Development of Synthetic Methods and Electrochemical Cells Based on Organic Electron Transfer Reactions

A Thesis

Submitted for the Degree of

DOCTOR OF PHILOSOPHY

By

MASILAMANI SHANMUGARAJA

SCHOOL OF CHEMISTRY
UNIVERSITY OF HYDERABAD
HYDERABAD-500 046
INDIA
OCTOBER 2018

Dedicated to

My Father S. Masilamani

And

My Mother M. Chandra

Contents

Statement	t	i
Declaration	on	iii
Certificat	e	v
Acknowle	edgements	vii
Abbreviat	tions	ix
Abstract		xi
Chapter	1	
General	Introduction on Electron Transfer Reactions	
1.1.	Introduction	1
1.1.1	Redox reactions through electron transfer	1
1.1.2	Electrochemical reactions through electron transfer	5
1.1.3	Photochemical electron transfer reactions	10
1.1.4	SET reactions in organic chemistry	12
1.1.4.1	SET reactions in nucleophilic substitution reaction	12
1.1.4.2	SET reactions in acyloin condensation	13
1.1.4.3	SET reactions in Birch reduction	13
1.1.4.4	SET reactions in Grignard reaction	14
1.1.5	SET process in Organic Donor and Acceptor system	19
1.2	References	23

Chapter 2 Synthetic Methods based on Electron Transfer Reactions Using Oxygen Adsorbed Carbon Materials and p-Doped Polythiophene

2.1	Introduction	31
2.1.1	Carbon materials	31
2.1.2	Various forms of Carbon	32
2.1.3	Surface characterization and properties of activated carbons	32
2.2	Results and Discussion	35
2.2.1	Reactions of molecular oxygen adsorbed carbon materials with Ph ₃ P	36
2.2.2	Reactions of molecular oxygen adsorbed carbon materials	
	with alkylboranes	39
2.2.3	Reaction of sodium borohydride with molecular oxygen adsorbed	
	carbon materials and lewis bases	43
2.2.4	Reaction of oxygen adsorbed activated charcoal with NaBH ₄ and amines	45
2.2.5	Reaction of oxygen adsorbed activated charcoal with	
	benzylamine derivatives	48
2.2.6	Evidence for presence of paramagnetic species through epr spectroscopy	50
2.2.7	Synthesis of p-doped polythiophene and estimation of radical cation	
	site present in p-doped polythiophene	52
2.2.8	Preparation of lewis base borane complexes using the	
	PT ^(.+) _m nCl ⁻ /NaBH ₄ reagent system	53
2.2.9	Estimation of the number of radical cation sites present in polythiophene	55
2.3	Conclusion	61

2.4	Experimental Section	63
2.5	References	77
Chapter 3		
Studies on	the Reaction of Amines with Quinones, Viologen and	halo
compounds		
3.1	Introduction	83
3.2	Results and Discussion	89
3.2.1	Reaction of secondary amines with quinone acceptors	89
3.2.2	Reaction of tertiary amines with quinone acceptors	94
3.2.3	Reaction of tertiary amine with <i>p</i> -chloranil under neat condition	107
3.2.4	Reaction of 2,2,6,6-tetramethyl-4-piperidinol derivatives with	
	p-chloranil	111
3.2.5	EPR Studies of aminoquinone	117
3.2.6	Attempt towards the electron transfer reaction of amines with halo	
	compound acceptors	118
3.2.7	Preliminary studies on electron transfer reaction of amines with	
	viologen acceptors	128
3.3	Conclusion	137
3.4	Experimental Section	141
3.5	References	151

Chapter 4 Development of Electrochemical cell exploiting reversible electron transfer reaction between tertiary amine donors and p-chloranil acceptors

List of publications		238
Appendix I	Representative spectra	217
4.5	References	209
4.4	Experimental Section	187
4.3	Conclusions	185
4.2.1.2	Multi-layer Cell Configuration	175
4.2.1.1	Two Layer Cell Configuration	173
4.2.1	Construction of Donor and Acceptor Electrochemical Cell	172
4.2	Results and Discussion	171
4.1.6	Organic solar cell	164
4.1.5	Perovskite solar cell	162
4.1.4	Dye-sensitized solar cell	160
4.1.3	Thin film solar cell or Inorganic solar cell	158
4.1.2	Silicon solar cell	157
4.1.1	Photovoltaic Cell	156
4.1	Introduction	155

School of Chemistry University of Hyderabad Central University P.O. Hyderabad 500046 India

STATEMENT

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the supervision of **Professor M. Periasamy**.

In keeping with the general practice of reporting scientific observations, due acknowledgment has been made wherever the work described is based on the findings of other investigators.

Hyderabad

October 2018

MASILAMANI SHANMUGARAJA

School of Chemistry University of Hyderabad Central University P.O. Hyderabad 500046 India

DECLARATION

I, MASILAMANI SHANMUGARAJA hereby declare that this thesis entitled "Development of Synthetic Methods and Electrochemical Cells Based on Organic Electron Transfer Reactions" submitted by me under the guidance and supervision of Professor M. Periasamy is a bonafide research work which is also free from plagiarism. I also declare that it has not been submitted previously in part or in full to this University or any other University or Institution for the award of any degree or diploma. I hereby agree that my thesis can deposit in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is enclosed.

Date:	
	Name:
	Signature of the Student:
	Regd. No.:

Signature of the Supervisor:

School of Chemistry University of Hyderabad Central University P.O. Hyderabad 500046 India

CERTIFICATE

This is to certify that the thesis entitled "Development of Synthetic Methods and Electrochemical Cells Based on Organic Electron Transfer Reactions" submitted by Mr. Masilamani Shanmugaraja bearing registration number 10CHPH23 in partial fulfillment of the requirements for award of Doctor of Philosophy in the School of Chemistry is a bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for the award of any degree or diploma. Further the student has two publications before the submission of his thesis.

Parts of this thesis have been published in the following two publications:

- 1. Periasamy, M.; **Shanmugaraja, M**.; Obula Reddy, P.; Ramusagar, M.; Ananda Rao, G. *J. Org. Chem.*, **2017**, 82, 4944.
- 2. Periasamy, M.; Obula Reddy, P.; **Shanmugaraja, M.** *Chemistryselect.*, **2017**, 2, 7615.

He has also made presentations in the following conferences:

- Synthetic Transformations Using Molecular Oxygen Adsorbed Carbon Materials;
 Selected as **Best Poster Presentation** in the *Chemfest-2018* held at School of Chemistry, University of Hyderabad, INDIA,
- 2. Borane Lewis Base Complexes by the Reaction of Oxidatively Doped Polymers with Sodium Borohydride and Lewis Bases; Poster Presentation in the *Chemfest-2018* held at School of Chemistry, University of Hyderabad, INDIA.

Further the student has passed the following courses towards fulfillment of coursework requirement for Ph.D.

Course	Title	Credits	Pass/Fail
1. CY-801	Research Proposal	3	Pass
2. CY-806	Instrumental Methods B	3	Pass
3. CY-841	Reactive Intermediates and Synthesis in	3	Pass
	Organic Chemistry		
4. CY-844	Organometallic and Bioinorganic Chemistry	3	Pass

Hyderabad Prof. M. Periasamy
Date: (Thesis Supervisor)

Dean School of Chemistry University of Hyderabad Hyderabad 500 046 INDIA

Acknowledgements

I take immense pleasure in expressing my heartfelt gratitude and indebtedness to my thesis supervisor **Prof. M. Periasamy** for his constant guidance, inspirations, encouragements and support throughout my tenure here.

I extend my heartfelt thanks to Prof. D. Basavaiah, Prof. M. V. Rajasekharan, Prof. M. Durga Prasad and Prof. T. P. Radhakrishan Deans, School of Chemistry, for providing all the necessary facilities to carry out my research work. I am thankful to my doctoral committee members Prof. D. B. Ramachary and Prof. R. Nagarajan for their generous support.

I would like to thank Prof. S. Muthusubramaniam, School of Chemistry, Madurai Kamaraj University, for his inspiring teaching and also supervised my M.Sc., project work during my M.Sc., Chemistry in MKU. I also thank all the other faculty members of the chemistry department for their excellent teaching. I take this opportunity to thank Prof. R. Anantharam, Dr. S. Sevaga Pandian, Dr. T. Sugumaran, Dr. M. Meenakshisundaram, Dr. P. Velusamy, Dr. A. Vanangamudi and Dr. T. Bhupathi Ganesh for inspiring teaching during my B.Sc., Chemistry in ANJA College.

I wish to thank my senior colleague Dr. Mallesh Beesu for his help during the initial stages of my research. I extend my sincere thanks to my past and present labmates Dr. P. Vairaprakash, Dr. Shaik Anwar, Dr. S. Selva Ganesan, Dr. Sakilam Satishkumar, Dr. M. Nagaraju, Dr. Mallesh Beesu, Dr. N. Sanjeeva Kumar, Dr. Guru Brahmam, Dr. Manasi Dalai, Dr. A. Laxman, Dr. P. Obula Reddy, Dr. A. Edukondalu, Mr. M. Ramusagar, Mr. V. Harish, Mr. G. Ananda rao, Mr. B. Uday Kumar, Mr. I. Satyanarayana, Mr. L. Mohan, Mr. E. Ramesh, Mr. Yesu and Mr. Srinivas for creating a pleasant working atmosphere.

All the research scholar of the school of chemistry has been extremely helpful, I thank them all. I specially thank Dr. Viji, Dr. Vignesh, Dr. Santhanam, Dr. Ramesh, Dr. Prakash, Dr. Sudalai kumar, Dr. Ramkumar, Dr. Srinu, Mr. Prabahar, Mrs. Tamilarasi, Mr.

Sakthivel, Mr. Satish, Mr. Tamilarasan, Mr. Arumugam and A to Z are to mention. I also thank all my Tamil friends of University of Hyderabad.

All the non-teaching staff of the School has been helpful, I thank them all. Mr. S. Thurabuddin, Mr. Kumar, Mr. Shetty, Mr. S. Satyanarayana, Mrs. Vijaya Lakshmi, Mr. V. Bhaskar Rao, Mr. Asia Parwez, Mr. Vijaya Bhaskar, Mr. Mr. A. Dilip Kumar Mr. B. Anandam, Mr. Durgesh and Mr. Abraham.

I specially thank all of my M.Sc classmates for their help and thoughtful discussion during my M.Sc., days. Dr. S. Manojveer, Dr. B. Muthuramalingam, Dr. Kannan, Dr. Sankar, Dr. Bharathi Raja, Dr. Ganapathi, Dr. Suresh, Dr. Sivraman, Dr. Pandiyarajan, Dr. Solai selvi, Mrs. Sudha are few to mention.

I wish to express my gratitude and acknowledge the contribution of my parents Mr. S. Masilamani and Mrs. M. Chandra for their support, affections and caring throughout my life. I always thank my sisters Mrs. M. Malathi and Mrs. A. Selvakumari for their affections and caring. I especially thank my wife and life partner S. Anubala for her patience, affection and caring, all the time. I also thank my children Ishani and Arivas for their unconditional love and they always make me happy.

I wish to extend my sincere thanks to the University authorities for providing all the necessary facilities for this work especially for providing EPR and Impedance instrument.

Finally, I would like to thank the UGC, New Delhi for the financial support during my tenure. Also, financial assistance from the research grant of DST-SERB and DST-JC BOSE National fellowship of Prof. M. Periasamy is gratefully acknowledged.

MASILAMANI SHANMUGARAJA

Abbreviations

Ac acetyl

AC activated carbon

Al aluminium anhyd. anhydrous aq. aqueous Ar aryl Bn benzyl

BQ 1,4-benzoquinone

br broad (in spectroscopy)

Bu butyl

CAN ceric ammonium nitrate
CAS ceric ammonium sulphate

CB carbon black
CT charge transfer

DABCO 1,4-diazabicyclo[2.2.2]octane

DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone

DiPrBA *N,N*-diisopropylbenzamide

DIPEA N, N-diisopropylethylamine

d doublet (in spectroscopy)

DMF *N,N*-dimethylformamide

DMSO dimethyl sulfoxide

EC ethylene carbonate

EPR electron paramagnetic resonance

ET electron transfer

equiv equivalent

Et ethyl

FF fill factor
h hour(s)
IR infrared

J coupling constant (in NMR spectroscopy)

m multiplet (in spectroscopy)

Me methyl min minute(s)

mp melting point

NMP N-methyl-2-pyrrolidone

NMR nuclear magnetic resonance

NQ 1,4-naphthaquinonePC propylene carbonatePEO polyethylene oxide

PMMA poly(methyl methacrylate)

PTMA poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate)

Nu nucleophile

Ph phenyl

PhNEt₂ N,N-diethylaniline ppm parts per million

Pr propyl

q quartet (in spectroscopy)

ref reference number rt room temperature

s singlet (in spectroscopy)

sec secondary

SET single electron transfer

soln solution

SS stainless steel
T temperature

TEMPO (2,2,6,6-tetrmethylpiperidin-1-yl)oxyl

t tertiary

t triplet (in spectroscopy)

THF tetrahydrofuran

TMPDA N, N, N', N'-tetramethylethylenediamine

TPA triphenylamine
TMS trimethylsilyl
UV ultraviolet

Abstract

This thesis entitled "Development of Synthetic Methods and Electrochemical cells Based on Organic Electron Transfer Reactions" comprises of four chapters. The first chapter describes the General Introduction and References on electron transfer reactions in organic chemistry. The second, the third and fourth chapter is subdivided into four sections namely Introduction, Results and Discussion, Conclusions and Experimental Section along with References. The work described in this thesis is exploratory in nature.

The second chapter describes studies on the reaction of oxygen adsorbed carbon materials and p-doped polythiophene with NaBH₄ and amine donors. The reaction of molecular oxygen adsorbed carbon black (CB) with triphenylphosphine (Ph₃P) in presence of benzoic acid gives the triphenylphosphine oxide (Ph₃P=O) in 52% yield. Whereas molecular oxygen adsorbed activated carbon (AC) gave 54% yield of Ph₃P=O but in the case of graphite no Ph₃P=O formation was observed (Scheme 1).

Scheme 1

Oxidation of alkyl boranes using molecular oxygen adsorbed carbon black (CB) in presence of NaOH gave the corresponding alcohols or aldehydes in 53-86% yield. Similar reaction with molecular oxygen adsorbed activated carbon (AC) gave the corresponding alcohols or aldehydes in 68-99% yield (Scheme 2). The molecular oxygen adsorbed carbon materials are expected to react with NaOH to give the HOO-Na+ species for the oxidation of organoboranes.

Scheme 2

The reaction of oxygen adsorbed carbon materials with NaBH₄ in THF leads to slow evolution of hydrogen gas indicating the formation of the AC*-O-O-BH₃ which could react with Ph₃P or amine to give the Ph₃P:BH₃ or amine:BH₃ complex. Under optimized conditions, the oxygen adsorbed carbon black gave the Ph₃P:BH₃ complex in 35-73% yield. In the case of oxygen adsorbed activated carbon, the Ph₃P:BH₃ complex was obtained in 21-77% yield. Similarly, the reaction of oxygen adsorbed carbon black with NaBH₄ in the presence of pyridine gave pyridine:BH₃ complex in 52% yield (Scheme 3). Also, the reaction of oxygen adsorbed activated carbon with benzylamine gave benzaldehyde in 30% yield *via* the formation of amine radical cations.

Scheme 3

A simple method was developed for estimating the doping levels in polythiophene radical cation salt **16** using NaBH₄. For example, the reaction of polythiophene salt **16** with NaBH₄ and PPh₃ in THF gave the Ph₃P:BH₃ complex in up to 1.70 mmol (34-72% yield).

Accordingly, it can be concluded that a minimum of approximately 1.7 mmol of radical cation sites are present in 1 g of PT^(.+)_m nCl⁻. Whereas the reaction of NaBH₄ and polythiophene salt **16** in presence of pyridine afforded the pyridine:BH₃ complex in 35-79% yield (Scheme 4).

Scheme 4

In the third chapter, we have described the studies on electron transfer reaction of amine donors with acceptors like quinones, halomethane and viologen derivatives. The reaction of secondary amine like piperidine with quinones gave the corresponding diamagnetic aminoquinone *via* the formation radical cation and radical anion intermediates (Scheme 5). The intermediacy of radical ion pair was confirmed by epr spectroscopy.

Scheme 5

Similarly, the reaction of tertiary amines and *p*-chloranil gave the corresponding charge transfer complexes *via* initially formed radical cation-anion pair as revealed by epr spectroscopic studies (Scheme 6).

Scheme 6

A simple, convenient method was developed to synthesize polymer containing amine as a pendant group through transesterification of PMMA (polymethyl methacrylate) **29** using 4-hydroxy-2,2,6,6-tetramethylpiperidine **30**. The polymeric amine **31** is readily converted to the corresponding TEMPO derivative **32** by oxidation with *m*-CPBA (Scheme 7).

Scheme 7

The sterically hindered polymeric 2,2,6,6-tetramethylpiperidine reacts with p-chloranil to give the radical ion intermediates followed by charge transfer complex. The radical ion intermediates gave triplet in epr spectroscopy corresponding to the presence of amine radical cation (Scheme 8).

Scheme 8

Similar electron transfer reaction using sterically hindered *N*, *N*-diisopropylethylamine and the polymeric derivative of 2,2,6,6-tetramethylpiperidine with dichloromethane CH₂Cl₂, dibromomethane CH₂Br₂ and chloroform CHCl₃ gave the radical ion intermediates as revealed by epr spectroscopy (Scheme 9).

Scheme 9

Electron transfer reaction of the benzyl viologen **43** acceptor with various readily accessible amine donors were also studied. The paramagnetic intermediates formed in the reaction were confirmed through epr spectroscopy (Scheme 10).

Scheme 10

In the fourth chapter, research efforts toward the construction of an electrochemical cell based on the reversible electron transfer reaction of tertiary amines with p-chloranil are described. The electrochemical cell was readily constructed using tertiary amine as an electron donor and quinone as an electron acceptor by coating propylene carbonate PC, titanium dioxide TiO_2 and poly(ethylene oxide) PEO paste on aluminium foil and graphite sheet current collector (Scheme 11).

Scheme 11

The results are presented and discussed considering the intermediates and mechanisms involved in these transformations.

Note: Scheme numbers and compound numbers given in this abstract are different from those given in the chapters.

Chapter 1
General Introduction on Electron Transfer Reactions

Electron transfer reactions involving the transfer of an electron from donor to an acceptor are very important in chemistry and biology. These reactions can occur both thermally and photochemically. The electrochemical reaction take place by single electron transfer (SET) processes. The SET process also occurs in many biological transformations involving photosynthesis, cytochromes, ferredoxin, rubredoxin etc. The electron transfer reactions are also very important in the functions of semiconductors, conducting polymers and photovoltaics. A brief review on the organic electron transfer reactions would facilitate the discussion.

1.1.1 Redox reactions through electron transfer

Ceric ammonium nitrate, $(NH_4)_2[Ce(NO_3)_6]$ (CAN) is a unique one electron oxidant. Oxidation of benzyl alcohol **1** with CAN **2** gives radical cation which in presence of water affords benzaldehyde **3** in 87% yield (Scheme 1).

Scheme 1

$$\begin{array}{c} \text{CH}_2\text{OH} \\ \\ \text{H}_2\text{O} \\$$

Oxidation of primary and secondary benzylic alcohols **4** with catalytic amount of CAN and stoichiometric amount of NaBrO₃ gives the corresponding aldehydes or ketones **5** in good yields (Scheme 2).¹²

Scheme 2

$$R^{1} = H, Me, NO_{2}$$

$$R^{2} = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{3} = H = H, Me, Ph$$

$$R^{4} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{3} = H = H, Me, Ph$$

$$R^{4} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{3} = H = H, Me, Ph$$

$$R^{4} = H = H, Me, Ph$$

$$R^{4} = H = H, Me, Ph$$

$$R^{2} = H = H, Me, Ph$$

$$R^{4} =$$

Reaction of 1,4-dimethoxy-2,3,5,6-tetramethyl benzene **6** with CAN in presence of isotopically enriched water gives isotopically labelled duroquinone **7** through a SET process (Scheme 3).¹³

Scheme 3

Reaction of naphthalene derivatives with ceric ammonium sulphate (CAS) **9** gives the corresponding naphthoquinones **10** and **11** in moderate to good yields (up to 95 yield). The transformation involves radical cations and rearrangements were observed when the 1, 4-positions was substituted with D or Ph group. The proof of the corresponding naphthoquinones **10** and **11** in moderate to good yields (up to 95 yield). The transformation involves radical cations and rearrangements were observed when the 1, 4-positions was substituted with D or Ph group.

Chapter 1 3

Scheme 4

$$\begin{array}{c} R = Ph \\ R' = H \\ \end{array}$$

$$\begin{array}{c} CAS \ 9 \\ CH_3CN, \ H_2SO_4 \\ 50 \ ^{\circ}C, \ 4 \ h \\ \end{array}$$

$$\begin{array}{c} R = Ph \\ 24\% \ yield \\ \end{array}$$

$$\begin{array}{c} R = Ph \\ 28\% \ yield \\ \end{array}$$

$$\begin{array}{c} R = Ph \\ R' = Ph \\ R' = Ph \\ R' = Ph \\ R' = Ph \\ \end{array}$$

$$\begin{array}{c} R = Ph \\ R' = Ph \\ R' = Ph \\ \end{array}$$

$$\begin{array}{c} R = Ph \\ R' = Ph \\ R' = Ph \\ \end{array}$$

Recently, several organic transformations were reported using ceric ammonium nitrate (CAN) which go through single electron transfer reactions. Some of the reactions are outlined in Chart 1.

Chart 1

Chapter 1 5

Chart 1 (continued.)

PTOC
$$AcOH$$
 $t-BuSnH$
 60% yield

24

PTOC = OCH_3
 Ar_3N $SbCl_6$ 27

 CH_3CN
 Ar_3CO
 Ar_3CO

1.1.2 Electrochemical reactions through electron transfer

Kolbe reaction is an anodic oxidation of carboxylate leading to the formation of hydrocarbon dimers via the intermediacy of alkyl radicals (Scheme 5).²¹

Scheme 5

A number of natural products were synthesized *via* anodic oxidation of organic compounds (chart 2).

Chart 2

The electrochemical oxidation is also an important tool for C-H functionalization and nucleophilic functionalization of arenes (Chart 3).

Chapter 1 7

Chart 3

Chart 3 (continued.)

Also, the anodic oxidation was widely used in the oxidation of allylic systems (Chart 4).

Chart 4

Chapter 1

Chart 4 (Continued.)

Similarly, cathodic reduction of organic compounds was also widely used in organic synthesis, especially for reductive coupling of carbonyl compounds (Chart 5).

Chart 5

1.1.3 Photochemical electron transfer reactions

Photochemical reactions are performed by absorption of visible or ultraviolet light. For example, a metal complex, such as $Ru(bpy)_3Cl_2$ absorbs light at 452 nm with a high molar extinction coefficient ($\epsilon = 14,600 \text{ M}^{-1} \text{ cm}^{-1}$) and it is widely used as a photo catalyst

in organic synthesis. Some important photochemical electron transfer reactions are shown in Chart 6.

Chart 6

BocHN
$$+$$
 Br CO_2Et $Ru(bpy)_3Cl_2$ (1.0 mol%) CO_2Et CO_2ET

Chapter 1

Chart 6 (continued.)

Chart 6 (continued.)

1.1.4 SET reactions in organic chemistry

In the 1970s, there were several reports on the formation of the radical cation/radical anion pair intermediates in several popular organic reactions. A brief review of the literature would facilitate the discussion.

1.1.4.1 SET reactions in aromatic nucleophilic substitution reaction

The unimolecular aromatic nucleophilic substitution ($S_{RN}1$) reaction involves SET process. The halide (X) substituent in aromatic compound **90** is replaced by a nucleophile through free radical intermediates leading to the substitution product **91** (Scheme 6).

Scheme 6

For example, the reaction of iodobenzene 92 with KNH₂ in liquid ammonia gives the substitution product 96 through a SET mediated S_N Ar reaction (Scheme 7).⁴¹

Chapter 1

Scheme 7

1.1.4.2 SET reactions in acyloin condensation

Other major reactions which involve single electron transfer are acyloin condensation and Birch reduction. For example, the reaction of carboxylic ester 97 with sodium proceeds through single electron transfer from Na to an ester and gives a radical anion 98. The dimerized compound 98 gives 1,2-diketone 99 which again undergoes further SET process to afford the acyloin product 102 (Scheme 8).⁴²

Scheme 8

1.1.4.3 SET reactions in Birch reduction

The Birch reduction of substituted benzenes to the corresponding unconjugated cyclohexadienes using Na metal in liquid ammonia involves single electron transfer sequence of reactions (Scheme 9).⁴³

Scheme 9

1.1.4.4 SET reactions in Grignard reagent formation

Organomagnesium reagents (RMgX) are very important in organic synthesis. The reaction of an organic halide with magnesium results in Grignard reagent through a SET process (Scheme 10).⁴⁴

Scheme 10

$$R-X + Mg \xrightarrow{SET} R-X + Mg$$

$$R-X \xrightarrow{} R^{+} + X$$

$$R^{+} + Mg \xrightarrow{} R-Mg$$

$$R-Mg \xrightarrow{} + X \xrightarrow{} R-MgX$$

Aldehyde or ketone reacts with organomagnesium halide (Grignard reagent) to form secondary or tertiary alcohol. Polar and SET mechanisms are possible in Grignard reactions (Scheme 11).^{45,46}

Chapter 1

Scheme 11

The benzophenone **113** reacts with *t*-butyl magnesium chloride **114** to give the benzophenone ketyl radical anion **115** and alkyl radical **116** which combine to afford tertiary alcohol **117** or to give a pinacol **118** and hydrocarbon **119** (Scheme 12).

Scheme 12

The reaction of neopentylmagnesium chloride **120** with benzophenone **113** gives the corresponding alcohol **121** and pinacol **118** (Scheme 13). EPR spectral analysis confirms that the reaction goes *via* a SET mechanism.⁴⁷

Scheme 13

16 General Introduction

Ashby and coworkers investigated the single electron transfer (SET) pathway in Grignard reactions, reduction of primary halide by metal hydrides, Aldol condensation, Meerwein-Pondorff-Varley reduction, Cannizzaro reaction and Claisen condensation reaction. Evidences were presented for mechanisms involving radical intermediates (Chart 7).^{48a}

Chart 7

Chapter 1

Chart 7 (continued.)

18 General Introduction

Chart 7 (continued.)

Chapter 1

Chart 7 (continued.)

$$R \longrightarrow QR' + \overline{QR'} + \overline{QR'} \longrightarrow R \longrightarrow QR' \longrightarrow R \longrightarrow QR' \longrightarrow R \longrightarrow QR' \longrightarrow Ref.55$$

$$160 \longrightarrow Ref.55$$

$$Q_2N \longrightarrow QR' \longrightarrow$$

1.1.5 SET Process in Organic Donor and Acceptor System

The formation of charged species can take place in two sequential single electron transfer (SET) processes or in a concerted two electron transfer process (polar mechanism) (Scheme 14).

Scheme 14

Mulliken's charge transfer theory,⁵⁷ Taube's outer sphere/inner sphere mechanism⁵⁸ and R. A. Marcus two state non adiabatic theory⁵⁹ are the most important concepts developed to rationalize electron transfer reactions.

The charge or electron transfer from one molecule (donor) to the other molecule (acceptor) results in the formation of charge transfer (CT) complex. The electron donors

20 General Introduction

should have low ionization potential and the electron acceptors should have high electron affinities. Charge transfer complexes have a neutral ground state and there is a partial electron transfer from donor to an acceptor molecule.

Mulliken *et al.*⁶⁰ proposed that the diffusive interaction of electron rich donor (D) with an electron acceptor (A) gives a reversible CT complex [D, A] (Scheme 15).

Scheme 15

$$D + A \stackrel{\text{diffuse}}{=} [D, A] \stackrel{\text{hv}_{CT}}{=} [\stackrel{\text{t.}}{D}, \stackrel{\text{-}}{A}]$$

The energy levels of HOMO and LUMO play important role in electron transfer reactions. The LUMO of the electrophilic reagents (acceptor) such as NO_2^+ and Br^+ are lower than the HOMO of aromatic molecules (donor) leading to electrophilic substitution reactions. For example, benzene reacts with NO_2^+ to form nitrobenzene **167** *via* the formation of the radical intermediate **166** (Scheme 16).

Scheme 16

$$+ NO_2^+ \longrightarrow \begin{bmatrix} \dot{+} \\ + \end{bmatrix} - NO_2 \longrightarrow \begin{pmatrix} h \\ + \end{pmatrix} \begin{pmatrix} NO_2 \\ + \end{pmatrix} + H^+$$
166

Taube proposed that both outer-sphere and inner-sphere processes are involved in inorganic electron transfer reactions. The halides could promote the inner-sphere electron transfer *via* bridging effects. Taube *et al.*⁶² also reported that in the reaction of chromium complex **168** with cobalt complex **169**, the electron transfer from Cr(II) to Co(III) takes place *via* a bridged intermediate **170** resulting in the green chromium complex **171** and cobalt complex **172** (Scheme 17). The electron transfer is accompanied by the transfer of chloride ligand and this process takes place *via* inner-sphere electron transfer.

Chapter 1 21

Scheme 17

In outer-sphere electron transfer, organic compounds can accept or loose an electron without undergoing structural changes like bond cleavage or bond formation. For example, nitrobenzene **167** can accept one electron to form nitrobenzene radical anion **173** without undergoing any structural change (Scheme 18).⁶³

Scheme 18

$$NO_2$$
 $+ \bar{e}$
 NO_2
 NO_2
 NO_2
 NO_2

Marcus described the mechanism of electron transfer between an electron donor (D) and an electron acceptor (A) through an outer-sphere precursor complex (D/A) **174**. The precursor complex **174** then reorganizes toward a transition state in which electron transfer takes place to form a successor complex (D⁺⁻/A⁻⁻) **175** that can dissociate to give the corresponding ion pairs **176** (Scheme 19).⁶⁴

Scheme 19

D +A
$$\frac{\text{diffuse}}{}$$
 [D/A] $\frac{K_{\text{ET}}}{}$ [$\frac{+}{D}$ /A \cdot] $\frac{\text{diffuse}}{}$ D + A 175 176

22 General Introduction

We have decided to investigate the electron transfer reaction of oxygen adsorbed carbon materials, polythiophene radical cation salts, quinones, halomethanes and viologen acceptors. We have also constructed electrochemical cells based on quinone acceptors and amine donors. The results are described in Chapters 2-4.

1.2 References

- (a) Kornblum, N.; Michel, R. E.; Kerber, R. C. J. Am. Chem. Soc. 1966, 88, 5662. (b) Kerber, R. C.; Urry, G. W.; Kornblum, N. J. Am. Chem. Soc. 1965, 87, 4520. (c) Russell, G. A.; Danen, W. C. J. Am. Chem. Soc. 1966, 88, 5663. (d) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta. 1985, 811, 265. (e) Marcus, R. A. J. Chem. Phys. 1957, 26, 867. (f) Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 21. (g) Marcus, R. A. J. Chem. Phys. 1965, 43, 679. (h) Marcus, R. A. J. Phys. Chem. 1968, 72, 891. (i) Marcus, R. A. Ann. Rev. Phys. Chem. 1964, 15, 155. (j) Newton, M. D.; Sutin, N. Ann. Rev. Phys. Chem. 1984, 35, 437. (k) Miller, J. R.; Calcaterra, L. T.; Closs, G. L. J. Am. Chem. Soc. 1984, 106, 3047. (l) Eberson, L. J. Am. Chem. Soc. 1983, 105, 3192. (m) Panteleeva, E. V.; Vaganova, T. A.; Shteiogarts, V. D. Tetrahedron Lett. 1955, 36, 8465. (n) Rossi, R. A.; Pierini, B. A.; Penenory, A. B. Chem. Rev. 2003, 103, 71 and references cited therein.
- (a) Kestner, N, R.; Logan, J.; Jortner, J. J. Phys. Chem. 1996, 100, 19740. (b) Penfield, K. W.; Miller, J. R.; Row, M. N. P.; Cotsaris, E.; Oliver, A. M.; Hush, N. S. J. Am. Chem. Soc. 1987, 109, 5061. (c) Meyer, T. J. Acc. Chem. Res. 1978, 11, 94. (d) Hush, N. S. Electrochemica Acta. 1968, 13, 1005. (e) Hopfield, J. J. Proc. Nat. Acad. Sci. USA. 1974, 71, 3640. (f) Blankenship, R. E.; Parson, W. W. Ann. Rev. Biochem. 1978, 47, 635. (g) Poole, J. S.; Hadad, C. M.; Platz, M. S.; Fredin, Z. P.; Pickard, L.; Guerrero1, E. L.; Kessler, M.; Chowdhury, G.; Kotandeniya, D.; Gates, K. S. Photochemistry and Photobiology. 2002, 75, 339. (h) Schuster, O. I.; Brisimitzakis, A.

Chapter 1 24

- C. Tetrahedron Lett. **1982**, 23, 4531. (i) Cossy, J.; Belotti, D. Tetrahedron. **2006**, 62, 6459. (j) Hoffmann, N. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. **2008**, 9, 43.
- (a) Hsiao, C.; Chou, I. C.; Okafor, C. D.; Bowman, J. C.; O'Neill, E. B.; Athavale, S. S.; Petrov, A. S.; Hud, N. V.; Wartell, R. M.; Harvey, S. C.; Williams, L. D. *Nature Chemistry.* 2013, 5, 525. (b) Bobst, A. M. *Proc. Nat. Acad. Sci. USA.* 1971, 68, 541.
 (c) Sjulstok, E.; Olsen, J. M. H.; Solov'yov, I. A. *Scientific Reports.* 2015, 5, 18446.
 (d) Grimes, C. J.; Piszkiewicz, D.; Fleischer, E. B. *Proc. Nat. Acad. Sci. USA.* 1974, 71, 1408.
- 4 (a) Cenas, N.; Anuservicius, Z.; Bironaite, D.; Bachmanova, G. I.; Archakov, A.; Ollinger, K. Archives of Biochemistry and Biophysics, 1994, 315, 400. (b) Hill, B. C. J. Biol. Chem. 1994, 269, 2419. (c) Grimes, C. J.; Piszkiewicz, D.; Fleischer, E. B. Proc. Nat. Acad. Sci. USA. 1974, 71, 541.
- (a) Batie, C. J.; Kamin, H. J. Biol. Chem. 1984, 259, 11976. (b) Moreno, C. G.;
 Julvez, M. M; Medina, M.; Hurley, J. K.; Tollin. G. Biochimie, 1998, 80, 837.
- Hagelueken, G.; Wiehlmann, L.; Adams, T. M.; Kolmar, H.; Heinz, D. W.; Tummler,
 B.; Schubert, W. D. *Proc. Nat. Acad. Sci. USA.* 2007, 104, 12276.
- (a) Koval, C. A.; Howard, J. N. Chem. Rev. 1992, 92, 411. (b) Lewis, N. S. J. Phy. Chem. B. 1998, 102, 4843. (c) Corvan, J. R. C.; Whitten, D.G.; McLendon, G.L. Chemical Physics. 1993, 176, 377. (d) Tvrdy, K.; Frantsuzovc, P. A.; Kamata, P. V. PNAS, 2011, 108, 29.
- 8 Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. Chem. Rev. 2014, 114, 5848.

25 References

(a) Lewis, N. S.; Nocera, D. G. Proc. Nat. Acad. Sci. USA. 2006, 103, 15729.
 (b) Gratzel, G. Inorg. Chem. 2005, 44, 6841.

- 10 Sridharan, V.; Mene 'ndez, J. C. *Chem. Rev.* **2010**, *110*, 3805.
- 11 Trahanovsky, W. S.; Young, L. B.; Brown, G. L. J. Org. Chem. **1967**, 32, 3865.
- 12 Ho, T. L. Synthesis. **1978**, *12*, 936.
- 13 Jacob, P.; Callery, P. S.; Shulgin A. T.; Castagnoli, N. J. Org. Chem. 1976, 41, 3627.
- (a) Periasamy, M.; Bhatt, M. V. *Tetrahedron Letters*. 1977, 27, 2357. (b) Bhatt, M. V.;
 Periasamy, M. *Tetrahedron*. 1994, 50, 3575. (c) Bhatt, M. V.; Periasamy, M. *J. Chem. Perkin Trans*. 2 1993, 1811. (d) Periasamy, M.; Bhatt, M. V. *Synthesis*. 1977, 5, 330.
 (e) Periasamy, M.; Bhatt, M. V. *Tetrahedron Letters*. 1978, 46, 4561.
- Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science, 2007, 316, 582.
- Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. C. *Proc. Natl. Acad. Sci.* **2010**, *107*, 20648.
- (a) Pham, P. V.; Ashton, K.; MacMillan, D. W. C. *Chem. Sci.*, **2011**, 2, 1470. (b)
 Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2009**, *131*, 11640.
- Paolobelli, A. B.; Latini, D.; Ruzziconi, R. Tetrahedron Letters. 1993, 34, 721.
- 19 Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.
- Dhanalekshmi, S.; Venkatachalam, C. S.; Balasubramanian, K. K. *J. Chem. Soc. Chem. Comm.* **1994**, 511.
- Kolbe, H. Annalen der chemie und pharmacie. **1848**, 64, 339.

Chapter 1 26

- 22 Stork, G.; Davies, J. E.; Meisels, A. J. Am. Chem. Soc. 1959, 5516.
- 23 Mihelcic, J.; Moeller, K. D. *J. Am. Chem. Soc.* **2004**, *126*, 9106.
- 24 Hughes, C. C.; Miller, A. K.; Trauner, D. *Org. Lett.*, **2005**, *7*, 3425.
- 25 Morofuji, T.; Shimizu, A.; Yoshida, J. I. J. Am. Chem. Soc. **2014**, 136, 4496.
- 26 Morofuji, T.; Shimizu, A.; Yoshida, J. I. J. Am. Chem. Soc. 2013, 135, 5000.
- 27 Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. *J. Am. Chem. Soc.* **2012**, *134*, 3571.
- 28 Gallardo, I.; Guirado, G.; Marquet, J. *Chem. Eur. J.* **2001**, *7*, 1759.
- 29 Koch, V. R.; Miller, L. L. J. Am. Chem. Soc. 1973, 8631.
- 30 Shono, T.; Ikeda, A. J. Am. Chem. Soc. 1972, 7892.
- 31 Masui, M.; Hara, S.; Ueshima, T.; Kawaguchi, T.; Ozaki, S. *Chem. Pharm. Bull.* **1983**, 31, 4209.
- 32 Yoshida, J. I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
- 33 Shono, T.; Mitani, M. J. Am. Chem. Soc. 1971, 5284.
- (a) Shono, T.; Kashimura, S.; Mori, Y.; Hayashi, T.; Soejima, T.; Yamaguchi, Y. J.
 Org. Chem. 1989, 54, 6001. (b) Shono, T. Tetrahedron. 1984, 40, 811.
- 35 Nagib, D. A.; MacMillan, D. W. C. *Nature*. **2011**, 480, 224.
- 36 Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104.
- 37 Nicewicz, D. A.; MacMillan, D. V. C. Science. 2008, 322, 77.
- Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R.
 J. Chem. Commun. 2010, 46, 4985.

27 References

39 Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.

- 40 Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350.
- 41 Kim, J. K.; Bunnett, J. F. J. Am. Chem. Soc. **1970**, 92, 7463.
- 42 Finley, K. T. Chem. Rev. **1964**, 64, 573.
- 43 (a) Birch, A. J. J. Chem. Soc. **1944**, 430. (b) Birch, A. J. J. Chem. Soc. **1945**, 809.
- 44 Ashby, E. C.; Oswald, J. J. Org. Chem. 1988, 53, 6068.
- 45 Ashby, E. C.; Lopp, I. G.; Buhler, J. D. J. Am. Chem. Soc. **1975**, 97, 1964.
- 46 Blicke, F. F.; Powers, L. D. J. Am. Chem. Soc. 1929, 51, 3378.
- 47 Blomberg, C.; Mosher, H. S. J. Organometal. Chem. **1968**, *13*, 519.
- 48 (a) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414. (b) Ashby, E. C.; Bowers, J.; Depriest, R. Tetrahendron Letters. 1980, 21, 3541.
- 49 Ashby, E. C.; DePriest, R. N.; Goel, A. B. *Tetrahedron Letters.* **1981**, 22, 1763.
- 50 Ashby, E. C.; Argyropoulos, J. N. *J. Org. Chem.* **1986**, *51*, 472.
- 51 Shiner, V. J.; Whittaker, D. J. Am. Chem. Soc. 1963, 85, 2337.
- 52 Ashby, E. C.; Argyropoulos, J. N. J. Org. Chem. **1986**, *51*, 3593.
- 53 Swain, C. G.; Powell, A. L.; Sheppard, W. A.; Morgan, C. R. J. Am. Chem. Soc. 1979, 101, 3576.
- 54 Ashby, E. C.; Coleman, D.; Gamasa, M. J. Org. Chem. **1987**, 52, 4079.
- a) Royals, E. E. J. Am. Chem. Soc. 1948, 70, 489. b) Zook, K. D.; Mcaleer, W. J.;
 Horwin, L. J. Am. Chem. Soc. 1946, 68, 2404. c) Baker, R. B.; Reid, E. E. J. Am.

Chapter 1 28

- Chem. Soc. 1929, 51, 1567. d) Soloway, S. B.; Laforge, F.B. J. Am. Chem. Soc. 1947, 69, 1244. e) Cohen, H.; Shubart, R. J. Org. Chem. 1973, 38, 4079.
- 56 Ashby, E. C.; Park, W. S. *Tetrahendron Letters*. **1983**, 24, 1667.
- a) Mulliken, R. S. J. Chem. Phys. 1955, 23, 397. b) Mulliken, R. S. J. Am. Chem. Soc. 1950, 72, 600. c) Mulliken, R. S. J. Phys. Chem. 1952, 56, 801. d) Reid, C.; Mulliken, R. S. J. Am. Chem. Soc. 1956, 76, 3869.
- a) Taube, H. J. Am. Chem. Soc. 1942, 64, 161. b) Taube, H. J. Am. Chem. Soc. 1943, 65, 1876. c) Hochhauser, I. L.; Taube, H. J. Am. Chem. Soc. 1947, 69, 1582. d) Taube, H. J. Am. Chem. Soc. 1947, 69, 1418. e) Taube, H. J. Am. Chem. Soc. 1948, 70, 1216 f) Taube, H. J. Am. Chem. Soc. 1948, 70, 3928. g) Rich, R. L.; Taube, H. J. Phys. Chem. 1954, 58, 6. h) Rich, R. L.; Taube, H. J. Am. Chem. Soc. 1954, 76, 2608. i) Taube, H.; Myers, H.; Rich, R. L. J. Am. Chem. Soc. 1953, 75, 4118. j) Taube, H.; Myers, H. J. Am. Chem. Soc. 1954, 76, 2103. k) Saffir, P.; Taube, H. J. Am. Chem. Soc. 1960, 82, 13. l) Taube, H.; Gould, E. S. Acc. Chem. Res. 1969, 2, 321. m) Nordmeyer, F. R.; Taube, H. J. Am. Chem. Soc. 1968, 90, 1162. n) French, J. E.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6951. o) Endicott, J. F.; Taube, H. Inorg. Chem. 1965, 4, 437. p) Stritar, J. A.; Taube, H. Inorg. Chem. 1969, 8, 2281. q) Hammershoi, A.; Geselowitz, D.; Taube, H. Inorg. Chem. 1984, 23, 979. r) Ford, P. C.; Rudd, D. P.; Gaunder, R.; Taube, H. J. Am. Chem. Soc. 1968, 90, 1187.
- a) Marcus, R. A. J. Chem. Phys. 1952, 20, 359. b) Marcus, R. A. J. Chem. Phys. 1957,
 26, 872. c) Marcus, R. A. Can. J. Chem. 1959, 37, 155. d) Marcus, R. A. Annu. Rev.
 Phys. Chem. 1964, 15, 155. e) Marcus, R. A. J. Chem. Phys. 1965, 43, 2654. f)

29 References

Marcus, R. A. J. Chem. Phys. **1965**, 43, 3477. g) R. A. Electrochim. Acta **1968**, 13, 995. h) Marcus, R. A. J. Chem. Phys. **1984**, 81, 5613.

- 60 Mulliken, R. S. J. Am. Chem. Soc. 1952, 74, 811.
- 61 Nagakura, S. Mol. Cryst. Liq. Cryst. 1985, 126, 9.
- 62 Taube, H.; Mayers, H.; Rich, R. L. J. Am. Chem. Soc. 1953, 75, 4118.
- 63 Wagenknecht, J. H. J. Org. Chem. 1977, 42, 1836.
- a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966. b) Marcus, R. A. Angew. Chem. Int. Ed. 1993, 32, 1111.

Chapter 2

Synthetic Methods Based an Electron Transfer Reactions using Oxygen Adsorbed Carbon Materials and *p*-Doped Polythiophene

2.1 Introduction

2.1.1 Carbon materials

Carbon materials are useful for a wide variety of applications such as electrochemical electrodes, medical implants, electrochemical capacitors, high-performance materials and fuel cells.¹ The heat treatment of carbon material at inert atmosphere decreases the content of heteroatoms and increasees the carbon contents.^{2,3} The conversion of an organic macromolecular system (e.g. wood, coal, nutshell etc.) to a macro-atomic carbon atoms through elimination of methanol, carbon monoxide, water and carbon dioxide by progressive heating is called carbonization process.⁴

Recently, the production of pyrolysis gas from woody biomass were investigated in this laboratory. The charcoal is a byproduct in this carbonization process from the woody biomass at 450 °C-500 °C. Therefore, we became interested in the development of organic synthetic methods based on readily accessible activated carbon.

Activated carbon is widely used in electrochemical capacitors (supercapacitors) for electricity storage with potential for use in electric vehicles. Activated carbon act as semiconductor with narrow band gap (34 meV) with potential for use in harvesting IR portion of the solar spectrum.⁵ Our interest is to study the electron transfer reactions in organic transformations. Therefore, a brief review on the properties and nature of carbon material for application in organic transformation would facilitate the discussion.

32 Introduction

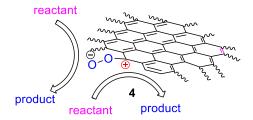
2.1.2 Various forms of carbon

The main allotropic forms of pure carbon are graphite and diamond. However, there is immense interest on other new forms of pure carbon such as fullerenes or buckyballs and carbon nanotubes (CNTs).⁶ Amorphous forms of carbon mainly consist of coal, charcoal and carbon black. Charcoal is produced by heating organic materials to a high temperature in the absence of air.⁷ It has large surface area and it can absorb gases to form new materials. Carbon black is also the purest form of carbon. It is obtained by incomplete burning of some natural oil and heavy petroleum products with limited supply of air.⁸ Carbon black is very soft powder and it is used for making carbon paper, inks and paints. The strength of the rubber is increased by the addition of carbon black. Graphite is the most stable allotrope of carbon and soft in nature.⁹ Graphite conducts electricity due to delocalization of electrons.

2.1.3 Surface characterization and properties of activated carbons

The surface characteristics of carbon materials and chemistry of their surface is depending on the amount of heteroatom incorporated into the carbon matrix. The heteroatom like oxygen is responsible for the presence of various acidic functional groups such as carboxyl, carbonyl, phenol, quinone and lactones and also presence of unsaturated sites in the matrix of activated carbon (Figure 1).¹⁰

Figure 1. Surface groups present in the Carbon Material. It indicates the presence of σ (*) and π (•) electrons at the zigzag sites and the presence of triple bonds at the armchair sites.


Carbon materials contains: (a) bulk atoms that are neutral (b) surface atoms that are the real adsorption atoms and (c) corner atoms that are very reactive and even react with metals. It is well known that chemical treatment of carbon materials increases the concentration of surface oxygen functional groups. It has been reported¹¹ that the oxygen acquires a partial negative charge upon chemisorptions. The carbon materials have a free-flowing $sp^2\pi$ -electrons, which make them potential catalyst for electron transfer reactions such as oxygen reduction reaction (ORR) to generate super oxide radical.¹² This super oxide radical bound to carbon material acts as an oxidant (Scheme 1).¹³

34 Introduction

Scheme 1

It is of our interest to design experiments for practical use of the reactive intermediate **4** in the oxygen adsorbed activated carbon in synthetic transformations (Scheme 2).

Scheme 2

We have investigated the molecular oxygen doped carbon materials for use in the development of new synthetic methods involving reaction with reducing agents and with electron rich compounds and amines. The results are discussed in the next section.

The properties of carbon materials and their surface depend on the heteroatom present and the nature of the materials and methods used for the preparation.¹⁴ Further, it was suggested that the heteroatom (like oxygen) free graphene edge sites in carbon materials are neither hydrogen terminated nor free radicals. Instead, the edge sites are aryne-like armchair sites **5** and carbene-like zigzag sites **6** with triplet ground state. The available evidence points to predominantly carbene-like zigzag sites **6** (Figure 2).¹⁵

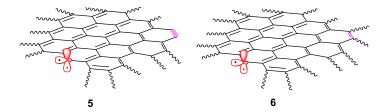
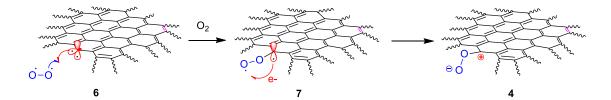
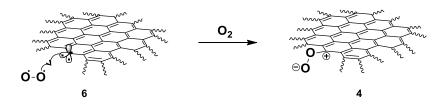



Figure 2. Surface characteristics edge sites in the carbon materials.

