, 8.56 mmol) in 2 steps using literature reported method.²⁶ Colourless solid; Yield = 1.6 g (75%); R_f = 0.30 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H),

7.45 (t, J = 7.6 Hz, 2H), 4.61 (dd, J = 12.0, 2.9 Hz, 1H), 4.44 (dd, J = 11.9, 5.7 Hz, 1H), 4.06 (br s, 1H), 3.99-3.91 (m, 2H), 3.64-3.60 (m, 1H), 3.43 (br s, 1H), 2.70 (br s, 1H), 13 C NMR (100 MHz, CDCl₃): δ 167.2, 133.5, 129.7, 128.5, 70.4, 66.5, 63.7, 62.6.

((2R,3R)-2-azido-3,4-bis(benzyloxy)butoxy)(tert-butyl)dimethylsilane 31

The compound **31** was prepared from compound **30** (1.6 g, 6.42 mmol) by following general procedure for silyl ether protection (Chapter 2). Yellow gummy liquid; Yield = 2.18 g (77%); $R_f = 0.70$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz,

CDCl₃): δ 7.35-7.30 (m, 10H), 4.70 (d, J = 11.6 Hz, 1H), 4.57 (d, J = 11.7 Hz, 3H), 3.91 (dd,

J = 10.7, 3.0 Hz, 1H), 3.78 (dd, J = 10.5, 5.9 Hz, 1H), 3.73-3.59 (m, 4H), 0.90 (s, 9H), 0.07 (s, 6H).¹³C NMR (100 MHz, CDCl₃): δ 138.1, 138.1, 138.0, 128.3, 127.8, 127.7, 127.6, 127.5, 76.9, 74.6, 73.4, 72.7, 69.5, 63.5, 63.2, 58.0, 25.8, 18.1, -5.6, -5.8. HRMS-ESI (m/z): $[\text{M}+\text{H}]^+$ calcd for $\text{C}_{24}\text{H}_{35}\text{N}_3\text{O}_3\text{Si}$ 442.2526, found 442.2520.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butan-1-ol 32

The compound **32** was prepared from compound **31** (0.5 g, 1.13 mmol) by general procedure for silyl ether deprotection (Chapter 2). Colourless liquid; Yield = 0.35 g (95%); $R_f = 0.37$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.29 (m, 10H),

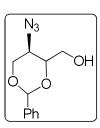
4.67 (d, J = 11.6 Hz, 1H), 4.57-4.54 (m, 3H), 3.82-3.67 (m, 5H), 3.64-3.59 (m, 1H), 2.46 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 128.4, 128.3, 128.0, 127.9, 128.7, 127.7, 77.9, 73.4, 72.5, 68.6, 63.4, 62.1. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₁N₃O₃ 350.1481, found 350.1472.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butyl 4-methylbenzenesulfonate 33

The compound **33** was prepared from compound 32 (100 mg, 0.32 mmol) by using general procedure for preparation of tosylate. Light yellow liquid; Yield = 120 mg (78%); $R_f = 0.60$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz,

2H), 7.36-7.29 (m, 10H), 7.23 (d, J = 6.9 Hz, 2H), 4.59 (d, J = 11.6 Hz, 1H), 4.50-4.46 (m, 3H), 4.31 (dd, J = 10.6, 3.5 Hz, 1H), 4.13 (dd, J = 10.5, 7.4 Hz, 1H), 3.88 (td, J = 7.1, 3.1 Hz, 1H), 3.72-3.52 (m, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 137.6, 137.3, 132.6, 129.8, 128.4, 127.9, 127.8, 127.7, 127.6, 76.8, 73.4, 72.4, 69.1, 67.9, 60.7, 21.6.

((5R)-5-azido-2-phenyl-1,3-dioxan-4-yl)methyl benzoate 34


The compound **34** was prepared from compound **30** (200 mg, 0.8 mmol) using general procedure for bezylidine acetal protection (Chapter 2). Colourless liquid; Yield = 244 mg (90%); $R_f = 0.57$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.49-7.43 (m, 3H), 7.37-7.35 (m, 3H), 5.53 (s,

1H), 4.70 (dd, J = 12.3, 2.4 Hz, 1H), 4.58 (dd, J = 12.1, 4.7 Hz, 1H), 4.48-4.44 (m, 1H), 3.97-3.93 (m, 1H), 3.82-3.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 136.9, 133.2, 129.7,

129.2, 128.4, 128.3, 126.1, 101.3, 78.02, 68.9, 63.9, 53.6. HRMS-ESI (m/z): $[M+K]^+$ calcd for $C_{18}H_{17}N_3O_4$ 378.0856, found 378.0847.

((5R)-5-azido-2-phenyl-1,3-dioxan-4-yl)methanol 35

The compound **35** was prepared from compound **34** (210 mg, 0.62 mmol) by using general procedure of *O*-deacetylation (Chapter 2). Light yellow liquid; Yield = 139 mg (95%); $R_f = 0.52$ in 1:3 EtOAc/hexanes; 1 H NMR (400 MHz, CDCl₃): δ 7.47-7.46 (m, 2H), 7.38-7.37 (m, 3H), 5.48 (s, 1H), 4.40 (dd, J = 10.7, 4.9 Hz, 1H), 3.93-3.89 (m, 1H), 3.80-3.73 (m, 2H),

3.70-3.63 (m, 2H), 2.17 (br s, 1H), 13 C NMR (100 MHz, CDCl₃): δ 136.9, 129.3, 128.3, 126.1, 101.2, 80.2, 68.7, 62.0, 52.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for $C_{11}H_{13}N_3O_3$ 258.0855, found 258.0892.

((5R)-5-azido-2,2-dimethyl-1,3-dioxan-4-yl)methanol 37

The compound **37** was prepared from compound **30** (230 mg, 0.92 mmol) by using general procedure for bezylidine acetal protection followed by *O*-deacetylation (Chapter 2). Yellow liquid; Yield = 230 mg (94%); R_f = 0.50 in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 4.00 (dd, J = 11.5, 5.4

Hz, 1H), 3.81 (d, J = 9.9 Hz, 1H), 3.76-3.66 (m, 3H), 3.63 (dd, J = 9.4, 5.1 Hz, 1H), 2.19 (br s, 1H), 1.47 (s, 3H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 99.0, 72.5, 62.6, 61.9, 53.7, 28.4, 19.3.

2-Azido-3,4-bis(benzyloxy)-2-butene 38

The compound **38** was obtained in coupling reaction of compound of **35** (28 mg, 0.12 mmol) or **37** (25 mg, 0.12 mmol) and with tosylate **33** (50 mg, 0.11 mmol). Colourless liquid; Yield = 29.6 mg (87%); R_f = 0.68 in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.24 (m, 10H), 5.04

(br s, 1 H), 4.92 (br s, 1H), 4.68 (d, J = 11.9 Hz, 1H), 4.56 (q, J = 12.0 Hz, 2H), 4.46 (d, J = 11.9 Hz, 1H), 3.98 (t, J = 5.7 Hz, 1H), 3.62 (d, J = 5.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 138.1, 137.7, 128.4, 128.3, 127.8, 127.7, 127.6, 101.1, 78.6, 73.4, 71.3, 71.0. HRMS-ESI (m/z): [M+K]⁺ calcd for C₁₈H₁₉N₃O₂ 348.1114, found 348.1134.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butyl 2,2,2-trichloroacetimidate 39

The compound **39** was prepared from compound **32** (100 mg, 0.31 mmol) by procedure for the preparation of trichloroacetimidate (Chapter 3). Yellow liquid; Yield = 127 mg

(87%); $R_f = 0.76$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.15 (m, 10H), 4.57 (t, J = 12.5 Hz, 2H), 4.47-4.43 (m, 3H), 4.38 (dd, J = 11.4, 7.4 Hz, 1H), 3.94-3.90 (m, 1H), 3.65-3.61 (m, 1H), 3.58-3.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 137.6, 137.3, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 89.6, 76.9, 73.5, 72.5, 68.3, 69.2, 67.8, 60.6, 53.6.

N-((2R,3R)-3,4-bis(benzyloxy)-1-((tert-butyldimethylsilyl)oxy)butan-2-yl)acetamide 40

The compound **40** was prepared from compound **31** (0.5 g, 1.13 mmol) using general procedure for reductive acetylation of azide (Chapter 2). Light yellow solid; Yield = 0.38 g (74%); R_f = 0.51 in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.36-

7.28 (m, 10H), 6.18 (d, J = 8.6 Hz, 1H), 4.74 (d, J = 11.8 Hz, 1H), 4.64 (d, J = 11.8 Hz, 1H), 4.60 (d, J = 11.8 Hz, 1H), 4.54 (d, J = 11.8 Hz, 1H), 4.29-4.26 (m, 1H), 3.85 (dd, J = 9.8, 4.0 Hz, 1H), 3.80-3.73 (m, 3H), 3.57 (dd, J = 9.9, 6.3 Hz, 1H), 1.90 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). 13 C NMR (100 MHz, CDCl₃): δ 169.6, 138.4, 137.9, 128.4, 128.3, 127.8, 127.7, 127.6, 76.3, 73.6, 72.2, 71.5, 61.6, 51.4, 25.8, 23.4, 18.1, -5.4, -5.6.