The aryne-like sites undergo trimerization to give benzenoid aggregates under ambient atmospheric conditions and expected to give phenolic groups upon reaction with moisture. However, the magnetic properties and chemisorptions with molecular oxygen reported for the carbon materials are in accordance with the proposal that graphene edge sites are carbene-like with triplet ground state **6**. 15

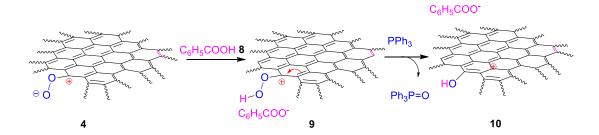

It has been reported that chemisorption of molecular oxygen by activated carbon fibre materials leads to formation of negatively charged oxygen (C-O-O $^{\delta}$ -) species. 16,17 Accordingly, we envisaged the formation of such species **4** through electron transfer from the carbon radical site in **7** formed by the reaction of molecular oxygen with activated carbon **6** (Scheme 3).

Scheme 3

2.2.1 Reactions of molecular oxygen adsorbed carbon materials with Ph_3P

Table 1. Adsorption of molecular oxygen on carbon materials^a

Entry	CM 6 (g)	Oxygen adsorbed CM 4 (g)	O ₂ , mmol
1	AC (1) CB (1) Gr (1)	1.034 1.053 1.000	1.06 1.65
2	AC (2)	2.071	2.22
	CB (2)	2.078	2.43
3	AC (3)	3.092	2.88
	CB (3)	3.119	3.72
4	AC (4)	4.120	3.75
	CB (4)	4.152	4.75
5	AC (5)	5.175	5.46
	CB (5)	5.190	5.93
	Gr (5)	5.006	0.19
6	AC (10)	10.203	6.34
	CB (10)	10.236	7.37
	Gr (10)	10.013	0.41
7	AC (15)	15.312	9.75


 $[^]a$ Carbon materials were heated at 200 $^\circ$ C under high vacuum for 2 h and brought to 25 $^\circ$ C under N_2 . The dry oxygen was passed through carbon materials for 1 h at 25 $^\circ$ C.

Initially, we have performed several experiments to assess the extent of adsorption of molecular oxygen on carbon materials. The results are summarized in Table 1. The activated carbon (AC) and carbon black (CB) react with molecular oxygen, whereas in the case of graphite (Gr), there was no oxygen or little oxygen gets adsorbed (Table 1).

The carbon material was preheated to $200\,^{\circ}\text{C}$ under high vacuum and brought to room temperature under N_2 atmosphere. Then, the oxygen was passed to the resulting carbon material. The difference in the weight of carbon material before and after oxygen adsorbed indicates that the approximate amount of oxygen molecule gets adsorbed (Table 1).

The carbon skeleton of the oxygen adsorbed intermediate **4** is expected to behave like electron acceptor and the negatively charged oxygen is expected to undergo reaction with proton donors. So, such species are expected to react with proton containing compounds like benzoic acid **8** to give the corresponding hydroperoxide intermediate **9** (Scheme 4).

Scheme 4

To examine this possibility, we have carried out the reaction of the carbon material with Ph₃P and benzoic acid. We have observed that, in the case of carbon black (CB) without using any proton source or an acid, the triphenylphosphine oxide, Ph₃P=O was formed in 17% yield (Table 2, entry 1).

Table 2: Reaction of molecular oxygen adsorbed carbon material **4** with benzoic acid and Ph_3P^a

Entry	CM (g)	Benzoic acid (mmol)	Ph ₃ P (mmol)	THF (mL)	Ph ₃ P=O Yield (%) ^b
1	CB (5)	0	10	150	17
2	CB (5)	10	10	150	47
3	CB (10)	20	10	150	52
4	AC (5)	10	10	20	54
5	Gr (5)	0	10	20	0
6	Gr (5)	10	10	20	trace
7	Gr (5)	20	10	20	6
8 ^c	AC (5)	10	10	20	52
9°	CB (5)	10	10	150	45

 $^{^{}a}$ The carbon material was heated at 200 $^{\circ}$ C under high vacuum for 2 h and brought to 25 $^{\circ}$ C under N₂ and dry oxygen was passed through carbon material for 1 h at 25 $^{\circ}$ C. The reactions were performed with oxygen adsorbed carbon material, benzoic acid and PPh₃ at 25 $^{\circ}$ C. b Isolated yield. $^{\circ}$ The reaction was carried out with reoxidized carbon material.

The formation of Ph₃P=O was slightly increased with an increase in the amount of either carbon material or benzoic acid. Therefore, an increase in the amount of carbon black and benzoic acid gives the Ph₃P=O in 52% yields (Table 2, entry 3). A further increase in the amount of carbon black leads to moderate increase in the Ph₃P=O product.

Here, the carbon black needs more solvent during the reaction and this limits the use of carbon black in this reaction. Whereas in the case of graphite, without using benzoic acid the formation Ph₃P=O product was not observed (Table 2, entry 5). Further, we have observed that the addition of benzoic acid gives Ph₃P=O in 6% yield (Table 2, entry 7). Further increase in the amount of graphite did not enhance the yield of Ph₃P=O. In the case of activated carbon, the Ph₃P=O was isolated in 54% yield (Table 2, entry 4). We have also observed that the carbon material isolated after the reaction with PPh₃ can be reused after vacuum treatment at 200 °C and re-adsorption of molecular oxygen. Reaction using such re-oxidized activated carbon and carbon black with Ph₃P in THF gave the Ph₃P=O product in 52% and 45% yield (Table 2, entry 8 and 9). The results clearly indicate that the molecular oxygen chemisorbed on carbon black and activated carbon but it is only physisorbed on graphite.

2.2.2 Reactions of molecular oxygen adsorbed carbon materials with alkylboranes

Next, we have studied the utilization of the oxygen adsorbed carbon intermediate 4 in organic transformations. The reactive peroxide present in the oxygen adsorbed carbon material 4 can be used for the oxidation of alkylboranes. The organoboranes are readily accessible *via* hydroboration of alkenes and alkynes using easy to handle NaBH₄/I₂ reagent system.^{19,22} The molecular oxygen itself could oxidize trialkyl borane to the corresponding hydroperoxide or alcohols.²⁰ However, the preferred reagent for the oxidation of organoboranes is the HOO Na⁺ species produced *in situ* in the reaction of NaOH with H₂O₂. We have envisaged that the oxygen adsorbed intermediate like 4 would react with NaOH to give the species like 13 which could give the HOO Na⁺ species 14 for oxidation of organoboranes *via* the formation of the corresponding borate complex

(Scheme 5).²⁰ However, there is also a possibility that the peroxy species **13** itself could also oxidize organoboranes in a similar way (Scheme 5).

Scheme 5

In order to examine this, we have performed a series of experiments on the oxidation of organoboranes prepared using the NaBH₄/I₂ reagent system (Scheme 6).

Scheme 6

We have observed that trialkylboranes **16a** and **16b** prepared by using hydroboration of 1-decene and norbornene with the NaBH₄-I₂ in THF react with a mixture of oxygen adsorbed carbon black **4** and 3N NaOH to give the corresponding alcohol **21a** and **21b** in 85% and 57% yield (Table 3, entry 1 and 2).

Table 3. Reaction of molecular oxygen adsorbed carbon materials **4** with aq. NaOH and alkylboranes^a

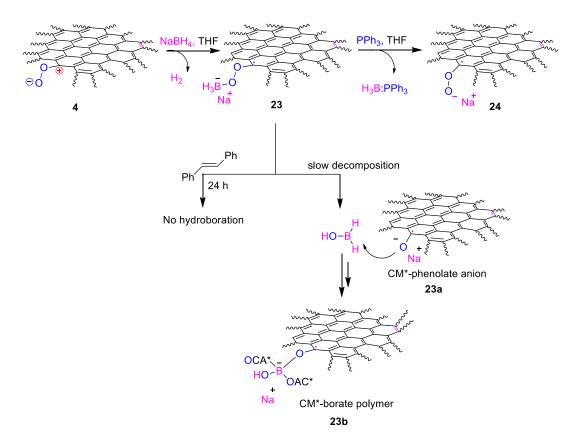
Entry	CM (g)	Alkylboranes (16, 19, 20)	Products (21, 22)	Yield (%) ^e
1 ^b	CB (5)	$ \begin{pmatrix} n-C_8H_{17} & B \\ \mathbf{16a} & 3 \end{pmatrix} $	n-C ₈ H ₁₇ OH 21a	85
2 ^b	CB (5)	16b B	ОН 21b	57
3°	CB (5)	19a	OH 21c	71
4 °	CB (5)	(Ph Ph 2 19b	Ph OH Ph 21d	86
5 ^{c, f}	CB (5)	19c	OH 21e	80
6 ^{d,g}	CB (5)	(B) ₂ Ph 20a	Ph H 22a	53
$7^{\rm d,f,g}$	CB (5)	Ph n-C ₄ H ₉ 20b	$\begin{array}{c c} Ph & & n-C_4H_9 \\ \hline O & O & + \\ Ph & & n-C_4H_9 \\ \hline & \mathbf{22b} \end{array}$	59

8 c,h CB (5)
$$(Ph \rightarrow BH) \\ Ph \\ 2 \\ 19b$$
 Ph Ph 82

9 c,i $(Ph \rightarrow BH) \\ Ph \\ 2 \\ 19b$ Ph Ph $<5\%$

^aThe carbon black was heated at 200 °C under high vacuum for 2 h and brought to 25 °C under N₂ and the dry oxygen was passed through carbon materials for 1 h at 25 °C. Oxidations of organoboranes were carried out with oxygen adsorbed carbon black and aq. 3N NaOH or 3N NaOAc. ^bThe reactions were carried out with trialkylboranes (10 mmol). ^cThe reactions were carried out with dialkylboranes (10 mmol). ^dThe reactions were carried out with alkenylboranes (10 mmol). ^eIsolated yield. ^fRatio of isomers based on ¹³C NMR spectrum of the product mixture. ^gThe reaction was carried out using aq. NaOAc. ^hReaction was carried out with molecular oxygen re-adsorbed carbon black. ⁱReaction was performed without molecular oxygen adsorbed carbon black.

The reaction of dialkylboranes **19a-c** prepared by using NaBH₄-I₂ in THF, react with the mixture of carbon black and 3N NaOH to give the corresponding alcohols **21c**, **21d** and **21e** in 71%, 86% and 80% yield, respectively (Table 3, entries 3-5). Further, the alkenylborane **20a**, prepared by hydroboration using thexylborane, which in turn prepared *in situ* by the reaction of tetramethyl ethylene and the borane gas generated by the reaction of I₂ with *n*-Bu₄NBH₄, upon reaction with oxygen adsorbed carbon black **4** and 3N NaOAc gave the phenylacetaldehyde **22a** in 53% yield (Table 3, entry 6). Whereas, the reaction using the alkenylborane **20b** gives the corresponding regioisomeric mixture **22b** in 59% yield (Table 3, entry 7).


The carbon black used for this oxidation could be recovered by filtration, dried at 200 °C and re-adsorbed with molecular oxygen. The recovered and re-adsorbed carbon black and 3N NaOH oxidize the dialkylborane **19b** to give the alcohol **21d** in 82% yield (Table 3, entry 8). Also, when the oxidation was performed using dialkylborane **19b** without using molecular oxygen adsorbed carbon black only trace (<5%) amount of alcohol **21d** was obtained (Table 3, entry 9) indicating the role of carbon black in these transformations.

2.2.3 Reaction of sodium borohydride with molecular oxygen adsorbed carbon material and lewis bases

Diborane is one of most important reagent in organic synthesis. Diborane itself is difficult to handle and relatively inert towards olefins. So, it is normally utilized in the form of its complexes such as BH₃:THF, BH₃:SMe₂ and BH₃:NR₃. Many reagent systems have been developed for the generation of diborane gas.²¹ Previously, simple methods for generation of diborane gas from I₂/NaBH₄, I₂/*n*-Bu₄NBH₄ and PhCH₂Cl/*n*-Bu₄NBH₄ reagent systems were reported from this laboratory.²²

We have observed that the reaction of oxygen adsorbed carbon material **4** with NaBH₄ in THF or diglyme lead to slow hydrogen gas evolution. Accordingly, we have envisaged the formation of the AC*-O-O-BH₃ complex **23** as shown in Scheme 7.

Scheme 7

To examine this, we have carried out the hydroboration reaction of stilbene with the intermediate 23 in THF at 25 °C for 24 h. There was no hydroboration observed. Presumably, the reaction of the olefin with the borane complex 23 may be slow and the intermediate 23 may not be stable for longer time to react with olefin or further decomposed to AC* borate polymer (Scheme 7). However, when the reaction of the borane complex 23 was carried out with Ph₃P, the Ph₃P:BH₃ complex was obtained in 35% yield (Table 4, entry 1).

Table 4. Reaction of NaBH₄ with Ph₃P with increasing amount of carbon material (CM).^a

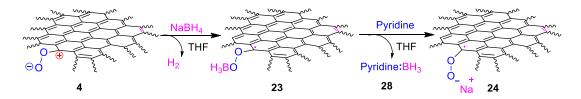
Carbon black	NaBH ₄ 25 / PPh ₃ 11	Ph ₃ P: BH ₃
(oxygen adsorbed)	THF, 25 °C, 24 h	гизг. впз
4		26

Entry	CM (g)	THF (mL)	Ph ₃ P:BH ₃ 26 Yield (%) ^b
1	CB (1)	30	35
2	CB (2)	70	54
3	CB (4)	120	62
4	CB (5)	150	69
5	CB (10)	300	73
6 ^c	CB (5)	150	65

^aThe reactions were carried out by using NaBH₄ (5 mmol) and PPh₃ (5 mmol) at 25°C. ^bIsolated yield. ^cThe reaction was performed with molecular oxygen re-adsorbed carbon black.

We have carried out several reactions using different solvents in order to improve the yields and THF turned out to be the best solvent for this transformation. The Ph₃P:BH₃ was obtained in up to 73% yield, when the reaction was carried out with more amount of oxygen adsorbed carbon black (Table 4). It was found that similar reactions using oxygen adsorbed activated carbon gave 21-77% yield.

Whereas, oxygen adsorbed graphite gave the Ph₃P:BH₃ complex only in 9-23% yield, in accordance with reports that molecular oxygen is mainly physisorbed on the surface of graphite. 11,15


We have also observed that the recovered carbon black remained after reaction with NaBH₄ and Ph₃P further reacts with benzoic acid and Ph₃P to give the Ph₃P=O in 22% yield. This transformation can be rationalized as shown in Scheme 8.

Scheme 8

2.2.4 Reaction of molecular oxygen adsorbed carbon black with NaBH₄ and amines

We have then turned our attention towards the reaction of pyridine with the AC*-O-O-BH₃ intermediate **23** (Scheme 9).

Scheme 9

We have found that the reaction of pyridine with NaBH₄ in the presence of oxygen adsorbed carbon materials in THF gives the pyridine:BH₃ complex **28** in 42% yield using activated carbon (2 g) and in 52% yield using carbon black (2 g) (Table 5, entry 1 and 2).

We have also performed these experiments using increased amount of carbon material (5 g) in order to improve the yields of pyridine:BH₃ **28** complex. However, there was no further improvement, but there was a slight decrease in the yield of pyridine: BH₃

complex **28** (Table 4, entries 3 and 4). Further, the yields of pyridine:BH₃ complex produced here are relatively low compared to the yields of Ph₃P:BH₃.

Table 5. Reaction of molecular oxygen adsorbed carbon materials with NaBH₄ and pyridine^a

(oxygen adsorbed)
$$\frac{\text{NaBH}_4/\text{pyridine}}{\text{THF, 24 h}}$$
 Pyridine: BH₃

Entry	CM (g)	THF (mL)	Pyrdine:BH ₃ complex 28 Yield (%) ^b
1	AC (2)	15	42
2	CB (2)	70	52
3	AC (5)	25	40
4	CB (5)	150	48

^aThe reactions were performed by using NaBH₄ (5 mmol) and pyridine (5 mmol) at 25 °C. ^bIsolated yield.

We have also performed the reaction of molecular oxygen adsorbed carbon black with other amines, which are expected to form complexes with borane. The results are summarized in Table 6. The reaction of morpholine 29 with NaBH₄ and oxygen adsorbed carbon black in THF gave the morpholine:BH₃ 33 in 43% yield (Table 6, entry 1). Similarly, different amine:borane complexes 34-36 were prepared using the amines 30-32 and oxygen adsorbed carbon black (Table 6). The low yields of amine:BH₃ complexes compared to the Ph₃P:BH₃, resulting may be a slow decomposition of the peroxy borane species 23 or the amine borane products may further react with the peroxy species present in the carbon byproduct 24 leading to a reduction in yields.

Table 6. Reaction of molecular oxygen adsorbed carbon black with NaBH₄ and amines.^a

		Carbon black (oxygen adsorbed) 4	NaBH ₄ /amine 29-32 THF, 25 °C, 24 h	amine: BH ₃ 33-36
Entry	CB (g)		Amine 29-32	Amine:BH

Entry	CB (g)	Amine 29-32	Amine:BH ₃ 33-36	Yield(%)
1	CB (5)	0NH 29	O NH:BH₃ 33	43
2	CB (5)	NH 30	NH:BH ₃ 34	58
3	CB (5)	Ph—NH Ph—NH	Ph—NH:BH ₃ Ph—35	42
4	CB (5)	NH 32	NH:BH ₃	51

^aThe reactions were carried out by using NaBH₄ (5 mmol) and amine (5 mmol) at 25 °C. ^bIsolated yield.

We have also examined the proposed AC*-O-O-BH $_3$ intermediate **23** for hydroboration reaction of α -methyl styrene **37** in THF but there was no hydroboration (Scheme 10).

Scheme 10

The pyridine:BH₃ complex **28** is useful for hydroboration of olefin at elevated temperatures.²³ Recently it was reported that pyridine:BH₃ complex **28** hydroborates olefins at room temperature under activation by I_2 .²⁴ We have found that the pyridine:BH₃ complex **28** is useful for hydroboration of α -methyl styrene **37**. After oxidation using oxygen adsorbed AC/NaOH, the corresponding alcohol **38** was obtained in 86% yield (Scheme 11).

Scheme 11

2.2.5 Reaction of oxygen adsorbed activated carbon with benzylamine derivatives

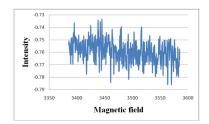
We have observed that benzylamine give benzaldehyde **45** in 30% yield upon reaction with molecular oxygen adsorbed activated carbon. In the case of dibenzylamine **39b**, benzaldehyde was obtained in 25% yield after work up. However, the NMR spectra obtained for the crude product mixture before work up and chromatography revealed the presence of both the imine and benzaldehyde products (Scheme 12). Presumably, the reaction may give amine radical cation followed by the formation of imine, which after

reaction with water yields benzaldehyde. We have also observed that the epr spectrum recorded after addition of amines to oxygen adsorbed activated carbon indicated the presence of paramagnetic species.

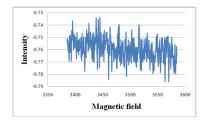
Scheme 12

Similarly, it has been observed in this laboratory that the oxygen adsorbed carbon material **4** react with the electron donors like *N*-phenyl tetrahydroisoquinoline **46** and nucleophilic reagents like nitromethane, pyrrole and TMSCN gave the corresponding coupled product **49** in 67-89% yield through the intermediacy of the corresponding radical cation and iminium ion intermediates (Scheme 13).²⁵

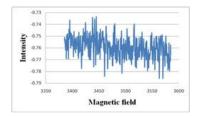
Scheme 13

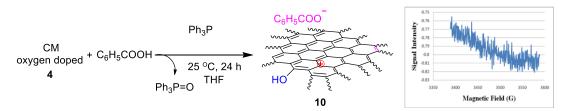

Also, it was found that the 2-naphthol **50** undergoes oxidative coupling reactions in the presence of oxygen adsorbed carbon material **4** to give the bi-2-naphthol **52** (BINOL) in 95% yield *via* the corresponding radical intermediates (Scheme 14).²⁶

Scheme 14


2.2.6 Evidence for presence of paramagnetic species through epr spectroscopy

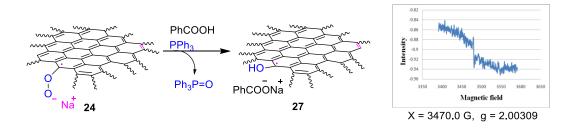
EPR spectra were recorded for the activated carbon samples at various stages and the spectra are presented below.

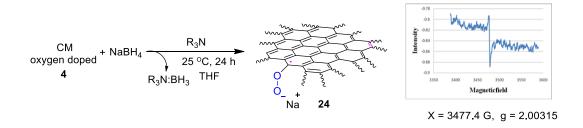

2.2.6.1 EPR spectrum of commercial carbon material


2.2.6.2. EPR spectrum of vacuum dried carbon material

2.2.6.**3**. EPR spectrum of oxygen doped carbon material

2.2.6.4. EPR spectrum of residual activated carbon (Scheme 4)


2.2.6.5. EPR spectrum of paramagnetic species 23b (Scheme 7)


2.2.6.6. EPR spectrum of paramagnetic species **24** (Scheme **7**)

2.2.6.7. EPR spectrum of paramagnetic species 27 (Scheme 8)

2.2.6.8. EPR spectrum of paramagnetic species **24** (Scheme **9**)

52 Results and Discussion

The epr signals observed are in accordance with the paramagnetic species present in residual activated carbon samples.

2.2.7 Synthesis of p-doped polythiophene (PT) and estimation of radical cation site present in p-doped polythiophene.

Electroactive conducting polymers have proven applications in several technologies such as solar cells, display devices, gas sensors and actuators.²⁷ It is relatively easy to process these polymers to make the devices and their chemically tunable property makes them useful in electronic devices.²⁸ These polymers are redox-active and their conductivity can be changed by doping the polymer. The physical properties of these conductive polymers depend on the type of the dopant used.

Polythiophene (PT) and its derivatives are good conducting polymers. Optical properties of polythiophenes can be varied by pre-functionalization of monomer.^{29,30} Polythiophene derivatives are easy to process and they form a thin film with good optical properties.^{31,32} The higher stability and longer life of polythiophene derivatives are suitable for various applications.³³

Previously, we have discussed the preparation of Lewis base borane complexes using carbon material and borohydride reagent system. Hence, we have undertaken the studies to estimate the doping level in polythiophene radical cation salts using NaBH₄. Also, we have envisaged a simple method for generation of Lewis base-borane complexes. The advantage of this method is that we can recover the polythiophene by simple filtration and re-oxidize the polythiophene using FeCl₃ to prepare the polymer radical cation salts for reuse in the preparation of Lewis base borane complexes.

We have prepared the polythiophene radical cation salts **54** from thiophene **53** through a slightly modified literature procedure.³⁴ The dark-brown precipitate of

polythiophene obtained in the reaction was further washed with methanol to remove the residual oxidant. During this procedure the color of the polymer changes from dark-brown to brown. The PT powder was dried in a vacuum at 50 °C for 12 h (Scheme 15).

Scheme 15

The synthesized polythiophene radical cation salts were confirmed by FT-IR spectroscopy. The presence of paramagnetic sites was confirmed by epr spectroscopy. The polymer exhibits single epr signal with g value of 2.0026 (Scheme 15).³⁵

2.2.8 Preparation of lewis base borane complexes using the polythiophene radical cation salts/NaBH₄ reagent system.

Earlier reports³⁶⁻⁴⁰ indicate that there are three different structures possible in polythiophene. The structure **55** is a neutral polymer and the removal of an electron from structure **55** leads to form radical cation polymer **56**. This radical cation polymer **56** also called as polaron and it is stabilised by resonance. Removal of an electron from structure **56** gives a bipolaron **57** (Scheme 16). The polaron and bipolaron are formed directly through an oxidation of the thiophene monomer. Previous report⁴¹ shows that the radical cation present in the polythiophene could delocalize into the rings. The repeating unit of cation radical in polythiophene could approximately six monomer units. The planarity of polythiophene gets twisted and delocalisation of the radical cation present in the polymer gets reduced beyond six thiophene rings.

54 Results and Discussion

Scheme 16

The polythiophene radical cation salts **54** react with NaBH₄ with slow evolution of hydrogen gas. Accordingly, the reaction of polythiophene radical cation, PT^(.+)_m nCl⁻NaBH₄ and PPh₃ may be visualized by initial formation of a polymer-NaBH₄ complex that decomposes to H₂ and borane followed by the formation of Ph₃P:BH₃ complex. Hence, we have performed the reaction of NaBH₄ and Ph₃P with 1 g of polymeric radical cation salts in THF at 25 °C.

Scheme 17

A tentative mechanism for the formation of Ph₃P:BH₃ complexes can be considered involving the reduction of polythiophene cation radical salts by NaBH₄ through single electron transfer (SET) process to give neutral polymer and Ph₃P:BH₃. The possible mechanism is outlined in Scheme 17.

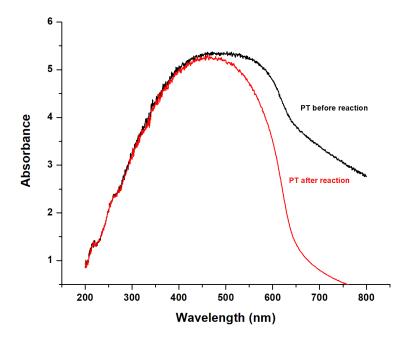
2.2.9 Estimation of the number of radical cation sites present in polythiophene

We have observed that the reaction of 1 g of PT^(.+)_m nCl⁻ **54** with NaBH₄ (1 mmol) and PPh₃ **11** (1 mmol) gives the Ph₃P:BH₃ **26** in 0.72 mmol (Table 7, entry 1). When the reaction was carried out using higher amounts of NaBH₄/Ph₃P with 1 g of PT^(.+)_m nCl⁻ **54**, higher yields of Ph₃P:BH₃ **26** was obtained (Table 7, entries 2-5).

There was no significant change observed, when the reaction was performed using more than 5 mmol each of NaBH₄ and Ph₃P. Accordingly, it can be concluded that a minimum of approximately 1.7 mmol of radical cation sites are present in 1 g of PT^(.+)_m nCl⁻ **47**. However, the actual number of radical cation salts present is expected to be slightly more than this as the yields are of isolated yields and hence about 5% loss during isolation could be expected. The recovered⁴² PT^(.+)_m nCl⁻ **54** (1 g), after oxidation with FeCl₃ (Scheme 15), reacts with NaBH₄ (1 mmol)/PPh₃ (1 mmol) to give the Ph₃P:BH₃ in 0.71 mmol (Table 7, entry 6) without significant change from the freshly prepared sample, illustrating the recyclability of the polymer used.

56 Results and Discussion

Table 7. Reaction of polythiophene radical cation salts 54 with NaBH₄ and PPh₃^a


Entry	Polythiophene radical cation salts (1 g)	NaBH4 (mmol)	PPh ₃ 11 (mmol)	H ₃ B:PPh ₃ 26 Yield (mmol) ^b
1	54	1	1	0.72
2	54	2	2	1.22
3	54	3	3	1.50
4	54	4	4	1.64
5	54	5	5	1.70
6 ^c	54	1	1	0.71

 $^{^{}a}$ The reactions were performed with polythiophene radical cation salts **54** (1 g), NaBH₄ and PPh₃ in THF at 25 $^{\circ}$ C. b Isolated H₃B:PPh₃ complex in mmol. c Reaction was performed with re-oxidized polymer radical cation salts.

We have also analyzed the polymer radical cation salts PT^(.+)_m nCl⁻ **54** by UV-Visible spectroscopy before and after the reaction with NaBH₄ and PPh₃. Broad absorptions with longer wavelength (red shift) was observed for the polymer before reaction with NaBH₄ and PPh₃. The wavelength of absorption gets decreased or move to shorter wavelength after reaction with NaBH₄ and PPh₃ (Figure 3). The color of the polymer PT^(.+)_m nCl⁻ **54** also gets changed from dark brown to brown.

The shift in the UV-Visible absorptions spectrum to lower wavelength (blue shift) after the reaction with NaBH₄ and PPh₃ for polymer sample **54** indicate that the effective

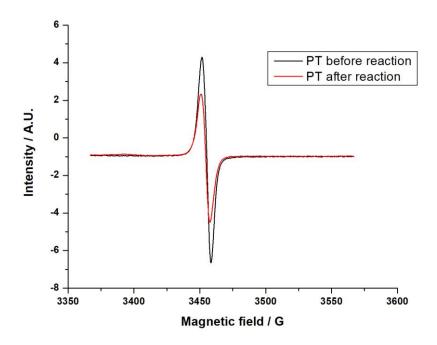

conjugation present in the polymer or the polymer cation radical sites present in the polymer gets lowered.

Figure 3. UV-Visible spectrum of polymer **54** powder sample before (black line) and after (red line) reaction with NaBH₄ and PPh₃.

The epr studies also indicate that there was a decrease in the radical cation spin density present in the polymer salts (Figure 4). However, the epr studies indicates that the some of the radical cation remains after the reaction with NaBH₄ and PPh₃. The epr signals became weak, but not totally absent (Figure 4). Earlier, it was reported that the neutral thiophene polymers react with molecular oxygen to give paramagnetic species.⁴³ Therefore, formation of small amounts of paramagnetic species by the reaction of polymer with O₂ during the work up procedure cannot be ruled out in these cases.

58 Results and Discussion

Figure 4. EPR of PT **54** before (black line) and after (red line) reaction with NaBH₄ and PPh₃.

The Ph₃P:BH₃ complex is very stable and hence it is not useful for synthetic applications. However, the amines like pyridine form relatively more reactive borane complexes and hence are useful for hydroboration of olefins at elevated temperatures or at room temperature under activation by I₂.²⁴ Therefore, we have decided to investigate the reaction of NaBH₄ with the polymer radical cation salts in the presence of pyridine.

We have found that the reaction of polythiophene radical cation salts **54** (1 g) with NaBH₄ and pyridine in THF gives the pyridine:BH₃ **28** complex. The results are summarized in Table 8. The reaction using PT radical cation **54** (1 g) using 1 mmol each of NaBH₄/pyridine gave the pyridine:BH₃ **28** complex in 35% yield based on the presence of 1.7 mmol of radical cation sites in 1 g of PT radical cation **54** (Table 8, entry 1). Similarly, the reaction of PT radical cation **54** with 2 and 3 mmol each of NaBH₄ and pyridine gives the pyridine:BH₃ **28** complex in 63% and 79% respectively (Table 8, entry 2 and 3).

Table 8. Reaction of polythiophene radical cation salts 54 with NaBH₄ and Pyridine^a

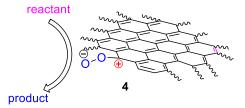
Entry	Polythiophene radical cation (1 g)	NaBH ₄ (mmol)	Pyridine (mmol)	Pyridine:BH ₃ 28 Yield (mmol) ^b	Pyridine:BH ₃ 28 Yield ^c (%)
1	54	1	1	0.59	35
2	54	2	2	1.08	63
3	54	3	3	1.35	79

^aThe reactions were performed with polythiophene radical cation salts **54** (1 g), NaBH₄ and pyridine in THF at 25 °C. ^bIsolated pyridine:BH₃ complex in mmol. ^cYields based on mmol of radical cation sites in 1 g polymer and approximately 1.7 mmol of radical cation sites are present in PT **54**.

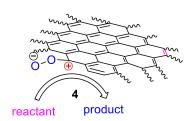
In these transformations, the borane "BH₃" moiety seems to be extracted by the Ph₃P or pyridine Lewis bases while the radical cation borohydride complex decomposes (Scheme 17). It was of interest to us to examine whether the borohydride complex could hydroborate olefins. Accordingly, we have carried out an experiment using α -methyl styrene with polymer radical cation salts and NaBH₄ in THF but there was no hydroboration. Presumably, the olefin is not nucleophilic enough to react with polymer radical cation – borohydride complex. However, we have observed that the pyridine:BH₃ complex 28 prepared in this way readily hydroborates α -methyl styrene under iodine activation. After NaOH/H₂O₂ oxidation the corresponding alcohol was obtained in 84% yield.

It was also observed in this laboratory that the reaction of polymers such as poly-N-methylpyrrole (NMPPY^(.+)_m nCl⁻) **54a** and poly(N-methylaniline) (PNMA^(.+)_m nCl⁻) **54b** 60 Results and Discussion

radical cation salts with NaBH₄ (1 mmol) and PPh₃ (1 mmol) gave the Ph₃P:BH₃ **26** in 0.62 mmol and 0.68 mmol (Scheme 18). The results indicate that a minimum of approximately 1.35 mmol of radical cation sites are present in 1 g NMPPY^(.+)_m nCl⁻ **54a** and also a minimum of 1.60 mmol of radical cation sites are present in 1 g of PNMA^(.+)_m nCl⁻ **54b** (Scheme 18).⁴⁴


Scheme 18

$$NaBH_4 + \begin{pmatrix} CH_3 & CH_$$


Next, we have studied the reaction of amine nucleophiles with various electron acceptors like quinones, vilologens and halo compounds. The results are described in the chapter 3.

2.3 Conclusions

Convenient methods have been developed for practical use of molecular oxygen adsorbed carbon materials **4**. The molecular oxygen adsorbed carbon black reacts with benzoic acid and Ph₃P to give Ph₃P=O in 52% yield. Also, oxidation of organoboranes were performed using readily available oxygen adsorbed carbon materials **4**. These organic transformations were also performed by exploiting the negative charge present in the oxgen end.

The electron defficiency present in the carbon skeleton of the carbon materials **4** was utilized for the preparation of Lewis base:borane complexes using NaBH₄ and Ph₃P or pyridine. The Ph₃P:BH₃ and amine:BH₃ complexes are prepared in moderate to good yields upon reaction of oxygen adsorbed carbon material with NaBH₄/Ph₃P and NaBH₄/amine reagent systems. We have observed bezylamine gives benzaldehyde *via* radical cation intermediates upon reaction with molecular oxygen adsorbed carbon materials.

A simple method for estimating doping levels in polymer was developed. Accordingly, it can be concluded that a minimum of approximately 1.7 mmol of radical cation sites are present in 1 g of the $PT^{(.+)}_{m}$ nCl^{-} salt.

Convenient methods for the preparation of Ph₃P:BH₃ and pyridine borane and other amine borane complexes were developed.

2.4 Experimental Section

2.4.1 General Informations

IR (KBr) and IR (neat) spectra were recorded on JASCO FT-IR spectrophotometer model-5300. The NMR spectra 1 H (400 MHz) and 13 C (100 MHz) were recorded on Bruker-Avance-400 spectrometers chloroform-d as solvent. Chemical shifts are expressed in δ downfield with respect to the signal of internal standard tetramethylsilane ($\delta = 0$ ppm). Coupling constants J are in Hz. Thin layer chromatography tests were carried out on precoated glass plates using silica gel-GF₂₅₄ containing 13% calcium sulfate as binder. The spots were visualized by UV light or exposure to iodine. Gravity column chromatography was used for the separation of compounds using silica gel (100-200 mesh) as stationary phase. All the glasswares were pre-dried at 100-120 $^{\circ}$ C in an air-oven for 4 h, assembled in hot condition and cooled under a stream of dry nitrogen. Unless otherwise mentioned, all the operations and transfer of reagent were carried out using standard syringe-septum technique recommended for handling air sensitive reagents and organometallic compounds.

In all experiments, a round bottom flask of appropriate size with a side arm, a side septum, a magnetic stirring bar, a condenser and a connecting tube attached to a mercury bubbler was used. The outlet of the mercury bubbler was connected to the atmosphere by a long tube. All dry solvents and reagents used were distilled from appropriate drying agents. As a routine practice, all organic extracts were washed using saturated NaCl solution (brine) and dried over Na₂SO₄ or K₂CO₃ and concentrated on Heidolph-EL-rotary evaporator.

Experimental section

64

FeCl₃ and benzoic acid supplied by E-Merck (India) was used as received. Thiophene,

Activated Carbon, Carbon Black, Graphite, norborene, tetramethylethylene, benzylzmine and

dibenzylamine were purchased from Aldrich and used as received. NaBH4, PPh3 and NaOH

were supplied by E-Merck (India) was used as received.

Dichloromethane was distilled using calcium hydride under nitrogen. The THF solvent

supplied by commercial sources, India were kept over sodium-benzophenone ketyl then

freshly distilled before use. Toluene also kept over sodium-benzophenone ketyl, distilled and

stored over sodium wire.

2.4.2 General Procedure for reaction of molecular oxygen doped activated charcoal with

Ph₃P in presence of benzoic acid

In a 50 mL RB flask, carbon black (10 g) was heated at 200 °C under high vacuum for

2 h. The carbon black was brought to room temperature under nitrogen atmosphere and

passed molecular oxygen for 1 h. To this, Ph₃P (2.62 g 10 mmol) and benzoic acid (1.221 g,

10 mmol) in THF were added. The reaction mixture was further stirred for 24 h. The

reaction mixture was filtrated and the organic layer was separated. The solvent was

evaporated under reduced pressure and the crude product Ph₃P=O was purified by silica gel

column chromatography using hexane and ethyl acetate as eluent.

Triphenylphosphine oxide Ph₃P=O (12)

Yield

0.501 g (54%); White solid

IR (KBr)

(cm⁻¹) 3073, 3046, 1599, 1489, 1435, 1308, 1188, 1117, 1002.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 7.67-7.62 (m, 1H), 7.52-7.48 (m, 1H), 7.43-

7.40 (m, 1H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 133.0, 132.1, 132.0, 131.9, 128.5, 128.4.$

 31 **P NMR** : (162 MHz, CDCl₃ δ ppm) 29.3

2.4.3 General procedure for reaction of molecular oxygen adsorbed carbon materials

with alkylboranes (16a-16b and 19a-19c)

In a 50 mL RB flask, activated carbon (5 g) and 3N NaOH (10 mL) in THF 15 mL were stirred for about 4 h. To this reaction mixture, the alkylboranes was added dropwise for 20 min at 0 °C and further stirred for 4 h. The reaction mixture was filtered and the organic layer was separated. The aqueous layer was extracted with ether (2 x 10 mL). The solvent was evaporated and the crude products were purified on silica gel column chromatography using hexane: ethyl acetate (95:5) as eluent.

2.4.4 Preparation of trialkylborane (16a-16b)

NaBH₄ (0.151 g, 4 mmol) was taken in a two-necked RB flask and dry THF (10 mL) was added. The RB flask placed at -30 °C and iodine (0.51 g, 2 mmol) in THF (10 mL) was added slowly during 10 min. After the evolution of hydrogen gas ceased, the reaction mixture was further stirred for 1 h at -30 °C. A solution of olefin (10 mmol) was added under nitrogen atmosphere. The reaction mixture was brought to 25 °C and further stirred for 4 h at the same temperature to give trialkylborane. The solution was added dropwise to activated carbon (5 g) and 3N NaOH (10 mL) mixture in THF 15 mL for 20 min at 0 °C and stirred for 4 h. The reaction mixture was filtered and the organic layer was separated and the aqueous layer was

extracted with ether (2 x 10 mL). The solvent was evaporated and the crude products were purified on silica gel column chromatography using hexane: ethyl acetate (95:5) as eluent.

Decan-1-ol (21a)

Yield: 0.672 g (85%) colorless liquid.

n-C₈H₁₇OH

IR (neat) : (cm⁻¹) 3332, 2925, 2855, 1462, 1377, 1122, 1055, 723.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 3.65 (t, J = 6.0 Hz, 2H), 1.59-1.56 (m, 2H),

1.40-1.28 (m, 14H), 0.91-0.87 (m, 3H);

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 63.1, 32.8, 31.9, 29.6, 29.4, 29.3, 25.7, 24.9, 22.6,$

14.1.

exo-Bicyclo [2.2.1] heptan-2-ol (21b)

Yield : 0.319 g (57%); White solid.

OH 21b

IR (KBr) : (cm⁻¹) 3430 (br), 3024, 2935, 2869, 1597, 1495, 1450, 1066, 1042, 755,

741, 702.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 3.68-3.66 (m, 1H), 2.18-2.08 (m, 2H), 1.59-

1.51 (m, 2H), 1.42-1.35 (m, 2H), 1.29-1.22 (m, 1H), 1.05-1.03 (m, 1H),

0.98-0.96 (m, 2H)

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm})$ 74.6, 44.1, 42.1, 35.4, 34.4, 28.1, 24.4.

2.4.5 Preparation of dialkylborane (19a-19c)

The NaBH₄ (0.190 g, 5 mmol) was taken in a two-necked RB flask and dry THF (10 mL) was added. The RB flask placed at -30 °C and iodine (0.635 g, 2.5 mmol) in THF (10 mL) was added slowly during 10 min. After the evolution of hydrogen gas ceased, the reaction mixture was further stirred for 1 h at -30 °C. A solution of olefin (10 mmol) was

added under nitrogen atmosphere. The reaction mixture was brought to 25 °C and further stirred for 4 h at the same temperature to give dialkylborane. The solution was added dropwise to activated carbon (5 g) and 3N NaOH (10 mL) mixture in THF 15 mL for 20 min at 0 °C and stirred for 4 h. The reaction mixture was filtered and the organic layer was separated and the aqueous layer was extracted with ether (2 x 10 mL). The solvent was evaporated and the crude products were purified on silica gel column chromatography using hexane: ethyl acetate (95:5) as eluent.

2, 6, 6-Trimethyl-bicyclo [3.1.1] heptan-3-ol (21c)

Yield : 1.095 g (71%); colorless liquid.

IR (neat) : (cm⁻¹) 3327, 2905, 1147, 1055, 808, 692.

21c OH

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 4.18-3.92 (m, 1H), 2.51-2.47 (m, 1H), 2.37-

2.34 (m, 1H), 1.79-1.17 (m, 8H), 1.12 (d, J = 7.4 Hz, 3H), 1.03 (d, J =

9.8 Hz, 1H) 0.91 (s, 3H).

¹³C NMR : (100 MHz, CDCl₃, δppm) 71.6, 47.8, 47.7, 41.7, 39.0, 38.1, 34.3, 27.6,

23.6, 20.7.

1, 2-Diphenyl-ethanol (21d)

Yield : 1.705 g (86%); White soild.

Ph Ph

mp : 62-63 °C; (lit.² mp 63-64 °C)

IR (**KBr**) : (cm⁻¹) 3329, 3078, 3026, 2922, 1039, 696.

¹**H NMR** : $(400 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 7.38-7.21 \text{ (m, 10H)}, 4.92-4.89 \text{ (m, 1H)},$

3.09-2.98 (m, 2H), 1.95 (s, 1H).

¹³C NMR : (100 MHz, CDCl₃, δ ppm) 143.8, 138.1, 129.5, 128.5, 128.4, 127.6,

126.6, 125.9, 75.3, 46.1.

Indan-2-ol (21e)

Yield : 1.072 g (80%); White solid

OH 21e

IR (**KBr**) : (cm⁻¹) 3281, 3076, 2934, 1554, 1485, 1415, 1379, 1147, 1055, 808,

692.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) mixture of isomers (α:β 1:9)

¹³C NMR : (100 MHz, CDCl₃, δ ppm) 140.8, 126.6, 126.5, 73.1, 42.6 (major

isomer)

2.4.6 General procedure for reaction of molecular oxygen adsorbed carbon materials with alkenylboranes (20a and 20b)

In a 50 mL RB flask, activated carbon (5 g) and 3N NaOAc (10 mL) in THF 15 mL stirred for about 4 h. To this reaction mixture, alkenylboranes **20a** and **20b** was added dropwise for 20 min at 0 °C and further stirred for 4 h. The reaction mixture was filtered and organic layer was separated. The aqueous layer was extracted with ether (2 x 10 mL). The solvent was evaporated and the crude products were purified on silica gel column chromatography using hexane:ethyl acetate (98:2) as eluent.

2.4.7 Preparation of dialkenyl(thexyl)borane (20a and 20b)

n-Bu₄NBH₄ (0.190 g, 5 mmol) was taken in a two-necked RB flask and added dry toluene (5 mL) followed by iodine (0.635 g, 2.5 mmol) in toluene (10 mL). The generated diborane was carried off through a side tube and bubbled through a solution of tetramethyl

ethylene (5 mmol) for 15 min. The reaction mixture was brought to 25 °C and further stirred for 4 h. In another two-necked RB flask the alkyne (10 mmol) in dry THF (10 mL) was taken and cooled to 0 °C under nitrogen atmosphere. The thexylborane in toluene prepared as above was added through a cannula under nitrogen atmosphere. The contents were further stirred for 4 h at 0 °C. The solution was added dropwise to activated carbon (5 g) and 3N NaOAc (10 mL) mixture in THF 15 mL for 20 min at 0 °C and stirred for 4 h. The reaction mixture was filtered and the organic layer was separated and the aqueous layer was extracted with ether (2 x 10 mL). The solvent was evaporated and the crude products were purified on silica gel column chromatography using hexane: ethyl acetate (98:2) as eluent.

2-Phenylacetaldehyde (22a)

IR (neat)

Yield : 0.636 g (53%); colorless liquid.

(cm⁻¹) 3061, 3029, 1923, 1723, 1602, 1495, 1452, 1131, 950, 750, 701.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 9.79 (s, 1H), 7.41-7.10 (m, 5H), 3.70 (s,

2H);

¹³C NMR : (100 MHz, CDCl₃, δ ppm) 199.5, 131.8, 129.6, 129.0, 128.1, 127.4, 50.6.

1-Phenyl-hexan-2-one; 1-phenyl-hexan-1-one (22b)

Yield: 1.038 g (59%); colorless liquid.

IR (neat) : (cm⁻¹) 3060, 2960, 2940, 1675, 1600, 1450, 1350, 1220, 950, 760, 700.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) mixture of isomers (60:40).

13C NMR : (100 MHz, CDCl₃, δ ppm) 208.6, 200.6, 137.1, 134.4, 132.8, 128.8, 128.6, 128.5, 128.0, 126.9, 50.1, 41.7, 38.5, 31.5, 25.8, 24.7, 22.5, 22.2, 13.9, 13.8.

2.4.8 General Procedure for reaction of activated carbon and NaBH₄ with PPh₃

In a 50 mL RB flask, carbon black (5 g), and NaBH₄ (0.19 g, 5 mmol) in THF (25 mL) were taken added under nitrogen atmosphere. To this reaction mixture PPh₃ (1.31 g, 5 mmol) was added and the contents were stirred for about 24 h. The reaction mixture was filtered and the organic layer was separated. The solvent was evaporated under reduced pressure and the crude product was purified on silica gel column chromatography using hexane as eluent to isolate pure Ph₃P:BH₃ as white solid.

Ph₃P:BH₃ complex (26)

Yield : 1.06 g (69%); White solid $\frac{\text{Ph}_3 \text{P:BH}_3}{\text{26}}$

IR (KBr) : (cm⁻¹) 3057, 2372, 2344, 1478, 1435, 1314, 1177, 1106, 1056, 733.

¹**H NMR** : $(400 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 7.63-7.60 \text{ (m, 1H)}, 7.53-7.50 \text{ (m, 1H)},$

7.46-7.43(m, 1H)

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 133.2, 133.1, 131.1, 129.4, 128.8, 128.7$

 31 **P** : (162 MHz, CDCl₃, δ ppm) 21.5

¹¹**B** : (128.3 MHz, CDCl₃, δ ppm) -37.8

N:BH₃

2.4.9 General procedure for reaction of carbon materials and NaBH₄ with pyridine

In a 50 mL RB flask, carbon black (5 g) and NaBH₄ (0.19 g, 5 mmol) were taken and THF (15 mL) was added under nitrogen atmosphere. To this, pyridine (0.4 ml, 5 mmol) was added and the contents were stirred for 24 h. The contents were filtered and the solvent was evaporated under reduced pressure to afford the crude product. The crude product was purified on silica gel column chromatography using hexane: ethylacetate (90:10) as eluent to isolate pure pyridine:BH₃ complex **28** as colorless liquid.

Pyridine:BH₃ complex (28)

Yield : 0.242 g (52%); Colorless liquid

IR (neat) : (cm⁻¹) 2964, 2832, 2750, 2712, 2531, 2460,

2400, 2062, 1419, 1304, 1145.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 8.52 (s, 2H), 7.91 (s, 1H), 7.50-7.48 (s, 2H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 147.3, 134.3, 125.4.$

¹¹**B NMR** : $(128.3 \text{ MHz, CDCl}_3, \delta \text{ ppm}) - 11.4$

2.4.10 General Procedure for reaction of activated carbon and NaBH4 with amine

In a 50 mL RB flask, carbon black (5 g) and NaBH₄ (0.19 g, 5 mmol) were taken and THF (15 mL) was added under nitrogen atmosphere. To this, amine (5 mmol) was added and the contents were stirred for 24 h. The contents were filtered and the solvent was evaporated under reduced pressure to afford the crude product. The crude product was purified on silica gel column chromatography using hexane:ethylacetate as eluent to isolate coressopnding amine:BH₃ complex.

Morpholine:BH₃ complex (33)

Yield : 0.215 g (43%); White solid

0 NH:BH₃ 33

IR (**KBr**) : (cm⁻¹) 3194, 2969, 2854, 1419, 1369, 1254, 1139, 1041, 904, 843, 734.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 4.36 (s, 1H), 3.97-3.94 (d, J = 12.0 Hz, 2H),

3.62-3.55 (t, J = 4.0 Hz, 2H), 3.11-3.08 (d, J = 12.0 Hz, 2H), 2.85-2.76

(m, 2H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 65.7, 51.9.$

¹¹**B NMR** : (128.3 MHz, CDCl₃ δ ppm) -16.1

Piperidine:BH₃ complex (34)

Yield : 0.287 g (58%); White solid

IR (**KBr**) : (cm⁻¹) 3221, 2936, 2849, 2349, 2350, 2273, 1463,

NH:BH₃

1364, 1276, 1161, 1123, 1057.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 3.80 (brs, 1H), 3.23 (d, J = 8.0 Hz, 2H),

 $2.53-2.47 \ (m, 2H), 1.78-1.48 \ (m, 6H).$

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ppm}) 53.3, 25.3, 22.5.$

¹¹**B NMR** : (128.3 MHz, CDCl₃ δppm) -15.0.

Dibenzyl amine:BH₃ complex (35)

Yield: 0.443 g (42%); Colorless liquid

IR (neat) : (cm⁻¹) 3189, 2969, 2936, 2860, 2372, 2323,

2263, 1457, 1424, 1380, 1282, 1232, 1161.

н∙вн₂

36

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 7.39-7.31 (m, 4H), 7.21-7.19 (m, 6H), 4.02-

3.99 (m, Hz, 4H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 139.3, 128.9, 128.7, 128.2, 58.4$

¹¹**B NMR** : $(128.3 \text{ MHz, CDCl}_3 \delta \text{ ppm}) - 14.4$

Dicyclohexyl amine:BH₃ complex (36)

Yield : 0.497 g (51%); White solid

IR (KBr) : (cm⁻¹) 3200, 3030, 2936, 2372, 2328, 2301,

2273, 1495, 1457, 1413, 1347, 1161.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 2.84-2.83 (m, 4H), 1.89-1.78 (m, 6H), 1.66-

1.59 (m, 6H), 1.32-1.24 (m, 6H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 60.6, 30.8, 29.6, 25.6, 25.3, 25.2$

¹¹**B NMR** : (128.3 MHz, CDCl₃ δppm) -19.4

2.4.11 Procedure for the hydroboration/oxidation of α -methyl styrene using pyridine:BH3 complex with I2 activation

The pyridine:BH₃ (0.186 g, 2 mmol) was added to 5 ml of dcm. I₂ (0.24 g, 1 mmol) was dissolved in dcm and added slowly at 0 °C. After the gas evolution, the solution was stirred to rt and α-methyl styrene (0.26 ml, 2 mmol) was added. The mixture was stiired at rt for 2 h. The solution was cooled to 0 °C, the activated carbon (5 g), NaOH (5 ml) and THF (5 ml) were added. The mixture was further stirred at rt for 4h. The mixture was filtered and the organic layer was separated and the aqueous layer was extracted with ether (2 x 10 mL). The

solvent was evaporated and the crude product was purified by column chromatography on silica gel column using hexane/ethyl acetate (90:10) as eluent to isolate the alcohol 38.

2-Phenylpropanol (38)

Yield : 0.234 g (86%); Colorless liquid

IR (neat) : (cm⁻¹) 3336, 3032, 2954, 1603, 1492, 1032, 756.

OH H₃C

¹**H NMR** : $(400 \text{ MHz}, \text{CDCl}_3, \delta \text{ppm}) 7.36-7.29 \text{ (m, 5H)}, 3.70 \text{ (d, } J = 8 \text{ Hz, 2H)},$

2.96-2.93 (m, 1H), 1.59 (s, 1H); 1.29 (d, J = 8 Hz, 3H).

¹³C NMR : (100 MHz, CDCl₃, δppm) 143.7, 128.6, 127.5, 126.7, 68.7, 42.4, 17.6

2.4.12 General procedure for oxidation of benzylamine derivatives with activated carbon

In a 25 mL RB flask, activated carbon (1 g) heated at 200 °C under high vacuum (0.001 mm of Hg) for 2 h. After the RB flask was brought to room temperature under nitrogen atmosphere, the contents were saturated with dry air for 1 h. To this benzylamine derivatives (1 mmol) in THF solvent was added. The reaction mixture was further stirred for 24 h. After that, the reaction mixture was filtered and the organic layer was evaporated. Then the NMR was recorded for the crude compound to show the formation of both imine and benzaldehyde. The crude reaction mixture was washed several times with EtOAc and H₂O. The organic layer extracts with EtOAc, washed with brine and then dried over anhyd.Na₂SO₄. Evaporate solvent under vacuum and the crude mixture was chromatographed on silicagel using hexane:ethyl acetate (90:10) as an eluent to give pure benzaldehyde.

2.4.13 General procedure for preparation of polythiophene 54

Thiophene (24 mmol) was taken in CHCl₃ (130 mL) under N₂ atmosphere. Then anhydrous FeCl₃ (55 mmol) was added slowly in portions from a solid addition flask over a period of 1 h. The mixture was stirred for 24 h at 25 °C. The dark-brown precipitate of polythiophene was formed. The polymer was separated by filtration and washed several times with CHCl₃. The polymer was further washed with methanol to remove the residual oxidant. The color of the polymer was changed from dark-brown to brown. The polythiophene powder was dried in a vacuum at 50 °C for 12 h.

Yield : 2.3 g, Brown solid

IR (**KBr**) : (cm⁻¹) 3468, 3062, 1490, 1437, 778 695.

2.4.14 General procedure for reaction of polythiophene radical cation salts with NaBH₄ with PPh₃

In a 50 mL RB flask, polymer (1 g) and NaBH₄ (0.037 g, 1 mmol) in THF (20 mL) were added under nitrogen atmosphere. To this reaction mixture PPh₃ (0.262 g, 1 mmol) was added and the contents were stirred for 24 h. The reaction mixture was filtered and the organic layer was separated. The solvent was evaporated under reduced pressure and the crude product was purified on silica gel column chromatography using hexane/ethyl acetate (98:2) as eluent to isolate pure Ph₃P:BH₃ as a white solid.

2.4.15 General procedure for reaction of polythiophene radical cation salts and NaBH₄ with Pyridine

In a 50 mL RB flask polymer radical cation, NaBH₄ and THF (20 mL) were added under nitrogen atmosphere. To this, pyridine was added and the contents were stirred for 24 h. The contents were filtered and the solvent was evaporated under reduced pressure to afford the crude product of corresponding pyridine:BH₃ complex. The crude product was purified on silica gel column chromatography using hexane/ethyl acetate as eluent to isolate 79% yield of pure pyridine:BH₃ complex **28** as colorless liquid.

2.5 References

- a) Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. *Adv.Mater.* **2011**, 23, 4828. (b) Srivastava, M.; Kumar, M.; Singh, R.; Agrawal, U. C.; Garg, M. O. *J. Sci. and Ind. Res.* **2009**, 68, 93. (c) Chung, D. D. L. *J. Mat. Sci.* **2004**, 39, 2645.
- Franklin R. E. Acta Crystallogr. **1950**, *3*, 107.
- 3 Franklin R. E. *Acta Crystallogr.* **1951**, *4*, 252.
- 4 Jagtoyen, M.; Derbyshire, F.; Rimmer, S.; Rathbone, R. Fuel. 1995, 74, 610.
- a) Kastening, B.; Hahn, M.; Kremeskotter, J. J. Electroanal. Chem. 1994, 374, 159.
 b) Müllier, M.; Kastening, B. J. Electroanal. Chem. 1994, 374, 149. c) Chung D. D.
 L; Wang, S. Smart Mater. Struct. 1999, 8, 161.
- 6 (a) Dresselhaus, M. S.; Dresselhaus, G. *Annu. Rev. Mater. Sci.* **1995**, *25*, 487. (b) Varshney, K. Inter. *J. Eng. Res. and Gen. Sci.* **2014**, *2*, 660.
- 7 Alkhatib, A. J.; Zailaey, K. A.; Eur. Sci. Journ. 2015, 11, 50.
- (a) Schobert, H. Chem. Rev. 2014, 114, 1743. (b) Saha, A.; Nikova, A.;
 Venkataraman, P.; John, V. T.; Bose, A. Mater. Interfaces. 2013, 5, 3094. (c) Ma, P.
 C.; Liu, M. Y.; Zhang, H.; Wang, S. Q.; Wang, R.; Wang, K.; Wong, Y. K.; Tang, B.
 Z.; Hong, S. H.; Paik, K. W.; Kim, J. K. App. Mat. Inter. 2009, 1, 1090.
- 9 Chung, D. D. L. J. Mat. Sci. 2002, 37, 1475.
- (a) Menendez, J. A.; Phillips, J.; Xia, B.; Radovic, L. R. *Langmuir* 1996, *12*, 4404. (b)
 Zhou, Y.; Wei, L.; Yang, J.; Sun, Y.; Zhou, L. *J. Chem. Eng. Data* 2005, *50*, 1068. (c)
 Hallum, J. V.; Drushel, H. V. *Phys. Chem.* 1958, *62*, 110.

78 References

Sumanasekera, G. U.; Chen, G.; Takai, K.; Joly, J.; Kobayashi, N.; Enoki, T.; Eklund, P. C. J. Phys. Condens. Matter, 2010, 22, 334208.

- 12 Shin, D.; Jeong, B.; Mun, B. S.; Jeon, H.; Shin, H.-J.; Baik, J.; Lee, J. *J. Phys. Chem.*C 2013, 117, 11619.
- 13 Yeager E. *Electrochem. Acta.* **1984**, 29, 1527.
- a) Giannozzi, P.; Car, R.; Scoles, G. J. Chem. Phy, 2003, 118. 1003. b) Su, C.; Loh,
 K. P. Acc. Chem. Res. 2013, 46, 2275.
- 15 a) Radovic, L. R.; Bockrath, B. J. Am. Chem. Soc. 2005, 127, 5917. b) Radovic, L. R. J. Am. Chem. Soc. 2009, 131, 17166. c) Hu, X.; Zhou, Z.; Lin, Q.; Wu,Y.; Zhang, Z. Chem. Phys. Lett. 2011, 503, 287.
- 16 Zhang, I.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D. S. *Science* **2008**, *322*, 53.
- a) Yeager E. J Mol Catal 1986, 38, 5. b) Wilshire, J.; Sawyer, D. T. Acc. Chem. Res.
 1979, 12, 105. c) Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393. d)
 Kim, S. U.; Liu, Y.; Nash, K. M.; Zweier, J. L.; Rockenbauer, A.; Villamena, F. A. J.
 Am. Chem. Soc. 2010, 132, 17157.
- Re-use of oxidized activated carbon: After completion of the reaction using carbon material, the resulting carbon materials were filtered and washed several times with organic solvents (THF followed by acetone) to remove trace amount of organic products. Then, the sample was heated at 200 °C under high vacuum for 2 h and brought to rt under N₂. The dry oxygen was adsorbed by passing it through the carbon material for 1 h. This oxygen adsorbed activated carbon sample was reused for synthetic transformations.

- (a) Periasamy, M.; Thirumalaikumar, M. J. Organomet. Chem., 2000, 609, 137. (b)
 Prasad, A.S.B.; Kanth, J. V. B.; Periasamy, M. Tetrahedron., 1992, 48, 4623. (c)
 Narayana, C.; Periasamy, M. Tetrahedron Lett., 1985, 26, 1757.
- Brown, H. C.; Organic Synthesis via Boranes, Wiley Interscience, The John Wiley & Sons Inc., New York, **1975**.
- 21 Freeguard, G. F.; Long, L. H. Chem. Ind. **1965**, 471.
- a) Narayana, C.; Periasamy, M. J. Organomet. Chem. 1987, 323, 145. (b) Periasamy, M.; Muthukumaragopal, G. P.; Sanjeevakumar, N. Tetraheron Lett. 2007, 48, 6966.
 (c) Narayana, C.; Periasamy, M. Chem. Commun. 1987, 1857. (d) Periasamy, M.; Kishan Reddy, Ch.; Bhaskar Kanth, J. V. J. Indian Inst. Sci. 1994, 74, 149. (e) Anwar, S.; Periasamy, M. Tetraherdon: Asymmetry 2006, 17, 3244. (f) Bhaskar Kanth, J. V.; Periasamy, M. J. Org. Chem. 1991, 56, 5964. (g) Kanth, J. V. B.; Periasamy, M. J. Chem. Soc. Chem. Commun., 1990, 1145. (h) Reddy, Ch. K.; Kanth, J. V. B.; Periasamy, M. Synth. Commun. 1994, 243, 313. (i) Reddy, Ch. K.; Periasamy, M. Tetrahedron Lett. 1990, 31, 1919. (j) Reddy, Ch. K.; Periasamy, M. Tetrahedron 1992, 48, 8329. (l) Periasamy, M. Current Science 1995, 68, 883.
- (a) Hawthorne. M. F.; J. Org. Chem. 1958, 23, 1788. (b) Brown, H. C.; Murray, K. J.;
 Murray, L. J.; Snover, J. A.; Zweifel, G. J. Am. Chem. Soc. 1960, 82, 4241.
- 24 Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
- Rao, A. G. Ph.D. Thesis **2018**, School of Chemistry, University of Hyderabad.
- Ramusagar, M. Ph.D. Thesis **2018**, School of Chemistry, University of Hyderabad.

80 References

a) Hemandez, S.C.; Chaudhari, D.; Chen, W.; Myung, N.; Mulchandani, A. Interscience, **2007**, 19, 2125. b) Mabrrok, M.F.; Person, C.; Petty, M.C. *Sensors and Acuator B: chemical.* **2006**, 115, 547.

- 28 Novak, P. *Electrochimia Acta*. **1992**, 37, 1227.
- Berggren, M.; Gustafsson, G.; Inganäs, O.; Andersson, M. R.; Wennerström, O.; Hjertberg ,T. *Appl. Phys. Lett.* **1994**, *65*, 1489.
- 30 Chan, H. S.; Ng, S. C. Prog. Polymer. Sci. 1998, 23, 1167.
- 31 Cai, W.; Gong, X.; CaO, Y. Sol. Energy. Mater. Sol. Cells, **2010**, 94, 114.
- 32 Scharber, C. M.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
- 33 Cremer, J.; Bauerle, P.; Wienk, M. M.; Janssen, R. A. J. *Chem. Mater.* **2006**, *18*, 5832.
- 34 Gok, A.; Omustova, M.; Yavuz, A. G. Synthetic Metals. **2007**, 157, 23.
- a) Demirboga, B.; Onal, A.M. *Journal of Physics and Chemistry of Solids.* **2000**, *61*, 907. b) Wang, C.; Benz, M. E.; Legoff, E.; Schindler, J. L.; llbritton-Thomas, J.; Kanatzidis, M. G. *Chem. Mater.* **1994**, *6*, 401.
- 36 Pron, A.; Rannou, P. *Prog. Polym. Sci.* **2002**, 27, 135.
- 37 Bredas, J. L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309.
- 38 Bertho, D.; Jouanin, C. *Physical Review B.* **1987**, *35*, 626.
- 39 Bredas, J. L. Wudl, F.; Heeger, A. J. Solid State Comm. 1987, 63, 577.
- 40 Lazzaroni, R.; Logdlund, M.; Stafstrom, S.; Salaneck, W. R.; Bredas, J. L. *J. Chem. Phy.* **1990**, *93*, 4433.
- 41 Finchou, D.; Horowitz, G.; Garnier, F. Synthetic Metals. 1990, 39, 125.

- Re-use of re-oxidized polymer: After the reaction, the resulting polymers were filtered and washed several times with organic solvents (THF followed by acetone) to remove trace amounts of organic products. Then, the polymer was dried under high vacuum. The recovered polymer was oxidized with FeCl₃, following the same procedure mentioned in the experimental section. The re-oxidized polymer was reused for the preparation of lewis base borane complexes.
- 43 Abdou, M. S. A.; Ortino, F. P.; Son, Y.; Holdcroft, S. J. Am. Chem. Soc. 1997, 119, 4518.
- 44 (a) Ramusagar, M. Ph.D. Thesis **2018**, School of Chemistry, University of Hyderabad.
 - (b) Suresh, S. Ph.D. Thesis 2016, School of Chemistry, University of Hyderabad.

Chapter	3
---------	---

Studies on the Reaction of Amines with Quinones, Viologens and halo compounds

3.1 Introduction

Aliphatic and aromatic, primary, secondary and tertiary amines are known to react with p-chloranil in dioxane/2-propanol to produce blue to purple color. Generally, aliphatic amines gives red colour and other amines give different colours as shown in Table 1. Accordingly, p-chloranil was used to detect the presence of amines. 1

Table 1. The colours of chloranil-amine adducts

Amine	Colour of adduct produced with chloranil	
n-Butylamine	Red	
Benzylamine	Red	
Aniline	Violet	
N-Methylaniline	Blue-green	
N,N-Dimethylaniline	Blue	
<i>p</i> -Nitroaniline	Orange	
Diphenylamine	Blue-green	

3.1.1 SET reactions in quinone chemistry

The quinone – hydroquinone redox couple has been studied over many years.² Quinone redox system also plays major roles in biology.³ Quinones undergoes 2H⁺/2e⁻ reduction in aqueous solution (or) in protic solvents.⁴ The redox process of hydroquinone-quinone is a sequence of proton and electron transfer (Figure 1). In the first step,

84 Introduction

deprotonation leads to a phenoxide ion which is transformed into a phenoxy radical by a oneelectron oxidation. Then dissociation of the second OH group generates the radical anion semiquinone followed by a second one-electron oxidation to give benzoquinone 2. All intermediates are resonance stabilized.

Figure 1. The redox process of hydroquinone-quinone system.

In nonaqueous (or) aprotic conditions, the quinone reduction proceeds through two consecutive single electron reductions (Fig 2).

Figure 2. Quinone reduction in aprotic medium.

3.1.1.1 Addition and substitution reaction of quinones with amines

Preparation of various addition products of 1,4- benzoquinone **2** with different substituted anilines **3** was reported (Scheme 1).⁵

Scheme 1

Reaction of *p*-chloranil **6** with aniline to give corresponding amino quinone **10** as a product.⁶ A mechanism involving the formation of aminoquinone through outer (π) -complex **8** and inner (σ) -complex **9** was proposed (Scheme 2).

Scheme 2

p-Chloranil **6** reacts with *n*-butyl amine **11** by electron transfer from *n*-butylamine **11** to *p*-chloranil **6** followed by substitution reaction to give the product **14** (Scheme 3).⁷

Scheme 3

Pyrolidine **11a** was also reported to react with p-chloranil **6** to give mono and disubstituted aminoquinone **15** and **16** (Scheme 4).⁸

Scheme 4

86 Introduction

The hydride transfer from dihydroflavins **17** to 2,3-dichloro-5,6-dicynao-*p*-benzoquinone (DDQ) **18** was reported. In this case, the back electron transfer is relatively slow and the proton transfer occurs within the radical ion pair complex **19** (Scheme 5).

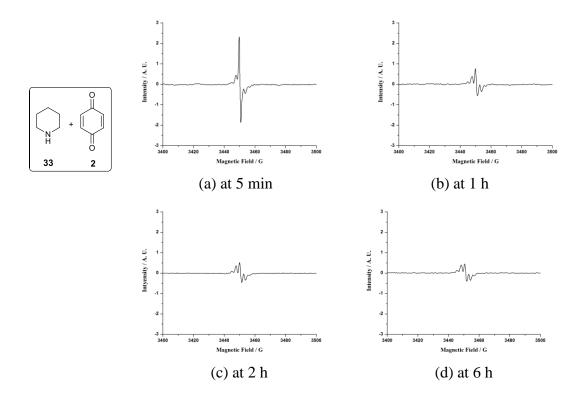
Scheme 5

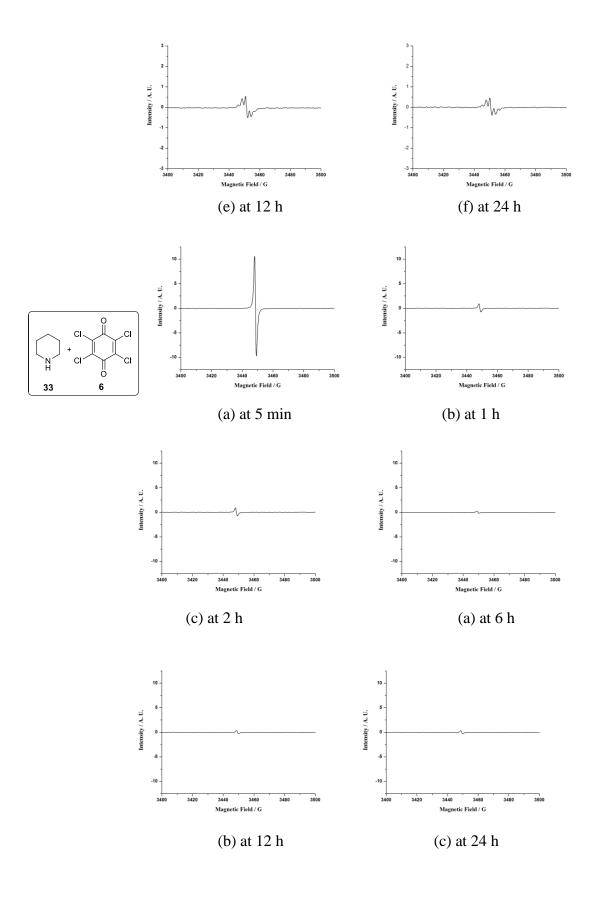
The reaction between p-chloranil 6 and diclofenac 23 leads to the charge transfer complex 24. This CT complex is readily converted to radical ion pairs 25 in methanol solvent (Scheme 6).¹⁰

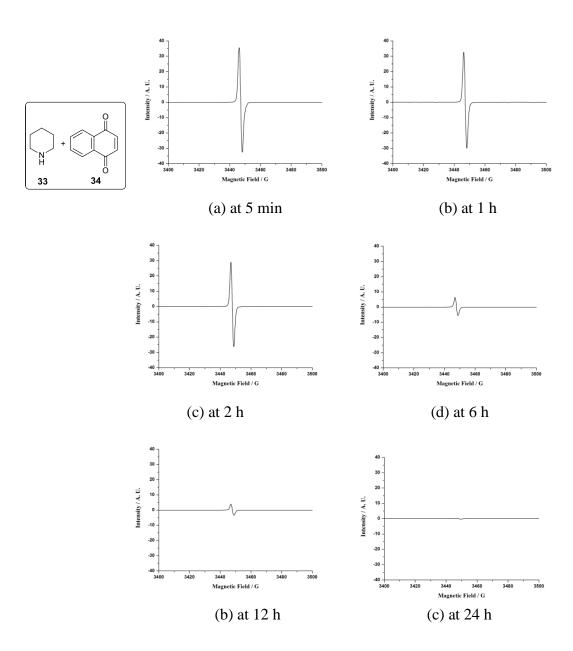
Scheme 6

Tertiary amines are excellent electron donors and they strongly interact with electron acceptors. For example, DABCO **26** reacts with p-chloranil **6** in benzene solvent to give DABCO-chloranil 1:1 complex. The reaction of p-chloranil or p-bromanil with DABCO gives paramagnetic species **28** in benzene or in THF solvent (Scheme 7). ¹¹

Scheme 7


The reaction of 2,2,6,6-tetramethylbenzo[1,2-d;4,5-d']bis[1,3]dioxole (TMDO) **29** with DDQ **18** in polar solvents like acetonitrile or propylene carbonate leads to radical ion pairs **30**. The electron transfer from TMDO to DDQ is fast in polar solvents (Scheme 8).¹²


Scheme 8


We have decided to investigate the electron transfer reaction of quinones with amine donors. The mechanism and intermediates formed in these electron transfer reactions are discussed in the next section.

3.2.1 Reaction of secondary amine with quinone acceptors

Piperidine **33** reacts with 1,4- benzoquinone **2** in DCM solvent to give paramagnetic species by electron transfer from piperidine **33** to 1,4- benzoquinone **2**. The intensity of the epr signal decreases with time. We have also observed similar epr pattern in PC solvent with stronger signal. The reaction of piperidine with *p*-chloranil **6**, 1,4-naphthaquinone **34** and 2,3-dichloronaphthaquinone **35** also gave similar results in epr spectroscopic studies (Figure 3).

Figure 3. EPR spectra of pipridine **33** with quinones (0.05 mmol) and (0.05 mmol) in CH_2Cl_2 solvent at 25 $^{\circ}C$.

The reaction finally leads to the formation of diamagnetic 2, 5-di-piperidin-1-yl- [1,4] benzoquinone product **38** (Scheme 9).

Scheme 9. Electron transfer reaction of benzoquinone 2 with piperidine 33

A possible mechanism for the formation aminoquinone is outlined in Scheme 10.

Scheme 10

Similar reaction of *p*-chloranil **6** with piperidine **33** gave the ion radical pairs **45** followed by charge transfer complex **46** with subsequent formation of the diamagnetic 2, 5-dichloro-3,6-di-piperidin-1-yl-[1,4] benzoquinone product **47** (Scheme 11).

Scheme 11

A possible mechanism for the formation of aminoquinone **47** is outlined in Scheme 12.

Scheme 12

Similarly, the reaction of piperidine **33** with 1,4-naphthaquinone **34** and 2,3-dichloronaphthaquinone **35** results in aminoquinone derivatives **54** and **55** through the formation of paramagnetic intermediates **52** and the charge transfer complex **53** (Scheme 13).

Scheme 13

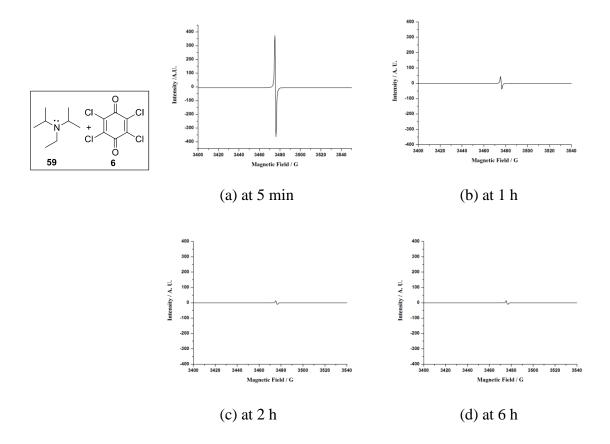
Recently, it was reported that the reaction of pyrrolidine 11a with p-chloranil 6 gives the corresponding mono substituted aminoquinone 15 through polar or ionic intermediate 56 (Scheme 14). 13

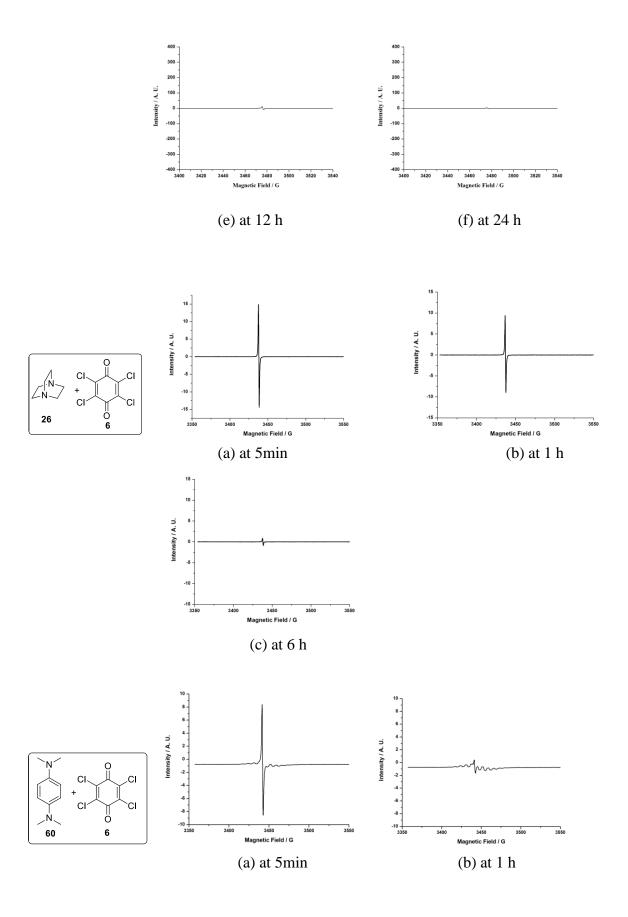
Scheme 14

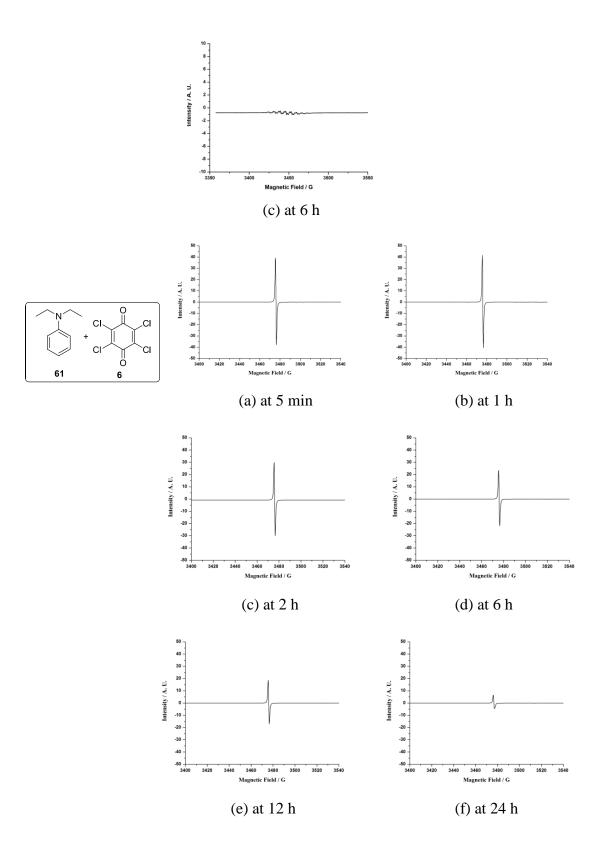
It was also reported that the formation C-C bond by the reaction of amine with quinones through polar pathway is several orders of magnitude faster than that expected for single electron transfer (SET) process. However, the epr data were not discussed by these authors. Also, there was no discussion on the formation of charge transfer or electron transfer complexes in the reaction between amines and quinones.

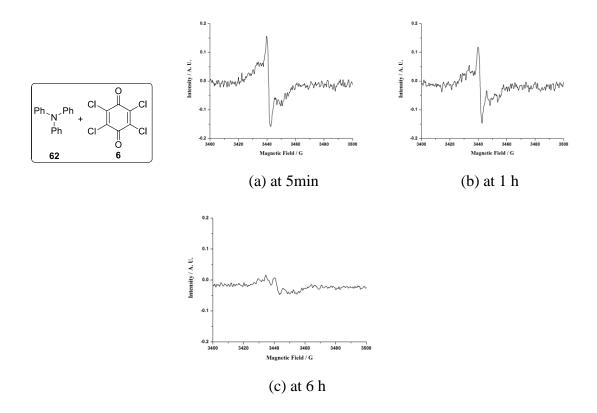
We have observed epr signal in accordance with the formation of paramagnetic intermediates upon mixing the secondary amine with quinones. Our results clearly indicate that electron transfer *via* initial cross exchange process to give the radical ion pair **45** with subsequent formation of charge transfer complex **46** and the aminoquinone product **47** with time (Scheme 15).

Scheme 15


Hence, the electron transfer reaction, the radical ion intermediates and charge transfer complexes cannot be ruled out in this transformations (Scheme 15).

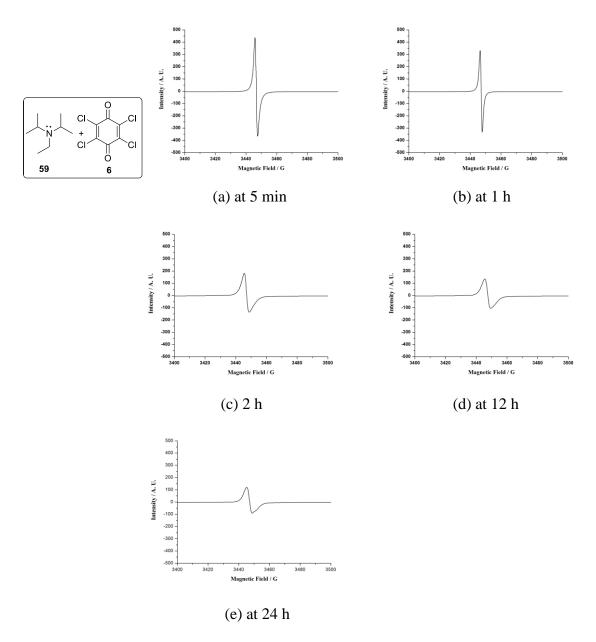

3.2.2 Reaction of tertiary amines with quinone acceptors


The reaction of secondary amine and quinones lead to the aminoquinone derivatives *via* radical intermediates and charge transfer complexes. We have then turned our attention towards the reaction of tertiary amines with *p*-chloranil.


We have observed that the reaction of *N*, *N*-diisopropylethylamine **59** (DIPEA) with *p*-chloranil **6** in PC solvent gave paramagnetic species detected by EPR spectroscopy with g value of 2.0037 (Figure 4). The electron transfer complex was stable up to 24 h but the intensity of the epr signal decreased with time in PC solvent (Figure 4).

The rapid formation of electron transfer and charge transfer complex was observed upon mixing of DIPEA **59** with *p*-choranil **6** in PC solvent. The mixture turns to bright green immediately. Similarly, the reaction using *p*-chloranil **6** with tertiary amines like 1,4-diazabicyclo[2.2.2]octane (DABCO) **26**, *N*, *N*'-tetramethyl-1,4-phenylenediamine (TMPDA) **60**, *N*,*N*-diethylaniline (PhNEt₂) **61** and triphenylamine (TPA) **62** also gives paramagnetic intermediates as revealed by epr spectroscopy. The epr spectrum recorded at different time intervals are shown in Figure 4.

Figure 4. EPR spectra of p-chloranul **6** (0.05 mmol) and tertiary amine (0.05 mmol) in PC solvent at 25 °C.


The reaction of DIPEA **59** with *p*-chloranil **6** gave the amine radical cation and quinone radical anion pairs **63** followed by charge transfer complex **64** (CT 1). The epr signal is mainly due to the presence of quinone radical anion **65** which may react with neutral *p*-chloranil to give the corresponding CT complex, CT 2. The amine radical cation would undergo fast exchange of electron with the neutral amine and hence does not exhibit epr signal (Scheme 16). Similarly, the other amine donors also react with *p*-chloranil to give radical ion intermediates followed by charge transfer complexes.

Scheme 16

The reaction of *N*,*N*-diethylaniline (PhNEt₂) **61** with *p*-chloranil **6** gave paramagnetic intermediates. Presumably, the initially formed amine radical cations are slowly coupled to give the tetraethylbenzidine product **68** besides the formation of a small amount (<5%) of the corresponding hydroquinone (Scheme 17).

Scheme 17

Similarly, the reaction of DIPEA **59** with *p*-chloranil **6** in gamma butyrolactone (GBL) solvent gives paramagnetic intermediates which was also confirmed by epr spectroscopy (Figure 5).

Figure 5. EPR spectra of p-chloranul **6** (0.05 mmol) and DIPEA **59** (0.05 mmol) in GBL solvent at 25 °C.

In all the cases, we have observed a single signal in the epr spectrum. Earlier, it was reported⁸ that the line broadening was observed in the epr spectra of naphthalene radical ion by the addition of excess of naphthalene. The rate constants for electron transfer between naphthalene radical ion and naphthalene are in the range 10⁷-10⁹ liters mole⁻¹ sec.⁻¹

Such single line broadening was also reported 14,15 in the case of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) radical anion **31** with DDQ **18** with a fast exchange rate constant of 2.5 x 10^9 M⁻¹ S⁻¹ and activation energy of 1.6 kcal mol⁻¹ at 23 °C. The electron is transferred from HOMO of donor amine to the LUMO of *p*-chloranil acceptor. Electron transfer leads to the formation amine radical cation and quinone radical anion. But, in epr spectrum, we have observed only one peak for the paramagnetic complex. This indicates that there is a fast self- exchange of electron between neutral amine with amine radical cation.

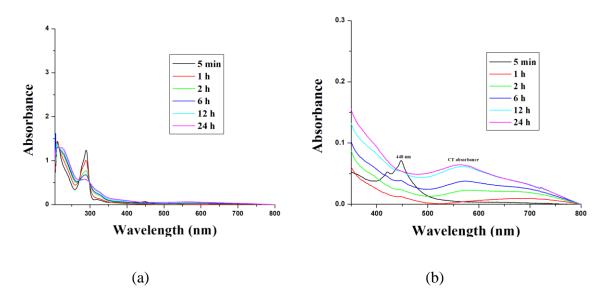
J. K. Kochi *et al* reported self-exchange and cross exchange reactions between 2,2,6,6-tetramethylbenzo[1,2-d:4,5-d']bis[1,3]dioxole **29** (TMDO) donor with 2,3-dichloro-5,6-dicyano-p-benzoquinone **18** (DDQ) acceptor in CH₂Cl₂ (Scheme 18).¹²

Scheme 18

(1) Cross exchange electron transfer process

TMDO + DDQ
$$\stackrel{K_{ET}}{\longleftarrow}$$
 TMDO , DDQ

(2) Self-exchange electron transfer process


TMDO + TMDO
$$\stackrel{\cdot \cdot \cdot}{\longleftarrow}$$
 $\stackrel{K_{SE}}{\longleftarrow}$ TMDO + TMDO 29 32 29 ... $\stackrel{\cdot \cdot \cdot}{\longleftarrow}$ DDQ + DDQ 18 31 31 18

Hence, the line-broadening of epr signals observed for the intermediates obtained from DIPEA **59** and *p*-chloranil **6** can be explained by considering the electron exchange phenomenon.

It was reported that the reaction of *p*-chloranil **6** with 1,4-diazabicyclo[2.2.2]octane, DABCO **26** gives 1:1 charge transfer complex.¹¹ The formation

of the charge transfer complex was also confirmed by UV-Visible spectroscopy and the absorption band at 450 nm of DABCO-chloranil system was assigned to the chloranil anion radical. Also, the formation of charge transfer complex between electron deficient DDQ with electron rich π-system like cyclic enol ethers was reported.^{13b} The charge transfer absorbance band at 589 nm in UV-Visible spectroscopy indicates the formation of charge transfer complex between DDQ and cyclic enol ethers system.

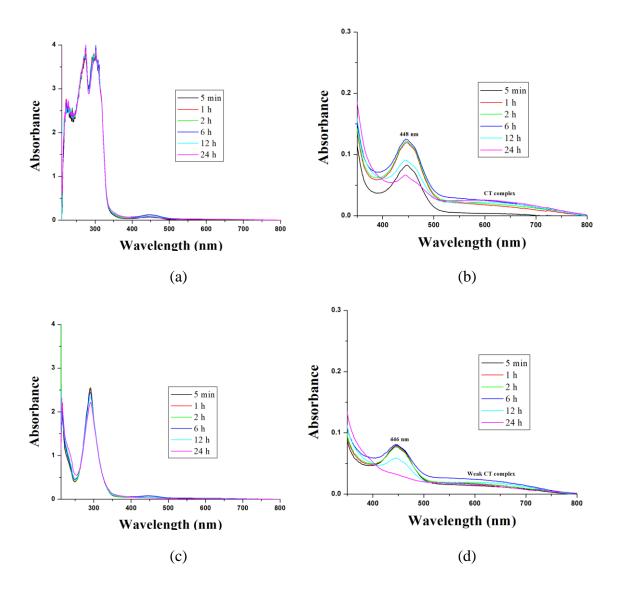

We have also examined the formation of charge transfer complex in the reaction of DIPEA **59** with *p*-chloranil **6** by UV-Visible spectroscopy (Figure 6). The color change was not observed for this diluted solution.

Figure 6. a) UV-Vis spectra of a mixture of DIPEA **59** (1 x 10^{-3} mol L⁻¹) and *p*-chloranil **6** (1 x 10^{-4} mol L⁻¹) in PC at 25 °C. b) Expanded UV-Visible spectrum.

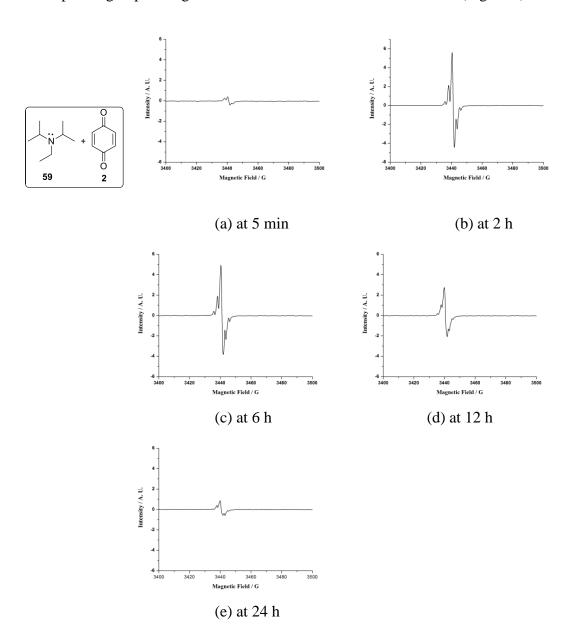
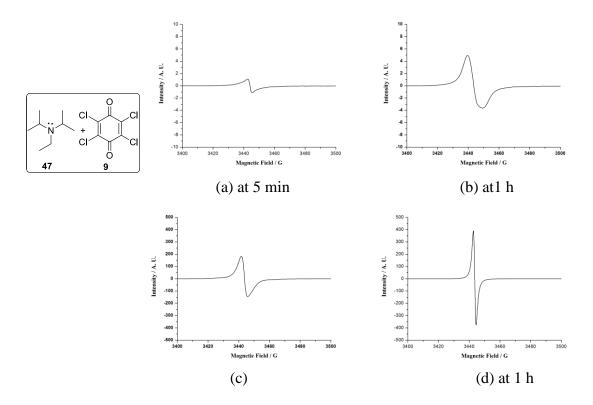

However, the characteristic absorbance band for chloranil anion radical was observed at 448 nm in 5 minutes and no charge transfer absorption band appears at that time. The new absorbance band developed slowly with time beyond 500 nm can be assigned to the absorption of the charge transfer (CT) complex **64**, because neither *p*-chloranil **6** nor DIPEA **59** absorbed in this region. The UV-Visible spectrum is shown in

Figure 6. We have also recorded the UV-Visible spectrum of solution of N, N-diethylaniline **61** (1x10⁻³) and triphenyl amine **62** (1x10⁻³) with p-chloranil **6** (1x10⁻⁴) at different time intervals. The results are shown in Figure 7.

Figure 7. (a) and (c) UV-Vis spectra of a mixture of PhNEt₂ **61** (1 x 10^{-3} mol L⁻¹) and TPA **62** (1 x 10^{-3} mol L⁻¹) with *p*-chloranil **6** (1 x 10^{-4} mol L⁻¹) in PC at 25 °C. (b) and (d) Expanded UV-Visible spectrum.

We have also performed the reaction of DIPEA **59** with weak acceptors such as 1,4-benzoquinone (BQ) **2** and naphthoquinone (NQ) **34** also gave weak epr signal corresponding to paramagnetic intermediates formed in the reaction (Figure 8).


Figure 8. EPR spectra of 1,4- benzoquinone **2** and naphthoquinone **34** (0.05 mmol) with DIPEA **59** (0.05 mmol) in PC solvent at 25 °C.

It was reported that use of polar solvents in the bimolecular interaction of DDQ **18** with TMDO **29** increases the diffusive separation of radical ion pairs (Scheme 19). ⁵

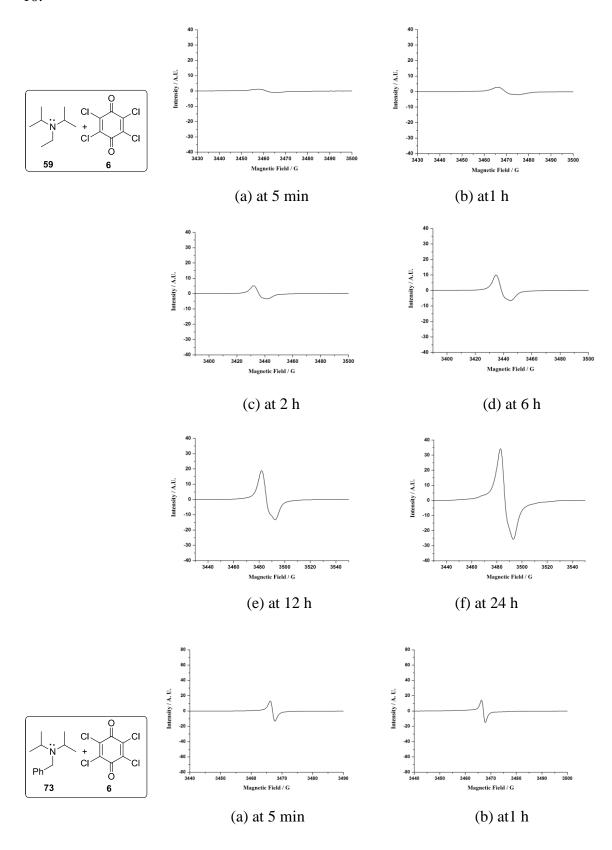
Scheme 19

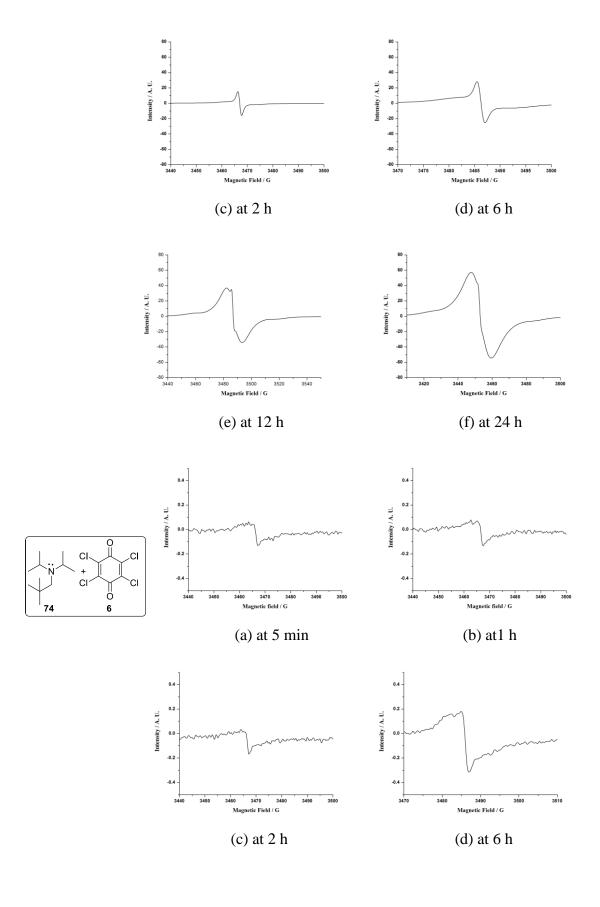
TMDO + DDQ
$$\stackrel{\mathsf{K}_{\mathsf{ET}}}{\longleftarrow}$$
 TMDO , DDQ 29 18 69

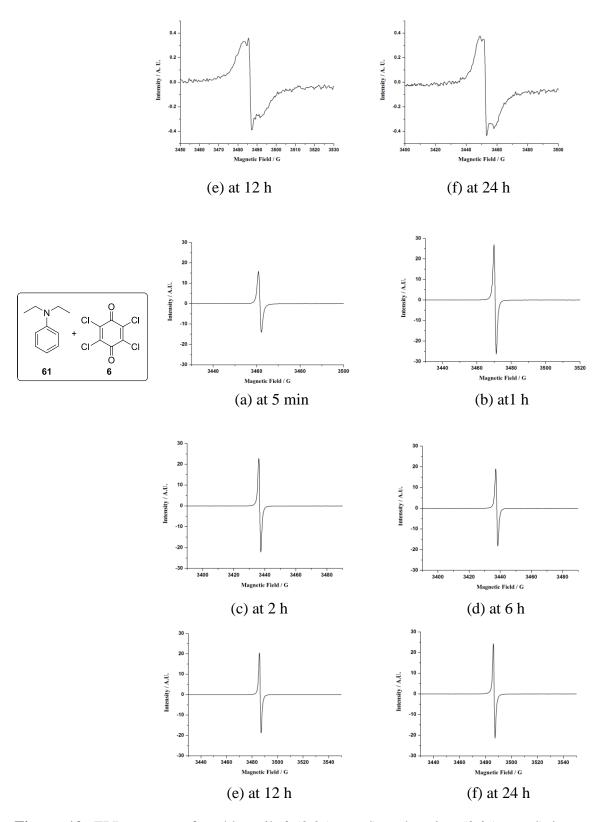
Hence, we have also reacted the amine DIPEA **59** with *p*-chloranil **6** (1:1 ratio) under neat condition. Interestingly, addition of drop of polar solvents like PC or *N*-methyl pyrrolidone (NMP) to the paramagnetic complex leads to increase in the strength of epr signal. The results are shown in Figure 9.

Figure 9. EPR spectra of p-chloranil **6** (0.05 mmol) and DIPEA **59** (0.05 mmol) in neat condition at 25 °C (a) at 5min (b) at 1 h (Intensity 10 to -10) (c) After addition of NMP (d) at 1 h (Intensity 500 to -500).

Presumably, the addition of polar solvents increases the concentration of paramagnetic intermediates due to the diffusive separation of ion pairs leading to more intense epr signal.


The nature of the paramagnetic species observed in the reaction and the reason for the decrease in epr signal intensity with time is not clearly understood. Presumably, a diamagnetic 1, 4-addition product could be formed as the reactivity of the tertiary amine and secondary amine is expected to be similar or the initially formed ion pair intermediates are slowly converted to the charge transfer complex that may lead to decrease in epr signal intensity (Scheme 20).


Scheme 20


3.2.3 Reaction of tertiary amine with *p*-chloranil 6 under neat condition

We have also reacted *N*, *N*-diisopropylethylamine **59** (DIPEA) with *p*-chloranil **6** under the neat condition (without solvent). The paramagnetic species formed were detected by epr spectroscopy with g value of 2.0031. In this case, an increase in the epr signal was observed with time. Presumably, the electron transfer reaction of *p*-chloranil and DIPEA will be slower under neat condition. Also, the reaction of DIPEA derivatives like *N*-benzyl-*N*-isopropylpropan-2-amine **73**, *N*, *N*-diisopropyl-2, 2-dimethylpropan-1-amine **74** and *N*,*N*-diethylaniline **61** with *p*-chloranil **6** gave the paramagnetic

intermediates under neat condition. The epr signal changes with time are shown in Figure 10.