N-((2R,3R)-3,4-bis(benzyloxy)-1-hydroxybutan-2-yl)acetamide 41

The compound **41** was prepared from compound **40** (0.3 g, 0.66 mmol) using general procedure for silyl ether deprotection (Chapter 2). Oily liquid; Yield = 0.21 g (94%); $R_f = 0.28$ in 1:1 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.28 (m, 10H),

4.73 (d, J = 11.7 Hz, 1H), 4.59 (d, J = 11.8 Hz, 1H), 4.55-4.51 (m, 2H), 4.24 (br s, 3H), 3.73-3.61 (m, 4H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 138.6, 138.2, 128.4, 128.3, 127.7, 127.6, 127.5, 79.9, 73.4, 72.9, 70.7, 69.4, 67.8, 13.9.

(2R,3R)-2-acetamido-3,4-bis(benzyloxy)butyl 4-methylbenzenesulfonate 42

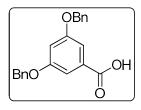
The compound **42** was prepared from compound **41** (90 mg, 0.27 mmol) using general procedure of preparation of tosylate. Colourless liquid; Yield = 106 mg (79%); $R_f = 0.40$ in 1:1 EtOAc/hexanes; ¹H

NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.2 Hz, 2H), 7.49-7.33 (m, 10H), 7.26-7.24 (m, 2H), 5.21 (d, J = 8.5 Hz, 1H), 4.59 (d, J = 11.7 Hz, 1H), 4.51-4.50 (m, 2H), 4.40 (d, J = 11.7 Hz, 1H), 4.21 (dd, J = 11.5, 6.2 Hz, 1H), 3.98 (dd, J = 11.5, 4.5 Hz, 1H), 3.76 (br s, 1H), 3.61-3.60 (m, 3H), 2.42 (s, 3H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 143.3, 137.8, 137.7, 137.6, 129.5, 128.5, 127.9, 127.8, 127.7, 127.1, 76.8, 73.5, 72.4, 69.4, 62.8, 53.9, 21.5, 20.6.

2-((5S)-4-(hydroxymethyl)-2-phenyl-1,3-dioxan-5-yl)isoindoline-1,3-dione 43

To a solution of benzylidene deivative **34** (100 mg, 0.42 mmol) in methanol (3 mL) NH₄Cl (51 mg, 0.8 mmol), and Zn dust (51 mg, 0.8 mmol) were added. The reaction mixture was stirred vigorously for 2 h at room temperature. The resulted mixture was filtered and concentrated in

vacuo. The crude product was directly used for next step without purification. Crude product was treated with phthalic anhydride (2 equiv.) in presence of triethyl amine in MeOH as a solvent. The residue was filtered through a small pad of silica column to obtain pure compound 43 as oily liquid. Yield = 93 mg (65%); $R_f = 0.30$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 5.4, 3.1 Hz, 2H), 7.76 (dd, J = 5.4, 3.1 Hz, 2H), 7.55 (dd, J = 7.8, 2.0 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.40-7.38 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 5.79 (s, 1H), 5.12 (dt, J = 8.4, 4.1 Hz, 1H), 4.76 (td, J = 10.9, 5.1 Hz, 1H), 4.64-4.58 (m, 1H), 4.53-4.44 (m, 2H), 4.19 (dd, J = 10.5, 5.0 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 167.9, 166.1, 134.3, 132.9, 132.6, 131.5, 129.6, 129.2, 128.3, 128.2, 126.2, 123.6, 101.5, 73.9, 66.2, 64.3, 45.8.


$((5S)-5-(1,3-dioxoisoindolin-2-yl)-2-phenyl-1,3-dioxan-4-yl) methyl-4-methylbenzenesulfonate\ 44$

The compound **44** was prepared from compound **43** (50 mg, 0.15 mmol) general procedure of preparation of tosylate. Yellow liquid; Yield = 50 mg (68%); $R_f = 0.37$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.76-7.75 (m, 2H), 7.55-7.53 (m, 2H), 7.30 (d, J = 5.9 Hz, 3H), 7.26-7.23 (m, 3H), 7.17 (d, J = 7.2 Hz, 2H), 5.76 (s,

1H), 4.82-4.79 (m, 1H), 4.71-4.58 (m, 2H), 4.17 (dd, J = 9.6, 4.1 Hz, 1H), 3.76 (dd, J = 12.1, 2.2 Hz, 1H), 3.66 (dd, J = 12.4, 4.7 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 166.1, 142.8, 134.3, 134.2, 133.3, 130.0, 129.4, 129.0, 128.2, 125.8, 125.5, 123.4, 75.3, 74.8, 70.2, 69.3, 23.0.

3,5-bis(benzyloxy)benzoic acid 45

The compound **45** was prepared from 3,5-dihydroxybenzoic acid (2 g, 13.0 mmol), using literature procedure.³⁵ Colourless solid; Yield = 4 g (94%) overall 2 steps; ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.30 (m, 11H), 6.82-6.81 (m, 1H), 5.07 (br s, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 136.4, 128.6, 128.1, 127.6, 108.6, 107.3, 70.2.

3,4,5-tris(benzyloxy)benzoic acid 47

The compound 47 was prepared from 3,4,5-trihydroxybenzoic acid (2 g, 11.8 mmol) using literature procedure.³⁵ Colourless solid; Yield = 4.8 g (92%) overall 2 steps; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.34 (m, 13H), 7.28-7.26 (m, 5H), 5.15 (br s, 6H). ¹³C NMR

(100 MHz, CDCl₃): δ 152.6, 137.3, 136.5, 128.6, 128.5, 128.2, 128.1, 128.0, 127.5, 109.6, 77.2, 75.2, 71.2.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butyl 3,5-bis(benzyloxy)benzoate 48

The compound **48** was prepared from **32** (100 mg, 0.31 mmol) and **45** (101 mg, 0.31 mmol) using general procedure for escrification. Yellow liquid; Yield = 83 mg (78%); $R_f = 0.57$ in 1:1 EtOAc/hexanes; ¹H NMR (400

MHz, CDCl₃): δ 7.43-7.24 (m, 22H), 6.82 (t, J = 2.2 Hz, 1H), 5.05 (br s, 4H), 4.68 (d, J = 11.6 Hz, 2H), 4.64-4.53 (m, 3H), 4.43 (dd, J = 11.6, 7.6 Hz, 1H), 4.03-3.99 (q, J = 2.9 Hz, 1H), 3.75-3.72 (m, 1H), 3.69-3.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 159.8, 137.7, 137.4, 136.4, 131.4, 128.6, 128.4, 128.1, 127.9, 127.8, 127.7, 127.5, 108.4, 107.6, 73.5, 72.5, 70.2, 68.4, 64.7, 60.9.

(2R,3R)-2-amino-3,4-dihydroxybutyl 3,5-dihydroxybenzoate 51

The compound **51** was prepared from compound **48** (27 mg, 0.078 mmol) using general procedure for *O*-debenzylation. Amorphous solid; Yield = 12.4 mg (62%); 1 H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.03-7.02 (m,

1H), 6.99-6.98 (m, 1H), 6.91 (br s, 1H), 4.65-4.63 (m, 1H), 4.56-4.54 (m, 1H), 3.86-3.77 (m, 3H), 3.72-3.68 (m, 2H), 3.64-3.58 (m, 3H). HRMS-ESI (m/z): $[M+K]^+$ calcd for $C_{11}H_{15}NO_6$ 296.0536, found 296.0548.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butyl 3,5-dinitrobenzoate 49

The compound **49** was prepared from **32** (100 mg, 0.31 mmol) and 3,5-dinitrobenzoic acid (57 mg, 0.31 mmol) using general procedure for esterification. Yellow liquid; Yield = 132 mg (82%); $R_f = 0.49$ in 1:3

$$O_2$$
 O_2
 O_3
 O_3
 O_4
 O_3
 O_4
 O_5
 O_7
 O_8
 O_8
 O_8

EtOAc/hexanes; 1 H NMR (400 MHz, CDCl₃): δ 9.19-9.06 (m, 3H), 7.34-7.20 (m, 10H), 4.72 (t, J = 11.6 Hz, 2H), 4.59-4.53 (m, 4H), 4.08-4.06 (m, 1H), 3.79-3.68 (m, 3H). 13 C NMR (100 MHz, CDCl₃): δ 161.8, 148.6, 137.5, 137.2, 133.2, 129.4, 128.5, 128.4, 128.0, 127.9, 127.7, 122.5, 76.9, 73.6, 72.3, 67.9, 65.9, 60.6.