Figure 10. EPR spectra of *p*-chloranil **6** (0.05 mmol) and amine (0.05 mmol) in neat condition at 25 $^{\circ}$ C.

Interestingly, the epr signal strength increased with time, whereas under solvent condition (Figure 4) the signal strength decreased with time. Presumably, the formation of radical ion pairs is slow under neat condition. However, the epr signal at 5 minutes in PC is much stronger (DIPEA **59**, Figure 4) indicating the presence of more amounts paramagnetic species in the polar solvent.

3.2.4 Reaction of 2,2,6,6-tetramethylpiperidine derivatives 76 with *p*-chloranil

Synthesis of polymeric amine

We have synthesized polymers containing amine as a pendant group through transesterification of PMMA (polymethylmethacrylate) **75** using 4-hydroxy-2,2,6,6-tetramethylpiperidine **76a**. The polymer **76b** is also readily converted to the corresponding TEMPO derivative **77** (Scheme 21). The prepared radical polymer PTMA **69** was characterized by epr spectroscopy with g value of 2.0063 (Figure 11). The epr of prepared PTMA radical is in accordance with the reported epr signal.¹⁶

Scheme 21

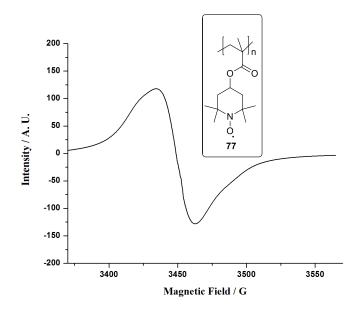
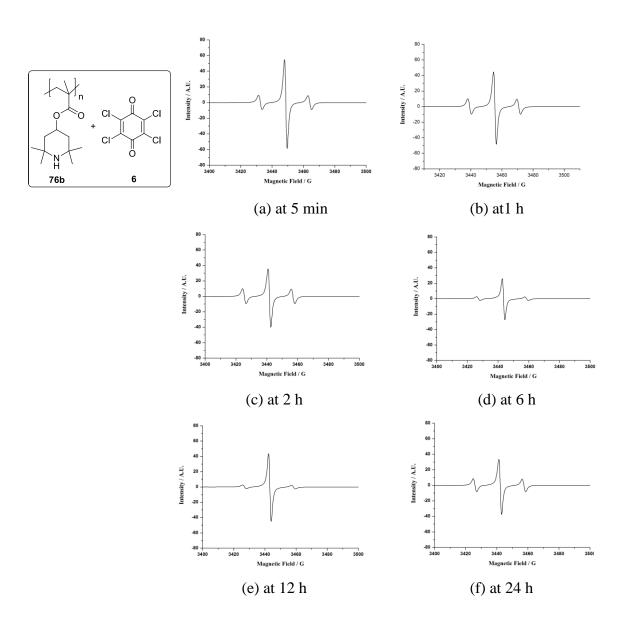


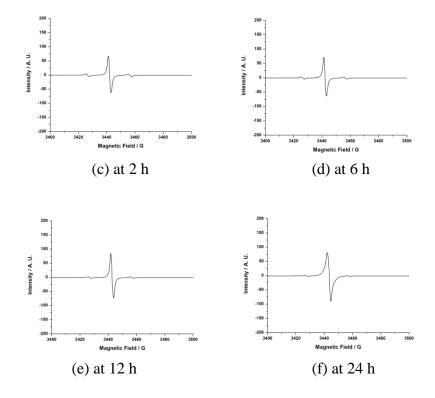
Figure 11. EPR spectra of synthesized PTMA radical polymer 77

The present method for the preparation of PTMA radical polymer **77** is simple and convenient compared to the methods available in the literature.¹⁷ Previously, the PTMA **77** was synthesized by the polymerization of 2,2,6,6-tetramethylpiperidine methacrylate monomer **79** followed by the oxidation of the precursor secondary amine polymer **76b** (Scheme 22).¹⁸ An advantage of the present method is that commercially available PMMA samples with different molecular weight can be utilized in the preparation of different polymeric derivatives.

Scheme 22


The PTMA 77 has the nitroxide radical 2,2,6,6- tetramethyl-1-piperidinyloxy (TEMPO) as repeating unit. TEMPO possesses good chemical stability because of

resonance structures and steric protection of the radical center. TEMPO and PTMA 77 polymer exhibit reversible oxidation-reduction behavior in aprotic solvents. On oxidation of the nitroxide radical, the p-type doping occurs in a reversible manner and the oxoammonium cation is formed. The existence of such a redox couple of radical makes PTMA 77 an attractive cathode-active material for use in lithium batteries. PTMA 77 is an electrical insulator, the addition of a suitable conductive material in the cathode composition is essential for effective transport of charges. The PTMA 77 is thermally stable at high temperature. This radical concentration remains unchanged for over one year under ambient conditions. This polymer displays appropriate solubility in organic solvents.


We have also observed that the reaction of sterically hindered 2,2,6,6-tetramethylpiperidine derivatives **76** with *p*-chloranil **6** in PC solvent gave the paramagnetic species **80** (Scheme 23).

Scheme 23

Interestingly, the reaction of the polymeric amine derivative **76b** with p-chloranil **6** gave moderately stable paramagnetic intermediates. In all these cases, we observed a triplet signal in the epr spectroscopy corresponding to amine radical cation (Figure 12).

(b) at1 h

Figure 12. EPR spectra of p-chloranul **6** (0.05 mmol) and 2,2,6,6-tetramethylpiperidine derivatives **76a**, **76b** and **76c** (0.05 mmol) in PC solvent at 25 °C.

However, even in the reaction of sterically hindered 2,2,6,6-tetramethylpiperidine with p-chloranil decrease in the strength of epr signal was observed with time. Presumably, complex formed here is outer-sphere in nature and not affected by the steric hindrance by the methyl groups.

Scheme 24

The charge-transfer complex **96** of *N,N,N',N'*-tetramethyl-*p*-phenylenediamine (TMPDA) **4** with *p*-chloranil **12** was reported.²¹ It was proposed that such complex interchanges reversibly with radical ion pairs (Scheme 25).²² Also, in solid state the TMPDA-*p*-chloranil complex was diamagnetic in nature.²³ We have observed that in this case also the epr signal strength decreases with time in PC solvent (Figure 4).

Scheme 25

3.2.5 EPR Studies of aminoquinone

The aminoquinones (38, 47, 54 and 55) were prepared by the reaction of piperidine with corresponding quinone in CH₂Cl₂ solvent. We have already discussed that the aminoquinones are formed by electron transfer mechanism and the paramagnetic intermediates were confirmed by epr spectroscopy.

Scheme 26

The aminoquinones behave as both donor and acceptor when present in the same molecule. Interestingly, we observed a weak epr signal for aminoquinones in the solid state but did not observe epr signal when aminoquinone was dissolved in CH₂Cl₂ solvent (Scheme 26). Presumably, one of the aminoquinone molecule acts as a donor and another acts as an acceptor in solid state leading to single, broad and weak epr signals (Figure 13). Presumably, the epr signal observed may be in contact between donor site with acceptor site in the solid state which might disappear in solvent and hence no epr signal in solution.

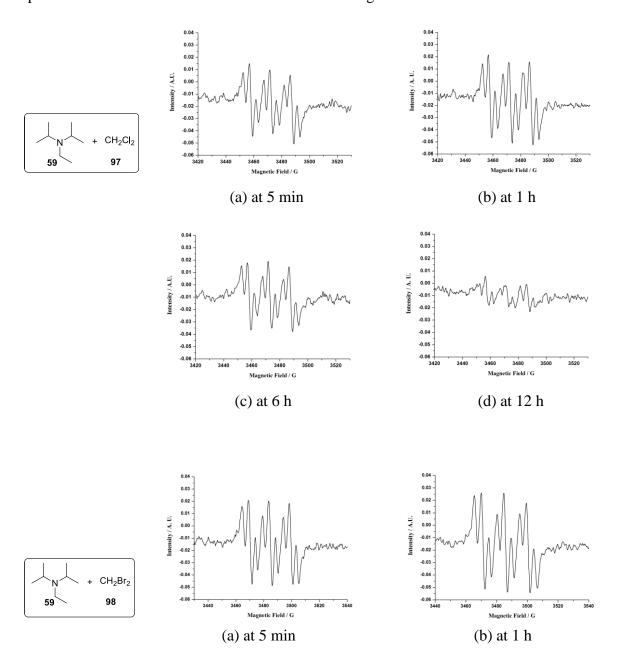
Figure 13. EPR spectra of aminoquinone in solid state at 25 °C (The aminoquinone solid (5 mg) was taken into epr tube and epr spectrum was recorded).

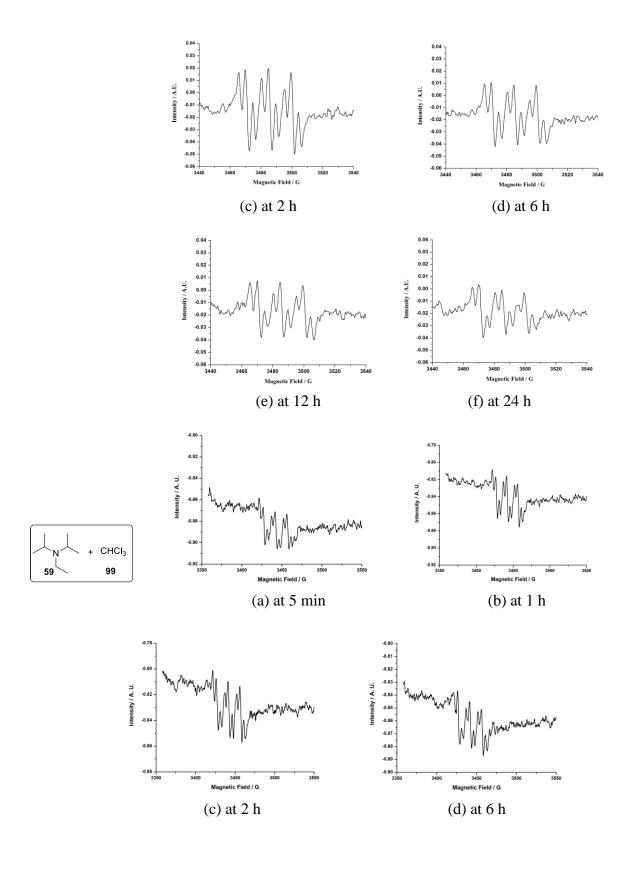
3.2.6 Attempt towards the electron transfer reaction of amines with halo compound acceptors

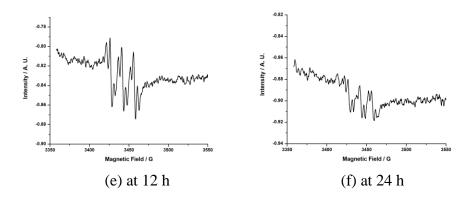
We have already discussed the results of the reaction of amines with quinone acceptors. The electron transfer readily takes place from donor amine to acceptor quinone leading to the formation of corresponding radical cation – anion pair as confirmed by epr spectral analysis.

Electron donor acceptor complexes and charge transfer interactions of amines with tetrahalomethanes were reported.²⁴ For example, DABCO **26** and quinuclidine **91** gives 1:1 donor-acceptor (DA) complex with tetrahalomethanes. Also, crystal structures were reported for the of 1:1 complex of DABCO and quinuclidine with CBr₄ **92**. The photochemical reaction of the DABCO-CBr₄ charge transfer complex leads to formation of radical ion intermediates (Scheme 27).

Scheme 27


Similarly, electron donor acceptor complexes and charge transfer complexes of carbon tetrabromide, CBr₄ **92** and bromoform, CHBr₃ **96** with various donors such as halides, pseudohalide anions, aromatic hydrocarbons and aromatic compounds containing nitrogen and oxygen centers were reported.²⁵ Hence, we have studied the electron transfer reaction of sterically hindered amines with halometahne.


We have observed a weak epr signal for ion-pairs when the amine and halo compounds are reacted together. Previously, de Meijere *et al.* prepared the triisopropyl radical cation by the oxidation of triisopropylamine with SbF₅ in CH₂Cl₂ solution at 195K which gave the hyperfine epr spectrum.²⁶ They also noted that this radical cation has unusual thermodynamic and kinetic stability.²⁶ Also, these authors concluded that trialkylamine with at least two isopropyl substituents would lead to nearly planar structure for the corresponding radical cation, thus making it more stable.


We have briefly studied the electron transfer interaction of amines such as DIPEA **59**, 2,2,6,6-tetramethylpiperidin-4-ol **76a** and polymeric 2,2,6,6-tetramethylpiperidine

derivative **76b** with halo compounds like CH₂Cl₂ **97**, CH₂Br₂ **98** and CHCl₃ **99** by epr spectroscopy.

The reaction of DIPEA **59** and dichloromethane CH₂Cl₂ **97**, CH₂Br₂ **98** and CHCl₃ **99** at room temperature gave very weak epr signals in epr spectroscopy (Figure 12). In these cases, we have scanned the spectra 10 times to get a clear epr signal. The epr spectrum with different time intervals are shown in Figure 14.

Figure 14. EPR spectra of DIPEA **59** and CH_2Cl_2 **97**, CH_2Br_2 **98** and $CHCl_3$ **99** at 25 °C (Number of scans = 10).

The epr signal observed here due to the presence of amine radical cation and the signal due to the dichloromethane, dibromomethane and chloroform radical anions were not observed. Presumably, these radical anions may undergo fast exchange with the corresponding neutral species and hence do not give epr signal (Scheme 28).

Scheme 28

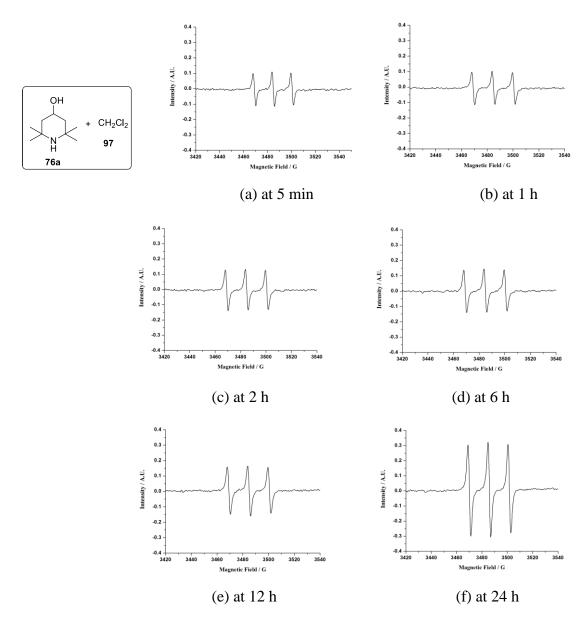
$$+ CH_2X_2$$

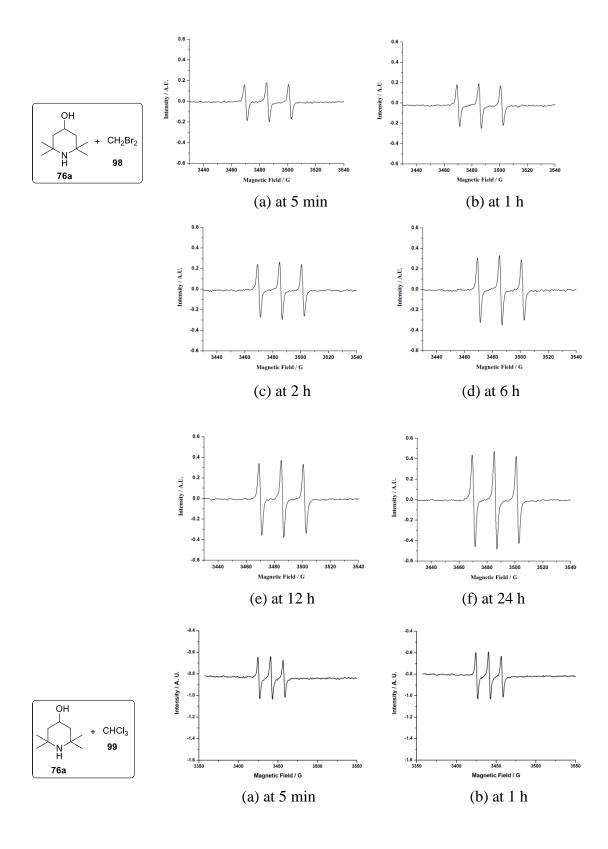
$$X = CI \text{ or Br}$$

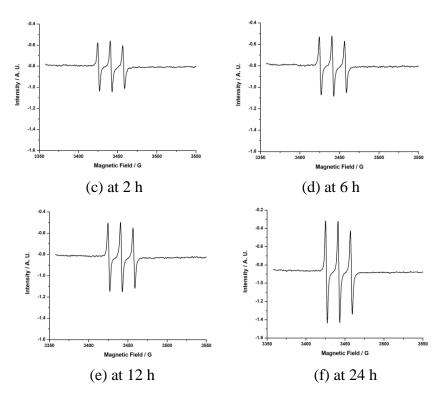
$$X_2CH_2 CH_2X_2$$

$$X_2CH_2 CH_2X_2$$

$$X_2CH_2 CH_2X_2$$

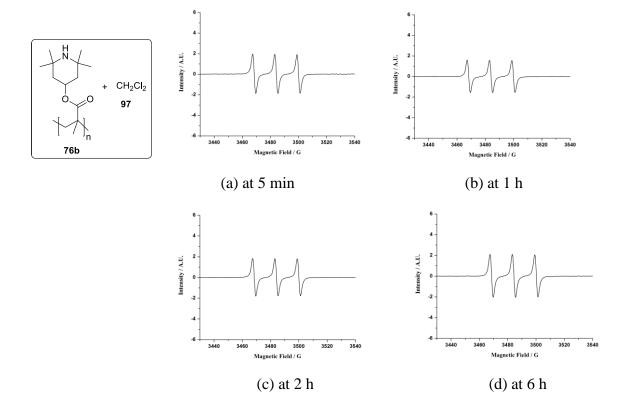

$$X_2CH_2 CH_2X_2$$

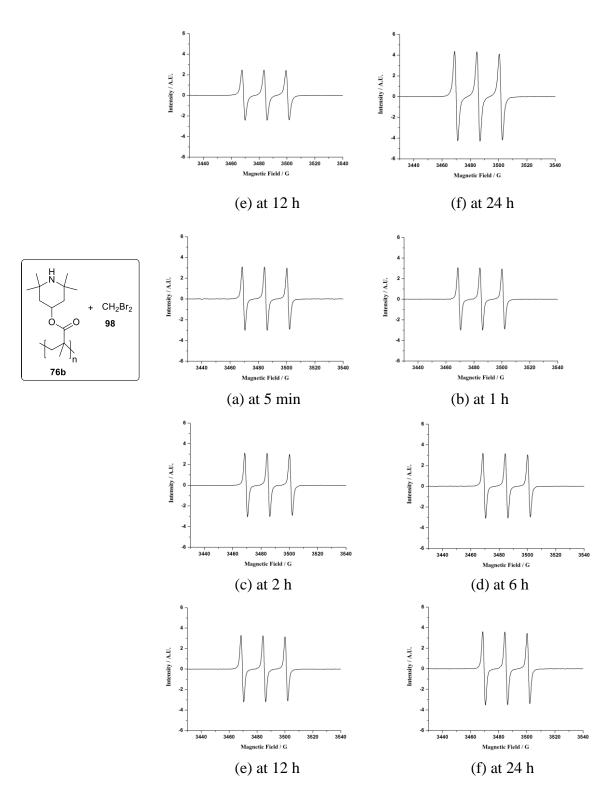

In all these cases, weak hyperfine splitting was also observed in epr spectroscopy. The reaction of N, N-diisopropylethylamine, DIPEA **59** with acceptors such as CH_2Cl_2 **97**, CH_2Br_2 **98** and $CHCl_3$ **99** gives a weak hyperfine splitting by the interaction of the radical cation present on nitrogen with two methylene β – protons of ethyl or isopropyl substituent of the radical cation.


We have also performed reaction with other donor amines N, N-diethyl aniline 61 and triphenyl amine 62 with halo compounds, but we did not observe the presence of

paramagnetic intermediates. Presumably, these relatively weak amines do not undergo electron transfer reactions with CH_2X_2 compounds.

Also, we have observed that the sterically hindered amine 2,2,6,6-tetramethylpiperidin-4-ol **76a** reacts with CH₂Cl₂ **97**, CH₂Br₂ **98** and CHCl₃ **99** to give a triplet signal in epr spectroscopy indicating the formation of corresponding 2,2,6,6-tetramethylpiperidin-4-ol radical cation (Figure 15).


Figure 15. EPR spectra of 2,2,6,6-tetramethylpiperidin-4-ol **76a** and CH₂Cl₂ **97**, CH₂Br₂ **98** and CHCl₃ **99** at 25 °C (Number of scans = 5).


Hence, the electron transfer reaction of 2,2,6,6-tetramethylpiperidin-4-ol **76a** with halomethane can be rationalized by the formation of ion radical pairs followed by charge transfer complex **103** (Scheme 29). Interestingly, the epr signal strength increases with time. As expected, the reaction with sterically hindered amine may be slow with more amounts of paramagnetic species formed with time (Figure 15). However, formation of charge transfer complex of the type **103** is equilibrium with paramagnetic radical ion cannot be ruled out.

126 Results and Discussion

Scheme 29

We have also carried out similar electron transfer reaction with polymeric derivative of 4-hydroxy-2,2,6,6-tetramethylpiperidine **76b** with CH₂Cl₂ **97** and CH₂Br₂ **98** and obtained evidence for paramagnetic species with triplet epr signal (Figure 16). In these cases also, subsequent formation of the corresponding charge transfer complexes of the type **105** cannot be ruled out.

Figure 16. EPR spectra of polymeric 4-hydroxy-2,2,6,6-tetramethylpiperidine **76b** and CH_2Cl_2 **97** and CH_2Br_2 **98** at 25 °C (Number of scans = 5).

128 Results and Discussion

The electron transfer reaction may be rationalized as outlined in Scheme 30.

Scheme 30

The reaction of 4-hydroxy-2,2,6,6-tetramethylpiperidine **76a** and polymeric derivative of 4-hydroxy-2,2,6,6-tetramethylpiperidine **76b** with CH₂Cl₂ **97**, CH₂Br₂ **98** and CHCl₃ **99** gives triplet in epr spectroscopy but there is no hyperfine splitting due to absence of β – hydrogen in the corresponding amine radical cation.

3.2.7 Preliminary studies on electron transfer reaction of amines with viologen acceptors

Viologens are 1,1'-disubstituted-4,4'-bipyridinium salts. Michaelis first reported the electrochemical behaviour of this class of compounds which possess excellent photoelectrochromic properties.²⁷ The viologens are electron acceptors and are widely used as herbicides and for electron mediation in photosynthesis,²⁸ in electrochromic display devices,²⁹ in organic electrical conductors,³⁰ in chemically modified electrodes,³¹ for solar energy storage and photocatalytic reduction of water to hydrogen.³² The viologens were originally investigated as redox indicators in biological studies. Their electrochemically reversible behaviour and the marked colour change between the

oxidation states, make the viologens as favored candidates for electrochemical display devices as alternative to LEDs and LCDs.²⁹ The viologens exist in three main oxidation states as shown in Figure 17.

$$R - N$$
 $N - R$
 $E - N$
 $N - R$
 $N -$

Figure 17. Three common bipyridinium redox states.

Reductive electron transfer to viologen dications 106 gives stable radical cations 107 (Figure 15) due to electron delocalization throughout the π -framework of the bipyridyl nucleus. Whereas the bipyridinium dication salts are normally not coloured, the viologen radical cations are intensely coloured, with high molar absorption coefficients. This is due to charge transfer between the +1 and 0 valent nitrogens.

The reaction of viologen derivatives with amine gives a rapid color change by the formation of electron transfer and charge transfer between viologen derivatives and amine, which is useful for the detection of amines.³³ The reaction of viologen molecules with *N*, *N*-dimethylformamide (DMF) generates an organic dopant for molybdenum disulfide (MoS₂) in metal-oxide-semiconductor field-effect-transistor (MOSFET).³⁴ Polyviologen are well known material useful as an interfacial layer and cathode buffer layer in polymer solar cell.³⁵

Previously, we have studied the electron transfer reaction of an acceptor *p*-chloranil with donor amines. Hence, preliminary studies were undertaken on reaction of amine donors with other acceptors such as viologen derivatives. Hence, we have decided to examine the possibility of electron transfer reaction between viologen acceptor with readily accessible amines. We have prepared a series of viologen derivatives **111** by the

130 Results and Discussion

reaction between 4,4'-bipyridyl **109** and alkyl halide **110** in DMF solvent following a closely related reported procedure (Scheme 31).³⁶

Scheme 31

R-Br 110

DMF, 80 °C, 12 h

110

110a (R = -CH₂Ph)

110b (R =
$$n$$
-butyl)

110c (R = n -pentyl)

110d (R = n -hexyl)

110e (R = n -octyl)

110e (R = n -octyl)

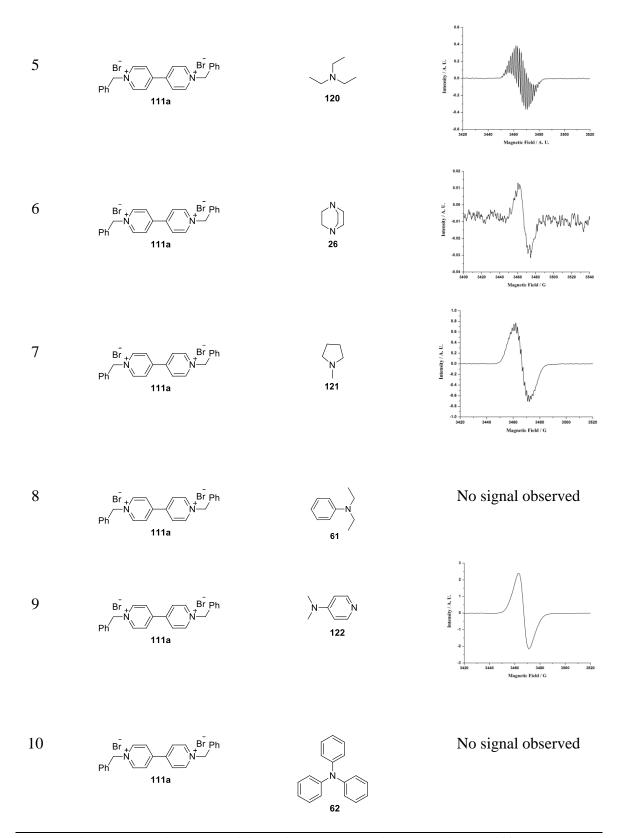
110e (R = n -octyl)

We have also synthesized the 1, 4-dipyridyl benzene **115** *via* preparation of synthesizing 1, 4- phenylenediboronic acid **113** followed by Suzuki coupling with 4-bromo pyridine **114** (Scheme 32).³⁷

Scheme 32

$$Br \longrightarrow Br \xrightarrow{\begin{array}{c} 1. \text{ Mg, THF,} \\ \text{reflux, 24 h} \\ \hline \\ 2. \text{ B(OMe)}_{3,} -70 \, ^{\circ}\text{C,} \\ \text{Et}_{2}\text{O, 4.5 h} \\ \hline \\ 112 \\ \hline \\ 1.5 \text{ N H}_{2}\text{SO}_{4} \\ \end{array}} \xrightarrow{\begin{array}{c} \text{HO} \\ \text{HO} \\ \text{HO} \\ \end{array}} \xrightarrow{\begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \\ \hline \\ \text{THF/MeOH/H}_{2}\text{O} \\ \hline \\ 80 \, ^{\circ}\text{C, 24 h} \\ \hline \\ 115 \\ \hline \end{array}} \xrightarrow{\begin{array}{c} \text{52\% yield} \\ \text{115} \\ \hline \end{array}}$$

Similarly, the 1,4-dipyridyl benzene **115** was readily converted to extended viologen **116** by reaction with 1-bromo butane in DMF solvent (Scheme 33).

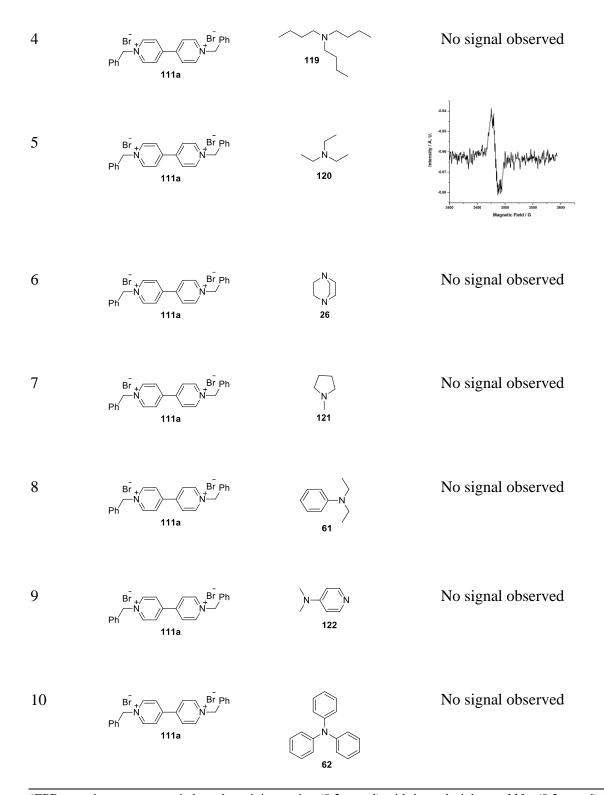

Scheme 33

We have investigated the reaction of the viologen salt such as benzyl viologen 111a with various readily accessible electron donor amines to examine the electron transfer by epr studies. The epr studies of viologen compound with different amines were

carried out by PC and methanol solvent. In the case of reaction of benzyl viologen **111a** with amines like diphenyl amine **118**, *N*, *N*-diethyl aniline **61** and triphenyl amine **62** no epr signal was observed (Table 2, entries 2, 8 and 10). The reason may be the weak donor nature of amines as the lone pair of electrons on the nitrogen atom are delocalised in the aromatic ring, which is unavailable for electron transfer to viologen acceptors. Also, it indicates that viologen is a weak acceptor and it can interact only with strong amines.

Table 2. EPR of benzyl viologen 102a with various amines in methanol solvent^a

Entry	Acceptor	Donor	EPR spectra
1	Ph Br Ph	Ph — CH ₂ NH ₂ 117	0.16 0.10 0.00 0.00 0.00 0.00 0.00 0.00
2	Ph Br Ph	NH 118	No signal observed
3	Ph N N N Ph	59	0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
4	Ph N	119 N	0.20 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.0


 $^{^{}a}$ EPR experiment were carried out by mixing amine (0.2 mmol) with benzyl viologen **111a** (0.2 mmol) in methanol. The mixture was taken into epr tube and recorded the spectra at 25 o C.

Similarly, we have studied the reaction of benzylviologen **111a** with different amines in PC solvent. In this case, we have observed weak epr signal in the reaction of benzylamine **117**, *N*, *N*-diisopropylethylamine **59** and triethyamine **120** with benzyl viologen acceptor (Table 3, entries 1,3,5). The weak epr signal or no signal also indicates that the paramagnetic intermediates are formed to lesser extent due to heterogeneous nature of the reaction due to poor solubility of viologen in PC solvent. Alternatively, the reason for weak epr signal may be also due to disproportionation of the viologen radical cation to give back the starting viologen (Scheme 34).

Scheme 34

Table 3. EPR of benzyl viologen with various amines in PC solvent^a

Entry	Donor	Donor	ESR spectra
1	Br Ph N N N N N N N N N N N N N N N N N N N	Ph — CH ₂ NH ₂ 117	2.60 2.60 3.75 3.60 3.75 3.60 Magnetic Field / G
2	Ph N N N Ph	NH 118	No signal observed
3	Ph Br Ph	59	2,000 2,000 2,000 2,000 2,700 2,700 3,000 3,

 $^{^{}a}$ EPR experiment were carried out by mixing amine (0.2 mmol) with benzyl viologen **111a** (0.2 mmol) in PC. The mixture was taken into epr tube and recorded the spectra at 25 o C.

Electrochemistry of viologen were reported extensively.³⁸ The high resolution epr spectra of photochemically generated viologen radical cation derivatives in ethanol-water system has been also reported.³⁹

Here also, we have observed a epr signal only for viologen radical cation formed in the reaction of benzyl viologen with amines. The amine radical cation formed after electron transfer to viologen would undergo fast electron exchange with the neutral amine and hence may not show epr signal (Scheme 35).

Scheme 35

We have investigated the electron transfer reaction of acceptors like quinones, halomethanes and viologens with amine donors. Also, we proposed tentative mechanisms for the formation of paramagnetic intermediates in these reactions in accordance with epr spectroscopic studies. Among the acceptors studied, *p*-chloranil which has a very high electron affinity (EA=2.78 eV) gives strong epr signals with donor amines. The electrochemistry of quinone is also well studied and hence we have selected the *p*-chloranil as an acceptor for studies on the construction of organic electrochemical cell

136 Results and Discussion

based on electron transfer reaction with tertiary amines. The results are discussed in the next chapter.

3.3 Conclusions

We have investigated the electron transfer reaction of quinones with piperidine. The corresponding aminoquinone was formed in good yield (55% to 75%) *via* the corresponding radical ion intermediates. The formation of paramagnetic intermediates were confirmed by epr spectroscopy.

We have also studied the reaction of tertiary amines like *N*, *N*-disopropylethylamine, *N*, *N*-diethylaniline, triphenylamine, *N*-benzyl-*N*-isopropylpropan-2-amine and *N*, *N*-diisopropyl-2, 2-dimethylpropan-1-amine with *p*-chloranil acceptor. We have observed that electron transfer from amine donor to quinone acceptor was fast. The formation of ion pair intermediates and charge transfer complexes were confirmed by epr and UV-Visible spectroscopic studies. The epr analysis of the intermediates formed in PC solvents indicate that the initially formed ion pair by electron transfer from donor to acceptor are converted to charge transfer complexes in equilibrium with small amounts of radical ions. The epr signal corresponds to the presence of quinone radical anion and the amine radical cation signal does not appear as it undergoes fast self-exchange with another amine.

$$R_{3}N + CI \longrightarrow CI \longrightarrow R_{3}N \longrightarrow$$

We have developed a simple method for the preparation of polymers containing amine as a pendant group through the reaction of PMMA (polymethylmethacrylate) and 4-hydroxy-2,2,6,6-tetramethylpiperidine. The sterically hindered polymeric 2,2,6,6-tetramethyl-4-piperidinol product reacts with *p*-chloranil to give radical ion intermediates followed by charge transfer complex. The radical ion intermediates gave triplet signal in epr spectroscopy which corresponds to the presence of amine radical cation. Similar results were also obtained in the reaction of 4-hydroxy-2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethylpiperidin-4-one with *p*-chloranil.

Charge transfer complex

We have briefly studied the reaction between *N*, *N*-diisopropyl ethylamine, DIPEA with CH₂Cl₂, CH₂Br₂ and CHCl₃. The formation of paramagnetic intermediates were confirmed by epr spectroscopy. The epr signal with very weak hyperfine splitting for the

nitrogen radical cation was observed. We have also investigated the reaction of 2,2,6,6-tetramethylpiperidin-4-ol and polymeric 2,2,6,6-tetramethylpiperidine derivatives with CH₂Cl₂, CH₂Br₂ and CHCl₃. Similar paramagnetic intermediates with triplet epr signal were observed. The results indicate that the halogenated solvents also behave like acceptor in the presence of strong amine donors.

We have also studied the reaction of viologen acceptors with different amines. Again, the formation of paramagnetic intermediates was confirmed by epr spectroscopy. The releatively weak aromatic amine donors did not undergo electron transfer reaction with viologen derivatives.

3.4 Experimental Section

3.4.1 General Informations

IR (KBr) and IR (neat) spectra were recorded on JASCO FT-IR spectrophotometer model-5300. The NMR spectra 1 H (400 MHz) and 13 C (100 MHz) were recorded on Bruker-Avance-400 spectrometers chloroform-d as solvent. Chemical shifts are expressed in δ downfield with respect to the signal of internal standard tetramethylsilane ($\delta = 0$ ppm). Coupling constants J are in Hz. EPR spectra was recorded on a Bruker-ER073 instrument equipped with an EMX micro X source for X band measurement using Xenon 1.1b.60 software provided by the manufacturer. Thin layer chromatography tests were carried out on pre-coated glass plates using silica gel-GF₂₅₄ containing 13% calcium sulfate as binder. The spots were visualized by UV light or exposure to iodine. Gravity column chromatography was used for the separation of compounds using silica gel (100-200 mesh) as stationary phase. All the glasswares were pre-dried at 100-120 $^{\circ}$ C in an air-oven for 4 h, assembled in hot condition and cooled under a stream of dry nitrogen.

In all experiments, a round bottom flask of appropriate size with a side arm, a side septum, a magnetic stirring bar, a condenser and a connecting tube attached to a mercury bubbler was used. The outlet of the mercury bubbler was connected to the atmosphere by a long tube. All dry solvents and reagents used were distilled from appropriate drying agents. As a routine practice, all organic extracts were washed using saturated NaCl solution (brine) and dried over Na₂SO₄ or K₂CO₃ and concentrated on Heidolph-EL-rotary evaporator.

p-Chloranil, *N*, *N*-diisopropylethylamine (DIPEA), 1,4-diazabicyclo[2.2.2]octane (DABCO), diisopropylamine, benzyl bromide, *m*-CPBA, dibenzylamine and *N*-methylpyrolidine were purchased from Avra chemicals (India). *P*-benzoquinone (BQ), 1,4-naphthaquinone, 2,3-dichloronaphthaquinone, triphenylamine (TPA), *N*,*N*'-tetramethyl-1,4-phenylenediamine (TMPDA), PMMA, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 2,2,6,6-tetramethylpiperidin-4-one, propylene carbonate and 4,4'-bipyridyl were purchased from Sigma Aldrich. CH₂Cl₂, CH₂Br₂, CHCl₃, tributylamine, trimethylamine and *N*,*N*-diethylaniline were purchased from Merck, India.

3.4.2 General procedure for preparation of aminoquinones

In a 50 mL RB flask, corresponding quinones (5 mmol) was dissolved in DCM (30 mL) solvent and piperidine (10 mmol) was slowly added for 5 min. The reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was concentrated under reduced pressure and 100 mL of ether was added to precipitate out the polar impurities and it was removed by filtration. The filtrate was diluted with water and the organic layer was separated. The organic layer was washed with saturated NaCl solution and the solvent was evaporated under reduced pressure. The residue was chromatographed on a silica gel (100-200) column to isolate the corresponding aminoquinones.

2,5-di-piperidin-1-yl-[1,4] benzoquinone 38

Yield : 0.754 g (55%); Brown solid

mp : 167-170 °C

IR (**KBr**) : (cm⁻¹) 2926, 1621, 1545, 1216, 1189, 756.

¹**H NMR (CDCl₃)** : (400 MHz, CDCl₃, δ ppm) 5.53 (s, 2H), 3.54 (s, 8H), 1.60-1.71 (m,

12H).

¹³C NMR (CDCl₃) : (100 MHz, CDCl₃, δ ppm) 182.5, 153.2, 105.5, 50.4, 25.8, 24.3.

2,5-dichloro-3,6-di-piperidin-1-yl-[1,4] benzoquinone 47

Yield : 1.283 g (75%); Dark brown solid

mp : 110-115 °C

IR (KBr) : (cm⁻¹) 2926, 1685, 1605, 1470, 745.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 3.49 (s, 8H), 1.7 (s, 12H)

¹³C NMR : (100 MHz, CDCl₃, δ ppm) 176.0, 149.3, 116.9, 53.2, 26.9, 24.0

2-piperidin-1-yl-[1,4] naphthaquinone 54

Yield : 0.783 g (65%); Black solid

mp : 82-85 °C

IR (**KBr**) : (cm⁻¹) 2941, 1675, 1559, 1243, 780.

 1 H NMR : (400 MHz, CDCl₃, δ ppm) 8.02-7.95 (m, 2H), 7.66-7.60 (m, 2H), 6.00

(s, 1H), 3.48 (s, 4H), 1.7 (s, 6H)

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm})$ 183.5, 183.4, 154.1, 133.7, 132.9, 132.5,

132.2, 126.5, 125.4, 110.4, 50.4, 25.7, 24.3

144

2-chloro-3-(piperidin-1-yl)naphthalene-1,4-dione 55

Yield : 1.031 g (75%); Orange solid

mp : 89-92 °C

IR (**KBr**) : (cm⁻¹) 2933, 1645, 1557, 1276, 717.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 8.19-8.22 (m, 1H), 8.11-8.13 (d, 1H), 7.91-

8.0 (d, 1H), 7.81-7.83 (m, 1H), 3.54-3.56 (m,4H), 1.73-1.78 (m, 6H)

¹³C NMR : (100 MHz, CDCl₃, δ ppm) 182.0, 176.0, 150.8, 134.6, 133.9, 131.7,

131.5, 127.8, 126.8, 52.9, 26.8, 24.1.

3.4.3 Procedure for preparation of N-benzyl-N-isopropylpropan-2-amine 73

In an oven dried RB flask *N*, *N*-disopropyl amine (10 mmol, 1.14 ml) was dissolved in CH₃CN solvent. Then potassium carbonate, K₂CO₃ (50 mmol, 6.9 g) was mixed with the above solution. Then benzyl bromide (10 mmol, 1.2 ml) was added slowly to the mixture and it was heated to around 70 °C for 12 h. Then the reaction was filtered and the filtrate was evaporated under reduced pressure. Then it was dissolved in DCM and water was added to the reaction mixture. The organic layer was separated, dried over Na₂SO₄ and evaporated. The corresponding crude product was purified by column chromatography on silica gel (100-200) using hexane and ethyl acetate as eluent to isolate pure amine **73** as product.

N-benzyl-N-isopropylpropan-2-amine 73

Yield : 1.432 g (75%); Colorless liquid

IR (neat) : (cm⁻¹) 3083, 2962, 2869, 1601, 1493, 1256, 1177,

1024, 952, 820, 750, 694.

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 7.44-7.42 (m, 2H), 7.34-7.30 (m, 2H),

7.25-7.21 (m, 1H), 3.69 (S, 2H), 3.10-3.03 (m, 2H), 1.07-1.06 (m, 12H)

¹³C NMR : $(100MHz, CDCl_3, \delta ppm)$ 143.2, 127.9, 127.8, 126.1, 48.9, 47.7, 20.7

3.4.4 Procedure for the preparation of N, N-diisopropyl-2, 2-dimethylpropan-1-amine 74

In an oven dried RB flask, N, N-diisopropylpivalamide (20 mmol) was taken in THF solvent cooled to 0 °C under N₂ atmosphere and NaBH₄ (50 mmol, 2 g) was added. Iodine (25 mmol, 6.35 g) in THF (10 ml) was addend slowly during 15 min. Then, the reaction was refluxed for 12 h. The reaction was quenched with water. The solvent was evaporated and residue was taken in dry ether. 3N NaOH solution added to this and amine was extracted in to ether. The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The organic layer was evaporated to get crude amine which was purified by column chromatography on silica gel (100-200) using hexane and ethyl acetate as eluent to isolate pure amine **74** as product.

N, N-diisopropyl-2, 2-dimethylpropan-1-amine 74

Yield : 1.710 g (50%) Colorless liquid

IR (neat) : (cm⁻¹) 2967, 2811, 1477, 1468, 1209, 1152,

1113, 1046, 990, 713.

¹**H NMR** : $(400 \text{ MHz, CDCl}_3, \delta \text{ ppm}) 3.02-2.90 \text{ (m, 2H), } 2.20 \text{ (S, 2H), } 1.0-0.9$

(m, 12H), 0.88-0.87 (m, 9H).

¹³C NMR : $(100 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) \delta$: 57.3, 49.0, 32.4, 28.8, 21.3.

3.4.5 Procedure for preparation of PTMA polymer 77

In an oven dried RB flask, PMMA **75** (5 mmol, 0.5 g) was dissolved in THF solvent. Then, 4-hydroxy-2,2,6,6-tetramethylpiperidine **76a** (6.3 mmol, 1 g) was added to the dissolved polymer. Then the mixture was heated to around 70 °C for 2 h. Then the reaction was distilled out to get a crude polymer. The polymer was dissolved in DCM and water was added to the reaction mixture. After work up, the organic layer was separated, dried over Na₂SO₄ and evaporated to give the 79% yield of polymer **76b**.

The polymer **76b** (4 mmol, 0.906 g) was dissolved in THF solvent. The *m*-chloroperoxybenzoic acid, *m*-CPBA (7 mmol, 1.2 g) in THF solvent was added slowly at 0 °C. The reaction mixture was slowly changed to red colour and it was further stirred at rt for 18 h. Then the solvent was removed under reduced pressure. Then the crude polymer was dissolved in DCM. Then 10% of sodium sufite and 5% sodium bicarbonate were added to remove excess *m*-CPBA. The organic layer was separated, dried over Na₂SO₄ and evaporated to give the 84% yield of polymer **77**.

3.4.6 General Procedure for the preparation of viologen derivatives

In an oven dried RB flask, 4, 4'-Bipyridyl **109** (5 mmol) was added and dissolved in DMF (30 mL) solvent. The corresponding aryl or alkyl bromide **110** (12 mmol) was slowly

⊕ в⊝

111c

added for 5 min. The reaction mixture was heated at 80 °C for 24 h. Then the reaction mixture was cooled to room temperature and the resulting yellowish solids were filtered. The solids were poured into dehydrated diethyl ether for washing. The corresponding viologen powder product was collected and dried. The dried product was washed twice with diethyl ether to remove the reactants. Then the resulting viologen salts **111** were dried in vacuum at room temperature.

1,1'-Dibutyl-4,4'-bipyridinium dibromide 111b

Yield : 2.05 g (96%);

IR (KBr) : (cm⁻¹) 2931, 1638, 1501, 1238, 1178, 832.

¹**H NMR** : $(400 \text{ MHz}, D_2O, \delta \text{ ppm}) 9.07-9.05 \text{ (d, 4H)}, 8.49-8.48 \text{ (d, 4H)}, 4.75$

4.70 (t, 4H), 2.02-1.99 (m, 4H), 1.36-1.34 (m, 4H), 0.94-0.89 (t, 6H)

¹³C NMR : $(100 \text{ MHz}, D_2O, \delta \text{ ppm}) 150.0, 145.5, 127.0, 62.0, 32.6, 18.8, 12.7.$

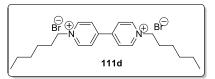
1,1'-Dipentyl-4,4'-bipyridinium dibromide 111c

Yield : 2.10 g (92%);

IR (**KBr**) : (cm⁻¹) 2931, 1638, 1506, 1232, 1178, 832.

¹**H NMR** : (400 MHz, D₂O, δ ppm) 9.06-9.04 (d, 4H), 8.49-8.47 (d, 4H), 4.74-

4.66 (t, 4H), 2.02 (m, 4H), 1.31-1.29 (m, 8H), 0.83-0.80 (t, 6H)


¹³C NMR : $(100 \text{ MHz}, D_2O, \delta \text{ ppm})$ 150.0, 145.4, 12.9, 62.2, 30.3, 27.4, 21.4,

13.0.

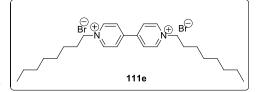
1,1'-Dihexyl-4,4'-bipyridinium dibromide 111d

Yield : 2.23 g (92%);

IR (KBr) : (cm⁻¹) 2926, 1638, 1512, 1232, 1178, 832.

 1 H NMR : (400 MHz, D₂O, δ ppm) 9.08 (d, 4H), 8.52 (d, 4H), 4.69 (t, 4H), 2.04

(m, 4H), 1.32 (m,12H), 0.83-0.81 (t, 6H)


¹³C NMR : $(100 \text{ MHz}, D_2O, \delta \text{ ppm})$ 150.0, 145.4, 127.0, 62.3, 34.6, 30.6, 24.9,

21.8, 13.2.

1,1'-Dioctyl-4,4'-bipyridinium dibromide 111e

Yield : 2.30 g (90%);

IR (**KBr**) : (cm⁻¹) 2915, 1638, 1512, 1238, 1172, 832.

¹**H NMR** : $(400 \text{ MHz}, D_2O, \delta \text{ ppm}) 9.08 \text{ (d, 2H)}, 8.51 \text{ (d, 2H)}, 4.69 \text{ (t, 4H)}, 2.04$

(m, 4H), 1.32-1.21 (m, 20H), 0.80 (t, 6H)

¹³C NMR : $(100 \text{ MHz}, D_2O, \delta \text{ ppm})$ 150.0, 145.4, 127.0, 62.3, 30.9, 30.6, 28.1,

28.0, 25.2, 22.0, 13.4.

3.4.7 Procedure for the preparation of 1, 4-phenylenediboronic acid 113

To a suspension of magnesium (2.30 g, 95.80 mmol) in dry THF was added dropwise solution of p-dibromobenzene **112** (7.5 g 28.5 mmol) in dry THF (30ml) about 20 minutes under the N_2 atmosphere. The reaction mixture was heated to reflux for 2.5 h and then cooled to -70 0 C. Then the solution of B(OMe)₃ (14.2 mL, 127.2 mmol) in dry diethyl ether (15 ml) was added dropwise to the reaction mixture about 30 minutes and the reaction mixture was stirred for 4.5 h at -70 0 C. The reaction mixture was brought to room temperature and then further stirred for 10 h. Then 1.5 N H₂SO₄ (80 mL) was added and stirred for 25 minutes. The

reaction mixture was extracted with diethyl ether (3X100 ml) and then the organic layer was dried over anhydrous Na₂SO₄. The organic layer was concentrated under reduced pressure to obtain white solid product. The crude product was chromatographed on silica gel (100-200) column using ethyl acetate as eluent to obtain the pure 1, 4-phenylenediboronic acid **113**.

1, 4-phenylenediboronic acid 113

Yield : 2.90 g (61%);

IR (KBr) : (cm⁻¹) 3287, 1517, 1347, 1123, 1013, 800.

¹**H NMR** : (400 MHz, DMSO, δ ppm) 8.06 (s, 4H), 7.21 (s, 4H)

¹³C NMR : (100 MHz, DMSO, δ ppm) 136.2, 133.5.

3.4.8 Purification of 4-bromopyridine 114

4-Bromopyridine hydrochloride salt (2.0 g) was dissolved in 50 mL aqueous solution of NaOH (0.008 g/mL) and the reaction mixture was stirred for 20 minutes. The organic layer was extracted with CH₂Cl₂ (3X100mL) and concentrated in vacuum to afford a pale yellow oil of 4-bromopyridine **114**.

3.4.9 Procedure for the preparation of 1, 4-dipyridylbenzene 115

4-bromopyridine **114** (0.6 mL, 6 mmol) and Pd(PPh₃)₄ (0.346 g , 0.3 mmol) was taken in THF solvent (40 ml) under N_2 atmosphere. Then the solution of 1,4-phenylenediboronic acid **113** (0.5 g, 3.0 mmol) and Na_2CO_3 (0.63 g, 6.0 m mol) in ethanol (5 ml) and distilled water (5 mL) was added under N_2 atmosphere. The reaction mixture was stirred under the N_2 at 80 °C for 24 h and then cooled to room temperature. The organic layer was extracted with diethyl ether and washed with brine solution. The organic layer was

separated and dried with anhydrous Na₂SO₄ and concentrated in vacuum to get a white solid 1, 4-dipyridylbenzene **115**.

1, 4-dipyridylbenzene 115

Yield : 0.35 g (52%);

IR (KBr) : (cm⁻¹) 3073, 1594, 1479, 1227, 1041, 805.

N_____N

¹**H NMR** : (400 MHz, CDCl₃, δ ppm) 8.73-8.69 (m, 4H), 7.80-7.76 (m, 4H),

7.58-7.28 (m, 4H)

¹³C NMR : $(400 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}) 151.8, 148.7, 140.1, 129.1, 122.9.$

3.4.10 Procedure for the preparation of extended viologen 116

The procedure for preparation of extended vilogen **116** is similar to the general procedure discussed in the section **3.4.6** using 1, 4-dipyridylbenzene **115** and butyl bromide.

4, 4'-(1,4-phenylene)bis(1-butylpyridin-1-ium) bromide 116

Yield : 0.22 g (86%);

IR (KBr) : (cm⁻¹) 3101, 2958, 1627, 1506, 1172, 832.

Br Br Br Br 116

 1 H NMR : (400 MHz, D₂O, δ ppm) 8.83-8.81 (d, 4H),

8.32-8.30 (d, 4H), 8.06-8.05 (d, 4H), 4.56-4.52 (t, 4H), 1.96-1.93 (m,

4H), 1.34-1.29 (m, 4H), 0.90-0.87 (t, 6H).

¹³C NMR : $(100 \text{ MHz}, D_2O, \delta \text{ ppm})$ 154.9, 144.3, 136.9, 129.1, 125.4, 61.0, 32.6,

18.8, 12.7.

3.5 References

- (a) Smith, R. E.; Davis W.R. Anal. Chem. 1904, 56, 2345. (b) Chapyshev, S. V.; Ibata,
 T. Mendeleev. Comm. 1994, 4, 109.
- 2 Guin, P. S.; Das, S.; Mandal, P. C. International journal of Electrochemistry. 2011, 2011, 1.
- 3 a) Efremov, R. G.; Baradaran, R.; Sazanov, L. A. *Nature*, **2010**, 465, 441. b) Nohl, H.; Jordan, W.; Youngman, R. J. *Adv. Free. Radical. Biol.* **1986**, 2, 211.
- 4 Patai, S.; Rappoport, Z.; *Eds. Electrochemistry of Quinones*. Wiley: New York, **1988**, 2, 719.
- 5 Suida, H. and Suida, W. Justus Liebigs Ann. Chem. 1918, 416, 113.
- 6 Nogami, T.; Yoshihara, K.; Hosoya, H.; Nagakura, S. J. Phys. Chem. **1969**, 73, 2670.
- 7 Yamaoka, T.; Nagakura, S. Bull. Chem. Soc. Japan. 1971, 44, 2971.
- (a) Smith, R. E.; Davis W.R. Anal. Chem. 1904, 56, 2345. (b) Chapyshev, S. V.; Ibata,
 T. Mendeleev. Comm. 1994, 4, 109.
- 9 Fukuzumi, S.; Kitano, T. *Chemical Physics.* **1993**, *176*, 337.
- 10 Ciapina, E. G.; Santini, A. O.; Weinert, P. L.; Gofardo, M. A.; Pezza, H. R.; Pezza, L. *Ecl. Quim.* **2005**, *30*, 29.
- Sersen, F.; Koscal, S.; Banacky, P.; Krasnec, L. Coll. Czech. Chem. Comm. 1977, 42,2173.
- 12 Sun, D.; Rosokha, S. V.; Kochi, J. K. J. Phys. Chem. B. 2007, 111, 6655.

152 References

(a) Guo, X.; Mayr, H. J. Am. Chem. Soc. 2014, 136, 11499. (b) Guo, X.; Mayr, H. J.Am. Chem. Soc. 2013, 135, 12377.

- 14 Ward, R. L.; Weissman, S. I. *J. Am. Chem. Soc.* **1957**, 79, 2086.
- (a) Rosokha, S. V.; Kochi, J. K. J. Am. Chem. Soc, 2007, 129, 3683. (b) Rosokha, S.
 V.; Newton, M. D.; Jalilov, A. S.; Kochi, J. K. J. Am. Chem. Soc. 2008, 130, 1944.
- (a) Nishide, H.; Suga, T. Electrochem. Soc. Interface. Winter. 2005, 14, 32. (b)
 Nishide, H.; Iwasa, S.; Pu, Y-J.; Suga, T.; Nakahara, K.; Satoh, M. Electrochimica
 Acta. 2004, 50, 827.
- (a) Lopez-Pena, H. A.; Hernandez-Munoz, L. S.; Frontana-Urine, B. A.; Gonzalez, F. J.; Frontana, C.; Cardoso, J. J. Phy. Chem. B. 2012, 116, 5542. (b) Guo, W.; Yin, Y-X.; Xin, S.; Guo, Y-G.; Wan, L-J. Energy. Environ. Sci. 2012, 5, 5221.
- 18 Li, H.; Zou, Y.; Xia, Y. *Electrochimica Acta*, **2007**, *15*, 77.
- Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M.; Saton, M.; Cairns, E. J. *Journal of Power Sources.* **2007**, *165*, 398.
- 20 Kim, J.; Ahn, J.; Cheruvally, G.; Chauhan, G.S.; Choi, J.; Kim, D.; Ahn, H.; Lee, S.H.; Song, C. E. Met. Mater. Int. 2009, 15, 77.
- a) Nagakura, S. *Mol. Cryst. Liq. Crtst.* 1985, 126, 9. b). Nogami, T.; Yamaoka, T.;
 Yoshihara, K.; Nagakura, S. *Bull. Chem. Soc. Japan.* 1971, 44, 380. c) Sato, Y.;
 Kinoshita, M.; Sano, M.; Akamatu, H. *Bull. Chem. Soc. Japan.* 1970, 43, 2370 d)
 Foster, R.; Thomson, J. *Trans. Faraday. Soc.* 1962, 58, 860.

- a) Lu, J. M.; Rosokha, S. V.; Lindeman, S. V.; Neretin, I. S.; Kochi, J. K. J. Am.
 Chem. Soc. 2005, 127, 1797. b) Lu, J. M.; Rosokha, S. V.; Lindeman, S. V.; Neretin, I.
 S.; Kochi, J. K. J. Am. Chem. Soc. 2006, 128, 16708.
- Soos, Z.G.; Keller, H. J.; Ludolf, K.; Queckborner, J.; Wehe, D. *J. Chem. Phys.* 1981,74, 5287.
- 24 Blackstock, S. C.; Lorand, J. P.; Kochi, J. K. J. Org. Chem. 1987, 52, 1451.
- Rosokha, S. V.; Neretin, I. S.; Rosokha, T. Y.; Hecht, J.; Kochi, J. K. Heteroatom Chemistry. 2006, 17, 449.
- de Meijere, A.; Chaplinski, V.; Gerson, F.; Merstetter, P.; Haselbach, E. *J. Org. Chem.* **1999**, *64*, 6951.
- 27 Michaelis, L.; Hill, E. S. J. Gen. Phisol. 1933, 16, 859.
- Yonemoto, E. H.; Saupe, G.B.; Schmehi, R. H.; Hubig, S. M.; Riley, R. L.; Iverson, B.
 L.; Mallouk, T.E. J. Am. Chem. Soc. 1994, 116, 4786.
- 29 Bird, C. L.; Kuhn, A. T.; Chem. Soc. Rev. 1981, 10, 49.
- 30 Porter, W.W.; Vaid, T. P. J. Org. Chem, 2005, 70, 5028.
- 31 Lezna, R. O.; Centeno, S. A. *Langmuir*. **1996**, *12*, 591.
- 32 Gratzel, M. Acc. Chem. Res. 1981, 14, 376.
- Wang, Y.; Xu, S.; Gao, F.; Chen, Q.; Ni, B-B.; Ma, Y. Supramolecular Chemistry. **2013**, 25, 344.
- Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida,A.; Fujimura, N.; Kiriya D. AIP Advances. 2018, 8, 055313-1.

154 References

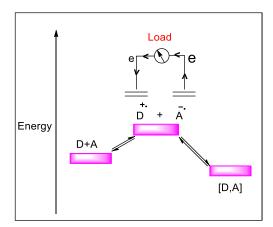
(a) Jo, M. Y.; Ha, Y. E.; Kim, J. H. Solar Energy Materials & Solar Cells. 2012, 107,
(b) Do, T. T.; Hong, H. S.; Ha, Y. E.; Park, C-Y.; Kim J. H. Macromolecular Research. 2015, 23, 177.

- 36 Kakibe, T.; Ohno, H. J. Mater. Chem. 2009, 19, 4960, 10.
- Esteruelas, M. A.; Fernandez, I.; Gomez-Gallego, M.; Martin-Ortiz, M.; Molina, P.; Olivan, M.; Oton, F.; Sierra, M. A.; Valencia, M. *Dalton. Trans.* **2013**, *42*, 3597.
- (a) Bird, C. L.; Kuhn, A. T. Chem. Soc. Rev. 1981, 10, 49. (b) Lukac, S.; Harbour, J.
 R. J. Am. Chem. Soc. 1983, 105, 4248.
- 39 Johnson, C. S.; Gutowsky, H. S. *The Journ. Chem. Phy.* **1963**, *39*, 58.

Chapter 4

Development of Electrochemical cell exploiting reversible electron transfer reaction between tertiary amine donors and p-chloranil acceptor

4.1 Introduction


In the previous chapter, we have already discussed that electron transfer readily takes place from donor amines to acceptor quinones resulting the formation corresponding radical cation – anion pair (Scheme 1).

Scheme 1

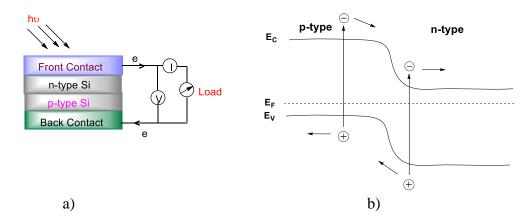
We have also observed that the reaction of tertiary amines with *p*-chloranil gives radical cation-anion pair first followed by formation charge transfer complex (CT complex) in equilibrium with the ion pair (Scheme 2). These reversible reactions take place at ambient temperature conditions in the ground state of the donor and acceptor. Accordingly, energy barrier or activation energy for the formation of the ions and ions is overcome by surrounding heat (Figure 1).

Scheme 2

156 Introduction

Figure 1. Ground state electron transfer between organic electron donor (D) and acceptor (A)
- Construction of an electricity harvesting cell.

We have envisaged the construction of an electrochemical cell that could transport the charge carriers (i.e. electron in Q^- and the hole in R_3N^+) formed in such reactions to produce electricity (Figure 1). The difference between such ground state electron transfer process in such cells and the electron transfer involved in donor/acceptor photovoltaic or solar cell is that in the later case the electron transfer from a donor to an acceptor takes place after photoexcitation of the electron from the ground state to excited state. Accordingly, a brief review of reports on the construction of various types of solar cells including donor/acceptor organic photovoltaic cells would facilitate the discussion of the present results.


4.1.1 Photovoltaic cell

Electrochemical cell which produce electric current through chemical reactions are called voltaic or galvanic cell. In a photovoltaic cell or solar cell, the light or solar energy is converted into electrical energy and produces an electric current in the circuit. Solar cells are made up of semiconductors which absorb light in the visible region. The research on solar cell

focused mainly on technologies involving the silicon and other inorganic semiconductors, dyes, perovskites and organic donor/acceptor molecules.

4.1.2 Silicon solar cell

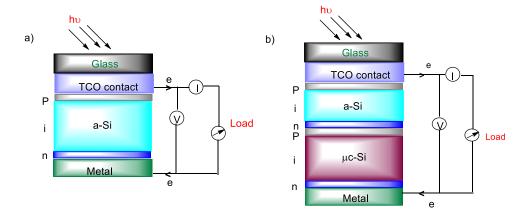
Silicon (Si) solar cell consists of n-type Si and p-type Si semiconductor material. The Addition of atoms (boron or gallium) having one electron less than silicon in their outer energy level produce a p-type silicon. Addition of atoms (phosphorus or arsenic) having one electron more than silicon in their outer energy level produce an n-type silicon. When sunlight (photons) strikes the solar cell the electrons ejected from the silicon moves to the n-type layer and holes moves to the p-type layer. The produced electron and holes will move to the electrodes to produce electricity (Figure 2).

Figure 2. (a) Schematic diagram for crystalline silicon solar cell. (b) Energy level diagram for crystalline silicon solar cell (E_V-Valance band energy level, E_F-Fermi energy level and E_C-Conduction band energy level)

In 1954, scientists in Bell laboratory produced the first practical photovoltaic cell based on silicon semiconductor material with 6% efficiency. The crystalline solar cell

158 Introduction

requires complex fabrication process and high production cost even though the efficiency of single crystal silicon solar cell reached up to 25%.² At present, amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and gallium arsenide (GaAs) materials are used in thin film solar cells.


4.1.3 Thin film solar cell or Inorganic solar cell

Thin film solar cells also called as second generation solar cells are made by placing one or more thin layers of photovoltaic material on glass or metal current collector.

4.1.3.1 Amorphous silicon solar cells (a-Si)

Amorphous silicon (a-Si) is an allotrope of silicon and widely used in thin film technology. The absorption of solar radiation by amorphous silicon is 40 times more than that of single crystal silicon solar cell. The thin layer of silicon is coated using a gaseous mixture of silane and hydrogen on transparent conductive oxide (TCO) glass. The basic electronic structure of amorphous silicon solar cell is p-i-n junction (Figure 3).

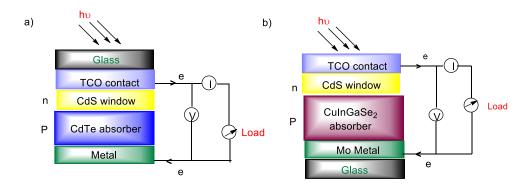

The efficiency of amorphous silicon solar cell is around 5-7% and lower than that of crystalline solar cell.³ The efficiency of amorphous silicon solar cell was improved to 10% by stacking the two or more cells together with micro crystalline silicon (μ -c-Si) solar cell. This type of stacking improve the performance of the cell (Figure 3b).

Figure 3. (a) Schematic diagram for thin film amorphous silicon solar cell. (b) Tandem a-Si and μ -c-Si solar cell.

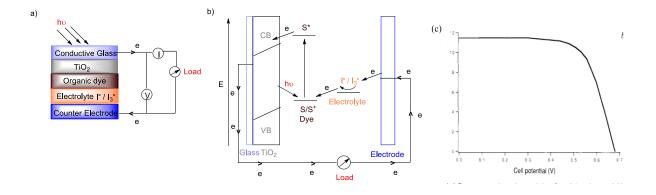
4.1.3.2 Cadium-telluride (CdTe) thin film solar cell

This cell is a simple heterojunction contains p-type CdTe and n-type CdS semiconductors (Figure 4 a).

Figure 4. (a) Schematic diagram for thin film CdTe solar cell. (b) Thin film CuInGaSe₂ (CIGS) solar cell.

The efficiency of CdTe solar cell varies between 10-16%.^{4,5} However, the rare abundance of tellurium and toxicity of cadmium are the main disadvantage of this cell.

160 Introduction


4.1.3.3 Copper indium gallium selenide (CIGS) thin film solar cell

The fabricating process of CIGS thin film cell is similar to that of CdTe process but the light conversion efficiency is higher than that of CdTe cell (Figure 4 b). This material absorbs sunlight effectively because it has high absorption coefficient. The efficiency of CIGS solar cell was around 20% and higher than that of other thin film cell.⁶

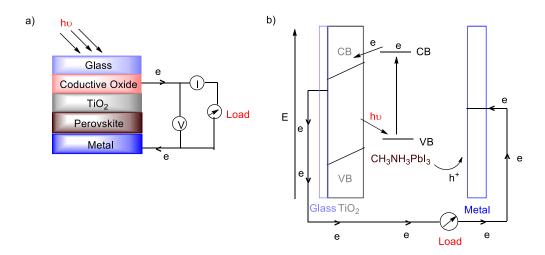
4.1.4 Dye-sensitized solar cell (DSSC)

In 1968, Gerischer and co-workers⁷ developed the electrolytic cell using the p-type perylene organic dyes and with n-type zinc oxide (ZnO). The modern DSSC was invented by O' Regan and Grätzel⁸ in 1991. The use of mesoporous titanium dioxide (TiO₂) as photoanode and the electrolyte containing iodide/triiodide redox shuttle leads to the DSSC with up to 12% efficiency. The cell was further improved by the introduction of N3 (cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)) dye with efficiency of around 10%.

The DSSC was fabricated by coating TiO_2 on the conductive glass plate. Then the plates were soaked into the organic dye solution. The redox electrolyte couple was drop coated on the organic dye layer and the counter electrode was fixed above the fabricated conductive glass. When the solar radiation (light) strikes the dye molecule and it goes to excited state. The photo induced electron is injected to the conduction band of mesoporous TiO_2 . The oxidized dye molecule gets regenerated by electron donation from the electrolyte I^- redox couple. The holes move towards the counter electrode to complete the electronic circuit (Figure 5).

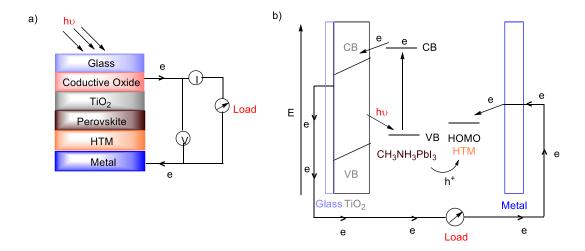
Figure 5. (a) Schematic diagram for DSSC solar cell. (b) Energy level diagram of liquid DSC based on mesoporous TiO_2 photoanode and I^-/I_3^- redox couple (c) Typical current voltage curve for DSSC (Cell efficiency = 7.12% with FF = 0.684, Reference. 8).

In last two decades research efforts were undertaken to improve the performance of DSSC by designing the organic dye molecules with high extinction coefficient and also with modified redox shuttle⁹⁻¹³ like cobalt (II/III), copper (I/II), ferrocene (Fc)/ferrocinium (Fc⁺), Nickel (III/IV), TEMPO/TEMPO⁺. The redox shuttle can reduce the electron-hole recombination process with efficient electron transport properties.¹⁴⁻²¹


It was reported that the highest efficiency of 13% observed for the cobalt (II/III) electrolyte used in the DSSC.²² The first solid-state dye-sensitized solar cell (sDSSC) using 2,2',7,7'-tetrakis(*N*,*N*-dimethoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM) was also reported. ²³ The efficiency of the DSSC was improved to 7.2% by the use of spiro-OMeTAD with the addition of cobalt complex (p-type dopant).²⁴ The sDSSC was further improved by using other hole transporting material like poly(3-hexylthiophene-2,5-diyl) (P3HT).²⁵ But, the efficiency is lower than that of liquid DSSC.^{26,27}

162 Introduction

The decrease in efficiency is due to the higher recombination rate and intrinsic properties of spiro-OMeTAD with TiO₂.


4.1.5 Perovskite solar cell

The perovskite (ABX₃) is hybrid inorganic/organic material with efficient light harvesting structure. The construction of perovskite solar cell is similar to that of dyesensitized solar cell as shown in Figure 6. In 2009, the first perovskite solar cell was reported with methylammonium lead iodide (CH₃NH₃PbI₃) which gave 3.81% power conversion efficiency.²⁸

Figure 6. (a) Schematic diagram for perovskite solar cell (b) Energy level diagram of perovskite solar cell without hole transport material.

The iodide redox couple degrades the perovskite that leads to the lower efficiency. The replacement of the liquid electrolyte with solid-state p-type semiconductor spiro-OMeTAD as a hole transport material (HTM) improves the efficiency to 9.7%.²⁹

Figure 7. (a) Schematic diagram for perovskite solar cell. (b) Energy level diagram of perovskite solar cell with hole transport material.

Recent reports³⁰ on mixed lead halogen perovskite solar cell indicated that the efficiency was improved to 20.7%. Some of the hole transporting materials used for the studies on perovskite solar cell are listed in Figure 8. The research efforts on the perovskite solar cells are still under progress.³¹⁻³⁵

164 Introduction

Figure 8. Hole Transporting Material (HTM) used in perovskite solar cell.

11

4.1.6 Organic solar cell

The organic photovoltaics or solar cells are flexible devices with low manufacturing cost compared to the rigid inorganic solar cells. In organic solar cells, upon excitation of organic material creates positive charge on the donor layer (p-type) and negative charge on the acceptor layer (n-type) like p-n junction.

The operating mechanism of the organic solar cell is almost similar to that of the inorganic solar cell. The photo excitation of the light harvesting organic material produces an exciton (coupled electron-hole pair). The field splits the exciton into the charge carrier (separated electron-hole pair) which then moves to the respective electrodes to produce

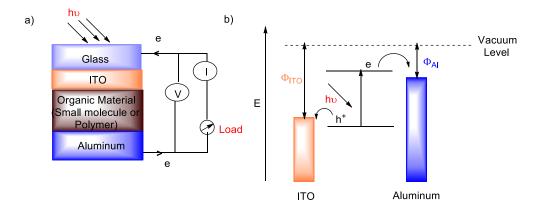

electricity. Some typical donor and acceptors used in the organic solar cells are shown in Figure 9.

Figure 9. Major donor polymers and acceptors used in the organic solar cells.

4.1.6.1 Single layer organic solar cell

The cell was made by sandwiching an organic material between the two metal conductors having high work function such as ITO and low work function such as aluminum, magnesium or calcium (Figure 10). The organic material absorbs the light which excites the electrons to the LUMO and leaves holes in the HOMO. The potential created by the different work functions of the metals splits the exciton pair. The electrons move to the positive electrode and holes to the negative electrode. The magnesium phthalocyanine (MgPc) used in the single layer solar cell (Al/MgPc/Ag) produces 0.01% efficiency.³⁶

166 Introduction

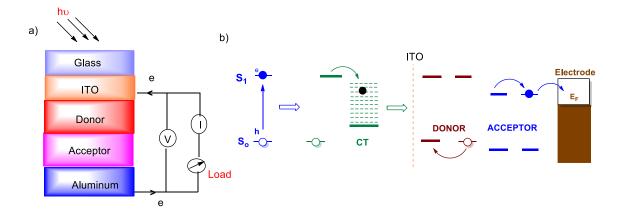


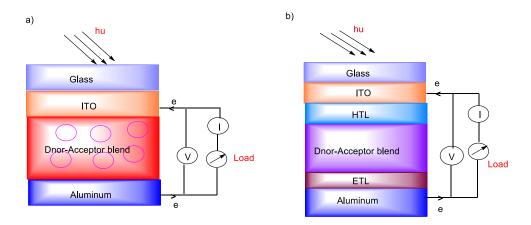
Figure 10. (a) Schematic diagram for single layer organic solar cell (b) Energy level diagram for organic solar cell.

The single layer cell using poly-3-methyl thiophene gave 0.15% power conversion efficiency.³⁷ Another single layer cell using the conjugated polymer polyacetylene gave 0.3% efficiency.³⁸ These types of cells produces low quantum efficiency (<1%) and less than 1% power conversion efficiency.

4.1.6.2 Bilayer or Planar donor-acceptor heterojunction

Bilayer cells are constructed by sandwiching two different layers contains donor and acceptor between two conductive electrodes (Figure 11 a). The difference in electron affinity and ionization energy of two layers could generate the electrostatic forces at the interface. The layers having high electron affinity and ionization energy are called as electron acceptor and electron donor, respectively. Tang *et al.* investigated copper phthalocyanine (CuPc) as an electron donor and perylene tetracarboxylic derivative as an acceptor in two layer organic cell which gave 1% power conversion efficiency.³⁹

Figure 11. (a) Schematic diagram for Bilayer organic solar cell (b) Energy level diagram for bilayer organic solar cell.


Perylene amide derivatives are chemically stable and have high electron affinity. Sariciftci and co-workers reported⁴⁰ that the use of C₆₀/MEH-PPV in double layer cell gave 0.04% power conversion efficiency. Here, C₆₀ acts as an acceptor and poly (2-methoxy-5-(2'-ethylhexyloxy- 1,4-phenylene-vinylene), MEH-PPV as a donor. The bilayer cell with donor polymer poly (p-phenylenevinylene), PPV and acceptor C₆₀ produces around 9% power conversion efficiency. ⁴¹

4.1.6.3 Bulk heterojunction solar cell

In organic photovoltaics the layer thickness is important for effective absorption of light. The increase of layer thickness increases the exciton diffusion pathway in the donor-acceptor interface. The exciton has shorter life time and it recombines before reaching the electrodes if thickness of the layer is more. In bulk-heterojunction cell, the exciton diffusion pathway is minimized by placing a mixture of electron donor and acceptor blend and it also increases the light absorption efficiency. The light absorbing layer of bulk heterojunction

168 Introduction

solar cell consists a blend of donor and acceptor materials. In bulk heterojunction the donor and acceptor are mixed together and deposited over the ITO electrode (Figure 12a).

Figure 12. (a) Schematic diagram for Bulk heterojunction solar cell (b) Use of buffer HTL and ETL layers

The active layer consists of conjugated donor and fullerene based acceptor. The efficiency of polymer photovoltaic cell (single layer cell) was improved by the introduction of fullerene based derivatives in bulk heterojunction. The cell with blend polymer MEH-PPV donor and fullerene acceptor as the heterojunction was reported.⁴² The device using Ca/MEH-PPV/PCBM/ITO gave 2.9% power conversion efficiency. It was reported that the introduction of poly (3-octylthiophene) P3OT in place of polymer MEH-PPV improved the quantum efficiency as well as power conversion efficiency.⁴³

Recently, it was reported⁴⁴ that the higher power conversion efficiency of 11% was obtained using thiophene based PTB7-Th polymer and PC₇₁BM as an acceptor. The use of donor MEH-PPV polymer and acceptor CN-PPV polymer in polymer/polymer blend heterojunction cell gave power conversion efficiency of 1% under monochromatic light.⁴⁵ It was found that the cell efficiency improved by incorporating hole conducting material such as

PEDOT:PSS.⁴⁶ The organic bulk heterojunction was further improved by sandwiching the active layer between the electron and hole transport material.^{47,48}

We have decided to examine the possibility of constructing an organic electrochemical cell with ground state electron transfer using readily accessible donor amines and acceptor quinones. The radical cation - radical anion intermediates formed in the reaction could lead to generation of electric current. To construct the cell, we have chosen the readily accessible aluminum foil (Al) and stainless steel or graphite as electrodes/current collectors.

Organic charge transfer complexes and electron transfer reactions from organic donors and acceptors were known for more than 60 years.⁴⁹ In recent years, attention was turned towards mostly solid state high conductivity or superconductivity of organic charge transfer salts. For instance, the highly conductive donor-acceptor complex of TTF-TCNQ was called as organic metal.⁵⁰ Recent reports reveal that these complexes have interesting and important semiconductor properties useful in the construction of electronic devices.⁵¹

The charge transfer complexes formed from the donor and acceptor in solution have entirely different properties compared to that of the parent compounds. Mechanistic schemes were proposed involving the formation of charge transfer (CT) complex followed by equilibrium involving formation of radical cation and anion pairs, dissociated ions in such organic electron transfer reactions (eq. 1).^{52a} The electron transfer kinetics were reconciled with an electron transfer process and formation of paramagnetic intermediates (eq. 2) without involving initial formation of a CT complex in a manner analogous to self-exchange (SE) of the D/D⁺ and A/A⁻ based on two state model.^{52b,c} Formation of radical cation and anion pairs followed by slow formation of CT complex was also considered in polar solvent (eq. 3).^{52a} The epr spectroscopic results obtained in present work (chapter 3) are in accordance with the initial formation of paramagnetic intermediates followed by formation of diamagnetic CT complexes (eq. 3).

$$D + A \xrightarrow{K_{CT}} \begin{bmatrix} D, A \end{bmatrix} \xrightarrow{hv_{CT}} \begin{bmatrix} D, A \end{bmatrix} \xrightarrow{hv_{CT}} \begin{bmatrix} D, A \end{bmatrix} \xrightarrow{hv_{CT}} (eq. 1)$$

$$CT complex \qquad ET complex$$

$$D + A \xrightarrow{K_{ET}} D + A \xrightarrow{D} + A \xrightarrow{ET} [D, A] \xrightarrow{hv_{CT}} (eq. 2)$$

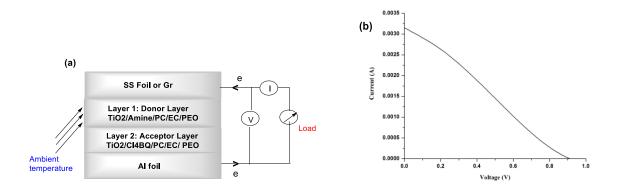
$$D + A \xrightarrow{r_{T}} D + A \xrightarrow{r_{T}} [D, A] \xrightarrow{r_{T}} (eq. 3)$$

In 1966, it was reported⁵³ that conductometric titration could be carried out by titrating a donor solution with an acceptor and the conductivity pass through a maximum when the donor and acceptor were present in the stoichiometry required for the formation of the CT complex.

Surprisingly, there was no attempt on the development of an electrochemical device based on transport of charges in these radical cation and anion pair species to the electrodes and regenerating the donor and acceptor for further electron transfer reaction. If the electron transfer from the amine donor to the quionone acceptor could happen reversibly, then the device would be useful in converting the heat around it continuously to electricity. Therefore, we have decided to construct the electrochemical cell using p-chloranil acceptor with amine or amide donors.

4.2.1 Construction of donor and acceptor electrochemical cell

We have selected the readily accessible acceptor quinones and donor amines to construct the electrochemical cell which can produce electricity from the surrounding heat without using visible light (Figure 13). We have already discussed that a variety of readily accessible, inexpensive and simple tertiary amine donors react with quinone acceptors like 1,4-benzoquinone, *p*-chloranil, 1, 4-naphthoquinone and 2,3-dichloro-1,4-naphthoquinone to give paramagnetic intermediates.


Figure 13. Donors and acceptors used in the electrochemical cell studies.

We have selected the highly electron deficient *p*-chloranil **2** as acceptor for detailed studies as it acts as an acceptor even with tertiary amides (Figure 13). Also, we have selected the donors like *N*,*N*'-tetramethyl-1,4-phenylenediamine (TMPDA) **22**, triphenylamine (TPA) **23**, 1,4-diazabicyclo[2.2.2]octane (DABCO) **24**, *N*, *N*-diisopropylethylamine (DIPEA) **25** and *N*,*N*-diisopropylbenzamide (DiPrBA) **26** for the construction of the electrochemical cell (Figure 13).

4.2.1.1 Two Layer Cell Configuration

After extensive experimentation, we have found that the cells can be easily constructed by making donor and acceptor pastes using TiO₂, polyethylene oxide (PEO) and propylene carbonate (PC) for coating on commercially available Al (0.2mm x 5cm x 5cm) and SS (SS 304, 0.05mm x 5cm x 5cm) foils or graphite sheet (0.4mm x 5cm x 5cm). Initially, a simple two layer cell was constructed using Al and SS foils. The mixture of TiO₂, *p*-chloranil, PC, EC and PEO was coated on Al foil and the mixture of TiO₂, amines, PC, EC and PEO was coated on SS foil. The foils were then sandwiched to construct the electrochemical cell. The configuration of this two layers electrochemical

cell is almost similar to the bi-layer in organic solar cell⁵⁴ but the electron transport would have contributions from both ionic conduction and also through exchange reactions involving D/D⁻⁺ and A⁻/A with formation of corresponding charge transfer complexes (CT 1, CT 2 and CT 3). The current (I) and voltage (V) characteristics observed for the cells using different amines are summarized in the experimental section in Table ES1 (ES: Experimental Section), entries 1-3.

At 28°C, With SS Foil Cathode

With Graphite Cathode:

DIPEA	Pmax=0.756mW/FF=0.263	DIPEA	Pmax=1.415mW/FF=0.235
DABCO	Pmax=0.665mW/FF=0.233	DABCO	Pmax=0.139mW/FF=0.194
TPA	Pmax=0.306mW/FF=0.254	TPA	Pmax=0.794mW/FF=0.240

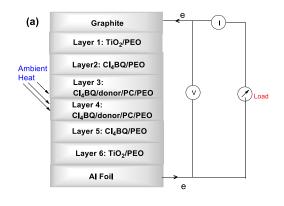
(c)

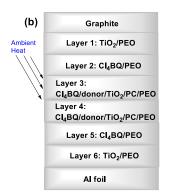
Gr

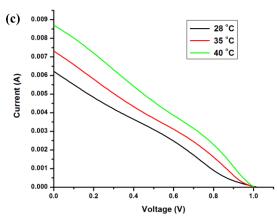
$$e$$
 TiO_2
 N
 PC
 CI
 CI

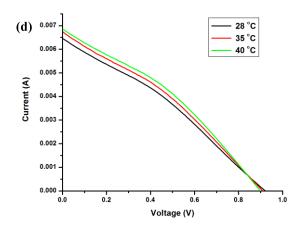
Figure 14. (a) Schematic diagram of cell with two layer configuration (b) Representative IV curve for the two layer cell (Table ES1, entry 1, DIPEA donor). (c) Tentative mechanism for electron transport via D/D⁻⁺ and A⁻/A exchange reactions.

The representative IV curve for this cell is shown in Figure 14b for the cell in (Pmax = 0.756 mW, FF=0.263). Similarly, the cells prepared using amines DABCO and TPA with *p*-chloranil gave power output of 0.665 mW with FF=0.233 and 0.306 mW with FF=0.254, respectively.


However, visible holes were formed on the SS foil indicating corrosion, probably due to the formation of Fe²⁺-amine species by the reaction of SS foil with the amine radical cation present in the reaction mixture. We then constructed the cell with similar configuration using Al foil (0.2mm x 5cm x 5cm) anode and graphite (0.4mm x 5cm x 5cm) cathode. The results obtained are summarized in the experimental section in Table ES1, entries 4-6. The cells constructed did produce power in these cases (Table ES1, Figure 14), but there was only very little or no power output after 24 h. A possibility is that ionic conduction may lead to the deposition of the radical ion pairs on the respective electrodes which may not dissolve back into the solution preventing reversible equilibrium necessary for continued power generation. Also, the formation of amine-*p*-chloranil CT complex to more extent may lead to reduction in power output, especially if this complex precipitates out of the PC solution.


4.2.1.2 Multi-layer cell configuration


We have then decided to construct multi-layer cell to improve the performance of the cell. Recently, there were several reports⁵⁵⁻⁶¹ that the stability of the solar cells improved by coating additional buffer layers or electrode interfacial layer using metal oxides like TiO₂.


Accordingly, we have constructed the cells in two different configurations (Figure 15a and 15b) by coating TiO₂/PEO on both electrodes, followed by coating of Cl₄BQ/PEO on TiO₂/PEO/Al and TiO₂/PEO/Gr. Then, the Cl₄BQ/Amine/PC/PEO (Figure 15a) or

Cl₄BQ/Amine/PC/TiO₂/PEO pastes (Figure 15b) coated above the Cl₄BQ/PEO layers. The results are summarized in Table ES2, entries 1-10.

1 h after packing

Donor	Pmax/mW/FF(40 °C)
TMPDA	1.469/0.221
TPA	1.333/0.255
DABCO	5.492/0.313
DIPEA	5.695 /0.296
DiPrBA	2.198/0.260

Donor	$Pmax/mW/FF(40~^{\circ}C)$
TMPDA	3.099/0.261
TPA	0.375/0.245
DABCO	6.155/0.206
DIPEA	8.147/0.347
DiPrBA	4.193/0.295

48 h after packing

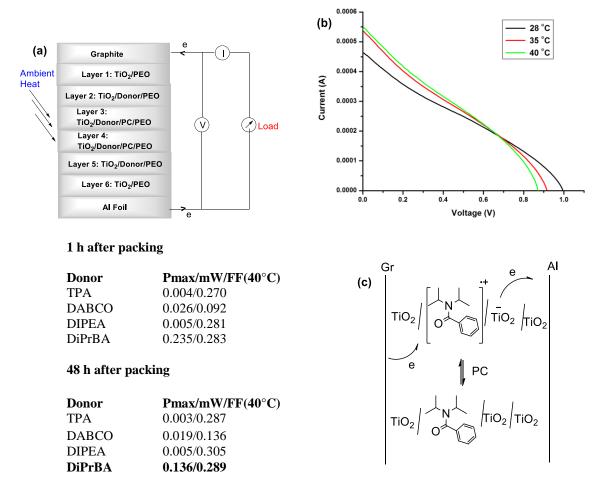
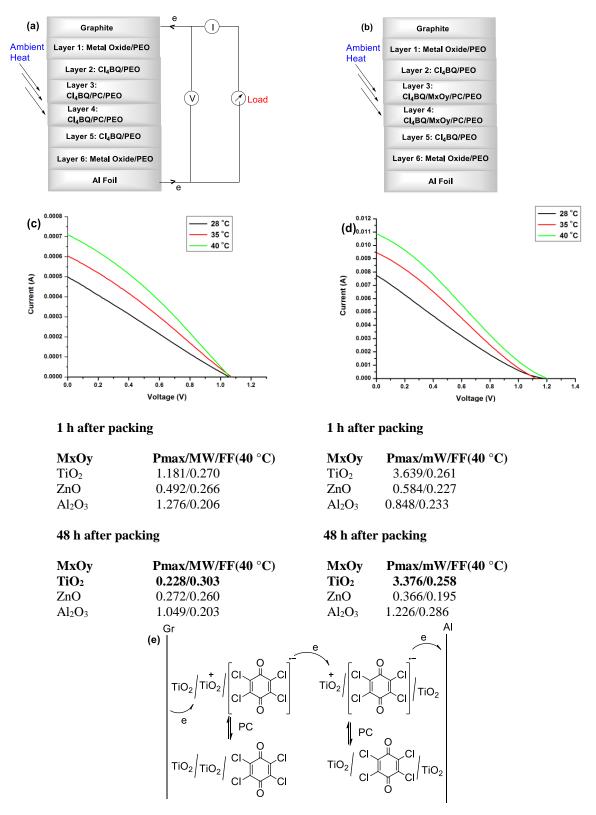

Donor	Pmax/mW/FF(40 °C)	Donor	Pmax mW/FF(40°C)
TMPDA	0.790/0.309	TMPDA	1.822/0.250
TPA	0.428/0.285	TPA	0.142/0.256
DABCO	2.320/0.267	DABCO	1.216/0.249
DIPEA	2.228 /0.347	DIPEA	2.057/0.334
DiPrBA	1.047/0.261 (35 °C)	DiPrBA	2.969/0.273

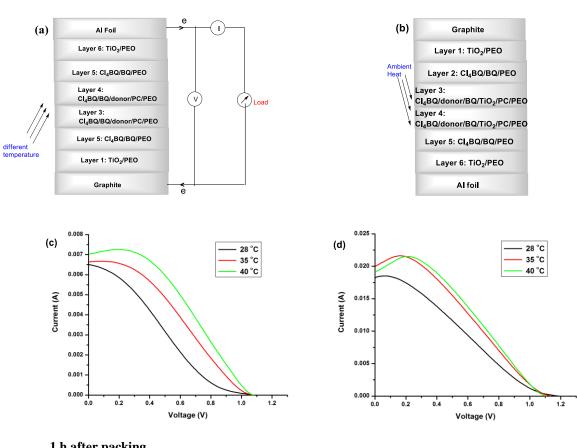
Figure 15. (a) Schematic diagram of multi-layer with Cl₄BQ/donor/PC/PEO configuration and (b) Schematic diagram of multi-layer with Cl₄BQ/donor/PC/TiO₂/ PEO configuration (c) Representative IV curve for the cell (Table ES2, entry 3, DABCO donor) after 48 h packing (d) Representative IV curve for the cell (Table ES2, entry 9, DIPEA donor) after 48 h packing (e) Tentative mechanism for electron transport to the electrodes via D/D.+ and A-/A exchange reactions.


The IV-data were recorded after 1 h and 48 h after packing. The higher power outputs (Pmax) were observed 1 h after packing compared to that observed after 48 h. Presumably, the power output becomes less as the initially formed amine radical cations and *p*-chloranil anions are converted to the corresponding charge transfer complex (CT 1) (Figure 15e). The complexes CT 2 and CT 3 may also contribute to the conduction. The data for the cells with similar configuration with additional TiO₂ in PC layer (Figure 15b) are summarized in Table ES2, entries 6-10.

The data (Table ES2) indicate that increase in the temperature of the cell (from 28 °C to 40 °C) increases the power output due to increase in the rate of electron transfer between the donor-acceptor and also dissociation of formed charge transfer complexes into radical ion pairs. Also, the increase in temperature would help in crossing the activation energy barrier for transport of ions to the electrodes and hence would improve the conductance.

The TiO₂ rutile and TiO₂ and anatase were reported to have very high electron affinities of 4.8eV and 5.1eV, respectively.^{62a,b} It was also reported that the TiO₂ surface could donate or accept electrons depending on the nature of the adsorbed molecules.^{62c} Accordingly, it was of interest to us to examine whether the donors used in the cell experiments could produce power by interaction with TiO₂ without using *p*-chloranil. Indeed, this was observed and diisopropylbenzamide gave slightly higher power upon interaction with TiO₂ (Figure 16). Presumably, the interactions outlined in Figure 16c may also play a role in the reaction and transport of charge carriers using *p*-chloranil.

Figure 16. (a) Schematic diagram of multi-layer cell with TiO₂/donor without Cl₄BQ (b) Representative IV curve for the cell (Table ES3, entry 4, DiPrBA donor) (c) Tentative mechanism for electron transport.


Figure 17. (a) Schematic diagram of multi-layer cell with metal oxide in edge layers (b) multi-layer cell with metal oxide in edge layers and also in PC layer (c) Representative IV curve for the cell (Table ES4, entry 1, TiO₂ donor) (d) Representative IV curve for the cell (Table ES4, entry 4, TiO₂ donor) (e) Tentative mechanism for electron transport.

Previously, there were also reports on the formation paramagnetic intermediates when *p*-chloranil was adsorbed on the surface of TiO₂.⁶³ Such intermediates may play a role in the electron transport at the interfaces, thus improving the performance of the device. The TiO₂ sample used in the present studies did not give paramagnetic species with *p*-chloranil. However, we have also constructed the cell without using other donors. Interestingly, the cells constructed using the metal oxides TiO₂, Al₂O₃ and ZnO in the configurations shown in Figure 17a and 17b without using donor amines or amide did produce power with TiO₂ giving higher power when it is present in the middle PC layers (Figure 17b). The results indicate that the metal oxides transfer electron to *p*-chloranil as visualized in Figure 17e. This may also play a role in the transport of charges in the cells using donors.

We have observed that in the cells constructed using different donors and p-chloranil acceptor (Figure 15 and Figure 17), the power output decreases with time. Possibly, the chloranil radical anion may get deposited on the Al electrode and the p-chloranil may not fully dissolve back in the PC solvent (only 0.03 g p-chloranil soluble in 1 mL PC), thus preventing the reversible formation of amine or amide radical cation and p-chloranil radical anion.

The *p*-chloranil has a very high electron affinity (EA) of 2.78eV.⁶⁴ Interestingly, it was reported that anion radicals of molecules with lower electron affinity are solvated to more extent.^{64a} Therefore, we have carried out experiments using *p*-benzoquinone (BQ) which has lower electron affinity (EA=1.91eV) to examine whether the chloranil anion radical can transfer electron to BQ to form the corresponding radical anion for further electron transport to the Al electrode. Also, the BQ is more soluble in PC solvent (0.1 g BQ soluble in 1 mL PC) which may be also helpful. We have carried out experiments by

constructing the cell in two different configurations, Figure 18a and 18b. Some improvements were observed in the power outputs, but still the Pmax values decreased with time (Figure 18a and 18b). Presumably, the more soluble BQ accepts electrons from p-chloranil anion radical effectively for transporting to the Al electrode improving the power output to some extent. The results of cells 18a and 18b are summarized in Table ES 5, entries 1-10.

1 h after packing

Donor	Pmax(mW)/FF(40 °C)	Donor	Pmax(mW)/FF(40 °C)
TMPDA	2.175/0.276	TMPDA	1.614/0.282
TPA	1.752/0.240	TPA	0.939/0.219
DABCO	5.391/0.391	DABCO	4.806/0.432
DIPEA	8.229/0.229	DIPEA	11.74/0.296
DiPrBA	1.714/0.243	DiPrBA	1.871/0.232

48 h after packing

	Donor	Pmax(mW)/FF(40 °C)	Donor	Pmax(mW)/FF(40 °C)
	TMPDA	1.205/0.273	TMPDA	1.299/0.263
	TPA	1.216/0.240	TPA	0.728/0.219
	DABCO	3.023/0.399	DABCO	3.776/0.434
	DIPEA	2.074/0.231	DIPEA	8.338/0.394
	DiPrBA	1.534/0.258	DiPrBA	1.411/0.243
(e)	$\begin{array}{c c} Gr & O & CI \\ \hline TiO_2/CI & O & CI \\ \hline \end{array}$	PC PC CI	PC CI CI CI	$ \begin{array}{c} O \\ O \\ O \\ O \end{array} $ $ \begin{array}{c} O \\ O \\ O \\ O \end{array} $ $ \begin{array}{c} AI \\ TiO_2 \\ CT-4 \end{array} $

Figure 18. (a) Schematic diagrams of multi-layer cell using BQ along with p-chloranil without TiO₂ in PC layer (b) multilayer cell using BQ along with p-chloranil with TiO₂ in PC layer (c) Representative IV curve for the cell (Table ES5, entry 3, DABCO donor) and (d) Representative IV curve for the cells (Table ES5, entry 9, DIPEA donor) (e) Tentative mechanism for electron transport to the electrodes via D/D.+ and A-/A exchange reactions.

As discussed in Chapter 3, epr spectral studies indicated that the radical ions are transformed to charge transfer complexes with time. This could account for the reduction of current and Pmax values with time as the concentration of radical ions would be lesser with time. One way to prevent the formation of such charge transfer complexes is to remove the charges from the radical ions by using the cells to charge a rechargeable battery. The results obtained on the performance of the cells while charging a rechargeable Ni-Cd battery is summarized in Table 1.

The performance of the cells with configurations as in Figures 18a and 18b using BQ improved when the cells were used for charging batteries (Table 1, entries 3 and 4)

compared to cells with configurations without using BQ (Figures 15a and 15b, Table 1, entries 1 and 2) indicating that the BQ may transport the electron from the *p*-chloranil radical anion as it is formed thus preventing the formation of the corresponding CT complex which otherwise would reduce the concentration of radical ions with time. The electron acceptor BQ would accept electron from the *p*-chloranil radical anion as the corresponding anion radical formed from these compounds with lower EA are expected to interact with solvents to more extent, preventing the formation of CT complex. In case of DABCO (Table 1, entry 5) there was not much power output was observed. This may be due to the formation of stronger charge transfer complex with *p*-chloranil thus preventing the reversible reaction for charge transport. The donor DIPEA gives higher power output for longer time in these configurations compared to other donors. This may be due to the formation of more amount of radical ion pairs in case reaction of DIPEA with *p*-chloranil as revealed by epr spectroscopic studies. Further, it is sterically hindered and hence formation of CT 1 complex may be also difficult.

Table 1. Performance of Cells by Charging Ni-Cd Battery after packing.^a

entry	Figure/Donor	Pmax/mW/FF at 40 °C/1 h	Pmax/mW/FF at 40 °C/48 h	Pmax/mW/FF at 40 °C/144 h
1 ^b	15(a)/DIPEA	8.988/0.300	2.893/0.473	1.738/0.391
2 ^b	15(b)/DIPEA/TiO ₂	7.626/0.286	2.911/0.437	2.027/0.366
3°	18(a)/DIPEA/BQ	17.49/0.189	13.46/0.239	14.57/0.260
4 ^c	18(b)/DIPEA/BQ/TiO ₂	13.21/0.172	12.77/0.270	10.65/0.277
5°	18(b)/DABCO/BQ/TiO ₂	4.022/0.413	2.733/0.316	1.291/0.160
6°	18(b)/TMPDA/BQ/TiO ₂	1.883/0.279	0.620/0.249	0.373/0.248
7°	18(b)/TPA/BQ/TiO ₂	0.985/0.255	0.855/0.231	0.698/0.218
8°	18(b)/DiPrBA/BQ/TiO ₂	2.606/0.238	1.660/0.234	0.592/0.223

^aAfter packing the cell was connected immediately to charge a Ni-Cd battery through Zener diode and disconnected while carrying out the IV-curve measurement (Table ES6 and ES7). The battery connection was removed from the cell after 48 h. ^bConfiguration without BQ. ^cConfiguration with BQ.