(2R,3R)-2-amino-3,4-dihydroxybutyl 3,5-diaminobenzoate 52

The compound **52** was prepared from **49** (27 mg, 0.05 mmol) using general procedure for *O*-debenzylation (Chapter 2). Amorphous solid; Yield = 9.5 mg (76%); 1 H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.15-7.14 (m, 3H),

3.77-3.69 (m, 9H). HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{11}H_{17}N_3O_4$ 278.1117, found 278.1168.

(2R,3R)-2-azido-3,4-bis(benzyloxy)butyl 3,4,5-tris(benzyloxy)benzoate 50

The compound **50** was prepared from **32** (100 mg, 0.31 mmol) and **47** (44 mg, 0.31 mmol) using general procedure for esterification. Yellow liquid; Yield = 188 mg (81%); $R_f = 0.64$ in 1:3 EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.21 (m, 27H), 5.13-5.09

(m, 6H), 4.68-4.62 (m, 2H), 4.57-4.50 (m, 3H), 4.40 (dd, J = 11.6, 7.8 Hz, 1H), 4.01-3.98 (m, 1H), 3.74-3.72 (m, 1H), 3.67-3.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 152.5, 142.4, 137.7, 137.4, 137.3, 136.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 124.5, 109.0, 108.9, 76.8, 75.0, 73.5, 72.5, 71.0, 68.4, 64.9, 61.0.

(2R,3R)-2-amino-3,4-dihydroxybutyl 3,4,5-trihydroxybenzoate 53

The compound **53** was prepared from **50** (39 mg, 0.06 mmol) using general procedure for *O*-debenzylation (Chapter 2). Colourless solid; Yield = 10 mg (73%); ¹H NMR (400 MHz, CD₃OD+CDCl₃): δ 6.85-6.84 (m, 2H),

4.15 (s, 2H), 3.98 (s, 1H), 3.44-3.37 (m, 4H). HRMS-ESI (m/z): $[M+K]^+$ calcd for $C_{11}H_{15}NO_7$ 312.0486, found 312.0497.

(2R,3R)-2-acetamido-3,4-bis(benzyloxy)butyl 3,5-bis(benzyloxy)benzoate 54

The compound **54** was prepared from **41** (100 mg, 0.32 mmol) and **45** (101 mg, 0.31 mmol) general procedure of esterification. Colourless liquid; Yield = 159 mg (79%); $R_f = 0.54$ in 1:3 EtOAc/hexanes; ¹H

NMR (400 MHz, CDCl₃): δ 7.43-7.22 (m, 22H), 6.80 (t, J = 2.2 Hz, 1H), 6.06 (d, J = 8.9 Hz, 1H), 5.05 (s, 4H), 4.71 (d, J = 11.9 Hz, 1H), 4.62-4.54 (m, 4H), 4.45 (dd, J = 11.3, 6.4 Hz, 1H), 4.33 (dd, J = 11.3, 5.1 Hz, 1H), 3.75-3.71 (m, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 166.1, 159.7, 137.9, 137.6, 136.4, 131.6, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 108.4, 107.3, 77.2, 76.5, 73.7, 72.3, 70.7, 63.7, 23.3.

(2R,3R)-2-acetamido-3,4-dihydroxybutyl 3,5-dihydroxybenzoate 57

The compound **57** was prepared from **54** (31 mg, 0.05 mmol) using general procedure for *O*-debenzylation (Chapter 2). Colourless solid; Yield = 10.9 mg (77%); 1 H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.01 (d, J = 2.1 Hz,

1H), 6.97 (d, J = 2.0 Hz, 1H), 6.54 (br s, 1H), 4.45-4.41 (m, 1H), 4.31-4.22 (m, 1H), 3.72-3.67 (m, 3H), 3.65-3.59 (m, 3H), 2.02 (s, 3H). HRMS-ESI (m/z): $[M+H]^+$ calcd for $C_{13}H_{17}NO_7$ 300.1083, found 300.1084.

(2R,3R)-2-acetamido-3,4-bis(benzyloxy)butyl 3,5-dinitrobenzoate 55

The compound **55** was prepared from **41** (92 mg, 0.29 mmol) and 3,5-dinitrobenzoic acid (55 mg, 0.29 mmol) using general procedure for esterification. Yellow solid; Yield = 114 mg (78%); $R_f = 0.40$ in 1:3

EtOAc/hexanes; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (d, J = 1.9 Hz, 1H), 9.04 (t, J = 1.7 Hz, 2H), 7.36-7.26 (m, 10H), 6.02 (d, J = 8.4 Hz, 1H), 4.73 (d, J = 12.0 Hz, 1H), 4.62-4.46 (m,

6H), 3.79-3.77 (m, 1H), 3.74-3.72 (m, 2H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 162.4, 148.5, 137.7, 137.4, 133.6, 129.4, 128.6, 128.5, 128.2, 128.1, 127.9, 127.7, 122.3, 76.8, 73.7, 72.4, 70.0, 65.3, 49.3, 23.2.

(2R,3R)-2-acetamido-3,4-dihydroxybutyl 3,5-dihydroxybenzoate 58

The compound **58** was prepared from **55** (42 mg, 0.085 mmol) using general procedure for *O*-debenzylation (Chapter 2). Colourless solid; Yield = 15.5 mg (64%); 1 H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.15-7.14 (m, 3H), 3.94 3.93 (m, 1H), 3.65 3.62 (m, 1H), 3.50 3.39 (m, 5Hz)

3.94-3.93 (m, 1H), 3.65-3.62 (m, 1H), 3.50-3.39 (m, 5H), 1.81 (s, 3H). HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{13}H_{19}N_3O_5$ 320.1222, found 320..1217.

(2R,3R)-2-acetamido-3,4-bis(benzyloxy)butyl 3,4,5-tris(benzyloxy)benzoate 56

The compound **56** was prepared from **41** (91 mg, 0.29 mmol) and **47** (44 mg, 0.31 mmol) using general procedure for esterification. Light yellow solid; Yield = 179 mg (84%); $R_f = 0.60$ in 1:3 EtOAc/hexanes; ¹H

NMR (400 MHz, CDCl₃): δ 7.42-7.25 (m, 22H), 5.99 (d, J = 3.9 Hz, 1H), 5.13-5.10 (m, 6H), 4.72 (dd, J = 11.9, 5.3 Hz, 1H), 4.62-4.53 (m, 4H), 4.42-4.30 (m, 2H), 3.72-3.71 (m, 3H), 1.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 152.5, 137.9, 137.6, 137.4, 136.6, 128.5, 128.2, 128.0, 127.9, 127.7, 127.5, 124.7, 109.1, 75.1, 73.7, 72.3, 71.1, 70.7, 63.8, 49.4, 23.4.

(2R,3R)-2-acetamido-3,4-dihydroxybutyl 3,5-dihydroxybenzoate 59

The compound **59** was prepared from **56** (39 mg, 0.051 mmol) using general procedure for *O*-debenzylation (Chapter 2). Light yellow solid; Yield = 12 mg (79%); ¹H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.02-6.99 (m, 2H),

3.73-3.54 (m, 7H), 1.88 (s, 3H). HRMS-ESI (m/z): $[M+K]^+$ calcd for $C_{13}H_{17}NO_8$ 354.0591, found 354.0598.

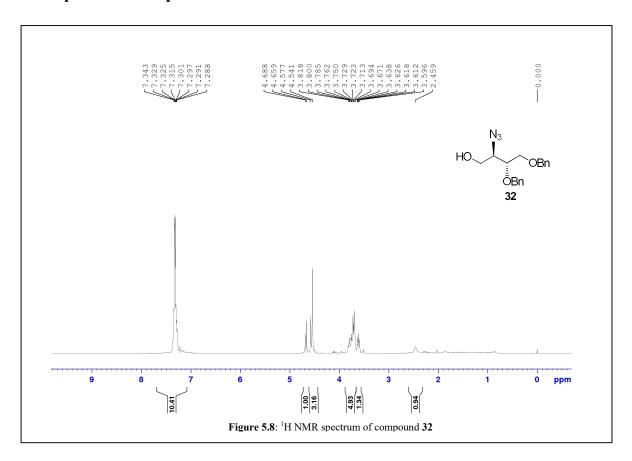
5.4.2 Enzyme assays

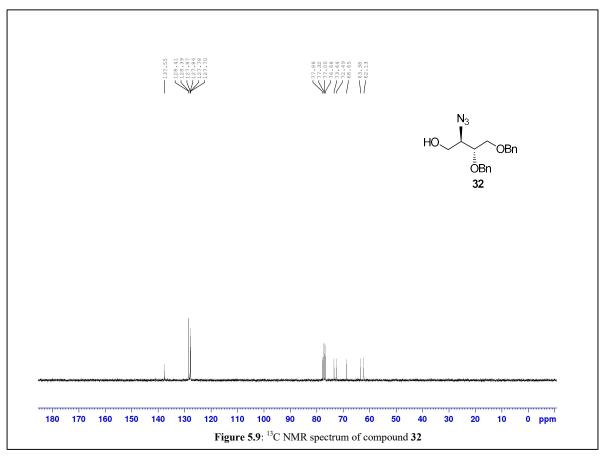
Reducing end assay to measure activity of *Pe*Chi3 in presence of aryl ester derivatives³⁷

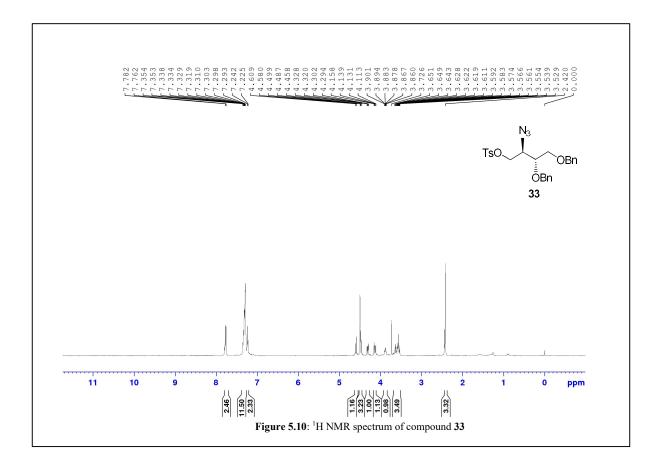
Chitinase activity was measured by a modified Schales' procedure using colloidal chitin as the substrate. The reaction was performed in 200 μ L reaction volume consisting of appropriate amount of enzyme (215 nM), inhibitor (1 mM) and colloidal chitin (1%) in 50 mM sodium acetate buffer (pH 5.6) at 40 °C for 1 h with constant shaking at 300 rpm. The reaction was centrifuged at 16,100×g at 4 °C for 15 min, and 40 μ L supernatant was transferred to pre-cooled eppendorf. To this 40 μ L of reaction containing reducing sugars, 300 μ L of freshly prepared colour reagent (0.5 M sodium carbonate, 0.05% potassium ferricyanide) were added and boiled in dark for 15 min at 100 °C. After cooling to room temperature, 200 μ L of each reaction was taken in 96 well microtiter plate and the absorbence was taken at 420 nm using microtiter plate reader (Multiscan, Labsystems, Finland).

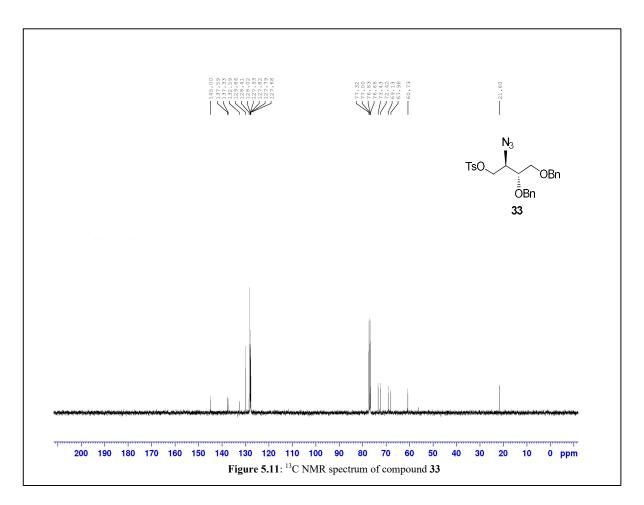
Enzyme assays to measure the activity of *Sp*ChiD in presence of aryl ester derivatives³⁸

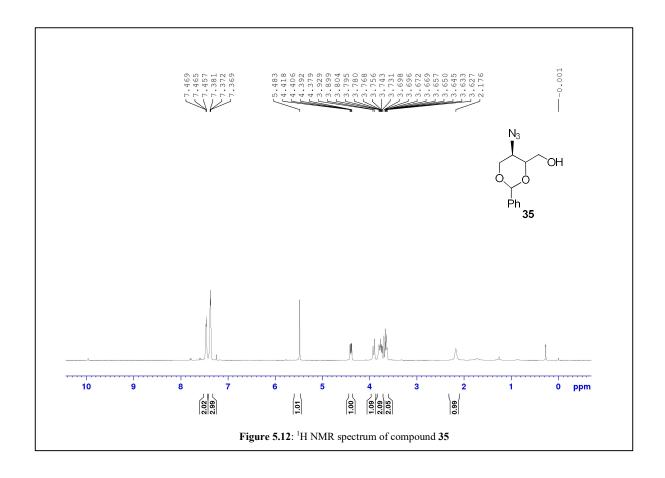
Chitinase activity was measured by colorimetric assay using pNP-tetramer as the substrate in the presence of aryl ester derivatives **51-53** and **57-59**. The reaction mixture (20 μ L) composed of the appropriate amount of enzyme (4 μ mol), 1 mM inhibitor (0.25 mg in 1mL) and 2 mM pNP-tetramer (1.7 mg in 1mL) in 50 mM sodium acetate buffer pH 5.6 at 40 °C for 6 h with constant shaking at 300 rpm, at 45 °C. Finally 20 μ L of 0.1 M NaOH was added to stop the reaction and to increase the pH of the reaction mixture. Measurement of absorbance of the liberated p-nitrophenol was measured at 405 nm using a microplate reader (Multiscan, Labsystems, Finland).

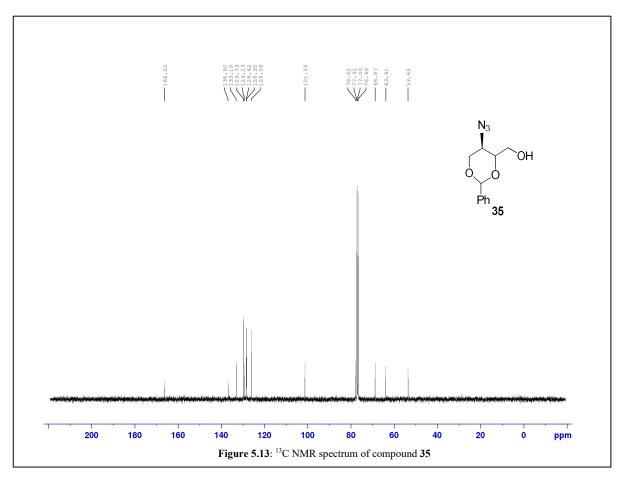

5.5 References

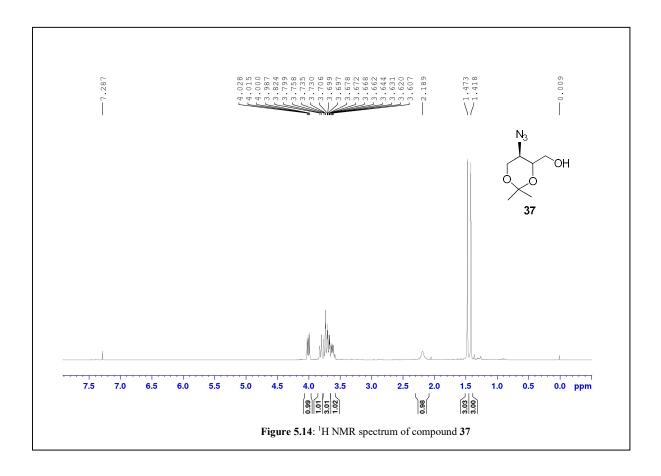

- 1. Dwek, R. A. Chem. Rev. 1996, 96, 6832.
- (a) Groopman, J. E. Rev. Infect. Dis. 1990, 12, 908. (b) Robina, I.; Moreno-Vargas, A. J.;
 Carmona, A. T.; Vogel, P. Curr. Drug Metab. 2004, 5, 329.
- 3. Zitzmann, N.; Mehta, A. S.; Carrouée, S.; Butters, T. D.; Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R. A.; Block, T. M. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 11878.
- 4. Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A. *Diabet. Med.* **1998**, *15*, 657;