Also, charging the rechargeable battery would lead to removal of charges from the radical ions, resulting in the recycling of the neutral species for continuous reactions. The donors TMPDA, TPA and DiPrBA which are relatively weak donors and also produce lower power output as concentration of radical ion formed may also be lower (Table 1, entries 6, 7 and 8).

In recent years, there have been several reports on the conversion of low-grade waste heat (<130 °C) to electricity by thermally regenerative electrochemical cycles. ^{65a,b} A thermoelectrochemical device based on ferrocene-iodine redox couple was also reported, but the device produced only $\mu W/m^2$ power with respect to the electrode surface area. 65c The power density of the cell in this case was calculated by using the amount of power produced with respect to the electrode surface area. The cell constructed from the donor DIPEA (Table 1, entry 3) gave power density at 40 °C was 0.5384 mW/cm² or 5.384 W/m² (13.46 mW (Pmax)/25 cm² (electrode surface area)). The methods reported in the literature for construction of the devices are very complex compared to methods described here. In the present case, the device utilizes very inexpensive materials that are already manufactured in large scale. Further, since there are established methods are available for heating air at even below 0 °C to 40 °C using solar radiation and methods available for storing solar heat in simple chemicals like aq. NaOH, CaCl₂ and methods are also available for using these solar heat stored materials for heating the air to 40 °C to 60 °C,66 the present low/ambient heat harvesting electricity producing cell device has potential for use 24x7 in all seasons, day and night.

4.3 Conclusions

We have developed a simple method and device for constructing the electrochemical cell based on ground state electron transfer reaction of amine or amide donor and *p*-chloranil acceptor in various configurations. These low/ambient heat harvesting electricity producing and air cooling cells can be readily stacked.

The present case, the device utilizes very inexpensive materials and hence has potential for household, automobile and large scale applications. However, long term performance of this cell device remains to be established and there is plenty of scope for further research and developments to improve the performance of this device. Accordingly, the low/ambient heat to electricity converting electrochemical system disclosed here has the potential to meet the increasing energy requirements without having to burn fossil fuels. Systematic studies are required for improving the stability of the cells with different electron donors, acceptors and electron transporters. Additional studies may be also required for studies on corrosion of electrodes by radical ions formed.

4.4 Experimental Section

4.4.1 General Information

P-Chloranil, N, N-diisopropylethylamine (DIPEA), 1,4-diazabicyclo[2.2.2]octane (DABCO), P-benzoquinone (BQ), and TiO₂ were purchased from Avra chemicals (India). Triphenvlamine (TPA), *N,N*'-tetramethyl-1,4-phenylenediamine (TMPD), carbonate (PC), ethylene carbonate (EC) and polyethylene oxide (PEO) were purchased from Sigma Aldrich. Netural alumina (Al₂O₃) was purchased from SRL chemicals, India. Zinc oxide (ZnO) was purchased from E-Merck, India. The metal oxides were heated at 150 °C in a vacuum oven for 2 h before use. PC and EC were always kept under molecular sieves. N, Ndiisopropylbenzamide was prepared from the literature procedure. Graphite sheet (0.4mm thickness, 5cm x 5cm, Resistivity, $\rho = 2x10^{-4}\Omega$.m) was purchased from Falcon Graphite Industries, Hyderabad, India. Aluminium Foil (0.2mm thickness, 5cm x 5cm, Resistivity, $\rho =$ $2x10^{-5}\Omega$.m) and Stainless steel (0.4mm thickness, 5cm x 5cm, Resistivity, $\rho = 5x10^{-4}\Omega$.m) were purchased from Aluminium Enterprises and Rasik Metals, Hyderabad, India. EPR spectra was recorded on a Bruker-ER073 instrument equipped with an EMX micro X source for X band measurement using Xenon 1.1b.60 software provided by the manufacturer. Electrical measurements were carried out by ZAHNER instrument using CIMPS software. The current-voltage curve was drawn using Origin software.

4.4.2 Procedure for preparation of diisopropyl benzamide

In an oven dried RB flask, the diisopropyl amine (20 mmol) in dry dichloromethane (60 mL) solvent was taken and triethylamine (2.1 mL, 21 mmol) was added slowly at room temperature with constant stirring. Then the reaction mixture was stirred for 1 h and corresponding benzoyl chloride (20 mmol) was added at 0° C. Then the reaction mixture was brought to room temperature and it stirred for 8 h. The mixture was quenched with saturated ammonium chloride solution and the organic layer was separated. The organic layer was extracted with dichloromethane (2x50 mL). The combined organic extracts were washed with saturated NaCl solution (15 mL) and dried over anhydrous Na₂SO₄. Then the solvent was evaporated to get the crude product. The corresponding crude amide product was purified by column chromatography on silica gel (100-200) using hexane and ethyl acetate as eluent to isolate pure amide product.

N, *N*-diisopropylbenzamide

Yield : 3.48 g (85%).

IR (neat) :(cm⁻¹) 2970, 2937, 1627, 1446, 1342, 1222, 1156, 1041, 739.

N O Ph

 1 H NMR :(400 MHz, CDCl₃, δ ppm): 7.36 (m, 3H), 7.31 (m, 2H), 3.75 (s, 2H), 1.35 (s,

12H).

¹³C NMR :(100 MHz, CDCl₃, δ ppm) 171.0, 138.9, 128.5, 128.4, 125.5, 50.8, 45.7, 20.7.

4.4.3 Preparation of Electrochemical Cells

Simple solution processing and casting techniques were followed for the construction of the cell device.

Table ES1. Cell Configuration 1

The PEO (0.2 g) was dissolved in dichloromethane and mixed with TiO₂ (1 g) powder. DCM was removed to obtain a paste. The *p*-chloranil (0.5 g), PC (0.5 g) and EC (0.5 g) were added to the above made paste and it was cast over the Al (0.2mm thickness, 5x5 cm²). The layer was dried in air at room temperature overnight. Similarly, PEO (0.2 g), TiO₂ (1 g) powder, donor amine (2 mmol), PC (0.5 g) and EC (0.5 g) were mixed and cast above SS (0.05 mm thickness, 5x5 cm²) or Graphite (0.4 mm thickness, 5x5 cm²). The layer was dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/SS or Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES2. Cell Configuration 2

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (0.1g) /PC (0.5 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell

prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES2. Cell Configuration 3

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (1 mmol)/PC (0.5 g)/TiO₂ (0.25 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES3. Cell Configuration 4

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al and Graphite foils. After 1 h, TiO₂ (0.25 g)/donor (1 mmol)/PEO (0.05 g) in DCM was coated on TiO₂ (0.5 g)/PEO/Al and TiO₂ (0.5 g)/PEO/Gr and dried. The donor (1 mmol)/TiO₂ (0.25 g)/PC (0.5 g)/PEO(0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES4. Cell Configuration 5

The PEO (0.05 g) was dissolved in dichloromethane and mixed with metal oxide (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on metal oxide/PEO/Al and metal oxide/PEO/Gr and dried. The Cl₄BQ (0.025 g)/PC (0.5 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES4. Cell Configuration 6

The PEO (0.05 g) was dissolved in dichloromethane and mixed with metal oxide (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on metal oxide (0.5 g)/PEO/Al and metal oxide (0.5 g)/PEO/Gr and dried. The Cl₄BQ (0.025 g)/metal oxide (0.5 g)/PC (0.5 g)/PEO(0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES5. Cell Configuration 7

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and

TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (0.1g)/BQ (0.1 g)/PC (0.5 g)/ BQ (0.1 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES5. Cell Configuration 8

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (1 mmol)/PC (0.5 g)/BQ (0.1 g)/TiO₂ (0.25 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape.

Table ES6. Cell Configuration 9

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (0.1g) /PC (0.5 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature

overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape. After packing the cell was connected immediately to charge a Ni-Cd battery through a Zener diode. It was disconnected while carry out the IV-curve measurement.

Table ES6. Cell Configuration 10

The PEO (0.05 g)was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (1 mmol)/PC (0.5 g)/TiO₂ (0.25 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape. After packing the cell was connected immediately to charge a Ni-Cd battery through a Zener diode. It was disconnected while carry out the IV-curve measurement.

Table ES7. Cell Configuration 11

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/PEO (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (0.1g)/BQ (0.1 g)/PC (0.5 g)/ BQ (0.1 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite

and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape. After packing the cell was connected immediately to charge a Ni-Cd battery through a Zener diode. It was disconnected while carry out the IV-curve measurement.

Table ES7. Cell Configuration 12

The PEO (0.05 g) was dissolved in dichloromethane and mixed with TiO₂ (0.5 g) powder. DCM was removed to obtain a paste for coating on Al or Graphite foils. After 1 h, Cl₄BQ (0.1 g)/BQ (0.1 g)/PEO (0.05 g) in DCM was coated on TiO₂/PEO/Al and TiO₂/PEO/Gr and dried. The Cl₄BQ (0.025 g)/donor (1 mmol)/PC (0.5 g)/BQ (0.1 g)/TiO₂ (0.25 g)/PEO (0.05 g) slurry was prepared and casted above the coated layer on Al and Graphite and dried in air at room temperature overnight. The cell was prepared by sandwiching the coated Al/Gr layers. The rim of the cell prepared in this way was sealed all around using TiO₂/PEO paste, then with commercial adhesive Bondfix (India) and covered with cellophane tape. After packing the cell was connected immediately to charge a Ni-Cd battery through a Zener diode. It was disconnected while carry out the IV-curve measurement.

Table ES1. Cell Experiments – Two Layer Configuration

	Cell Conf	iguratio	n 1				
	Layer 1: Don TiO ₂ /Amine/I Layer 2: Acc: TiO ₂ /CI4BQ/F Ambient temperature Al fo	or Layer PC/EC/PEO eptor Layer PC/EC/ PEO	e	V Z) Load		
Entry	SS (or Gr)/Layers/Al	Voc (V)	Isc (mA)	Vmax (V)	Imax (mA)	Pmax (mW)	Fill Factor
1 1638A	SS Layer1: TiO ₂ (1g) + DIPEA(2mmol,0.34ml) + PC(0.5g)+EC(0.5g)+ PEO(0.2g) Layer2: TiO ₂ (1g)+ Cl ₄ BQ(2 mmol,0.5g) + PC(0.5g)+EC(0.5g)+ PEO(0.2g) Al	0.912	3.150	0.419	1.805	0.756	0.263
2 1639A	SS Layer1: TiO ₂ (1g) + DABCO(2mmol,0.22g) + PC(0.5g)+EC(0.5g)+ PEO(0.2g) Layer2: TiO ₂ (1g)+ Cl ₄ BQ(2 mmol,0.5g) + PC(0.5g)+EC(0.5g)+ PEO(0.2g) Al	0.723	3.942	0.358	1.860	0.665	0.233
3 1638	SS Layer1:TiO ₂ (1g)+TPA(2mmol,0.5g)+PC(0.5g)+ EC(0.5g)+ PEO(0.2g) Layer2:TiO ₂ (1g)+Cl ₄ BQ(2mmol,0.5g)+PC(0.5 g) + EC(0.5g)+ PEO(0.2g) Al	0.833	1.446	0.396	0.778	0.306	0.254
4 1634	$\label{eq:continuous} \begin{split} &\text{Gr}\\ &\textbf{Layer1:} \ \text{TiO}_2(1g) + \text{DIPEA}(2\text{mmol},0.34\text{ml}) + \\ &\text{PC}(1g) + \text{PEO}(0.2g) \\ &\textbf{Layer2:} \ \text{TiO}_2(1g) + \text{Cl}_4 \text{BQ}(2\ \text{mmol},0.5g) + \\ &\text{PC}(1g) + \text{PEO}(0.2g) \\ &\text{Al} \end{split}$	1.152	5.237	0.507	2.795	1.415	0.235
5 1661A	$eq:continuous_continuous$	1.070	0.671	0.446	0.313	0.139	0.194
6 1634A	Gr Layer1: TiO ₂ (1g) + TPA(2mmol,0.5g) + PC(1g)+ PEO(0.2g) Layer2: TiO ₂ (1g)+ Cl ₄ BQ(2 mmol,0.5g) + PC(1g)+ PEO(0.2g) Al	1.147	2.882	0.518	1.535	0.794	0.240

^aLayer 1 was coated above SS electrode and Layer 2 was coated above Al. ^cAll the cells were characterized by IV curve measurement.

Cell Configuration 2: Cell Configuration 3: (Without TiO₂ in PC layer) (With TiO₂ in PC layer) Graphite Graphite Layer 1: TiO₂/PEO Layer 1: TiO₂/PEO Ambient Layer2: CI₄BQ/PEO **Ambient** Layer 2: Cl₄BQ/PEO Layer 3: Layer 3: Cl₄BQ/donor/PC/PEO CI₄BQ/donor/TiO₂/PC/PEO (A) Load Layer 4: Layer 4: CI₄BQ/donor/PC/PEO Cl₄BQ/donor/TiO₂/PC/PEO Layer 5: Cl₄BQ/PEO Layer 5: Cl₄BQ/PEO Layer 6: TiO₂/PEO Layer 6: TiO₂/PEO Al Foil Al foil Time T °C° Vmax Fill Voc Isc Pmax Entry Cell Configuration after Imax (V) (mA) (mW) packing (V) (mA) Factor 1h 28 °C 0.863 6.151 0.395 2.980 1.176 0.221 2812 Layer1: $TiO_2(0.5g) + PEO(0.05g)$ Layer2: Cl4BQ(0.1g) + PEO (0.05g) 35 °C 0.840 6.219 0.422 3.096 1.305 0.255 Layer3:Cl₄BQ(0.025g)+TMPDA(0.1g) +PC(0.5g) + PEO(0.05g)40 °C 0.830 6.510 0.434 3.382 1.469 0.272 Layer4:Cl₄BQ(0.025g)+TMPDA(0.1g) 48h 28 °C 0.782 0.353 2.364 1.058 0.373 0.202 +PC(0.5g) + PEO(0.05g)Layer5: Cl4BQ(0.1g)+PEO(0.05g) 35 °C 3.052 0.332 0.254 0.765 1.789 0.593 Layer6: $TiO_2(0.5g) + PEO(0.1g)$ A1-----40 °C 0.759 3.370 0.370 0.790 0.309 2.138 96h 28 °C 0.780 1.189 0.431 0.468 0.201 0.218 1h 28 °C 1.098 0.269 2811 Layer1: $TiO_2(0.5g) + PEO(0.05g)$ Layer2: Cl4BQ(0.1g) + PEO (0.05g) 35 °C 1.093 3.640 0.547 1.921 1.050 0.264 Layer3:Cl₄BQ(0.025g)+TPA(0.1g) +PC(0.5g) + PEO(0.05g)40 °C 1.101 4.756 0.536 1.333 0.255 Layer4:Cl₄BQ(0.025g)+TPA(0.1g) 48h 28 °C 1.055 1.031 0.510 0.535 0.273 0.251 +PC(0.5g) + PEO(0.05g)Layer5: Cl4BQ(0.1g)+PEO(0.05g) 35 °C 1.031 1.210 0.524 0.641 0.336 0.266 Layer6: $TiO_2(0.5g) + PEO(0.1g)$ 40 °C 1.044 1.443 0.555 0.772 0.428 0.285 96h 28 °C 1.039 0.574 0.495 0.296 0.146 0.246 Gr-----1h 28 °C 0.907 15.80 0.396 7 541 2.986 0.208 2810 Layer1: $TiO_2(0.5g) + PEO(0.05g)$ 35 °C 1.052 17.01 0.575 9.478 5.445 0.304 Layer2: C14BQ(0.1g) + PEO(0.05g)Layer3: $Cl_4BQ(0.025g) + DABCO(0.11g)$ 40 °C +PC(0.5g) + PEO(0.05g)1.039 16.87 0.629 8.727 5 492 0.313 Layer4:Cl₄BQ(0.025g) + DABCO (0.11g) 48h 28 °C 1.017 6.203 0.520 2.986 1.553 0.246 +PC(0.5g) + PEO(0.05g)Layer5: Cl4BQ(0.1g)+PEO(0.05g) 35 °C 1.004 7.302 0.256 0.560 3.349 1.874

40 °C

1.003

8.679

0.561

4.137

2.320

0.267

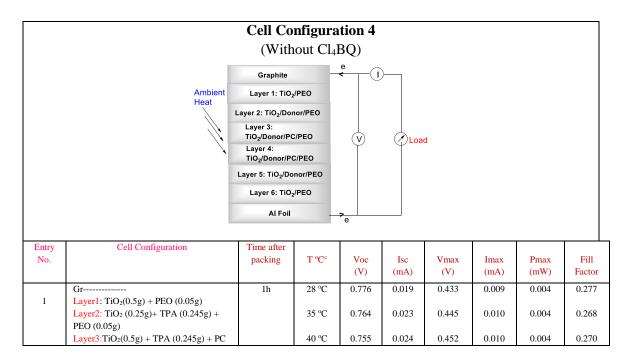

Layer6: $TiO_2(0.5g) + PEO(0.1g)$

Table ES2. Cell Experiments: TiO₂ edge layer, Cl₄BQ + donor in PC layers

		96h	28 °C	0.999	4.100	0.469	2.053	0.962	0.235
						21122		*****	
		11	20.00	1.110	6.467	0.521	2 2 4 4	1.724	0.240
4 2809	Gr Layer1: TiO ₂ (0.5g) + PEO (0.05g)	1h	28 °C	1.110	6.467	0.531	3.244	1.724	0.240
2007	Layer2: C14BQ(0.1g) + PEO (0.05g)		35 ℃	1.090	6.134	0.536	3.364	1.804	0.270
	Layer3: Cl ₄ BQ(0.025g) + DIPEA (0.13g)								
	+PC(0.5g) + PEO(0.05g)	401	40 °C	1.104	17.43	0.601	9.472	5.695	0.296
	Layer4: Cl ₄ BQ(0.025g) + DIPEA (0.13g) +PC(0.5g) + PEO(0.05g)	48h	28 °C	1.030	5.378	0.526	3.132	1.648	0.297
	Layer5: Cl4BQ(0.1g)+PEO(0.05g)		35 °C	1.010	6.142	0.561	3.654	2.050	0.330
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)				- 440				
	Al	96h	40 °C 28 °C	0.966 0.975	6.448 3.187	0.577 0.501	3.862 1.881	2.228 0.942	0.347
		9011	28 C	0.973	3.167	0.501	1.001	0.942	0.303
5	Gr	1h	28 °C	1.181	6.360	0.545	3.116	1.699	0.226
2793	Layer1: $TiO_2(0.5g) + PEO(0.05g)$		25.00	1 147	7.527	0.524	2.050	2.110	0.245
	Layer2: Cl ₄ BQ(0.1g) + PEO(0.05g) Layer3: Cl ₄ BQ(0.025g) + DiPrBA (0.1g)		35 °C	1.147	7.527	0.534	3.950	2.110	0.245
	+PC (0.5g) +PEO(0.025g)		40 °C	1.157	7.317	0.576	3.820	2.198	0.260
	Layer4: Cl ₄ BQ(0.025g) + DiPrBA(0.1g) +	401	20.00	1.054	2.1.15	0.512	1.500	0.022	0.242
	PC (0.5g) +PEO(0.025g) Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g)	48h	28 °C	1.074	3.147	0.512	1.608	0.822	0.243
	Layer6: TiO ₂ (0.5g) + PEO(0.05g)		35 °C	1.069	3.748	0.532	1.968	1.047	0.261
	Al	96h	28 °C	0.913	1.620	0.451	0.844	0.380	0.257
			20.00	0.005	10.55	0.412	5012	2055	0.225
6	Gr Layer1: TiO ₂ (0.5g) + PEO(0.05g)	1h	28 °C	0.897	13.56	0.413	6.912	2.855	0.235
3012	Layer2: Cl ₄ BQ(0.1g) + PEO(0.05g)		35 ℃	0.883	12.60	0.445	6.717	2.986	0.269
	Layer3: TMPDA (0.166g) +								
	Cl ₄ BQ(0.025g) +PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)	401	40 °C 28 °C	0.822	14.43	0.394	7.876	3.099 1.449	0.261
	Layer4: TMPDA (0.166g) +	48h	28 C	0.884	6.98	0.402	3.603	1.449	0.235
	Cl ₄ BQ(0.025g) + PC (0.5g) +PEO(0.05g) +		35 ℃	0.877	7.687	0.431	3.905	1.682	0.250
	TiO ₂ (0.25g) Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g)		40.0C	0.000	0.226	0.464	2.020	1.022	0.250
	Layer6: TiO ₂ (0.5g) + PEO(0.05g)	96h	40 °C 40 °C	0.888	8.226 5.079	0.464	3.928 2.211	1.822 0.975	0.250
	Al	7011		0.051	0.075	01	2.211	0.575	0.210
7	Gr	1h	28 °C	1.089	1.161	0.543	0.563	0.306	0.242
3011	Layer1: TiO ₂ (0.5g) + PEO(0.05g)		== 0	2.305					
	Layer2: Cl ₄ BQ(0.1g) + PEO(0.05g)		35 ℃	1.104	1.229	0.535	0.646	0.345	0.255
	Layer3: TPA (0.245g) + Cl ₄ BQ(0.025g) +PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)		40 °C	1.085	1.408	0.518	0.724	0.375	0.245
	Layer4: TPA (0.245g) + Cl ₄ BQ(0.025g) +	48h	28 °C	1.157	0.398	0.549	0.198	0.109	0.236
	PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)								
	Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g) Layer6: TiO ₂ (0.5g) + PEO(0.05g)		35 ℃	1.154	0.501	0.569	0.252	0.143	0.248
	Al		40 °C	1.144	0.485	0.583	0.244	0.142	0.256
		96h	40 °C	1.151	0.277	0.540	0.134	0.072	0.226
8	Gr	1h	28 °C	0.958	26.75	0.376	12.89	4.846	0.189
3010	Layer1: $TiO_2(0.5g) + PEO(0.05g)$	-11	200	0.230	20.75	0.570	12.07		0.207
	Layer2: Cl ₄ BQ(0.1g) + PEO(0.05g)		35 °C	0.968	32.29	0.365	16.18	5.898	0.189
	Layer3: DABCO (0.112g) + Cl ₄ BQ(0.025g) +PC (0.5g) +PEO(0.05g) +		40 °C	1.006	29.67	0.685	8.986	6.155	0.206
	TiO ₂ (0.25g)	48h	28 °C	0.95	4.173	0.506	1.904	0.963	0.243
	Layer4: DABCO (0.112g) +	-							
	Cl ₄ BQ(0.025g) + PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)		35 ℃	0.942	4.877	0.492	2.246	1.104	0.24
	11O ₂ (0.25g) Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g)		40 °C	0.932	5.242	0.517	2.352	1.216	0.249
				0.752	5.272	0.017	2.332	1.210	0.272

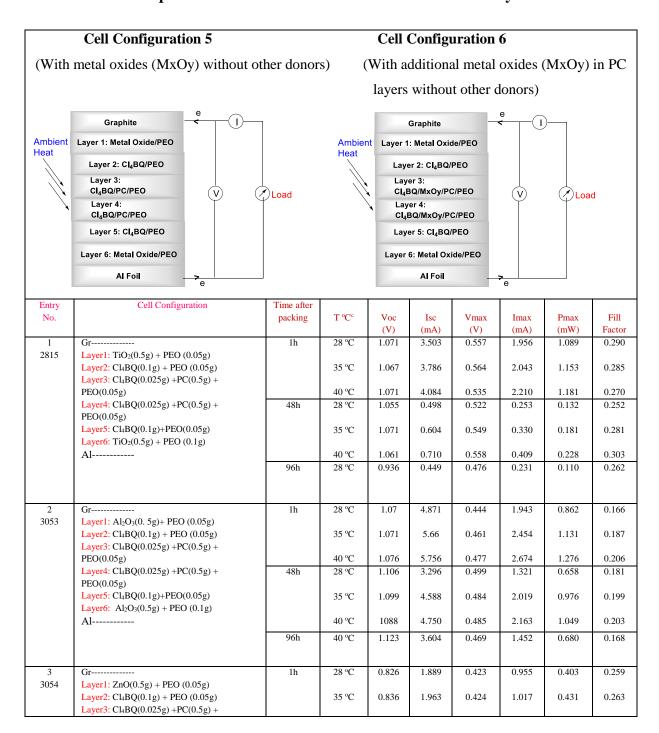

	Layer6: TiO ₂ (0.5g) + PEO(0.05g)	96h	40 °C	0.929	1.726	0.441	0.840	0.370	0.231
	Al								
9	Gr	1h	28 °C	1.073	25.75	0.623	11.98	7.483	0.271
3009	Layer1: $TiO_2(0.5g) + PEO(0.05g)$								
	Layer2: $C1_4BQ(0.1g) + PEO(0.05g)$		35 °C	1.055	19.77	0.595	13.02	7.741	0.371
	Layer3: DIPEA(0.13g, 0.17ml) +								
	Cl ₄ BQ(0.025g) +PC (0.5g) +PEO(0.05g) +		40 °C	1.042	22.54	0.572	14.26	8.147	0.347
	TiO ₂ (0.25g)	48h	28 °C	0.922	6.449	0.476	3.85	1.833	0.308
	Layer4: DIPEA(0.13g) + Cl ₄ BQ(0.025g) + PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)		35 °C	0.91	6.727	0.503	3.88	1.95	0.318
	Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g)		33 C	0.91	0.727	0.303	3.00	1.93	0.518
	Layer6: TiO ₂ (0.5g) + PEO(0.05g)		40 °C	0.899	6.854	0.498	4.131	2.057	0.334
	Al	96h	40 °C	0.820	2.946	0.424	1.462	0.620	0.257
10	Gr	1h	28 °C	1.032	5.946	0.477	2.014	0.959	0.156
3111	Layer1: $TiO_2(0.5g) + PEO(0.05g)$								
	Layer2: $Cl_4BQ(0.1g) + PEO(0.05g)$		35 ℃	1.144	8.256	0.518	2.789	1.444	0.153
	Layer3: DiPrBA (0.205g) + Cl ₄ BQ(0.025g)								
	$+PC (0.5g) +PEO(0.05g) + TiO_2 (0.25g)$		40 °C	1.179	12.06	0.561	7.482	4.193	0.295
	Layer4: DiPrBA (0.205g) + Cl ₄ BQ(0.025g)	48h	28 °C	1.165	7.532	0.548	4.148	2.272	0.259
	+ PC (0.5g) +PEO(0.05g) + TiO ₂ (0.25g)		25.00	1.005	0.214	0.550	5.005	2.050	0.205
	Layer5: Cl ₄ BQ(0.1g) + PEO(0.05g) Layer6: TiO ₂ (0.5g) + PEO(0.05g)		35 ℃	1.086	9.214	0.558	5.305	2.958	0.296
	Al		40 °C	1.125	9.679	0.548	5.420	2.969	0.273
			40 C	1.123	7.077	0.540	3.420	2.707	0.273
		96h	40 °C	1.169	5.816	0.525	2.987	1.569	0.231
1		l	l	l	l		l	l	i l

Table ES3. Cell Experiments: Without *p*-chloranil acceptor

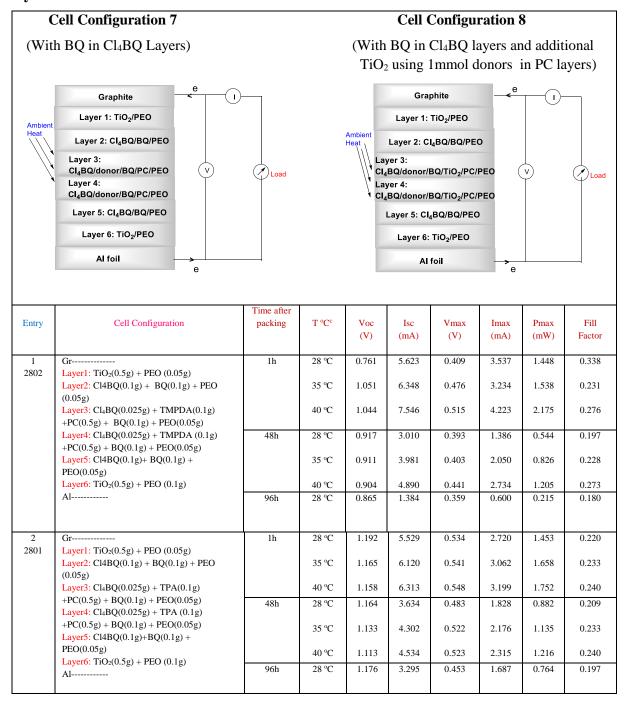
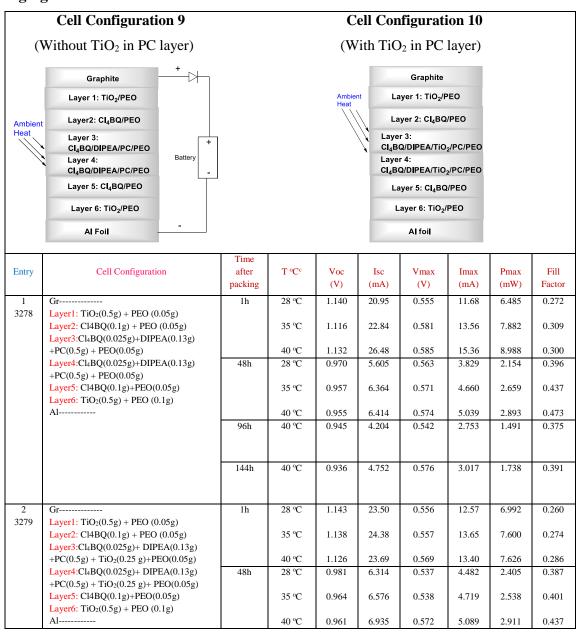

	(0.5ml) + PEO(0.05g)	48h	28 °C	0.739	0.011	0.42	0.005	0.002	0.279
	Layer4: TiO ₂ (0.5g) TPA (0.245g) + PC								
	(0.5ml) + PEO(0.05g)		35 °C	0.727	0.015	0.396	0.007	0.003	0.279
	Layer5: TiO ₂ (0.25g)+ TPA (0.245g) +								
	PEO (0.05g)		40 °C	0.717	0.016	0.408	0.008	0.003	0.287
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$								
	A1								
	Gr	1h	28 °C	0.784	0.288	0.148	0.136	0.020	0.089
2	Layer1: $TiO_2(0.5g) + PEO(0.05g)$								
	Layer2:TiO ₂ (0.25g)+DABCO (0.112g) +		35 °C	0.781	0.314	0.145	0.140	0.020	0.083
	PEO (0.05g)								
	Layer3:TiO ₂ (0.5g) + DABCO (0.112g) +		40 °C	0.787	0.366	0.151	0.176	0.026	0.092
	PC (0.5ml) + PEO(0.05g)								
	Layer4: TiO ₂ (0.5g) + DABCO (0.112g) +	48h	28 °C	0.82	0.102	0.355	0.033	0.011	0.114
	PC (0.5ml) + PEO(0.05g)								
	Layer5:TiO ₂ (0.25g)+DABCO (0.112g) +		35 °C	0.818	0.156	0.382	0.038	0.014	0.114
	PEO (0.05g)								
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$		40 °C	0.815	0.178	0.41	0.048	0.019	0.136
	Al								
	Gr	1h	28 °C	0.688	0.021	0.413	0.010	0.004	0.289
3		111	20 C	0.000	0.021	0.413	0.010	0.004	0.289
3	Layer1: TiO ₂ (0.5g) + PEO (0.05g)		25.00	0.692	0.020	0.404	0.012	0.005	0.270
	Layer2:TiO ₂ (0.25g)+ DIPEA (0.13g) +		35 ℃	0.682	0.028	0.404	0.013	0.005	0.279
	PEO (0.05g)			0.00					
	Layer3:TiO ₂ (0.5g)+DIPEA(0.13g)+PC(0.		40 °C	0.68	0.028	0.401	0.013	0.005	0.281
	5ml)+ PEO(0.05g)	48h	28 ℃	0.713	0.022	0.424	0.010	0.004	0.295
	Layer4:								
	$TiO_2(0.5g)+DIPEA(0.13g)+PC(0.5ml) +$		35 °C	0.692	0.027	0.408	0.013	0.005	0.294
	PEO(0.05g)								
	Layer5: TiO ₂ (0.25g)+ DIPEA (0.13g) +		40 °C	0.674	0.028	0.405	0.014	0.005	0.305
	PEO (0.05g)								
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$								
	Al								
	Gr	1h	28 °C	0.791	0.773	0.493	0.374	0.184	0.302
4	Layer1: $TiO_2(0.5g) + PEO(0.05g)$								
	Layer2: TiO ₂ (0.25g)+ DiPrBA (0.205g)		35 °C	1.039	0.715	0.621	0.335	0.208	0.281
	+ PEO (0.05g)								
	Layer3: $TiO_2(0.5g) + DiPrBA(0.205g) +$		40 °C	1.021	0.814	0.61	0.385	0.235	0.283
	PC (0.5ml) + PEO(0.05g)	48h	28 °C	0.995	0.462	0.574	0.223	0.128	0.278
	Layer4: TiO ₂ (0.5g) + DiPrBA (0.205g)	4011	20 C	0.773	0.402	0.574	0.223	0.120	0.276
	+ PC (0.5ml) + PEO(0.05g)		35 °C	0.916	0.534	0.554	0.242	0.134	0.274
	Layer5: TiO ₂ (0.25g)+ DiPrBA (0.205g)		33 10	0.910	0.554	0.554	0.242	0.134	0.274
	+ PEO (0.05g)		40 °C	0.871	0.542	0.535	0.255	0.136	0.289
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$		40 °C	0.871	0.542	0.555	0.255	0.130	0.289
	Al								
		l	l			l		l	

Table ES4: Cell Experiments: With and without metal oxides in PC layer

EO(0.05g) ayer5: Cl ₄ BQ(0.1g)+PEO(0.05g) ayer6: ZnO(0.5g) + PEO (0.1g) .l r	48h 96h	28 °C 35 °C 40 °C 40 °C	0.838 0.846 0.847 0.837	0.872 1.146 1.238	0.412	0.448	0.184	0.253 0.249
I		40 °C	0.847			0.595	0.250	0.249
				1.238	0.415			l
		40 °C	0.837		0.415	0.641	0.272	0.260
				0.831	0.414	0.404	0.167	0.241
ayerr. 1102(0.3g) + 1 EO (0.03g)	1h	28 °C	1.073	12.62	0.483	6.299	3.043	0.225
ayer2: Cl4BQ(0.1g) + PEO (0.05g) ayer3:Cl4BQ(0.025g)+TiO ₂ (0.25g)+PC(0.5g)		35 °C	1.059	13.28	0.498	6.888	3.428	0.244
PEO(0.05g)		40 °C	1.044	13.35	0.509	7.156	3.639	0.261
ayer4: Cl ₄ BQ(0.025g) + iO ₂ (0.25g)+PC(0.5g) + PEO(0.05g)	48h	28 °C	1.177	7.753	0.507	3.880	1.965	0.215
ayer6: TiO ₂ (0.5g) + PEO (0.1g)		35 °C	1.124	9.453	0.522	5.334	2.782	0.262
.1		40 °C	1.205	10.86	0.539	6.260	3.376	0.258
	96h	28 °C	1.189	5.731	0.494	2.540	1.255	0.184
r	1h	28 °C	0.999	2.664	0.456	1.265	0.576	0.217
ayer2: Cl4BQ(0.1g) + PEO (0.05g)		35 °C	0.997	3.462	0.464	1.710	0.792	0.230
1 ₂ O ₃ (0.25g)+PC(0.5g)+ PEO(0.05g)		40 °C	1.025	3.551	0.473	1.796	0.848	0.233
ayer4: Cl ₄ BQ(0.025g) +	48h	28 °C	1.052	3.064	0.491	1.568	0.770	0.239
ayer5: Cl4BQ(0.1g)+ PEO(0.05g)		35 ℃	1.003	3.805	0.503	2.035	1.022	0.268
1		40 °C	0.982	4.367	0.510	2.406	1.226	0.286
	96h	28 °C	1.070	2.889	0.495	1.485	0.735	0.288
r	1h	28 °C	0.925	1.790	0.440	0.877	0.386	0.233
ayer1: ZnO(0.5g) + PEO (0.05g) ayer2: Cl4BQ(0.1g) + PEO (0.05g)		35 °C	0.926	2.274	0.449	1.091	0.489	0.233
		40.°C	0.045	2 721	0.453	1 202	0.584	0.227
ayer4: Cl ₄ BQ(0.025g) + ZnO	48h	28 °C	0.943	0.992	0.438	0.454	0.199	0.227
0.25g)+PC(0.5g) + PEO(0.05g) ayer5: Cl4BQ(0.1g)+ PEO(0.05g)		35 °C	0.926	1.491	0.445	0.639	0.284	0.206
ayer6: ZnO(0.5g) + PEO (0.1g)		40 °C	0.931	2.020	0.407	0.900	0.366	0.195
	96h	28 °C	0.982	0.471	0.453	0.209	0.094	0.204
Transia Tran	PEO(0.05g) yer4: Cl4BQ(0.025g) + O2(0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl4BQ(0.1g)+ PEO(0.05g) yer6: TiO2(0.5g) + PEO (0.1g)	PEO(0.05g) yer4: Cl ₄ BQ(0.025g) + O ₂ (0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl ₄ BQ(0.1g)+ PEO(0.05g) yer6: TiO ₂ (0.5g) + PEO (0.05g) yer6: TiO ₂ (0.5g) + PEO (0.05g) yer2: Cl ₄ BQ(0.1g) + PEO (0.05g) yer3:Cl ₄ BQ(0.025g)+ 2O ₃ (0.25g)+PC(0.5g) + PEO(0.05g) yer4: Cl ₄ BQ(0.025g) + 2O ₃ (0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl ₄ BQ(0.1g) + PEO (0.05g) yer6: Al ₂ O ₃ (0.5g) + PEO (0.05g) yer6: Al ₂ O ₃ (0.5g) + PEO (0.05g) yer7: Cl ₄ BQ(0.025g) + O ₂ (0.05g) + PEO (0.05g) yer6: Cl ₂ Cl ₄ BQ(0.025g) + yer6: Cl ₃ Cl ₄ BQ(0.025g) + O ₂ Cl ₄ BQ(0.025g) + O ₂ Cl ₄ Cl ₄ BQ(0.025g) + O ₂ Cl ₄ BQ(0.025g	PEO(0.05g) yer4: Cl4BQ(0.025g) + O2(0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl4BQ(0.1g) + PEO (0.05g) yer6: TiO2(0.5g) + PEO (0.05g) yer7: Cl4BQ(0.1g) + PEO (0.05g) yer2: Cl4BQ(0.1g) + PEO (0.05g) yer2: Cl4BQ(0.025g) + 2O3(0.25g)+PC(0.5g) + PEO (0.05g) yer4: Cl4BQ(0.025g) + 2O3(0.25g)+PC(0.5g) + PEO (0.05g) yer5: Cl4BQ(0.1g) + PEO (0.05g) yer6: Al ₂ O ₃ (0.5g) + PEO (0.05g) yer6: Al ₂ O ₃ (0.5g) + PEO (0.05g) yer7: Cl4BQ(0.1g) + PEO (0.05g) yer6: Cl4BQ(0.1g) + PEO (0.05g) yer7: Cl4BQ(0.1g) + PEO (0.05g) yer7: Cl4BQ(0.025g) + ZnO 25g)+PC(0.5g) + PEO (0.05g) yer7: Cl4BQ(0.1g) + PEO (0.05g) yer6: ZnO(0.5g) + PEO (0.05g)	PEO(0.05g) yer4: Cl4BQ(0.025g) + O2(0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl4BQ(0.1g)+ PEO (0.05g) yer6: TiO2(0.5g) + PEO (0.05g) yer7: Cl4BQ(0.1g) + PEO (0.05g) yer1: Al ₂ O ₃ (0.5g) + PEO (0.05g) yer2: Cl4BQ(0.1g) + PEO (0.05g) yer2: Cl4BQ(0.025g)+ 2O ₃ (0.25g)+PC(0.5g) + PEO(0.05g) yer4: Cl4BQ(0.025g) + 2O ₃ (0.25g)+PC(0.5g) + PEO (0.05g) yer5: Cl4BQ(0.1g) + PEO (0.05g) yer6: Al ₂ O ₃ (0.5g) + PEO (0.1g)	PEO(0.05g) yer4: ClaBQ(0.025g) + Oz(0.25g)+PC(0.5g) + PEO(0.05g) yer5: Cl4BQ(0.1g) + PEO (0.05g) yer6: TiOz(0.5g) + PEO (0.1g)	DEO(0.05g) yer4: ClBQ(0.025g) + Dec(0.05g) yer5: ClBQ(0.1g) + PEO (0.05g) yer6: Tiz(0.5g) + PEO (0.05g) yer7: ClBQ(0.025g) + Dec(0.05g) + PEO (0.05g) yer7: ClBQ(0.025g) + Dec(0.05g) + PEO (0.05g) yer8: ClBQ(0.025g) + Dec(0.05g) + PEO (0.05g) yer6: Al2O3(0.25g) + PEO (0.05g) yer6: Al2O3(0.5g) + PEO (0.05g) yer6: ClBQ(0.025g) + Dec(0.05g) + PEO (0.05g) yer6: ClBQ(0.025g) + Dec(0.05g) + PEO (0.05g) yer6: Al2O3(0.25g) + PEO (0.05g) yer7: ClBQ(0.025g) + Tin Dec(0.05g) yer8: ClBQ(0.025g) + Tin Dec(0.05g) yer9: ClBQ(0.05g) + PEO(0.05g) yer6: ZlAQQ(0.05g)	PEO(0.05g) yer4: ClaBQ(0.025g) +	PEO(0.05g) PEO(0.05g) PEO(0.05g) + Occupant


Table ES5. Cell Experiments: With BQ in Cl_4BQ layer, without and with TiO_2 in PC layer

	1 -								
3	Gr	1h	28 °C	1.113	10.64	0.471	6.310	2.972	0.251
2800	Layer1: TiO ₂ (0.5g) + PEO (0.05g) Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO		35 ℃	1.092	11.52	0.532	7.639	4.062	0.323
	(0.05g) Layer3: Cl ₄ BQ(0.025g) + DABCO(0.1g)		40 °C	1.093	12.63	0.582	9.271	5.391	0.391
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g) Layer4: Cl ₄ BQ(0.025g) + DABCO (0.1g)	48h	28 °C	1.086	C 500	0.400	4.224	1.600	0.220
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g)	4611	28 C	1.080	6.500	0.400	4.224	1.688	0.239
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+ PEO(0.05g)		35 ℃	1.080	6.642	0.514	4.734	2.433	0.339
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)		40 °C	1.080	7.024	0.553	5.472	3.023	0.399
	Al	96h	28 °C	1.072	4.736	0.394	2.839	1.118	0.220
4	Gr	1h	28 ℃	1.208	26.94	0.457	12.93	5.909	0.182
2799	Layer1: TiO ₂ (0.5g) + PEO (0.05g) Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO		35 ℃	1.158	29.95	0.505	14.49	7.321	0.211
	(0.05g) Layer3: Cl ₄ BQ(0.025g) + DIPEA (0.1g)		40 °C	1.146	31.33	0.523	15.75	8.229	0.229
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g)	48h	28 °C	1.190	6.245	0.499	3.005	1.500	0.202
	Layer4: Cl ₄ BQ(0.025g) + DIPEA (0.1g)								
	+PC(0.5g) + BQ(0.1g) +PEO(0.05g) Layer5: Cl4BQ(0.1g)+BQ(0.1g)+ PEO(0.05g)		35 ℃	1.167	7.108	0.521	3.485	1.816	0.219
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)		40 °C	1.155	7.772	0.535	3.880	2.074	0.231
	Al	96h	28 °C	1.138	4.328	0.502	2.145	1.076	0.219
5	Gr	1h	28 °C	1.185	4.081	0.544	2.036	1.108	0.229
2794	Layer1: TiO ₂ (0.5g) + PEO(0.05g)					0.700			
	Layer2: Cl ₄ BQ(0.1g) + BQ (0.1g) + PEO(0.05g)		35 °C	1.185	5.255	0.580	2.660	1.544	0.248
	Layer3: DiPrBA (0.1g)+Cl ₄ BQ (0.025g) +PC		40 °C	1.185	5.949	0.571	3.000	1.714	0.243
	(0.5g) + BQ(0.1g)+ PEO(0.025g) Layer4: DiPrBA (0.1g)+ Cl ₄ BQ(0.025g) + PC	48h	28 °C	1.206	2.806	0.534	1.406	0.750	0.222
	(0.5g) + BQ(0.1g) + PEO(0.025g) Layer5: Cl ₄ BQ(0.1g) + BQ(0.1g) +		35 ℃	1.215	3.722	0.573	1.937	1.109	0.245
	PEO(0.05g)		40.00	1.215	4.000	0.570	0.650	1.524	0.250
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$	96h	40 °C 28 °C	1.215 1.177	4.900 2.595	0.578 0.507	2.653 1.342	1.534 0.680	0.258 0.223
	Al	9011	26 C	1.177	2.393	0.307	1.342	0.080	0.223
6	Gr	1h	28 ℃	1.000	3.940	0.470	1.969	0.926	0.235
2010	Layer1: TiO ₂ (0.5g) + PEO (0.05g)		25.00	0.00-		0.55	2.110		0.2
3018	Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO (0.05g)		35 °C	0.995	4.655	0.521	2.418	1.259	0.272
	Layer3: Cl ₄ BQ(0.025g) + TMPDA(0.164g)		40 °C	0.986	5.795	0.534	3.023	1.614	0.282
	$+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO_2$	48h	28 °C	0.954	3.341	0.415	1.6	0.663	0.208
	(0.25g) Layer4: Cl ₄ BQ(0.025g) + TMPDA (0.164g)		25 00	0.044	1 621	0.44	2 224	1.026	0.225
	$+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO_2$		35 ℃	0.944	4.631	0.44	2.334	1.026	0.235
	(0.25g)		40 °C	0.936	5.272	0.458	2.835	1.299	0.263
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g) +	96h	40 °C	0.939	2.579	0.398	1.205	0.478	0.198
	PEO(0.05g) Layer5: TiO ₂ (0.5g) + PEO (0.1g)								
7	Al Gr	1h	28 °C	1.185	2.858	0.543	1.303	0.706	0.209
,	Layer1: TiO ₂ (0.5g) + PEO (0.05g)	111	20 C	1.105	2.030	0.545	1.505	0.700	0.209
3017	Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO (0.05g)		35 ℃	1.177	3.313	0.552	1.552	0.857	0.220
	(0.05g) Layer3: Cl ₄ BQ(0.025g) + TPA(0.245g)		40 °C	1.168	3.667	0.546	1.722	0.939	0.219
	$+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO_2$					-			-