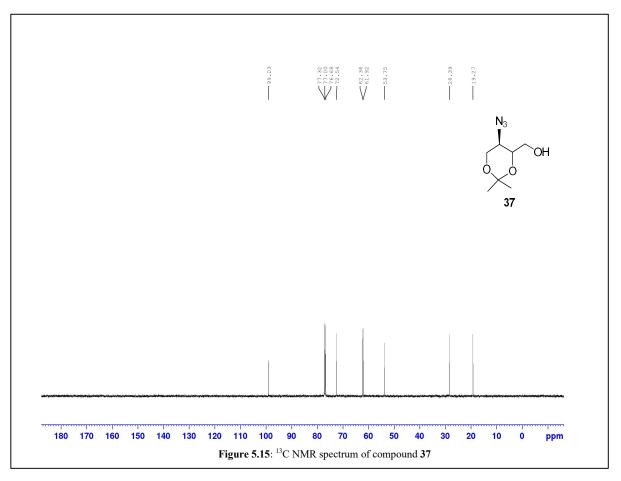

- 5. Martin, O. R. Ann. Pharm. Fr. 2007, 65, 5.
- (a) Laver, W. G.; Bischofberger, N.; Webster, R. G. Sci. Am. 1999, 280, 78. (b) Dwek, R.
 A. Virology 2002, 76, 3596.
- 7. Winchester, B.; Vellodi, A.; Young, E. Biochem. Soc. Trans. 2000, 28, 150.
- 8. Muzzarelli, R. A. A.; Hepburn, H. R. The Insect Integument, Elsevier: New York. 1976.
- 9. Sakuda, S.; Nishimoto, Y.; Ohi, M.; Watanabe, M.; Takayama, S.; Isogai, A.; Yamada, Y. *Agric. Biol. Chem.* **1990**, *54*, 1333.
- 10. Koga, D.; Isogai, A.; Sakuda, S.; Matsumoto, S.; Suzuki, A.; Kimura, S.; Ide, A. *Agric. Biol. Chem.* **1987**, *51*, 471.
- 11. Isogai, A.; Sato, M.; Sakuda, S.; Nakayama, J.; Suzuki, A. *Agric. Biol. Chem.* **1989**, *53*, 2825.
- 12. Nishimoto, Y.; Sakuda, S.; Takayama, S.; Yamada, Y. J. Antibiot. 1991, 44, 716.
- 13. Griffith, D. A.; Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118, 9526.
- 14. Hughs, A. B.; Rudge, A. J. Nat. Prod. Rep. 1994, 35.
- 15. Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R. *Drug Discovery Today* **2011**, 16, 107.
- 16. Ishida, N.; Kumagi, K.; Niida, T.; Tsuruoka, T.; Yumoto, H. J. Antibiotics Ser. A. 1967, 20, 66.
- 17. Patil, N. T.; John, S.; Sabharwalb, S. G.; Dhavalea, D. D. *Bioorg. Med. Chem.* **2002**, *10*, 2155.
- 18. Wrodnigg, T. M.; Steiner, A. J.; Ueberbacher, B. J. Anticancer Agents Med. Chem. 2008, 8, 77.
- 19. Lenagh-Snow, G. M. J.; Araújo, N.; Jenkinson, S. F.; Rutherford, C.; Nakagawa, S.; Kato, A.; Yu, C. Y.; Weymouth-Wilson, A. C.; Fleet, G. W. J. *Org. Lett.* **2011**, *13*, 5834.
- 20. Croucher, P. D.; Fumeaux, R.; Lynch, G. P. Tetrahedron 1994, 50, 13299.
- 21. Wang, L. X.; Lee, Y. C. J. Chem. Soc., Perkin Trans. 1996, 581.

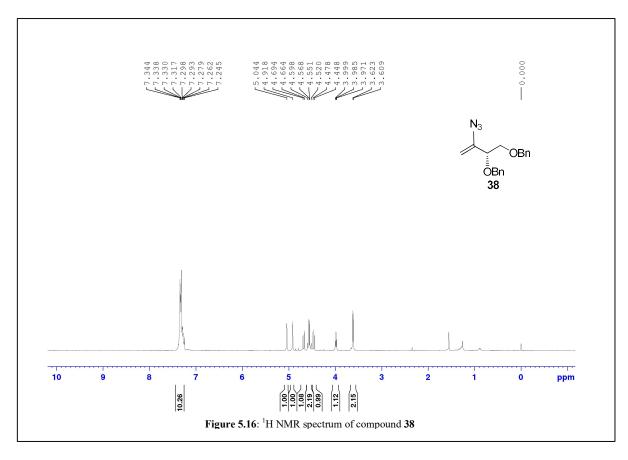

- 22. Fettke, A.; Peikow, D.; Peter, M. G.; Kleinpeter, E. Tetrahedron 2009, 65, 4356.
- 23. Usuki, H.; Nitoda, T.; Ichikawa, M.; Yamaji, N.; Iwashita, T.; Komura, H.; Kanzaki, H. *J. Am. Chem. Soc.* **2008**, *130*, 4146.
- 24. Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2009, 131, 12076.
- 25. Caldero'n, F.; Doyagu"ez, E. G.; Mayoralas, A. F. J. Org. Chem. 2006, 71, 6258.
- 26. Rai, A. N.; Basu, A. Org. Lett. 2004, 6, 2861.
- 27. Arihara, R.; Kakita, K.; Yamada, K.; Nakamura, S.; Hashimoto, S. *J. Org. Chem.* **2015**, 80, 4278.
- 28. Fadnavis, N. W.; Sharfuddin, M.; Vadivel, S. K. Tetrahedron: Asymmetry 2001, 12, 691.
- 29. Xu, G.; Lv, B.; Roberge, J. Y.; Xu, B.; Du, J.; Dong, J.; Chen, Y.; Peng, K.; Zhang, L.; Tang, X.; Feng, Y.; Xu, M.; Fu, W.; Zhang, W.; Zhu, L.; Deng, Z.; Sheng, Z.; Welihinda, A.; Sun, X. J. Med. Chem. 2014, 57, 1236.
- 30. Kabalka, G. W.; Varma, M.; Varma, R. S. J. Org. Chem. 1986, 51, 2386.
- 31. Tashiro, T.; Koshino, H.; Shigeura, T.; Watarai, H.; Taniguchi, M.; Mori, K. *Bioorg. Med. Chem.* **2014**, *22*, 827.
- 32. Li, C.; Wang, J. J. Org. Chem. 2007, 72, 7431.
- 33. Rai, A. N.; Basu, A. Tetrahedron Lett. 2003, 44, 2267.
- 34. Sikoraiová, J.; Chihab-Eddine, A.; Marchalína, S.; Daïch, A. J. Heterocyclic Chem. 2002, 39, 383.
- 35. (a) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. 1978, 17, 522. (b) Denmark, S. E.; Regens, C. S.; Kobasyashi, T. J. Am. Chem. Soc. 2007, 129, 2774.
- 36. Yuan, L.; Sanford, A. R.; Feng, W.; Zhang, A.; Zhu, J.; Zeng, H.; Yamato, K.; Li, M.; Ferguson, J. S.; Gong, B. *J. Org. Chem.* **2005**, *70*, 10660.
- 37. Imoto, T.; Yagishita, K. Agric. Biol. Chem. 1971, 35, 1154.
- 38. Tokuyasu, K.; Ono, H.; Kitagawa, Y.; Ohnishi-Kameyama, M.; Hayashi, K.; Mori, Y. *Carbohydr. Res.* **1999**, *316*, 173.

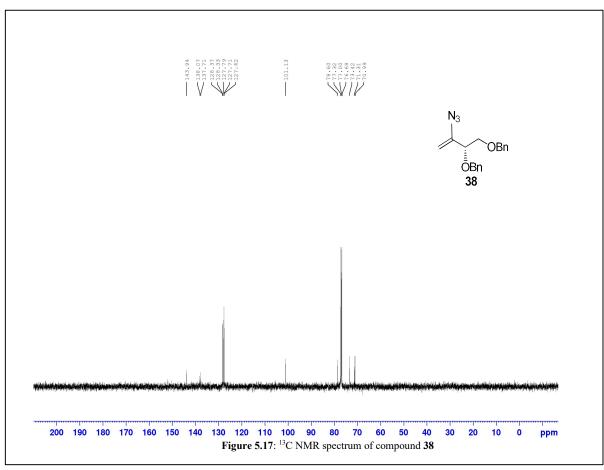

5.6 Representative spectra

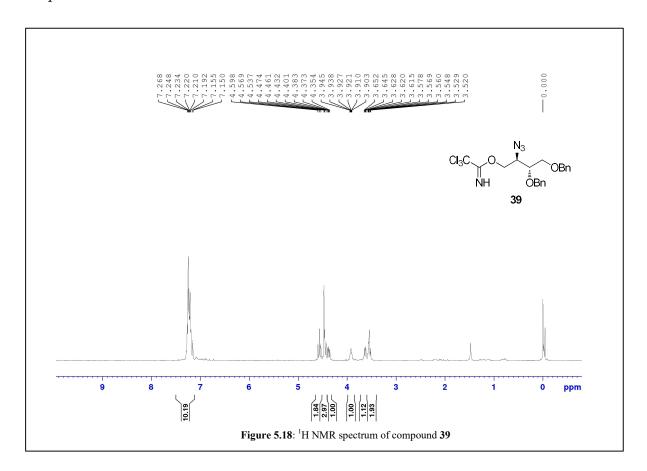


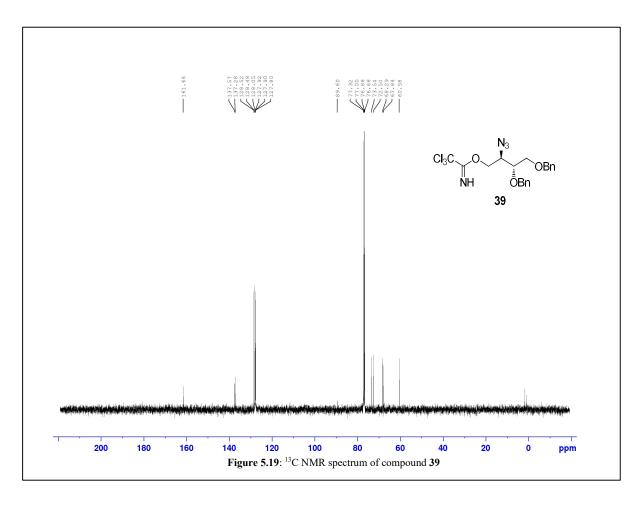


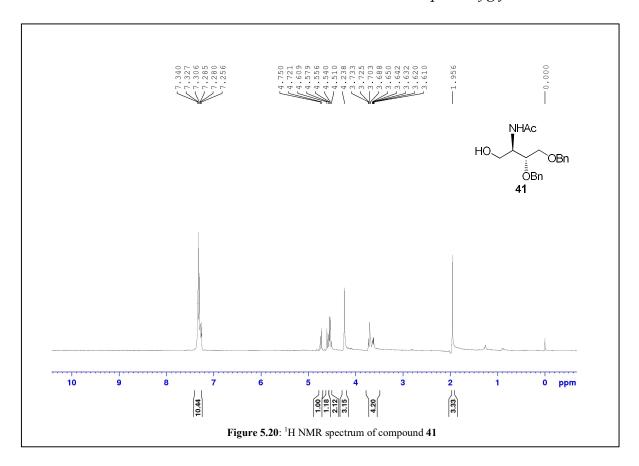


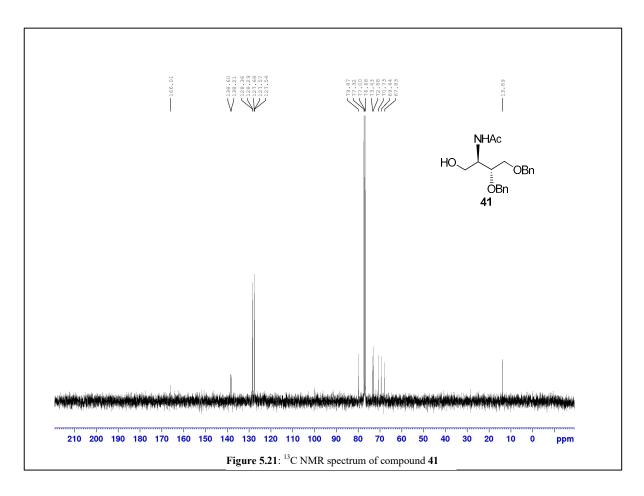


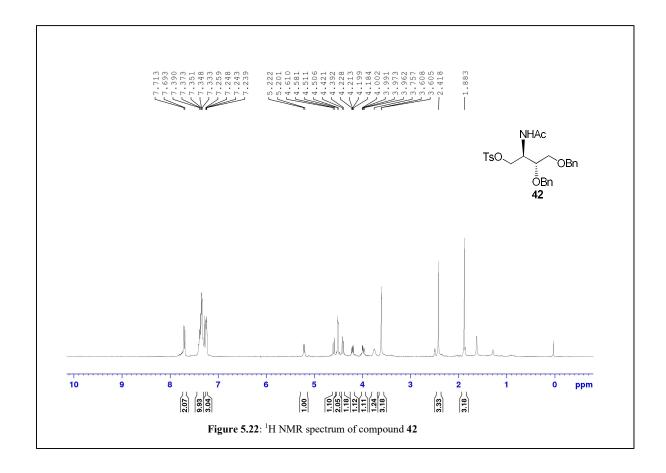


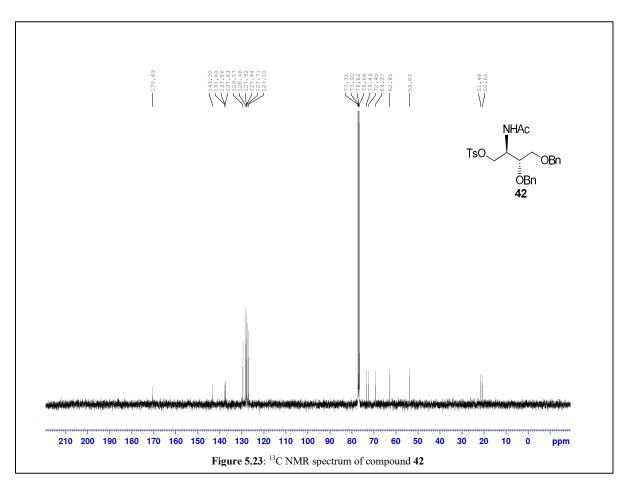


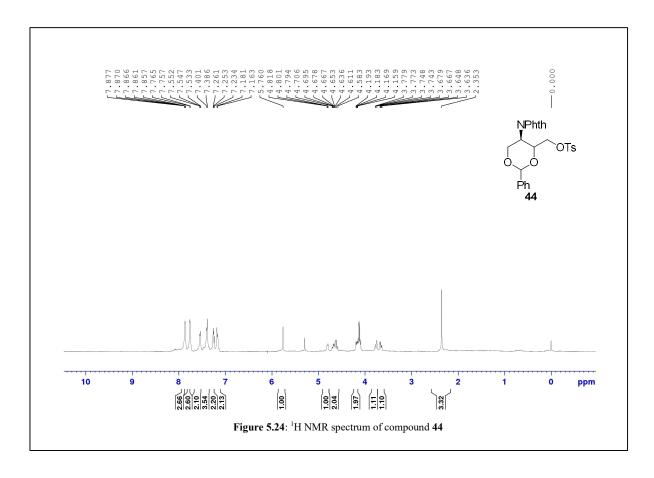