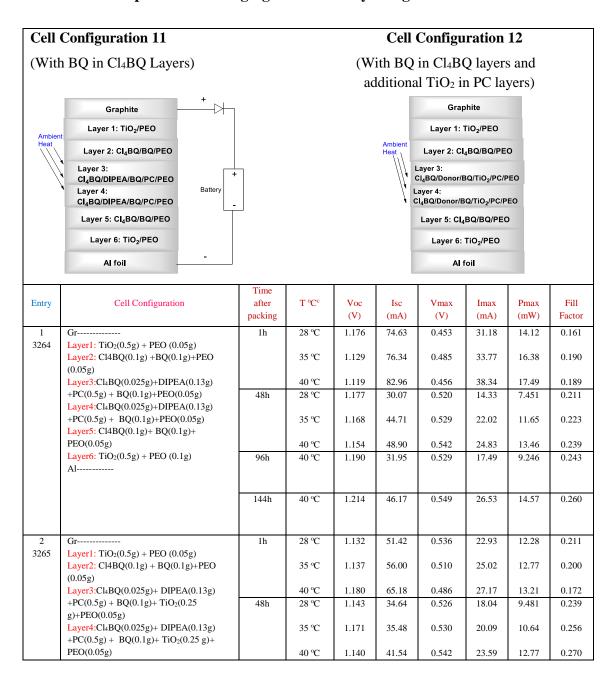

	(0.25g)	48h	28 °C	1.229	1.857	0.518	0.868	0.450	0.197
	Layer4: Cl ₄ BQ(0.025g) + TPA (0.245g)		25.00		2 420	0.510		0.50	0.004
	$+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO_2$		35 °C	1.218	2.439	0.519	1.171	0.607	0.204
	(0.25g)		40.00	1.200	0.757	0.556	1.21	0.720	0.210
	Layer5: Cl4BQ(0.1g)+BQ(0.1g) +		40 °C	1.209	2.757	0.556	1.31	0.728	0.219
	PEO(0.05g) Layer5: TiO ₂ (0.5g) + PEO (0.1g)	96h	40 °C	1.244	1.437	0.483	0.701	0.338	0.190
	Al								
8	Gr	1h	28 °C	1.148	8.383	0.561	6.318	3.544	0.368
8	Layer1: TiO ₂ (0.5g) + PEO (0.05g)	In	28 °C	1.148	8.383	0.561	0.318	3.544	0.308
3016	Layer2: Cl4BQ(0.1g) + PEO (0.03g) Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO		35 °C	1.126	8.687	0.620	7.323	4.542	0.464
3010	(0.05g)		33 C	1.120	0.007	0.020	1.323	4.342	0.404
	Layer3: Cl ₄ BQ(0.025g) + DABCO(0.166g)		40 °C	1.147	9.693	0.612	7.850	4.806	0.432
	+PC(0.5g) + BQ(0.025g) + PEO(0.05g) + TiO2		40 C	1.147	9.093	0.012	7.050	4.800	0.432
	(0.25g)	48h	28 °C	1.159	6.841	0.492	4.849	2.387	0.301
	Layer4: Cl ₄ BQ(0.025g) + DABCO (0.166g)		200	1.137	0.071	0.772	1.047	2.307	0.501
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO2		35 °C	1.154	7.903	0.56	6.271	3.51	0.385
	(0.25g)		33 0	1.15-7	1.703	0.50	0.271	3.31	0.505
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g) +		40 °C	1.147	7.591	0.583	6.482	3.776	0.434
	PEO(0.05g)	96h	40 °C	1.163	6.415	0.478	4.123	1.972	0.264
	Layer5: TiO ₂ (0.5g) + PEO (0.1g)								*****
	Al								
9	Gr	1h	28 °C	1.190	30.09	0.497	15.69	7.788	0.218
3015	Layer1: $TiO_2(0.5g) + PEO(0.05g)$	111	20 C	1.170	30.07	0.477	13.07	7.700	0.210
3013	Layer2: Cl4BQ(0.1g) + BQ(0.1g) + PEO		35 °C	1.136	34.92	0.519	18.22	9.450	0.238
	(0.05g)		33 C	1.150	34.72	0.517	10.22	7.130	0.230
	Layer3: Cl ₄ BQ(0.025g) + DIPEA (0.13g)		40 °C	1.126	35.22	0.526	22.34	11.74	0.296
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO2	48h	28 °C	1.187	18.23	0.509	11.42	5.816	0.269
	(0.25g)								
	Layer4: Cl ₄ BQ(0.025g) + DIPEA (0.13g)		35 ℃	1.134	19.91	0.518	15.02	7.775	0.344
	+PC(0.5g) + BQ(0.1g) + PEO(0.05g) + TiO2								
	(0.25g)		40 °C	1.106	19.15	0.543	15.37	8.338	0.394
	Layer5: Cl4BQ(0.1g)+BQ(0.1g)+ PEO(0.05g)	96h	40 °C	1.180	14.63	0.480	9.626	4.618	0.268
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)								
	Al								
10	Gr	1h	28 °C	1.214	4.470	0.552	2.205	1.216	0.224
-	Layer1: $TiO_2(0.5g) + PEO(0.05g)$								
3019	Layer2: Cl ₄ BQ(0.1g) + BQ (0.1g) +		35 ℃	1.206	5.720	0.570	2.846	1.622	0.235
	PEO(0.05g)								
	Layer3: DiPrBA (0.205g)+Cl ₄ BQ (0.025g)		40 °C	1.199	6.714	0.577	3.245	1.871	0.232
	+PC (0.5g) + BQ(0.1g)+ PEO(0.025g) + TiO2	48h	28 ℃	1.241	3.403	0.563	1.669	0.939	0.22
	(0.25g)								
	Layer4: DiPrBA (0.205g)+ Cl ₄ BQ(0.025g) +		35 °C	1.247	4.024	0.595	1.977	1.176	0.234
	PC (0.5g) + BQ(0.1g) + PEO(0.025g) + TiO2								
	(0.25g)		40 °C	1.254	4.623	0.616	2.292	1.411	0.243
	Layer5: Cl ₄ BQ(0.1g) + BQ(0.1g) +	96h	40 °C	1.238	2.734	0.551	1.336	0.736	0.218
	PEO(0.05g)								
	Layer6: $TiO_2(0.5g) + PEO(0.05g)$								
ı	Al		1	1	l	l	1		

Table ES6. Cell Expeiments: Charging Ni-Cd battery with electrochemical cell for charging studies

96h	40 °C	0.911	5.528	0.473	3.756	1.776	0.353
144h	40 °C	0.865	6.407	0.506	4.010	2.027	0.366

Table ES7. Cell Expeiments: Charging Ni-Cd battery using electrochemical cell

	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+	96h	28 ℃	1.187	27.10	0.525	15.17	7.962	0.248
	PEO(0.05g)								
	Layer6: $TiO_2(0.5g) + PEO(0.1g)$								
	Al	144h	40 °C	1.198	32.07	0.534	19.96	10.65	0.277
		14411	40 C	1.190	32.07	0.554	19.90	10.03	0.277
3	Gr	1h	28 °C	0.906	6.536	0.479	3.428	1.642	0.277
3303	Layer1: TiO ₂ (0.5g) + PEO (0.05g)	111	20 C	0.900	0.550	0.479	3.426	1.042	0.277
3303	Layer2: Cl4BQ(0.1g) + BQ(0.1g)+PEO		35 °C	0.873	7.093	0.461	3.705	1.706	0.276
	(0.05g)		33 C	0.075	7.075	0.401	3.703	1.700	0.270
	Layer3:Cl ₄ BQ(0.025g)+ TMPDA (0.164g)		40 °C	0.885	7.614	0.505	3.727	1.883	0.279
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g)$	48h	28 °C	0.811	2.269	0.388	1.182	0.458	0.249
	g)+PEO(0.05g)	4011	20 C	0.611	2.209	0.366	1.102	0.436	0.249
	Layer4:Cl ₄ BQ(0.025g)+ TMPDA (0.164g)		35 ℃	0.794	2.847	0.373	1.561	0.581	0.257
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g) +$		33 C	0.774	2.017	0.575	1.501	0.501	0.237
	PEO(0.05g)		40 °C	0.807	3.084	0.375	1.653	0.620	0.249
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+	96h	40 °C	1.019	11.52	0.386	6.450	2.488	0.212
	PEO(0.05g)	9011	40 C	1.019	11.32	0.360	0.430	2.400	0.212
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)	144h	40 °C	0.824	1.829	0.446	0.838	0.373	0.248
	Al	14411	40 C	0.624	1.029	0.440	0.030	0.575	0.240
4	Gr	1h	28 °C	1.166	2.837	0.569	1.411	0.803	0.243
3309	Layer1: TiO ₂ (0.5g) + PEO (0.05g)	111	20 C	1.100	2.037	0.509	1.411	0.803	0.243
3309	Layer2: Cl4BQ(0.1g) + BQ(0.1g)+PEO		35 ℃	1.157	3.123	0.563	1.560	0.877	0.243
	(0.05g)		35 C	1.137	3.123	0.303	1.300	0.877	0.243
	Layer3:Cl ₄ BQ(0.025g)+ TPA (0.245g)		40 °C	1.161	3.332	0.571	1.727	0.985	0.255
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g)$	48h	28 °C	1.237	2.325	0.557	1.182	0.658	0.229
	g)+PEO(0.05g)	4011	20 C	1.237	2.323	0.557	1.102	0.038	0.229
	Layer4:Cl ₄ BQ(0.025g)+ TPA (0.245g)		35 ℃	1.225	3.025	0.565	1.501	0.847	0.229
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g) +$		33 C	1.223	3.023	0.303	1.501	0.047	0.229
	PEO(0.05g)		40 °C	1.210	3.063	0.560	1.528	0.855	0.231
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+	96h	40 °C	1.266	3.542	0.586	1.765	1.034	0.231
	PEO(0.05g)	9011	40 C	1.200	3.342	0.360	1.703	1.034	0.231
	Layer6: $TiO_2(0.5g) + PEO(0.1g)$	144h	40 °C	1.263	2.537	0.558	1.252	0.698	0.218
	Al	14411	40 C	1.203	2.331	0.556	1.232	0.096	0.216
5	Gr	1h	28 °C	1.039	8.589	0.406	6.239	2.532	0.284
3302	Layer1: $TiO_2(0.5g) + PEO(0.05g)$	- 111	20 0	1.037	0.507	0.100	0.237	2.332	0.201
3302	Layer2: Cl4BQ(0.1g) + BQ(0.1g)+PEO		35 ℃	1.032	9.364	0.536	6.713	3.595	0.372
	(0.05g)		33 C	1.032	7.501	0.550	0.713	3.373	0.372
	Layer3:Cl ₄ BQ(0.025g)+ DABCO(0.112g)		40 °C	1.032	9.435	0.574	7.013	4.022	0.413
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25)$	48h	28 °C	1.021	6.912	0.410	3.850	1.579	0.224
	g)+PEO(0.05g)	1011	20 0	1.021	0.712	00	5.050	1.077	0.22
	Layer4:Cl ₄ BQ(0.025g)+ DABCO(0.112g)		35 °C	1.021	8.619	0.507	5.107	2.589	0.294
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g) +$				0.017				
	PEO(0.05g)		40 °C	1.013	8.545	0.505	5.412	2.733	0.316
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+	96h	40 °C	0.813	2.280	0.402	1.162	0.466	0.252
	PEO(0.05g)	7011	40 C	0.015	2.200	0.402	1.102	0.400	0.232
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)	144h	40 °C	1.014	7.966	0.351	3.685	1.291	0.160
	Al	14411	+0 C	1.014	7.500	0.551	3.003	1.271	0.100
6	Gr	1h	28 °C	1.170	8.195	0.536	4.071	2.181	0.228
3308	Layer1: $TiO_2(0.5g) + PEO(0.05g)$	111	20 C	1.170	0.193	0.550	4.071	2.101	0.226
3300	Layer2: Cl4BQ(0.1g) + BQ(0.1g)+PEO		35 °C	1.154	8.190	0.536	4.110	2.204	0.233
	(0.05g)		33 C	1.134	0.190	0.550	7.110	2.204	0.233
	Layer3:Cl ₄ BQ(0.025g)+ DiPrBA (0.205g)		40 °C	1.142	9.591	0.537	4.853	2.606	0.238
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g)$	48h	28 °C	1.196	3.458	0.527	1.766	0.929	0.238
	g)+PEO(0.05g)	7011	20 0	1.170	3.430	0.541	1.700	0.323	0.223
	Layer4:Cl ₄ BQ(0.025g)+ DiPrBA (0.205g)		35 ℃	1.196	5.033	0.539	2.563	1.382	0.230
	$+PC(0.5g) + BQ(0.1g) + TiO_2(0.25g) +$		33 C	1.170	3.033	0.337	2.303	1.302	0.230
	PEO(0.05g)		40 °C	1.184	5.988	0.541	3.070	1.660	0.234
	Layer5: Cl4BQ(0.1g)+ BQ(0.1g)+	96h	40 °C	1.201	2.703	0.539	1.368	0.736	0.234
	PEO(0.05g)	9011	40 "	1.201	2.703	0.339	1.308	0.730	0.227
	Layer6: TiO ₂ (0.5g) + PEO (0.1g)	144h	40 °C	1.172	2.265	0.512	1.156	0.592	0.223
	Al	14411	40 0	1.1/2	2.203	0.312	1.130	0.392	0.223
	· · ·		1	1	i	I	1	1	l

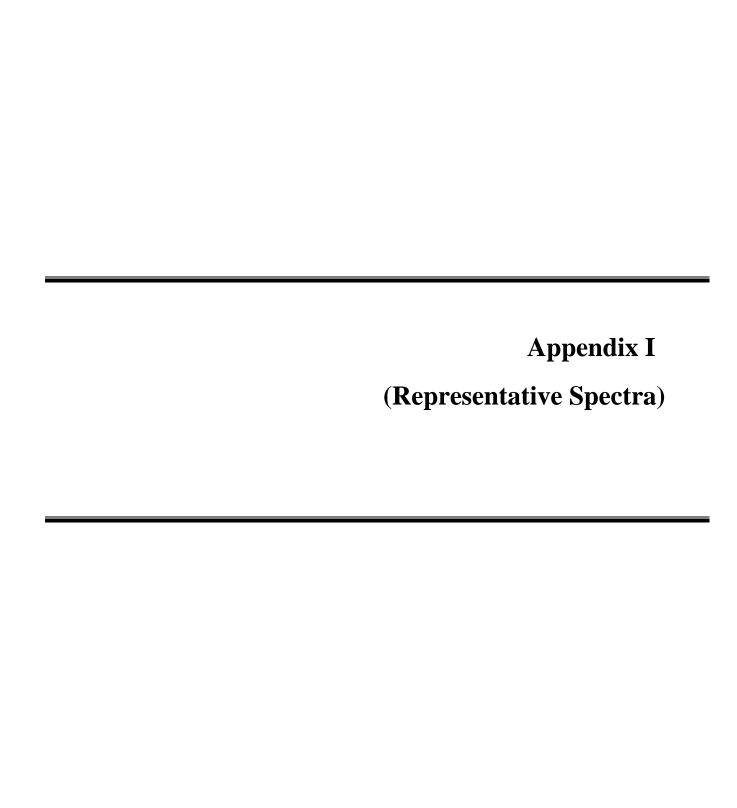
4.5 References

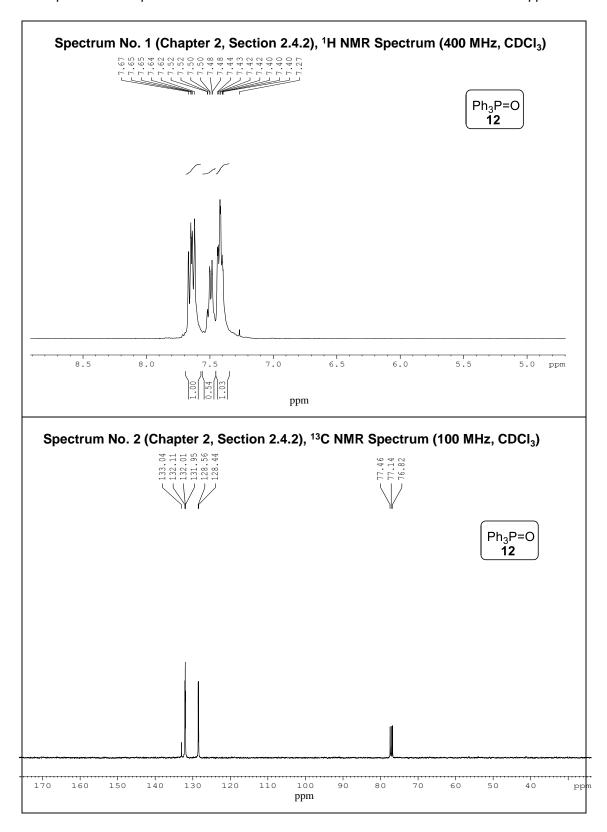
- 1 Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
- Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. *Prog. Photovolt:**Res. Appl. 2012, 20, 12.
- Green, M.A.; Basore, P.A.; Chang, N.; Clugston, D.; Egan, R.; Evans, R.; Ho, J.; Hogg, D.; Jarnason, S.; Keevers, P.; Lasswell, P.; O'Sullian, J.; Schubert, U.; Turner, A.; Wenham, S. R.; Young, T. Solar Energy. Special issue on thin film photovoltaics.
 2004, 77, 857.
- 4 Corwine, C. R.; Pudov, A. O.; Gloeckler, M.; Demtsu, S. H.; Sites, J. R.; Solar Energy Materials and Solar Cells. **2004**, 82, 481.
- Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. *Prog. Photovolt:**Res. Appl. 2011, 19, 565.
- Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. *Prog. Photovolt: Res. Appl.* **2008**, *16*, 235.
- Gerischer, H.; Willig, F.; Schäfer, F.; Gerischer, H.; Willig, F.; Meier, H.; Jahnke, H.; Schönborn, M.; Zimmermann, G.; *Physical and Chemical Applications of Dyestuffs.*1976, 61, 31.
- 8 O'Regan, B.; Grätzel, M.; *Nature*. **1991**, *353*, 737.
- 9 Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A. *J. Am. Chem. Soc.* **2002**, *124*, 11215.
- 10 Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. J. Am. Chem. Soc. **2005**, 127,

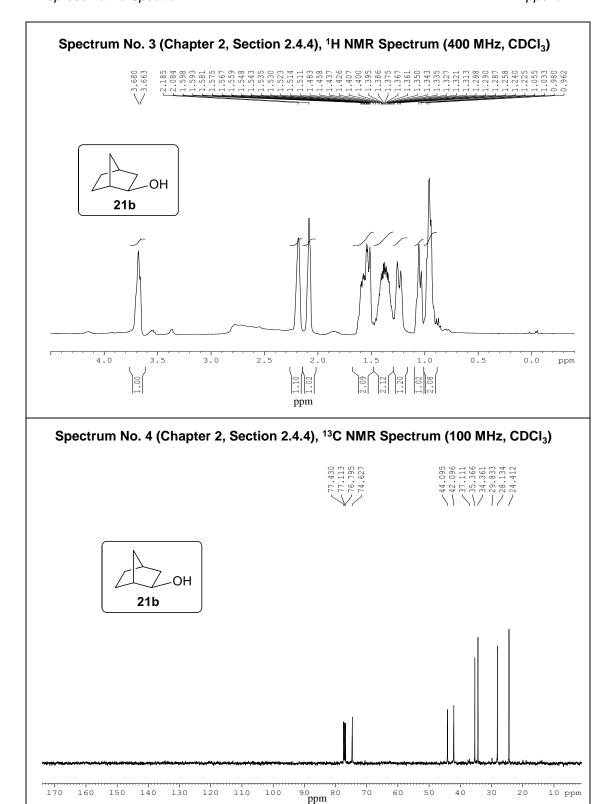
- 9648.
- 11 Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.
 J. Am. Chem. Soc. 2010, 132, 16714.
- Daeneke, T.; Kwon, T.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. *Nat Chem.* **2011**, *3*, 211.
- Li, T. C.; Spokoyny, A. M.; She, C.; Farha, O. K.; Mirkin, C. A.; Marks, T. J.;Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 4580.
- Boucharef, M.; Din, C. D.; Boumaza, M. S.; Colas, M.; Snaith, H. J.; Ratier, B.; Bouclé, J. *Nanotechnology*. **2010**, *21*, 205203.
- 15 Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. Adv. Mater. **2009**, 21, 4087.
- Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y. J. Phys. Chem. C2012, 116, 8888.
- 17 Du, J.; Qi, J.; Wang, D.; Tang, Z. Energy Environ. Sci. **2012**, *5*, 6914.
- Plank, N. O. V.; Howard, I.; Rao, A.; Wilson, M. W. B.; Ducati, C.; Mane, R. S.; Bendall, J. S.; Louca, R. R. M.; Greenham, N. C.; Miura, H.; Friend, R. H.; Snaith, H. J.; Welland, M. E. J. Phys. Chem. C. 2009, 113, 18515.
- 19 Xu, C. K.; Wu, J. M.; Desai, U. V.; Gao, D. *Nano Lett.* **2012**, *12*, 2420.
- Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O'Brien, P.; Bradley, D. D.
 C.; Nelson, J.; Durrant, J. R. *J. Mater. Chem.* 2006, *16*, 2088.
- 21 Desai, U. V.; Xu, C. K.; Wu, J. M.; Gao, D. *Nanotechnology* **2012**, *23*, 205401.
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. *Nat.*

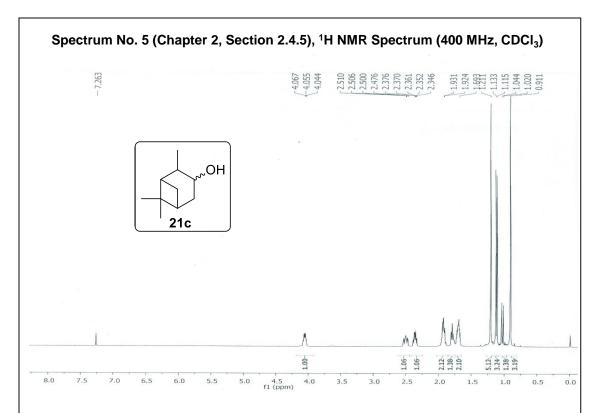
- Chem. 2014, 6, 242.
- Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. *Nature* **1998**, *395*, 583.
- Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2011, 45, 18042.
- Leijtens, T.; Ding, I-K.; Giovenzana, T.; Bloking, J. T.; McGehee, M. D.; Sellinger, A. *ACS Nano* **2012**, *6*, 1455.
- Yang, L.; Xu, B.; Bi, D.; Tian, H.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E.
 M. J. J. Am. Chem. Soc. 2013, 135, 7378.
- a) Jiang, K. J.; Manseki, K.; Yu, Y. H.; Masaki, N.; Suzuki, K.; Song, Y. L.; Yanagida, S. Adv. Funct. Mater. 2009, 19, 2481. b) Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Phys. Chem. Chem. Phys. 2012, 14, 779. c) Zhang, W.; Zhu, R.; Li, F. Wang, Q.; Liu, B. J. Phys. Chem. C. 2011, 115, 7038.
- 28 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
- Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.;
 Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012,
 2, 591.
- Jacobsson, T. J.; Correa-Baena, J. P.; Pazoki, M.; Saliba, M.; Schenk, K.; Gratzel, M.; Hagfeldt, A. *Energy Environ. Sci.*, **2016**, *9*, 1706.
- 31 Luo, S.; Daoud, W. A. J. Mater. Chem. A., 2015, 3, 8992.
- 32 Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A., 2015, 3, 8970.

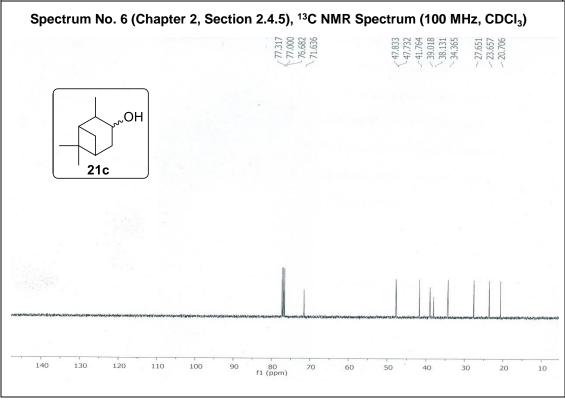
- 33 Yu, Z.; Sun, L. Adv. Energy Mater. **2015**, *5*, 1500213.
- 34 Yin, W-J.; Yang, J-H.; Kang, J.; Yan, Y.; Wei, S-H. *J. Mater. Chem. A*, **2015**, *3*, 8926.
- a) Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.;
 Stranks, S. D.; Wang, J. T. W.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett.
 2014, 5, 1511. b) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano. 2014, 8, 9815. c) Abate, A.; Saliba, M.;
 Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Lett. 2014, 14, 3247.
- 36 Ghosh, A. K.; Morel, D. L.; Feng, T.; Shaw, R. F.; Rowe Jr, C. A. *Journal of Applied Physics*. **1974**, 45, 230.
- Gelenis, S.; Tourillon, G.; Granier, F. *Thin Solid Films*. 1986, 139, 221.
- Weinberger, B. R.; Akhtar, M.; Gau, S. C. Synthetic Metals. 1982, 4, 187.
- 39 Tang, C. W. Appl. Phy. Lett. **1986**, 48, 183.
- Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.;Wudl, F. *Appt. Phys. Lett.* **1993**, *62*, 585.
- 41 Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. *Appt. Phys. Lett.* **1996**, *68*, 3120.
- 42 Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science. 1995, 270, 1789.
- 43 Yu, G.; Wang, J.; McElvain, J.; Heeger, A. J. Adv. Mater. 1998, 10, 1431.
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao,Y. *Nature Photonics*. 2015, 9, 174.

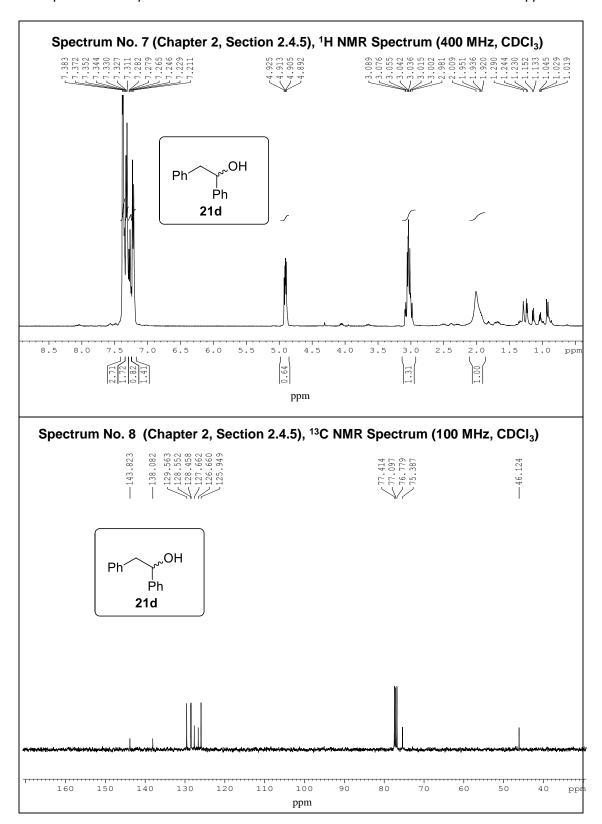

- Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.;Moratti, S. C.; Holmes, A. B. *Nature*. 1995, 376, 498.
- a) Gebeyehu, D.; Maennig, B.; Drechsel, J.; Leo, K.; Pfeiffer, M. Solar Energy Materials & Solar Cells. 2003, 79, 81. b) Spanggaard, H.; Krebs, F. C.; Solar Energy Materials & Solar Cells. 2004, 83, 81. c) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
- a) Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924. b) Yang, L.; Cappel, U.
 B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo,
 G.; Hagfeldt, A.; Johansson, E. M. J. Phys. Chem. Chem. Phys. 2012, 14, 779. c) Jeon,
 N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. J. Am. Chem. Soc.
 2014, 136, 7837.
- a) Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Chem. Rev. 2014, 114, 7006.
 b) Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.
 c) Shivanna, R.; Shoaee, S.; Dimitrov, S.; Kandappa, Sridhar Rajaram, S. K.; Durrant, J. R.; Narayan, K. S. Energy Environ sci. 2014, 7, 435.
 d) Nielsen, C. B.; Holliday, S.; Chen, H-Y.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803.
 e) Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156.
 f) Deibel, C.; Dyakonov, V. Rep. Prog. Phys. 2010, 73, 1.
- (a) Mulliken, R. S. J. Am. Chem. Soc. 1952, 74, 811. (b) Mulliken, R. S.; Person, W.
 B. Wiley: New York, 1969. (c) Taube, H.; Myers, H. J.; Rich, R. L. J. Am. Chem. Soc.

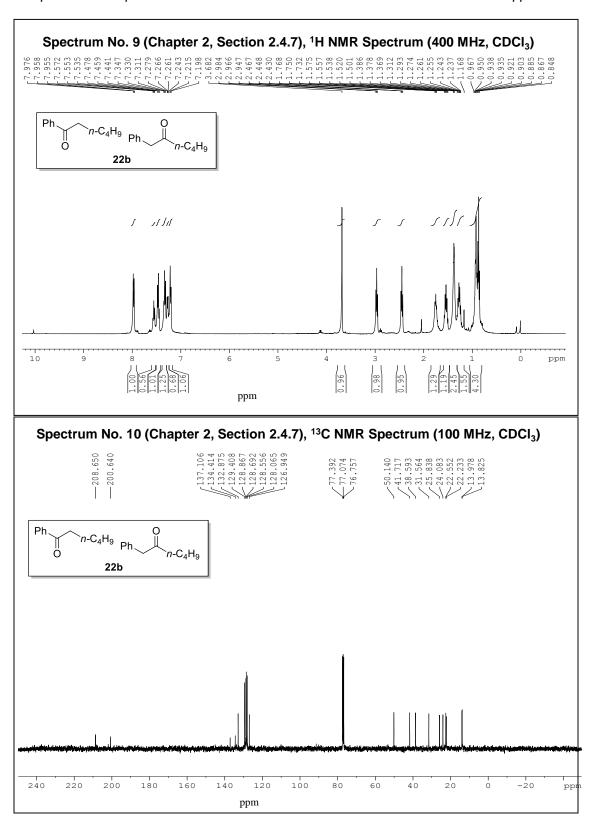

- **1953**, 75, 4118. (d) Taube, H. Science., **1984**, 226, 1028. (e) Marcus, R. A. J. Chem. Phys. **1956**, 24, 966. (f) Marcus, R. A. Angew. Chem., Int. Ed. **1993**, 32, 1111.
- 50 Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. *J. Am. Chem. Soc.* **1973**, *95*, 948.
- (a) Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeilb, L. E.; Jurchescu,
 O. D. J. Mater. Chem. C, 2014, 2, 3065. (b) Zhang, J.; Xu,W.; Sheng, P.; Zhao, G.;
 Zhu, D. Acc. Chem. Res. 2017, 50, 1654.
- (a) Rosokha S. V.; Kochi, J. K. Acc. Chem. Res., 2008, 41, 641. (b) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441. (c) Brunschwig, B. S.; Sutin, N. Coord. Chem. Rev. 1999, 187, 233.
- Gutmann, F.; Keyzer, H. Electrochimica Acta. 1966, 11, 555.
- a) Lee, K. H.; Schwenn, P. E.; Smith, A. R. G.; Cavaye, H.; Shaw, P.W.; James, M.;
 Krueger, K. B.; Gentle, I. R.; Meredith, P.; Burn, P. L. Adv. Mater. 2011, 23, 766. b)
 Hoppea, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924.
- Ardestani, S. S.; Ajeian, R.; Badrabadi, M. N.; Tavakkoli, M. Solar Energy Materials and Solar Cells. 2013, 111,107.
- You, J.; Meng, L.; Song, T-B.; Guo, T-F.; Yang, Y.; Chang, W-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; Marco, N. D.; Yang, Y. *Nature Nanotechnology*. **2016**, *11*, 75.
- 57 Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N. *J. Mater. Chem. A.* **2015**, *3*, 5360.

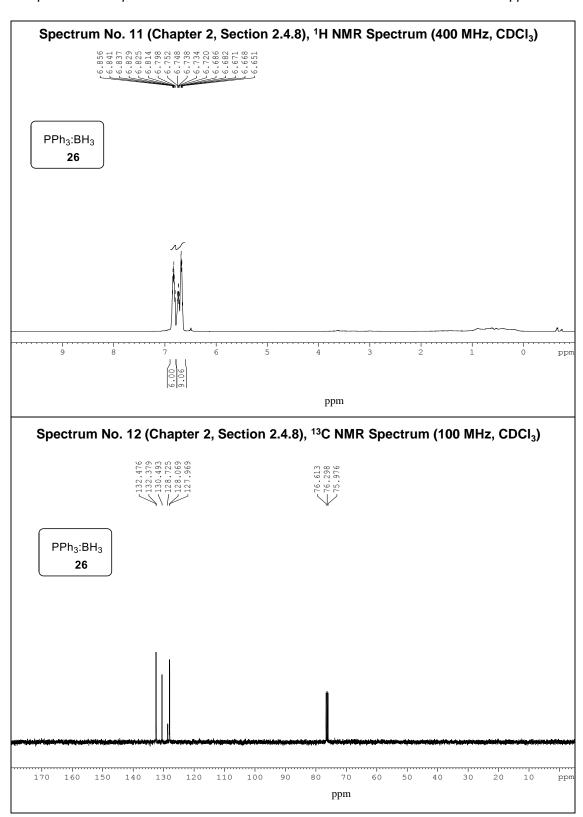

- Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phy. Chem. Lett. 2015, 6, 432.
- 59 Zhao, X.; Park, N-G. *Photonics*. **2015**, 2, 1139.
- Sanehira, E. M.; Villers, B. J. T. D.; Schulz, P.; Reese, M. O.; Ferrere, S.; Zhu, K.; Lin, L. Y.; Berry, J. J.; Luther, J. M. ACS Energy Lett. 2016, 1, 38.
- Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.;
 Moghadam, F.; McGehee, M. D. Adv. Mater. 2016, 28, 3937.
- (a) Scanlon, D. O.; Dunnill, C. W.; John Buckeridge, J.; Shevlin, S. A; Logsdail, A. J.; Woodley, M. C.; Catlow, R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P.; Watson, G.W.; Keal, T. W.; Sherwood, P.; Walsh, A.; Sokol, A. A.; *Nat. Mater.* 2013, *12*, 798.
 (b) Xiong, G; Shao R., Droubay T. C.; Joly, A. G; Beck K. M.; Chambers, S. A; Hess W. P.; *Adv. Funct. Mater.* 2007, *17*, 2133. (c) Martinez, U.; Hammer, B.; *J. Chem. Phys.* 2011, *134*, 194703.
- 63 Davidson, R. S.; Slater, M. R. J. Chem. Soc. Faraday. Trans. 1. 1976, 72, 2416.
- (a) Shalev, H.; Evans, D, H. J. Am. Chem. Soc. 1989, 111, 2667. (b) Grimsrud, E. P.;
 Caldwell, G.; Chowdhury, S.; Kebarle, P. J. Am. Chem. Soc. 1985, 107, 4627. (c)
 Heinis, T.; Chowdhury, S.; Scott, S. L.; Kebarle, P. J. Am. Chem. Soc. 1988, 110, 400.
 (d) Chowdhury, S.; Heinis, T.; Grimsrud E. P.; Kebarle, P. J. Phys. Chem. 1986, 90, 2747. (e) Kebarle, P.; Chowdhury, S. Chem. Rev. 1987, 87, 513.
- (a) Rahimi, M.; Kim, T.; Gorski, C. A.; Bruce E. Logan. *Journal of Power Sources.*,
 2018, 373, 95 (b) Rahimi, M.; Zhu, L.; Kowalski, K. L.; Zhu, X.; Gorski, C. A.;
 Hickner, M. A.; Logan B. E. *Journal of Power Sources*. 2017, 342, 956. (c) Anari, E.

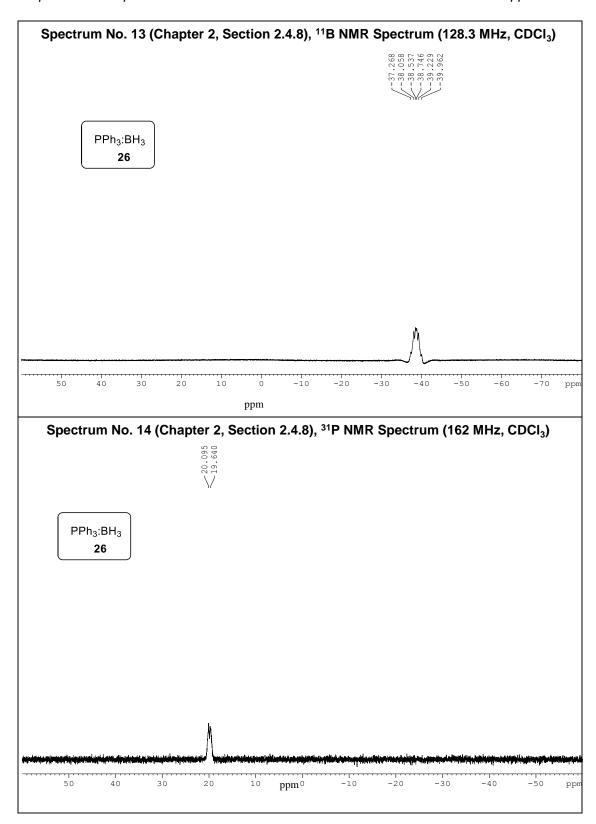

H. B.; Romano, M.; Teh, W. X.; Black, J. J.; Jiang, E.; Chen, J.; To, T. Q.; Panchompoo, J.; Aldous, L. *Chem. Comm.* **2016**, *52*, 745.


(a) Fumey, F.; Weber, R.; Gatenbein, P.; Daguenet-Frick, X.; Williamson, T.; Dorer,
V.; Energy Procedia, 2014, 46, 134 (b) Yu, N.; Wang, R. Z.; Wang, L. W.; Progress in Energy and Combustion Science. 2013, 39, 489.



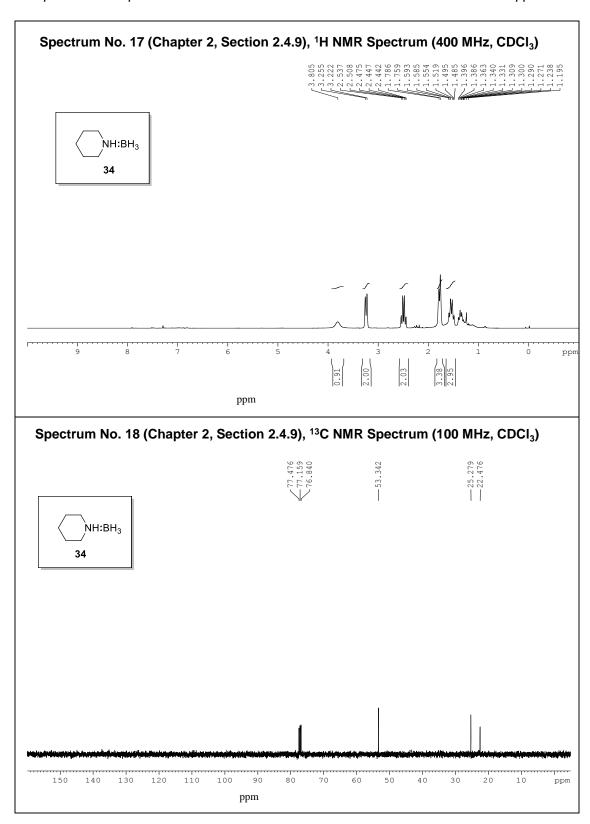


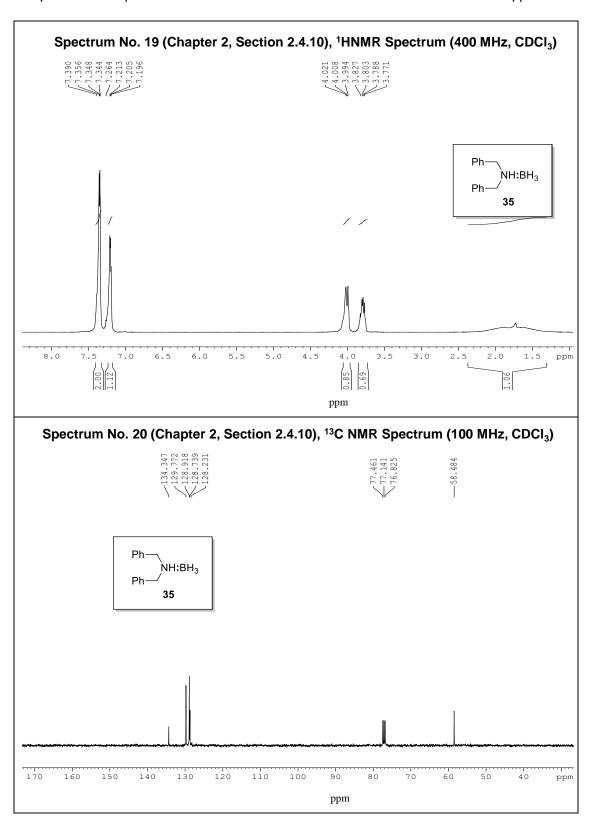




Representative Spectra

Spectrum No. 15 (Chapter 2, Section 2.4.9), ¹H NMR Spectrum (400 MHz, CDCI₃)




ppm

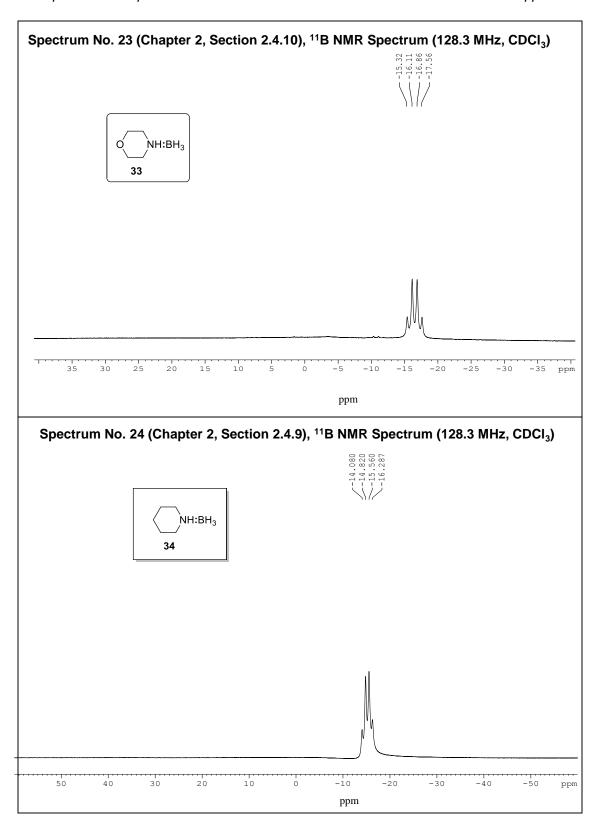
Spectrum No. 16 (Chapter 2, Section 2.4.9), ¹³C NMR Spectrum (100 MHz, CDCI₃)

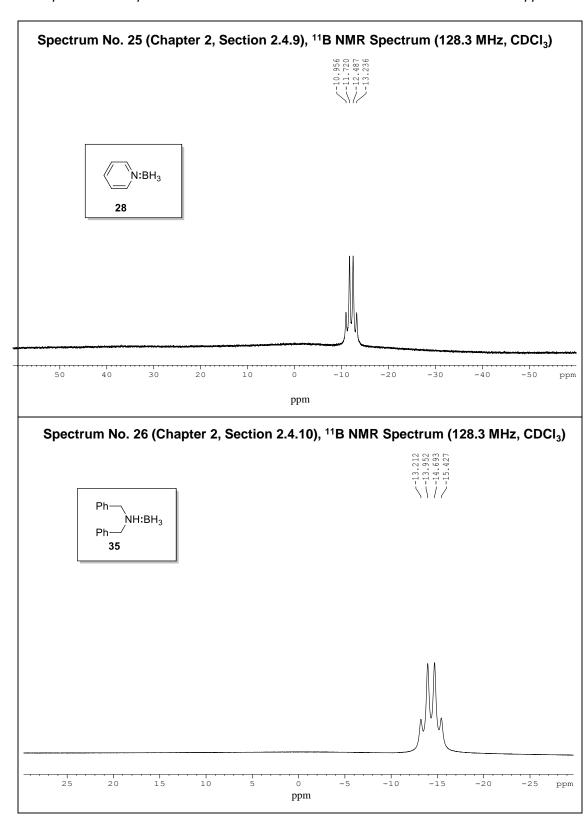
ppm

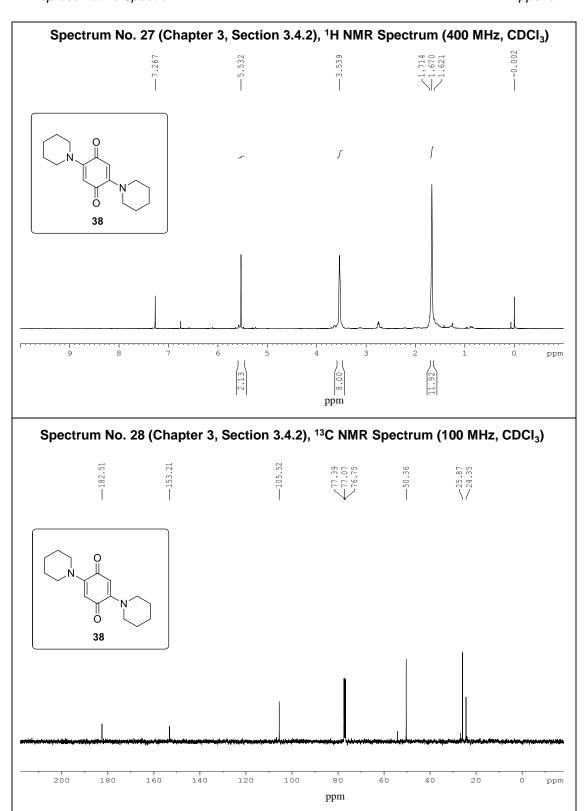
Spectrum No. 21 (Chapter 2, Section 2.4.9), ¹H NMR Spectrum (400 MHz, CDCI₃)

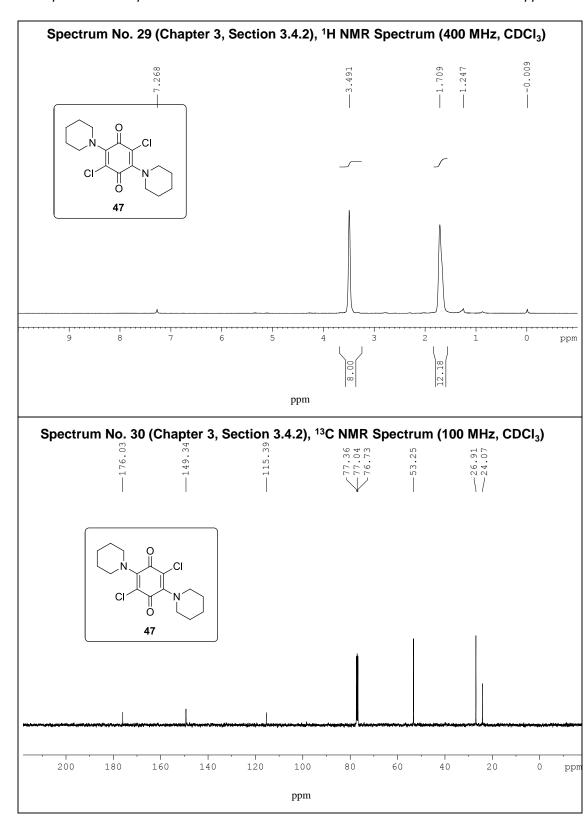
98 885 883

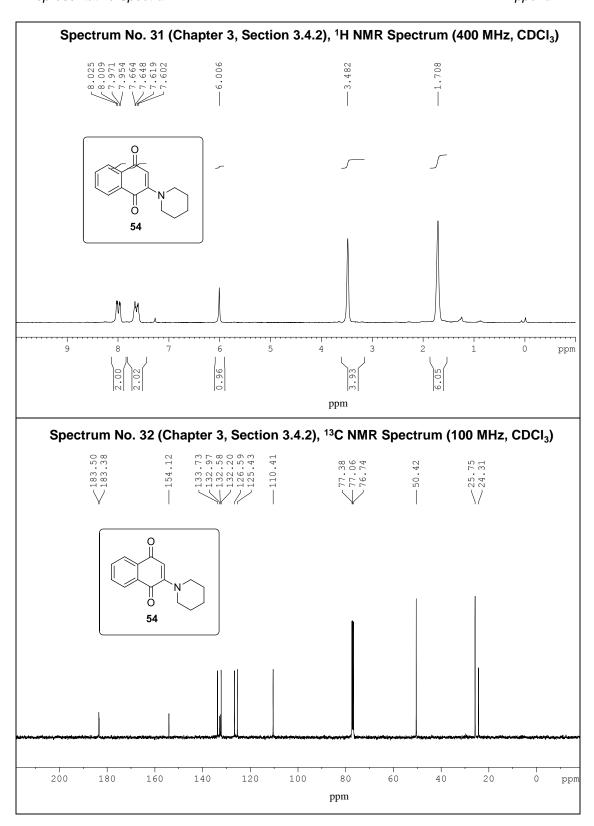
1 11

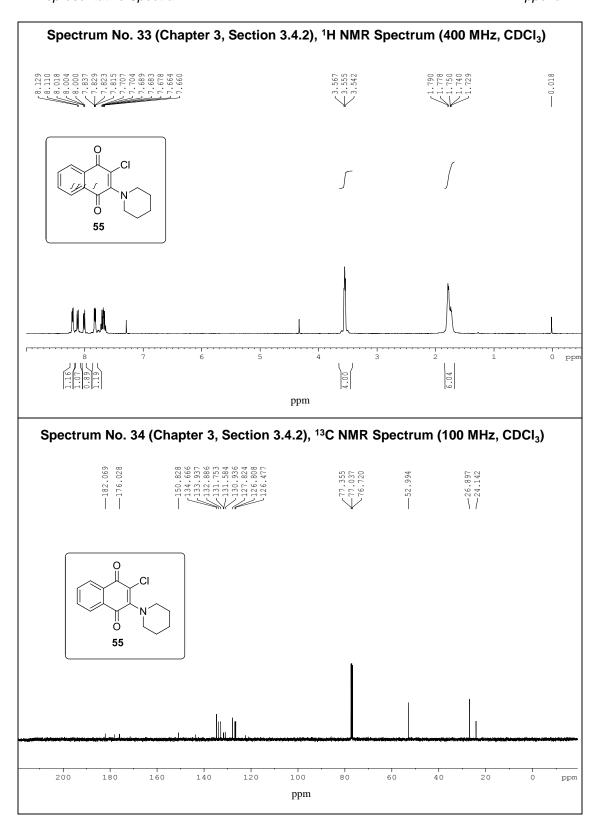

ppm

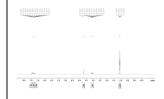

Spectrum No. 22 (Chapter 2, Section 2.4.9), ¹³C NMR Spectrum (100 MHz, CDCl₃)




D WELL STREET


ppm

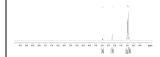




Spectrum No. 35 (Chapter 3, Section 3.4.3), ¹H NMR Spectrum (400 MHz, CDCl₃)

ppm

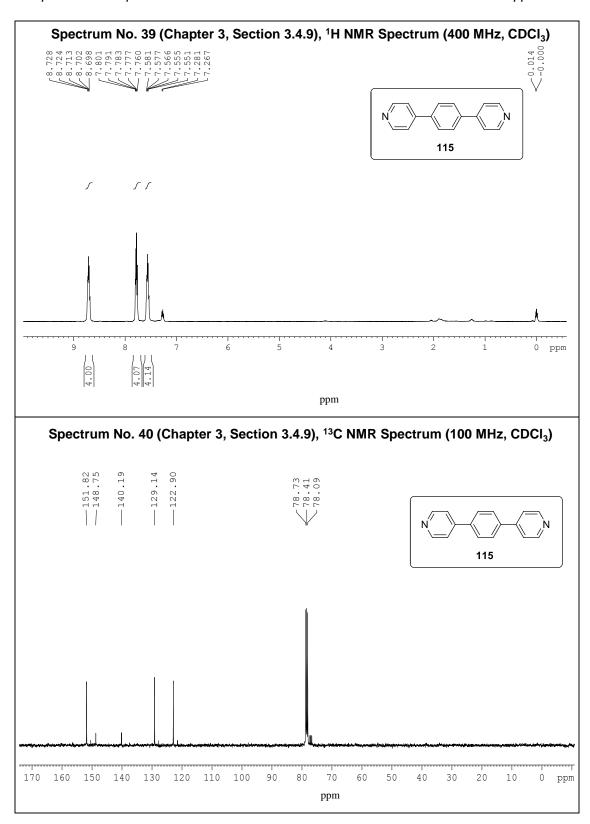
Spectrum No. 36 (Chapter 3, Section 3.4.3), ¹³C NMR Spectrum (100 MHz, CDCl₃)

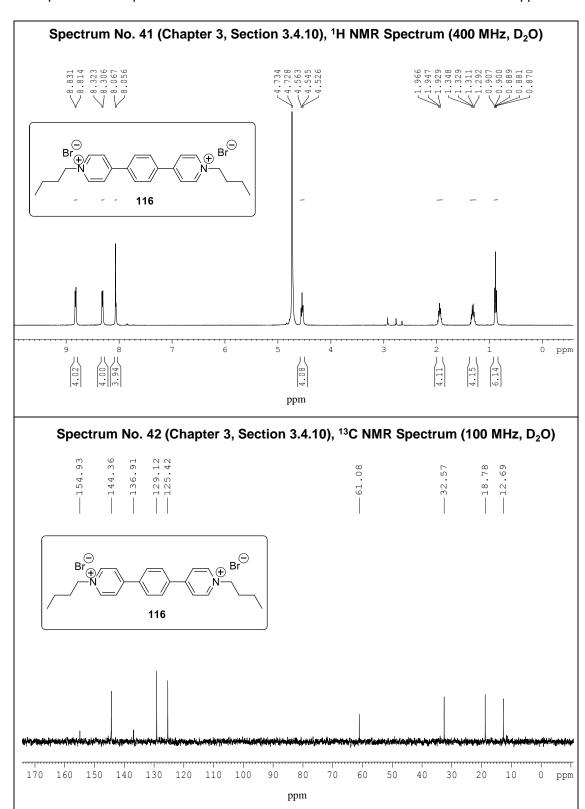

0.00

ppm

Spectrum No. 37 (Chapter 3, Section 3.4.4), ¹H NMR Spectrum (400 MHz, CDCI₃)

11512111111 11111111




ppm

Spectrum No. 38 (Chapter 3, Section 3.4.4), ¹³C NMR Spectrum (100 MHz, CDCl₃)

100 Mar. 100

ppm

Development of Synthetic Methods and Electrochemical Cells Based on Organic Electron Transfer Reactions

by Shanmugaraja Masilamani

Submission date: 05-Oct-2018 02:54PM (UTC+0530)

Submission ID: 1014361889

File name: a_Thesis_-_Prof._M._Periasamy_s_Lab_-_SOC_-_Plagiarism_Check.pdf (12.21M)

Word count: 18389 Character count: 92911

	Chapter 1
General Introduction	on on Electron Transfer Reactions

1.1 Introduction

Electron transfer reactions involving the transfer of an electron from donor to an acceptor are very important in chemistry and biology. These reactions can occur both thermally and photochemically. The electrochemical reaction take place by single electron transfer (SET) processes. The SET process also occurs in many biological transformations involving photosynthesis, cytochromes, ferredoxin, rubredoxin etc. The electron transfer reactions are also very important in the functions of semiconductors, conducting polymers and photovoltaics. A brief review on the organic electron transfer reactions would facilitate the discussion.