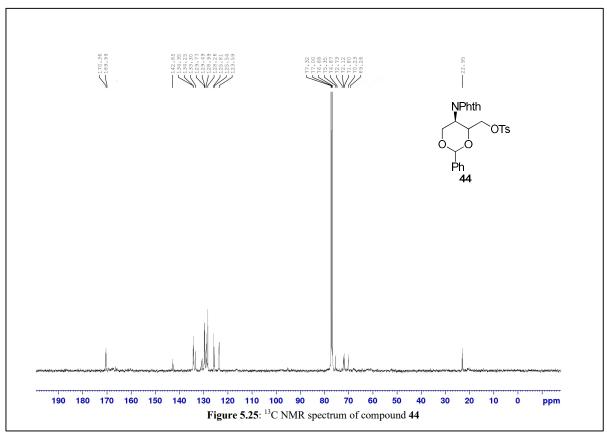


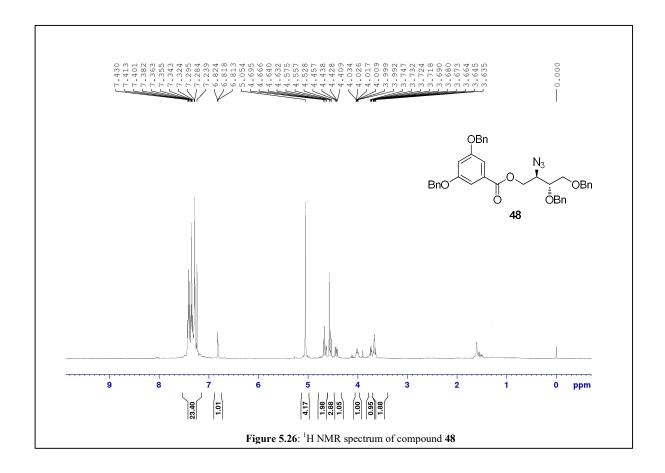


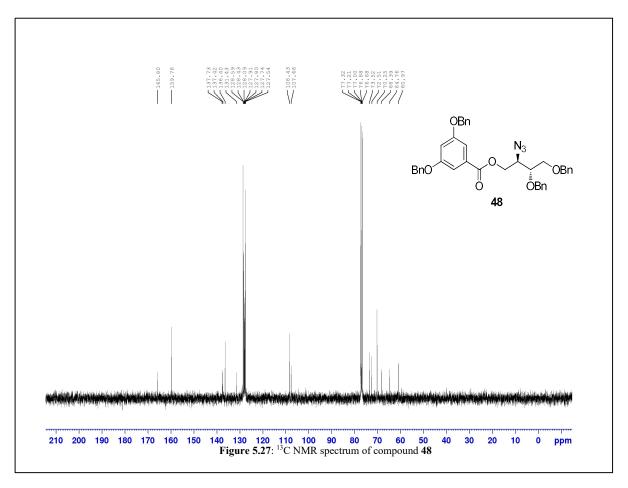


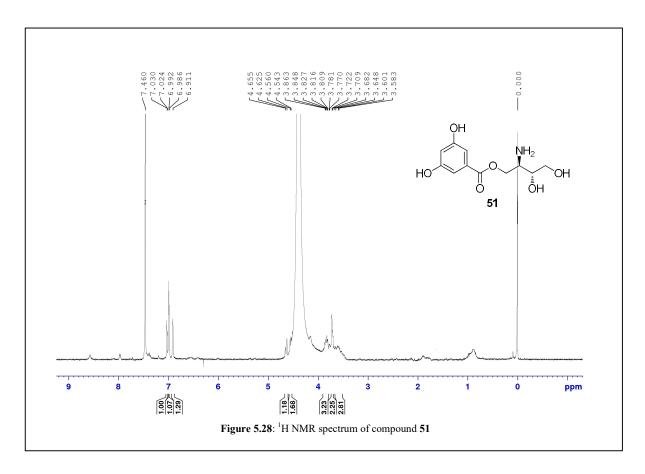


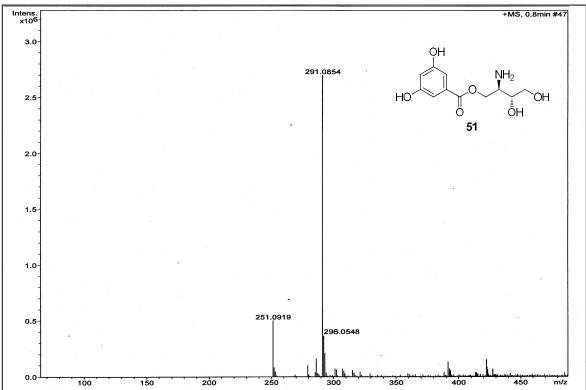
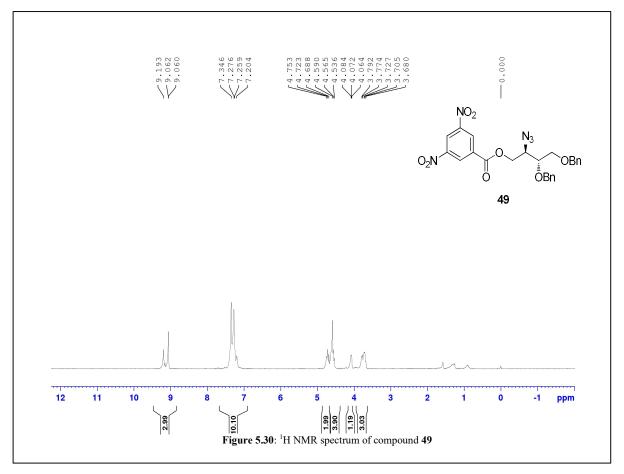
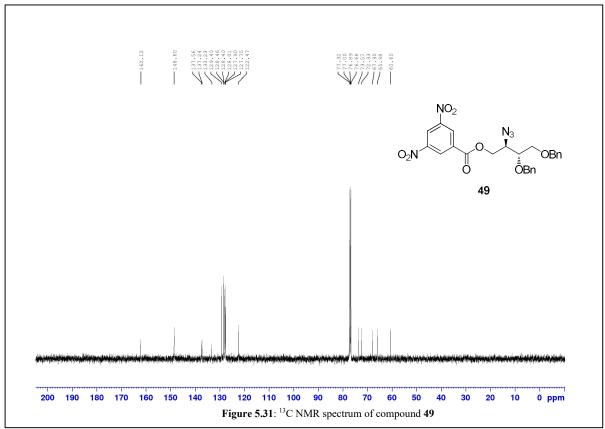
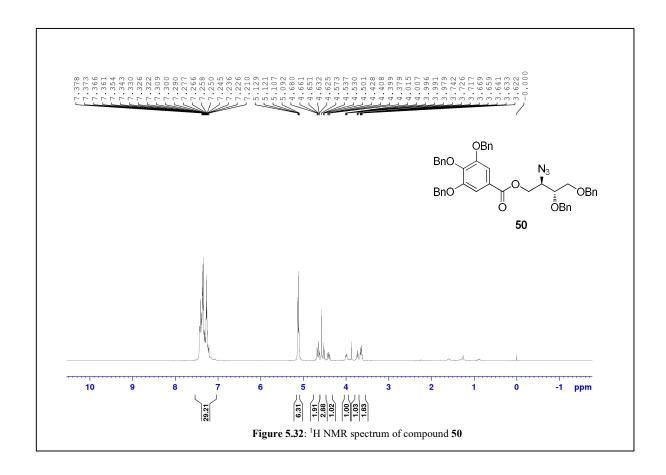
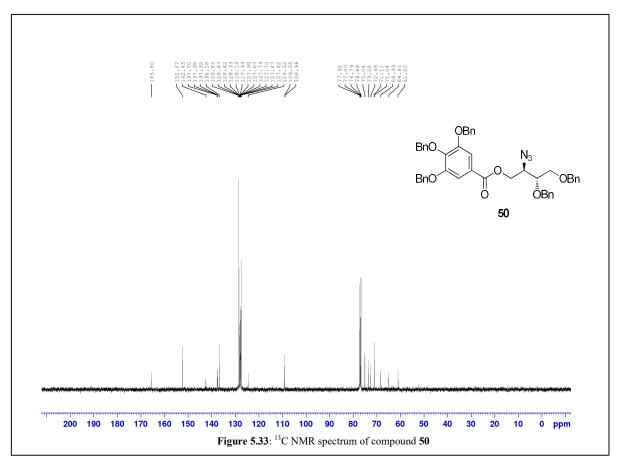


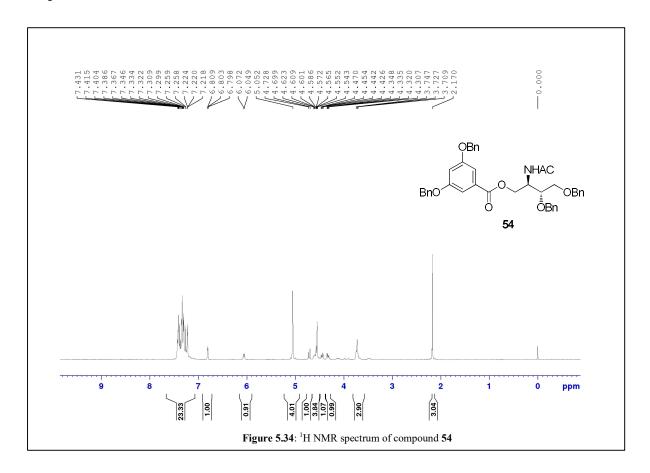


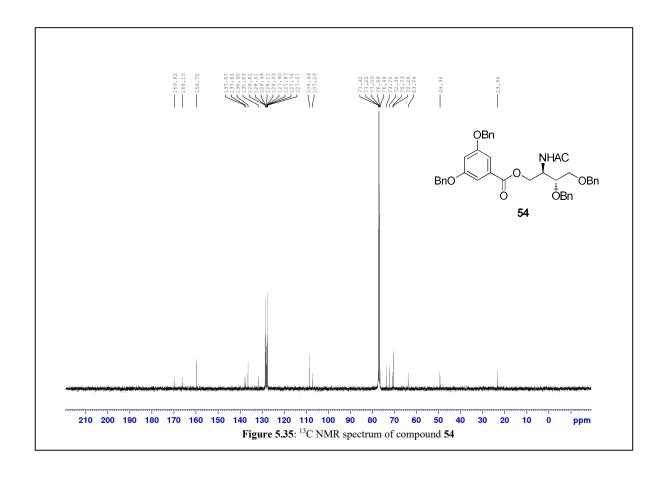


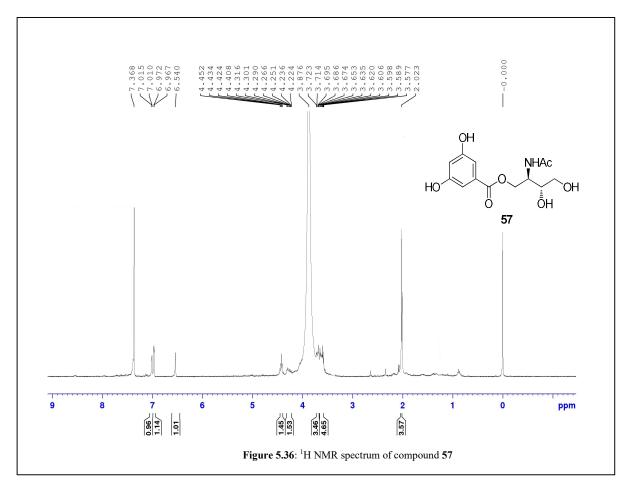





Figure 5.29: HRMS spectrum of compound 51





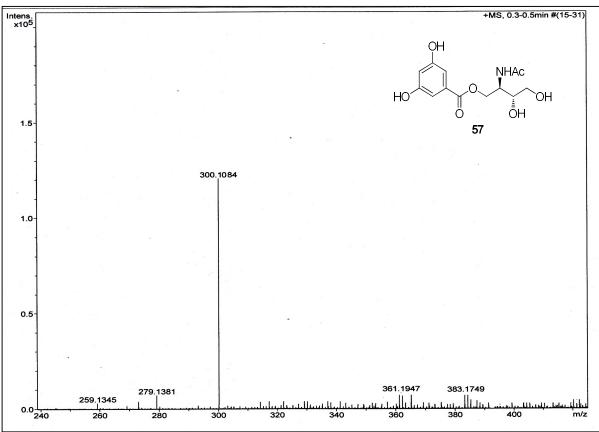
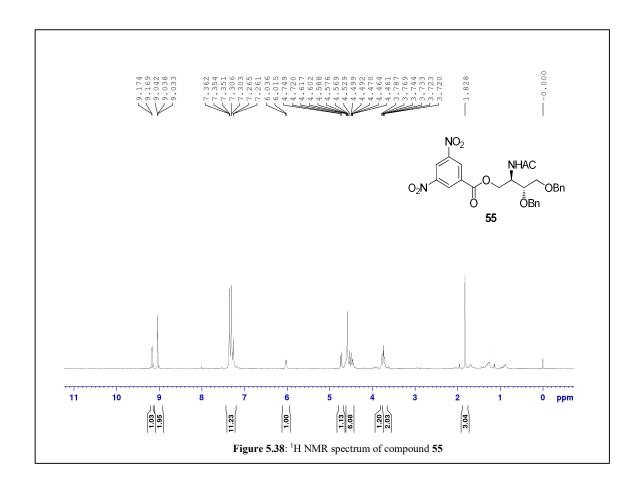
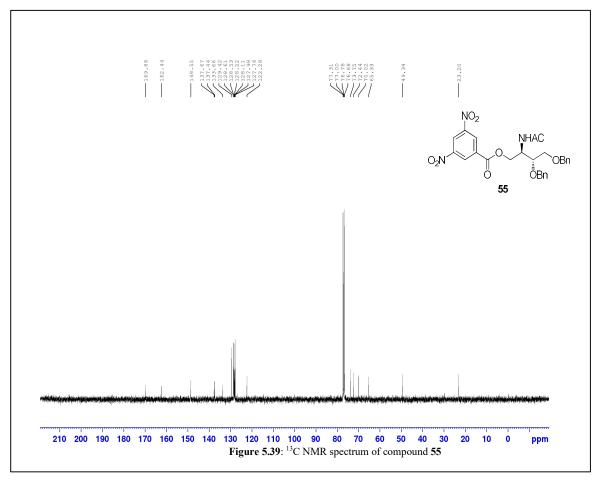
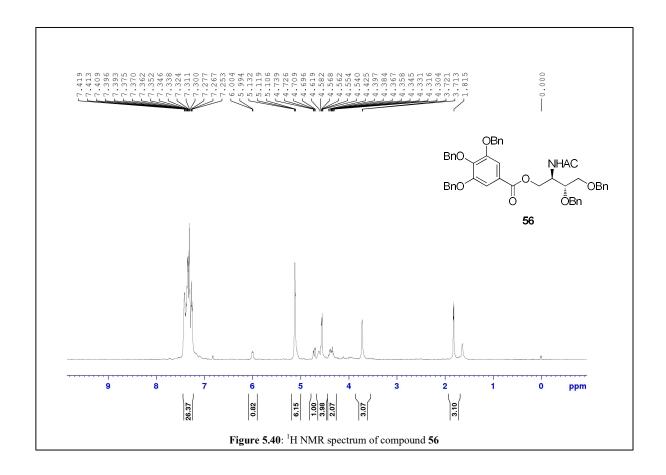
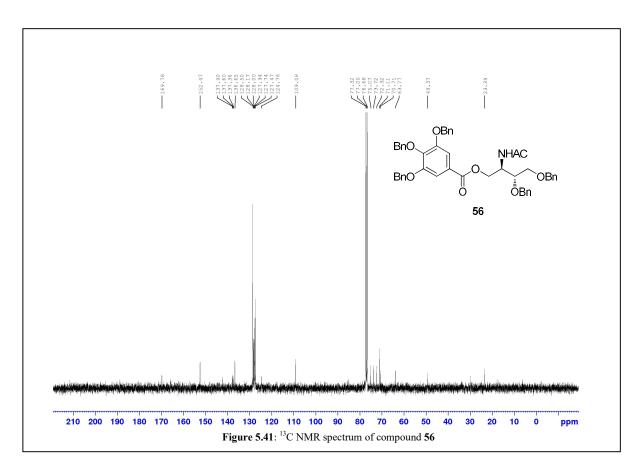






Figure 5.37: HRMS spectrum of compound 57

Appendix

List of Publications

1. Synthesis of partially *N*-acetylated chitotrioses and their biological effects on human endothelial cells.

Niddana, R.; Balamurugan, R. Manuscript under preparation.

2. Chemical synthesis of *p*-nitrophenyl chitobioside derivatives and their biological evaluation.

Niddana, R.; Balamurugan, R. Manuscript under preparation.

- 3. Amino groups of chitosan are crucial for binding to a family 32 carbohydrate binding module of a chitosanase from *Paenibacillus elgii*.
 - Das, S. N.; Wagenknecht, M.; Nareddy, P. K.; Bhuvanachandra, B.; **Niddana, R.**; Balamurugan, R.; Swamy, M. J.; Moerschbacher, B. M; Podile, A. R. *J. Biol. Chem.* **2016**, DOI 10.1074/jbc.M116.727750.
- 4. Gold-catalysed glycosylation reaction using an easily accessible leaving group. Koppolu, S. R.; **Niddana, R**.; Balamurugan, R. *Org. Biomol. Chem.* **2015**, *13*, 5094.
- 5. Synthesis of Chiral α-Diarylacetic Esters by Stereospecific 1,2-Aryl Migration Promoted by in Situ Generated Acetals from Benzoins.

Kothapalli, R.; Niddana, R.; Balamurugan, R. Org. Lett. 2014, 16, 1278.

Poster and Oral Presentations

- Poster presentation was given on "Towards Chemical synthesis of Chitooligosaccharides and Related Probes" at University of Münster, Münster, Germany, open-house symposium-summer school, 2013.
- 2. A poster presentation was given on "Synthesis of Hetero-chitooligosaccharides and Related Probes" at University of Hyderabad in-house symposium, Chem Fest-2015.

SYNTHESIS AND BIOLOGICAL EVALUATION OF CHITOOLIGOSACCHARIDES AND RELATED DERIVATIVES

04000	DEDBUGUTE REPORT					
4	% JULY V INDEX	2% INTERNET SOURCES	4%	1% STUDENT PAPERS		
event.	N SCRURESS					
1	p-nitrop and its	su, K., "Selective henyl N,N'-diace use to differentia chitinases", Car 15	tyl-@b-chitob ate the action	of two		
2	www.pa	tentgenius.com		<1%		
3	www.bio	chemden.com		<1%		
4	www.freepatentsonline.com					
5	www.irl.			<1%		
6	isolate of under so optimiza	resh. Thermoad exosaminidase p of Penicillium mo olid state fermen ation and applica gosaocharides pr	noduction by a onoverticillium ntation; param ation for N-acc	CFR 2 neter etyl		

chitin*, World Journal of Microbiology and Biotechnology, 10/30/2010

Publication

7	Xiaoxiong Zeng. "Synthesis of p-nitrophenyl sulfated disaccharides with β-d-(6-sulfo)-GlcNAc units using β-N-acetylhexosaminidase from Aspergillus oryzae in a transglycosylation reaction", Biotechnology Letters, 05/21/2007	<1%
8	Li-Fang Huang, "Aminopeptidase P Mediated Detoxification of Organophosphonate Analogues of Sarin: Mechanistic and Stereochemical Study at the Phosphorus Atom of the Substrate", ChemBioChem, 03/06/2006	<1%
9	abx-chemicals.com menet Source	<1%
10	www.lcsci.com	<1%
11	www.google.com	<1%
12	José-Luis de Paz. "Some Key Experimental Features of a Modular Synthesis of Heparin- Like Oligosaccharides", European Journal of Organic Chemistry, 09/2003	<1%