1.1.1 Redox reactions through electron transfer

Ceric ammonium nitrate (NH₄)₂[Ce(NO₃)₆] (CAN) is unique one electron oxidant.¹⁰ Oxidation of benzyl alcohol **1** with CAN **2** gives radical cation which in presence of water affords benzaldehyde **3** in 87% yield (Scheme 1).¹¹

Scheme 1

CH₂OH
$$+ 2 Ce(IV)$$

$$1$$

$$Ce^{4+}$$

$$Ce^{3+}$$

$$-H^{+}$$

$$Ce^{3+}$$

$$Ce^{3+}$$

$$Ce^{4+}$$

$$Ce^{3+}$$

$$Ce^{4+}$$

$$Ce^{3+}$$

$$Ce^{4+}$$

$$Ce^{3+}$$

$$Ce^{4+}$$

$$Ce^{3+}$$

$$Ce^{3+}$$

$$Ce^{3+}$$

$$Ce^{3+}$$

Oxidation of primary and secondary benzylic alcohols 4 with catalytic amount of CAN and stoichiometric amount of NaBrO₃ gives the corresponding aldehydes or ketones 5 in good yields (Scheme 2).¹²

Scheme 2

Reaction of 1,4-dimethoxy-2,3,5,6-tetramethyl benzene 6 with CAN in presence of isotopically enriched water gives isotopically labelled duroquinone 7 through a SET process (Scheme 3).¹³

Scheme 3

Reaction of naphthalene derivatives with ceric ammonium sulphate (CAS) 9 gives the corresponding naphthoquinones 10 and 11 in moderate to good yields (up to 95 yield). The transformation involves radical cations and rearrangements were observed when the 1, 4-positions was substituted with D or Ph group. 14

Mechanism:

Recently, several organic transformations were reported using ceric ammonium nitrate (CAN) which go through single electron transfer reactions. Some of the reactions are outlined in Chart 1.

Chart 1 (continued.)

1.1.2 Electrochemical reactions through electron transfer

Kolbe reaction is an anodic oxidation of carboxylate leading to the formation of hydrocarbon dimers *via* the intermediacy of alkyl radicals (Scheme 5).²¹

Scheme 5

A number of natural products were synthesized *via* anodic oxidation of organic compounds (chart 2).

Chart 2

The electrochemical oxidation is also an important tool for C-H functionalization and nucleophilic functionalization of arenes (Chart 3).

Chart 3 (continued.)

$$\begin{array}{c} \text{NO}_2 \\ \text{CF}_3 \end{array} \xrightarrow{\text{Et}_4\text{NCN, DMF}} \begin{array}{c} \text{NC} \\ \text{H} \\ \text{NO}_2 \end{array} \xrightarrow{\text{NO}_2} \begin{array}{c} \text{CN} \\ \text{NO}_2 \end{array} \xrightarrow{\text{NO}_2} \\ \text{49} \end{array} \xrightarrow{\text{CF}_3} \begin{array}{c} \text{CF}_3 \\ \text{SO} \end{array} \xrightarrow{\text{SC-CH}_3} \begin{array}{c} \text{CP}_3 \\ \text{SO} \end{array} \xrightarrow{\text{NO}_2} \begin{array}{c} \text{Ref.28} \\ \text{NO}_2 \end{array} \xrightarrow{\text{Ref.28}} \\ \text{49} \end{array}$$

Also, the anodic oxidation was widely used in the oxidation of allylic systems (Chart 4).

Chart 4 (Continued.)

Similarly, cathodic reduction of organic compounds was also widely used in organic synthesis, especially for reductive coupling of carbonyl compounds (Chart 5).

1.1.3 Photochemical electron transfer reactions

Photochemical reactions are performed by absorption of visible or ultraviolet light. For example, a metal complex, such as $Ru(bpy)_3Cl_2$ absorbs light at 452 nm with a high molar extinction coefficient (ϵ = 14,600 M⁻¹ cm⁻¹) and it is widely used as a photo catalyst in organic synthesis. Some important photochemical electron transfer reactions are shown in Chart 6.

Chart 6 (continued.)

Chart 6 (continued.)

1.1.4 SET reactions in organic chemistry

In the 1970s, there were several reports on the formation of the radical cation/radical anion pair intermediates in several popular organic reactions. A brief review of the literature would facilitate the discussion.

1.1.4.1 SET reactions in aromatic nucleophilic substitution reaction

The unimolecular aromatic nucleophilic substitution ($S_{RN}1$) reaction involves SET process. The halide (X) substituent in aromatic compound 90 is replaced by a nucleophile through free radical intermediates leading to the substitution product 91 (Scheme 6).

Scheme 6

For example, the reaction of iodobenzene $\bf 92$ with KNH₂ in liquid ammonia gives the substitution product $\bf 96$ through a SET mediated S_NAr reaction (Scheme 7). 41

1.1.4.2 SET reactions in acyloin condensation

Other major reactions which involve single electron transfer are acyloin condensation and Birch reduction. For example, the reaction of carboxylic ester 97 with sodium proceeds through single electron transfer from Na to an ester and gives a radical anion 98. The dimerized compound 98 gives 1,2-diketone 99 which again undergoes further SET process to afford the acyloin product 102 (Scheme 8).

Scheme 8

1.1.4.3 SET reactions in Birch reduction

The Birch reduction of substituted benzenes to the corresponding unconjugated cyclohexadienes using Na metal in liquid ammonia involves single electron transfer sequence of reactions (Scheme 9).⁴³

1.1.4.4 SET reactions in Grignard reagent formation

Organomagnesium reagents (RMgX) are very important in organic synthesis. The reaction of an organic halide with magnesium results in Grignard reagent through a SET process (Scheme 10).⁴⁴

Scheme 10

$$R-X + Mg \xrightarrow{SET} R-X + Mg$$

$$R-X \xrightarrow{} R + X$$

$$R + Mg \xrightarrow{} R-Mg^{+}$$

$$R-Mg^{+} + X \xrightarrow{} R-MgX$$

Aldehyde or ketone reacts with organomagnesium halide (Grignard reagent) to form secondary or tertiary alcohol. Polar and SET mechanisms are possible in Grignard reactions (Scheme 11). 45,46

The benzophenone 113 reacts with *t*-butyl magnesium chloride 114 to give the benzophenone ketyl radical anion 115 and alkyl radical 116 which combine to afford tertiary alcohol 117 or to give a pinacol 118 and hydrocarbon 119 (Scheme 12).

Scheme 12

The reaction of neopentylmagnesium chloride **120** with benzophenone **113** gives the corresponding alcohol **121** and pinacol **118** (Scheme 13). EPR spectral analysis confirms that the reaction goes *via* a SET mechanism.⁴⁷

Scheme 13

Ashby and coworkers investigated the single electron transfer (SET) pathway in Grignard reactions, reduction of primary halide by metal hydrides, Aldol condensation, Meerwein-Pondorff-Varley reduction, Cannizzaro reaction and Claisen condensation reaction. Evidences were presented for mechanisms involving radical intermediates (Chart 7).^{48a}

Chart 7 (continued.)

Chart 7 (continued.)

Chart 7 (continued.)

1.1.5 SET Process in Organic Donor and Acceptor System

The formation of charged species can take place in two sequential single electron transfer (SET) processes or in a concerted two electron transfer process (polar mechanism) (Scheme 14).

Scheme 14

Mulliken's charge transfer theory,⁵⁷ Taube's outer sphere/inner sphere mechanism⁵⁸ and R. A. Marcus two state non adiabatic theory⁵⁹ are the most important concepts developed to rationalize electron transfer reactions.

The charge or electron transfer from one molecule (donor) to the other molecule (acceptor) results in the formation of charge transfer (CT) complex. The electron donors

should have low ionization potential and the electron acceptors should have high electron affinities. Charge transfer complexes have a neutral ground state and there is a partial electron transfer from donor to an acceptor molecule.

Mulliken *et al.*⁶⁰ proposed that the diffusive interaction of electron rich donor with an electron acceptor gives a reversible CT complex [D, A] (Scheme 15).

Scheme 15

$$D + A \stackrel{\text{diffuse}}{=} [D, A] \stackrel{\text{hv}_{CT}}{=} [\stackrel{+}{D}, \stackrel{-}{A}]$$

The energy levels of HOMO and LUMO play important role in electron transfer reactions. The LUMO of the electrophilic reagents (acceptor) such as NO₂⁺ and Br⁺ are lower than the HOMO of aromatic molecules (donor) leading to electrophilic substitution reactions. For example, benzene reacts with NO₂⁺ to form nitrobenzene **167** *via* the formation of the radical intermediate **166** (Scheme 16).⁶¹

Scheme 16

Taube proposed that both outer-sphere and inner-sphere processes are involved in inorganic electron transfer reactions. The halides could promote the inner-sphere electron transfer *via* bridging effects. Taube *et al.*⁶² also reported that in the reaction of chromium complex **168** with cobalt complex **169**, the electron transfer from Cr(II) to Co(III) takes place *via* a bridged intermediate **170** resulting in the green chromium complex **171** and cobalt complex **172** (Scheme 17). The electron transfer is accompanied by the transfer of chloride ligand and this process takes place *via* inner-sphere electron transfer.

In outer-sphere electron transfer, organic compounds can accept or loose an electron without undergoing structural changes like bond cleavage or bond formation. For example, nitrobenzene 167 can accept one electron to form nitrobenzene radical anion 173 without undergoing any structural change (Scheme 18).

Scheme 18

Marcus described the mechanism of electron transfer between an electron donor (D) and an electron acceptor (A) through an outer-sphere precursor complex (D/A) 174. The precursor complex 174 then reorganizes toward a transition state in which electron transfer takes place to form a successor complex (D⁺ /A⁻) 175 that can dissociate to give the corresponding ion pairs 176 (Scheme 19).⁶⁴

Scheme 19

D +A diffuse
$$D/A$$
 K_{ET} D/A M_{ET} $M_{$

We have decided to investigate the electron transfer reaction of oxygen adsorbed carbon materials, polythiophene radical cation salts, quinones, halomethanes and viologen acceptors. We have also constructed electrochemical cells based on quinone acceptors and amine donors. The results are described in Chapters 2-4.

	Chapter 2
Synthetic	Methods Based an Electron Transfer
and <i>p</i> -Do	oped Polythiophene

2.1 Introduction

2.1.1 Carbon materials

15

Carbon materials are useful for a wide variety of applications such as electrochemical electrodes, medical implants, electrochemical capacitors, high-performance materials and fuel cells.¹ The heat treatment of carbon material at inert atmosphere decreases the content of heteroatoms and increasees the carbon contents.^{2,3} The conversion of an organic macromolecular system (e.g. wood, coal, nutshell etc.) to a macro-atomic carbon atoms through elimination of methanol, carbon monoxide, water and carbon dioxide by progressive heating is called carbonization process.⁴

Recently, the production of pyrolysis gas from woody biomass were investigated in this laboratory. The charcoal is a byproduct in this carbonization process from the woody biomass at 450 °C-500 °C. Therefore, we became interested in the development of organic synthetic methods based on readily accessible activated carbon.

Activated carbon is widely used in electrochemical capacitors (supercapacitors) for electricity storage with potential for use in electric vehicles. Activated carbon act as semiconductor with narrow band gap (34 meV) with potential for use in harvesting IR portion of the solar spectrum.⁵ Our interest is to study the electron transfer reactions in organic transformations. Therefore, a brief review on the properties and nature of carbon material for application in organic transformation would facilitate the discussion.

2.1.2 Various forms of carbon

The main allotropic forms of pure carbon are graphite and diamond. However, there is immense interest on other new forms of pure carbon such as fullerenes or buckyballs and carbon nanotubes (CNTs).⁶ Amorphous forms of carbon mainly consist of coal, charcoal and carbon black. Charcoal is produced by heating organic materials to a high temperature in the absence of air.⁷ It has large surface area and it can absorb gases to form new materials. Carbon black is also the purest form of carbon. It is obtained by incomplete burning of some natural oil and heavy petroleum products with limited supply of air.⁸ Carbon black is very soft powder and it is used for making carbon paper, inks and paints. The strength of the rubber is increased by the addition of carbon black. Graphite is the most stable allotrope of carbon and soft in nature.⁹ Graphite conducts electricity due to delocalization of electrons.

2.1.3 Surface characterization and properties of activated carbons

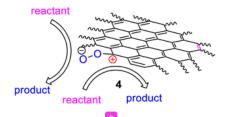

The surface characteristics of carbon materials and chemistry of their surface is depending on the amount of heteroatom incorporated into the carbon matrix. The heteroatom like oxygen is responsible for the presence of various acidic functional groups such as carboxyl, carbonyl, phenol, quinone and lactones and also presence of unsaturated sites in the matrix of activated carbon (Figure 1).¹⁰

Figure 1. Surface groups present in the Carbon Material. It indicates the presence of σ (*) and π (•) electrons at the zigzag sites and the presence of triple bonds at the armchair sites.

Carbon materials contains bulk atoms that are neutral, surface atoms that are the real adsorption atoms and corner atoms that are very reactive and even react with metals. It is well known that chemical treatment of carbon materials increases the concentration of surface oxygen functional groups. It has been reported¹¹ that the oxygen acquires a partial negative charge upon chemisorptions. The carbon materials have a free-flowing sp² π -electrons, which make them potential catalyst for electron transfer reactions such as oxygen reduction reaction (ORR) to generate super oxide radical.¹² This super oxide radical bound to carbon material acts as an oxidant (Scheme 1).¹³

It is of our interest to design experiments for use the reactive intermediate 4 in the oxygen adsorbed activated carbon in synthetic transformations (Scheme 2).

Scheme 2

We have investigated the oxygen doped carbon materials for use in the development of new synthetic methods involving reaction with reducing agents and with electron rich compounds and amines. The results are discussed in the next section.

2.2 Results and Discussion

The properties of carbon materials and their surface depend on the heteroatom present and the nature of the materials and methods used for the preparation. ¹⁴ Further, it was suggested that the heteroatom (like oxygen) free graphene edge sites in carbon materials are neither hydrogen terminated nor free radicals. Instead, the edge sites are aryne-like armchair sites 5 and carbene-like zigzag sites 6 with triplet ground state. The available evidence points to predominantly carbene-like zigzag sites 6 (Figure 2). ¹⁵

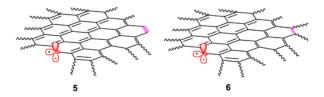
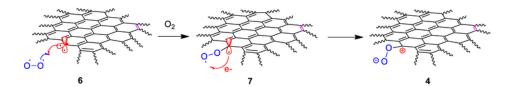
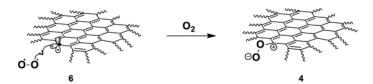



Figure 2. Surface characteristics edge sites in the carbon materials.


The aryne-like sites undergo trimerization to give benzenoid aggregates under ambient atmospheric conditions and expected to give phenolic groups upon reaction with moisture. However, the magnetic properties and chemisorptions with molecular oxygen reported for the carbon materials are in accordance with the proposal that graphene edge sites are carbene-like with triplet ground state 6.15

It has been reported that chemisorption of molecular oxygen by activated carbon fibre materials leads to formation of negatively charged oxygen (C-O-Oδ-) species. 16,17 Accordingly, we envisaged the formation of such species 4 through electron transfer from the carbon radical site in 7 formed by the reaction of molecular oxygen with activated carbon 6 (Scheme 3).

2.2.1 Reactions of Molecular Oxygen Adsorbed Carbon Materials with Ph_3P

Table 1. Adsorption of molecular oxygen on carbon materials^a

Entry	CM 6 (g)	Oxygen adsorbed CM 4 (g)	O2, mmol
1	AC (1)	1.034	1.06
	CB (1)	1.053	1.65
	Gr (1)	1.000	-
2	AC (2)	2.071	2.22
	CB (2)	2.078	2.43
3	AC (3)	3.092	2.88
	CB (3)	3.119	3.72
4	AC (4)	4.120	3.75
	CB (4)	4.152	4.75
5	AC (5)	5.175	5.46
	CB (5)	5.190	5.93
	Gr (5)	5.006	0.19
6	AC (10)	10.203	6.34
	CB (10)	10.236	7.37
	Gr (10)	10.013	0.41
7	AC (15)	15.312	9.75

Initially, we have performed several experiments to assess the extent of adsorption of molecular oxygen on carbon materials. The results are summarized in Table 1. The activated carbon (AC) and carbon black (CB) react with molecular oxygen, whereas in the case of graphite (Gr), there was no oxygen or little oxygen gets adsorbed (Table 1).

The carbon material was preheated to 200 °C under high vacuum and brought to room temperature under N₂ atmosphere. Then, the oxygen was passed to the resulting carbon material. The difference in the weight of carbon material before and after oxygen adsorbed indicates that the approximate amount of oxygen molecule gets adsorbed (Table 1).

The carbon skeleton of the oxygen adsorbed intermediate 4 is expected to behave like electron acceptor and the negatively charged oxygen is expected to undergo reaction with proton donors. So, such species are expected to react with proton containing compounds like benzoic acid 8 to give the corresponding hydroperoxide intermediate 9 (Scheme 4).

Scheme 4

To examine this possibility, we have carried out the reaction of the carbon material with Ph₃P and benzoic acid. We have observed that, in the case of carbon black (CB) without using any proton source or an acid, the Ph₃P=O was formed in 17% yield (Table 2, entry 1).

Table 2: Reaction of molecular oxygen adsorbed carbon material **4** with benzoic acid and Ph₃P ^a

			Benzoic acid,	
Carbon Material	200 °C / vacuum	CM	PPh ₃ , 11	Ph₃P=O
(CM)	Oxygen	(oxygen adsorbed)	THF, 24 h	Pn ₃ P=O
6	0.7,9011	4	, 4	12

Entry	CM (g)	Benzoic acid (mmol)	Ph ₃ P (mmol)	THF (mL)	Ph ₃ P=O Yield (%) ^b
1	CB (5)	0	10	150	17
2	CB (5)	10	10	150	47
3	CB (10)	20	10	150	52
4	AC (5)	10	10	20	54
5	Gr (5)	0	10	20	0
6	Gr (5)	10	10	20	trace
7	Gr (5)	20	10	20	6
8°	AC (5)	10	10	20	52
9°	CB (5)	10	10	150	45

The formation of Ph₃P=O was slightly increased with an increase in the amount of either carbon material or benzoic acid. Therefore, an increase in the amount of carbon black and benzoic acid gives the Ph₃P=O in 52% yields (Table 2, entry 3). A further increase in the amount of carbon black leads to moderate increase in the Ph₃P=O product.

Here, the carbon black needs more solvent during the reaction and this limits the use of carbon black in this reaction. Whereas in the case of graphite, without using benzoic acid the formation Ph₃P=O product was not observed (Table 2, entry 5). Further, we have observed that the addition of benzoic acid gives Ph₃P=O in 6% yield (Table 2, entry 7). Further increase in the amount of graphite did not enhance the yield of Ph₃P=O. In the case of activated carbon, the Ph₃P=O was isolated in 54% yield (Table 2, entry 4). We have also observed that the carbon material isolated after the reaction with PPh₃ can be reused after vacuum treatment at 200 °C and re-adsorption of molecular oxygen. Reaction using re-oxidized activated carbon and carbon black with Ph₃P in THF gave the Ph₃P=O product in 52% and 45% yield (Table 2, entry 8 and 9). The results clearly indicate that the molecular oxygen chemisorbed on carbon black and activated carbon but it is only physisorbed on graphite.

2.2.2 Reactions of Molecular Oxygen Adsorbed Carbon Materials with Alkylboranes

Next, we have studied the utilization of the oxygen adsorbed carbon intermediate 4 in organic transformations. The reactive peroxide present in the oxygen adsorbed carbon material 4 can be used for the oxidation of alkylboranes. The organoboranes are readily accessible *via* hydroboration of alkenes and alkynes using easy to handle NaBH₄/I₂ reagent system. The molecular oxygen itself could oxidize trialkyl borane to the corresponding hydroperoxide or alcohols. However, the preferred reagent for the oxidation of organoboranes is the HOO- Na+ species produced *in situ* in the reaction of NaOH with H₂O₂. We have envisaged that the oxygen adsorbed intermediate like 4 would react with NaOH to give the species like 13 which could give the HOO- Na+ species 14 for

oxidation of organoboranes *via* the formation of the corresponding borate complex (Scheme 5).²⁰

Scheme 5

In order to examine this, we have performed a series of experiments on the oxidation of organoboranes prepared using the NaBH₄/I₂ reagent system (Scheme 6).

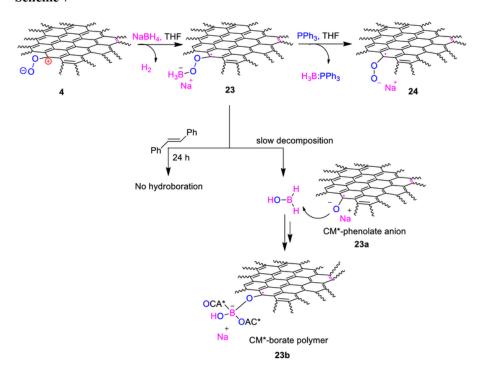
Scheme 6

We have observed that trialkylboranes 16a and 16b prepared by using hydroboration of 1-decene and norbornene with the NaBH₄-I₂ in THF react with a mixture of oxygen adsorbed carbon black 4 and 3N NaOH to give the corresponding alcohol 21a and 21b in 85% and 57% yield (Table 3, entry 1 and 2).

Table 3. Reaction of molecular oxygen adsorbed carbon materials 4 with aq. NaOH and alkylboranes^a

Entry	CM (g)	Alkylboranes (16, 19, 20)	Products (21, 22)	Yield (%) ^e
1 ^b	CB (5)	$ \begin{pmatrix} n-C_8H_{17} \\ 16a \end{pmatrix}^B_3 $	n-C ₈ H ₁₇ OH 21a	85
2 ^b	CB (5)	16b B	ОН 21b	57
3°	CB (5)	19a	OH 21c	71
4°	CB (5)	(Ph Ph 2 19b	Ph OH 21d	86
5 c, f	CB (5)	19c	OH 21e	80
6 ^{d,g}	CB (5)	Ph 20a	Ph H 22a	53
$7^{\rm d,f,g}$	CB (5)	Ph	$\begin{array}{c} \text{Ph} & & \\ & \cap \text{-C}_4\text{H}_9 \\ & \circ \text{O} & + \\ & \text{Ph} & & \\ & \text{22b} \\ \end{array}$	59

The reaction of dialkylboranes 19a-c prepared by using NaBH₄-I₂ in THF, react with the mixture of carbon black and 3N NaOH to give the corresponding alcohols 21c, 21d and 21e in 71%, 86% and 80% yield, respectively (Table 3, entries 3-5). Further, the alkenylborane 20a, prepared by hydroboration using thexylborane, which in turn prepared in situ by the reaction of tetramethyl ethylene and the borane gas generated by the reaction of I₂ with *n*-Bu₄NBH₄, upon reaction with oxygen adsorbed carbon black 4 and 3N NaOAc gave the phenylacetaldehyde 22a in 53% yield (Table 3, entry 6). Whereas, the reaction using the alkenylborane 20b gives the corresponding regioisomeric mixture 22b in 59% yield (Table 3, entry 7).


The carbon black used for this oxidation could be recovered by filtration, dried at 200 °C and re-adsorbed with molecular oxygen. The recovered and re-adsorbed carbon black and 3N NaOH oxidize the dialkylborane 19b to give the alcohol 21d in 82% yield (Table 3, entry 8). Also, when the oxidation was performed using dialkylborane 19b without using molecular oxygen adsorbed carbon black only trace (<5%) amount of alcohol 21d was obtained (Table 3, entry 9) indicating the role of carbon black in these transformations.

2.2.3 Reaction of Sodium Borohydride with Molecular Oxygen Adsorbed Carbon Material and Lewis Bases

Diborane is one of most important reagent in organic synthesis. Diborane itself is difficult to handle and relatively inert towards olefins. So, it is normally utilized in the form of its complexes such as BH₃:THF, BH₃:SMe₂ and BH₃:NR₃. Many reagent systems have been developed for the generation of diborane gas.²¹ Previously, simple methods for generation of diborane gas from I₂/NaBH₄, I₂/*n*-Bu₄NBH₄ and PhCH₂Cl/*n*-Bu₄NBH₄ reagent systems were reported from this laboratory.²²

We have observed that the reaction of oxygen adsorbed carbon material 4 with NaBH₄ in THF or diglyme lead to slow hydrogen gas evolution. Accordingly, we have envisaged the formation of the AC*-O-O-BH₃ complex 23 as shown in Scheme 7.

Scheme 7

To examine this, we have carried out the hydroboration reaction of stilbene with the intermediate 23 in THF at 25 °C for 24 h. There was no hydroboration observed. Presumably, the reaction of the olefin with the borane complex 23 may be slow and the intermediate 23 may not be stable for longer time to react with olefin or further decomposed to AC* borate polymer (Scheme 7). However, when the reaction of the borane complex 23 was carried out with Ph₃P, the Ph₃P:BH₃ complex was obtained in 35% yield (Table 4, entry 1).

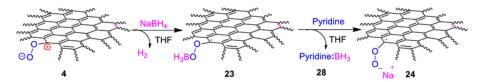
Table 4. Reaction of NaBH₄ with Ph₃P with increasing amount of carbon material (CM).^a

	Carbon black (oxygen adsorbed) 4	NaBH ₄ 25 / PPh ₃ 11 THF, 25 °C, 24 h	Ph ₃ P: BH ₃ 26
Entry	CM (g)	THF (mL)	<mark>Г</mark> 13Р:ВН3 26 Yield (%) ^b
1	CB (1)	30	35
2	CB (2)	70	54
3	CB (4)	120	62
4	CB (5)	150	69
5	CB (10)	300	73
6°	CB (5)	150	65

We have carried out several reactions using different solvents in order to improve the yields and THF turned out to be the best solvent for this transformation. The Ph₃P:BH₃ was obtained in up to 73% yield, when the reaction was carried out with more amount of oxygen adsorbed carbon black (Table 4). It was found that similar reactions using oxygen adsorbed activated carbon gave 21-77% yield.

Whereas, oxygen adsorbed graphite gave the Ph₃P:BH₃ complex only in 9-23% yield, in accordance with reports that molecular oxygen is mainly physisorbed on the surface of graphite. ^{11,15}

We have also observed that the recovered carbon black remained after reaction with NaBH₄ and Ph₃P further reacts with benzoic acid and Ph₃P to give the Ph₃P=O in 22% yield. This transformation can be rationalized as shown in Scheme 8.


Scheme 8

2.2.4 Reaction of Molecular Oxygen Adsorbed Carbon Black with NaBH₄

and Amines

We have then turned our attention towards the reaction of pyridine with the AC*-O-O-BH₃ intermediate 23 (Scheme 9).

Scheme 9

We have found that the reaction of pyridine with NaBH₄ in the presence of oxygen adsorbed carbon materials in THF gives the pyridine:BH₃ complex **28** in 42% yield using activated carbon (2 g) and in 52% yield using carbon black (2 g) (Table 5, entry 1 and 2).

We have also performed these experiments using increased amount of carbon material (5 g) in order to improve the yields of pyridine: BH₃ 28 complex. However, there was no further improvement, but there was a slight decrease in the yield of pyridine: BH₃

complex 28 (Table 4, entries 3 and 4). Further, the yields of pyridine:BH₃ complex produced here are relatively low compared to the yields of Ph₃P:BH₃.

Table 5. Reaction of molecular oxygen adsorbed carbon materials with NaBH₄ and pyridine^a

CM	NaBH ₄ /pyridine	Pyridine: BH ₃
(oxygen adsorbed)	THE DATE	, ,
4	THF, 24 h	28

Entry	CM (g)	THF (mL)	Pyrdine:BH3 complex 28 Yield (%) ^b
1	AC (2)	15	42
2	CB (2)	70	52
3	AC (5)	25	40
4	CB (5)	150	48

We have also performed the reaction of molecular oxygen adsorbed carbon black with other amines, which are expected to form complexes with borane. The results are summarized in Table 6. The reaction of morpholine 29 with NaBH₄ and oxygen adsorbed carbon black in THF gave the morpholine:BH₃ 33 in 43% yield (Table 6, entry 1). Similarly, different amine:borane complexes 34-36 were prepared using the amines 30-32 and oxygen adsorbed carbon black (Table 6). The low yields of amine:BH₃ complexes compared to the Ph₃P:BH₃, resulting may be a slow decomposition of the peroxy borane species 23 or the amine borane products may further react with the peroxy species present in the carbon byproduct 24 leading to a reduction in yields.

Table 6. Reaction of molecular oxygen adsorbed carbon black with NaBH₄ and amines.^a

Carbon black (oxygen adsorbed)

NaBH₄/amine 29-32

THF, 25 °C, 24 h

33-36

Entry	CB (g)	Amine 29-32	Amine:BH ₃ 33-36	Yield(%)
1	CB (5)	0NH	0 NH:BH₃ 33	43
2	CB (5)	30 NH	NH:BH ₃ 34	58
3	CB (5)	Ph—NH Ph—31	Ph—NH:BH ₃ Ph— 35	42
4	CB (5)	NH S	NH:BH ₃	51

We have also examined the proposed AC*-O-O-BH₃ intermediate 23 for hydroboration reaction of α-methyl styrene 37 in THF but there was no hydroboration (Scheme 10).

Scheme 10

The pyridine:BH₃ complex **28** is useful for hydroboration of olefin at elevated temperatures. Recently it was reported that pyridine:BH₃ complex **28** hydroborates olefins at room temperature under activation by I₂. We have found that the pyridine:BH₃ complex **28** is useful for hydroboration of α-methyl styrene **37**. After oxidation using oxygen adsorbed AC/NaOH, the corresponding alcohol **38** was obtained in 86% yield (Scheme 11).

Scheme 11

2.2.5 Reaction of Oxygen Adsorbed Activated Carbon with Benzylamine

Derivatives

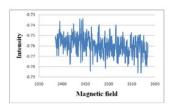
We have observed that benzylamine give benzaldehyde 45 in 30% yield upon reaction with molecular oxygen adsorbed activated carbon. In the case of dibenzylamine 39b, benzaldehyde was obtained in 25% yield after work up. The NMR spectra obtained for the crude product mixture before work up and chromatography revealed the presence of both the imine and benzaldehyde products (Scheme 12). Presumably, the reaction may

give amine radical cation followed by the formation of imine, which after reaction with water yields benzaldehyde. We have also observed that the epr spectrum recorded after addition of amines to oxygen adsorbed activated carbon indicated the presence of paramagnetic species.

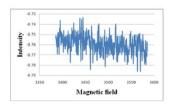
Scheme 12

Similarly, it has been observed in this laboratory that the oxygen adsorbed carbon material 4 react with the electron donors like *N*-phenyl tetrahydroisoquinoline 46 and nucleophilic reagents like nitromethane, pyrrole and TMSCN gave the corresponding coupled product 49 in 67-89% yield through the intermediacy of the corresponding radical cation and iminium ion intermediates (Scheme 13).²⁵

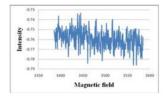
Scheme 13


Also, it was found that the 2-naphthol **50** undergoes oxidative coupling reactions in the presence of oxygen adsorbed carbon material **4** to give the bi-2-naphthol **52** (BINOL) in 95% yield *via* the corresponding radical intermediates (Scheme 14).²⁶

Scheme 14


2.2.6 Evidence for Presence of Paramagnetic Species Through EPR Spectroscopy

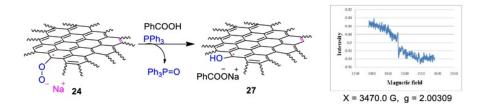
EPR spectra were recorded for the activated carbon samples at various stages and the spectra are presented below.

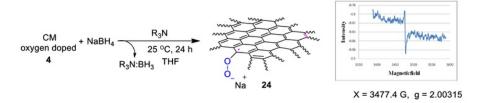

2.2.6.1 EPR spectrum of commercial carbon material

2.2.6.2. EPR spectrum of vacuum dried carbon material

2.2.6.3. EPR spectrum of oxygen doped carbon material

2.2.6.4. EPR spectrum of residual activated carbon (Scheme 4)


2.2.6.5. EPR spectrum of paramagnetic species 23b (Scheme 7)

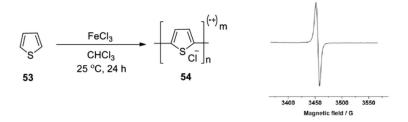

2.2.6.6. EPR spectrum of paramagnetic species 24 (Scheme 7)

2.2.6.7. EPR spectrum of paramagnetic species 27 (Scheme 8)

2.2.6.8. EPR spectrum of paramagnetic species 24 (Scheme 9)

The epr signals observed are in accordance with the paramagnetic species present in residual activated carbon samples.

2.2.7 Synthesis of p-Doped Polythiophene (PT) and Estimation of Radical Cation Site Present in p-Doped Polythiophene.


Electroactive conducting polymers have proven applications in several technologies such as solar cells, display devices, gas sensors and actuators.²⁷ It is relatively easy to process these polymers to make the devices and their chemically tunable property makes them useful in electronic devices.²⁸ These polymers are redox-active and their conductivity can be changed by doping the polymer. The physical properties of these conductive polymers depend on the type of the dopant used.

Polythiophene (PT) and its derivatives are good conducting polymers. Optical properties of polythiophenes can be varied by pre-functionalization of monomer.^{29,30} Polythiophene derivatives are easy to process and they form a thin film with good optical properties.^{31,32} The higher stability and longer life of polythiophene derivatives are suitable for various applications.³³

Previously, we have discussed the preparation of Lewis base borane complexes using carbon material and borohydride reagent system. Hence, we have undertaken the studies to estimate the doping level in polythiophene radical cation salts using NaBH₄. Also, we have envisaged a simple method for generation of Lewis base-borane complexes. The advantage of this method is that we can recover the polythiophene by simple filtration and re-oxidize the polythiophene using FeCl₃ to prepare the polymer radical cation salts for reuse in the preparation of Lewis base borane complexes.

We have prepared the polythiophene radical cation salts 54 from thiophene 53 through a slightly modified literature procedure.³⁴ The dark-brown precipitate of polythiophene obtained in the reaction was further washed with methanol to remove the residual oxidant. The color of the polymer changes from dark-brown to brown. The PT powder was dried in a vacuum at 50 °C for 12 h (Scheme 15).

Scheme 15

The synthesized polythiophene radical cation salts were confirmed by FT-IR spectroscopy. The presence of paramagnetic sites was confirmed by epr spectroscopy. The polymer exhibits single epr signal with g value of 2.0026 (Scheme 15).³⁵

2.2.8 Preparation of Lewis Base Borane Complexes Using the Polythiophene Radical Cation Salts/NaBH₄ Reagent System.

Earlier reports³⁶⁻⁴⁰ indicate that there are three different structures possible in polythiophene. The structure 55 is a neutral polymer and the removal of an electron from structure 55 leads to form radical cation polymer 56. This radical cation polymer 56 also called as polaron and it is stabilised by resonance. Removal of an electron from structure 56 gives a bipolaron 57 (Scheme 16). The polaron and bipolaron are formed directly through an oxidation of the thiophene monomer. Previous report⁴¹ shows that the radical cation present in the polythiophene could delocalize into the rings. The repeating unit of cation radical in polythiophene could approximately six monomer units. The planarity of

polythiophene gets twisted and delocalisation of the radical cation present in the polymer gets reduced beyond six thiophene rings.

Scheme 16

The polythiophene radical cation salts 54 react with NaBH₄ with slow evolution of hydrogen gas. Accordingly, the reaction of polythiophene radical cation, PT⁽⁺⁾_m nCl⁻NaBH₄ and PPh₃ may be visualized by initial formation of a polymer-NaBH₄ complex that decomposes to H₂ and borane followed by the formation of Ph₃P:BH₃ complex. Hence, we have performed the reaction of NaBH₄ and Ph₃P with 1 g of polymeric radical cation salts in THF at 25 °C.

Scheme 17

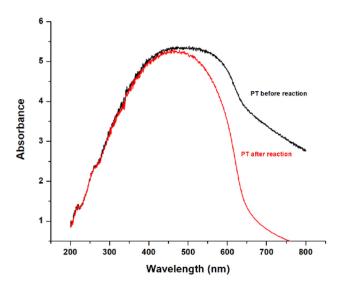
A tentative mechanism for the formation of Ph₃P:BH₃ complexes can be considered involving the reduction of polythiophene cation radical salts by NaBH₄ through single electron transfer (SET) process to give neutral polymer and Ph₃P:BH₃. The possible mechanism is outlined in Scheme 17.

2.2.9 Estimation of the Number of Radical Cation Sites Present in Polythiophene

We have observed that the reaction of 1 g of PT⁽⁺⁾_m nCl⁻ **54** with NaBH₄ (1 mmol) and PPh₃ **11** (1 mmol) gives the Ph₃P:BH₃ **26** in 0.72 mmol (Table 7, entry 1). When the reaction was carried out using higher amounts of NaBH₄/Ph₃P with 1 g of PT⁽⁺⁾_m nCl⁻ **54**, higher yields of Ph₃P:BH₃ **26** was obtained (Table 7, entries 2-5).

There was no significant change observed, when the reaction was performed using more than 5 mmol each of NaBH₄ and Ph₃P. Accordingly, it can be concluded that a minimum of approximately 1.7 mmol of radical cation sites are present in 1 g of PT^(.+)_m

nCl⁻ 47. However, the actual number of radical cation salts present is expected to be slightly more than this as the yields are of isolated yields and hence about 5% loss during isolation could be expected. The recovered⁴² PT^(.+)_m nCl⁻ 54 (1 g), after oxidation with FeCl₃ (Scheme 15), reacts with NaBH₄ (1 mmol)/PPh₃ (1 mmol) to give the Ph₃P:BH₃ in 0.71 mmol (Table 7, entry 6) without significant change from the freshly prepared sample, illustrating the recyclability of the polymer used.


Table 7. Reaction of polythiophene radical cation salts 54 with NaBH₄ and PPh₃^a

Entry	Polythiophene radical cation salts (1 g)	NaBH ₄ (mmol)	PPh ₃ 11 (mmol)	H ₃ B:PPh ₃ 26 Yield (mmol) ^b
1	54	1	1	0.72
2	54	2	2	1.22
3	54	3	3	1.50
4	54	4	4	1.64
5	54	5	5	1.70
6°	54	1	1	0.71

We have also analyzed the polymer radical cation salts PT^(.+)_m nCl⁻ **54** by UV-Visible spectroscopy before and after the reaction with NaBH₄ and PPh₃. Broad

absorptions with longer wavelength (red shift) was observed for the polymer before reaction with NaBH₄ and PPh₃. The wavelength of absorption gets decreased or move to shorter wavelength after reaction with NaBH₄ and PPh₃ (Figure 3). The color of the polymer PT^(,+)_m nCl⁻ 54 also gets changed from dark brown to brown.

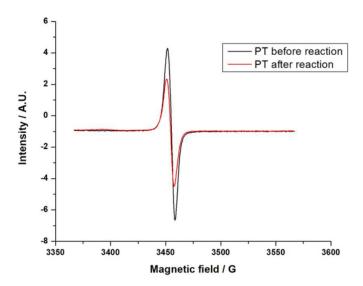

The shift in the UV-Visible absorptions spectrum to lower wavelength (blue shift) after the reaction with NaBH₄ and PPh₃ for polymer sample 54 indicate that the effective conjugation present in the polymer or the polymer cation radical sites present in the polymer gets lowered.

Figure 3. UV-Visible spectrum of polymer **54** powder sample before (black line) and after (red line) reaction with NaBH₄ and PPh₃.

The epr studies also indicate that there was a decrease in the radical cation spin density present in the polymer salts (Figure 4). However, the epr studies indicates that the some of the radical cation remains after the reaction with NaBH₄ and PPh₃. The epr signals became weak, but not totally absent (Figure 4). Earlier, it was reported that the

neutral thiophene polymers react with molecular oxygen to give paramagnetic species.⁴³ Therefore, formation of small amounts of paramagnetic species by the reaction of polymer with O₂ during the work up procedure cannot be ruled out in these cases.

Figure 4. EPR of PT **54** before (black line) and after (red line) reaction with NaBH₄ and PPh₃.

The Ph₃P:BH₃ complex is very stable and hence it is not useful for synthetic applications. However, the amines like pyridine form relatively more reactive borane complexes and hence are useful for hydroboration at room temperature under activation by I₂.²⁴ Therefore, we have decided to investigate the reaction of NaBH₄ with the polymer radical cation salts in the presence of pyridine.

We have found that the reaction of polythiophene radical cation salts 54 (1 g) with NaBH₄ and pyridine in THF gives the pyridine:BH₃ 28 complex. The results are summarized in Table 8. The reaction using PT radical cation 54 (1 g) using 1 mmol each

of NaBH₄/pyridine gave the pyridine:BH₃ **28** complex in 35% yield based on the presence of 1.7 mmol of radical cation sites in 1 g of PT radical cation **54** (Table 8, entry 1). Similarly, the reaction of PT radical cation **54** with 2 and 3 mmol each of NaBH₄ and pyridine gives the pyridine:BH₃ **28** complex in 63% and 79% respectively (Table 8, entry 2 and 3).

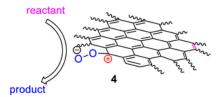
Table 8. Reaction of polythiophene radical cation salts 54 with NaBH₄ and Pyridine^a

Entry	Polythiophene radical cation (1 g)	NaBH ₄ (mmol)	Pyridine (mmol)	Pyridine:BH ₃ 28 Yield (mmol) ^b	Pyridine:BH ₃ 28 Yield ^c (%)
1	54	1	1	0.59	35
2	54	2	2	1.08	63
3	54	3	3	1.35	79

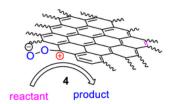
In these transformations, the borane "BH₃" moiety seems to be extracted by the Ph₃P or pyridine Lewis bases while the radical cation borohydride complex decomposes (Scheme 17). It was of interest to us to examine whether the borohydride complex could hydroborate olefins. Accordingly, we have carried out an experiment using α-methyl styrene with polymer radical cation salts and NaBH₄ in THF but there was no hydroboration. Presumably, the olefin is not nucleophilic enough to react with polymer radical cation – borohydride complex. However, we have observed that the pyridine:BH₃ complex 28 prepared in this way readily hydroborates α-methyl styrene under iodine

activation. After NaOH/H₂O₂ oxidation the corresponding alcohol was obtained in 84% yield.

It was also observed in this laboratory that the reaction of polymers such as polyN-methylpyrrole (NMPPY^(.+)_m nCl⁻) **54a** and poly(N-methylaniline) (PNMA^(.+)_m nCl⁻) **54b**radical cation salts with NaBH₄ (1 mmol) and PPh₃ (1 mmol) gave the Ph₃P:BH₃ **26** in
0.62 mmol and 0.68 mmol (Scheme 18). The results indicate that a minimum of approximately 1.35 mmol of radical cation sites are present in 1 g NMPPY^(.+)_m nCl⁻ **54a**and also a minimum of 1.60 mmol of radical cation sites are present in 1 g of PNMA^(.+)_m
nCl⁻ **54b** (Scheme 18).⁴⁴


Scheme 18

$$NaBH_4 + \begin{pmatrix} CH_3 & CH_$$


Next, we have studied the reaction of amine nucleophiles with various electron acceptors like quinones, vilologens and halo compounds. The results are described in the chapter 3.

2.3 Conclusions

The molecular oxygen adsorbed carbon black reacts with benzoic acid and Ph₃P to give Ph₃P=O in 52% yield. Also, oxidation of organoboranes were performed using readily available oxygen adsorbed carbon materials 4. These organic transformations were also performed by exploiting the negative charge present in the oxgen end.

The electron defficiency present in the carbon skeleton of the carbon materials 4 was utilized for the preparation of Lewis base:borane complexes using NaBH₄ and Ph₃P or pyridine. The Ph₃P:BH₃ and amine:BH₃ complexes are prepared in moderate to good yields upon reaction of oxygen adsorbed carbon material with NaBH₄/Ph₃P and NaBH₄/amine reagent systems. We have observed bezylamine gives benzaldehyde *via* radical cation intermediates reaction with molecular oxygen adsorbed carbon materials.

A simple method for estimating doping levels in polymer was developed. Accordingly, it can be concluded that a minimum of approximately 1.7 mmol of radical cation sites are present in 1 g of the $PT^{(.+)}_{m}$ nCl⁻ salt.

Convenient methods for the preparation of Ph₃P:BH₃ and pyridine borane and other amine borane complexes were developed.

	of Amines with Quinones,
Viologens and halo compo	ounds

3.1 Introduction

Aliphatic and aromatic, primary, secondary and tertiary aminesare known to react with p-chloranil in dioxane/2-propanol to produce blue to purple color. Generally, aliphatic amines gives red colour and other amines give different colours as shown in Table 1. Accordingly, p-chloranil was used to detect the presence of amines.

Table 1. The colours of chloranil-amine adducts

Amine	Colour of adduct produced with chloranil
n-Butylamine	Red
Benzylamine	Red
Aniline	Violet
N-Methylaniline	Blue-green
N,N-Dimethylaniline	Blue
p-Nitroaniline	Orange
Diphenylamine	Blue-green

3.1.1 SET Reactions in Quinone Chemistry

The quinone – hydroquinone redox couple has been studied over many years.² Quinone redox system also plays major roles in biology.³ Quinones undergoes 2H⁺/2e⁻ reduction in aqueous solution (or) in protic solvents.⁴ The redox process of hydroquinone-quinone is a sequence of proton and electron transfer (Figure 1). In the first step,

deprotonation leads to a phenoxide ion which is transformed into a phenoxy radical by a oneelectron oxidation. Then dissociation of the second OH group generates the radical anion semiquinone followed by a second one-electron oxidation to give benzoquinone 2. All intermediates are resonance stabilized.

Figure 1. The redox process of hydroquinone-quinone system.

In nonaqueous (or) aprotic conditions, the quinone reduction proceeds through two consecutive single electron reductions (Fig 2).

Figure 2. Quinone reduction in aprotic medium.

3.1.1.1 Addition and substitution reaction of quinones with amines

Preparation of various addition products of 1,4- benzoquinone 2 with different substituted anilines 3 was reported (Scheme 1).⁵

Scheme 1

Reaction of *p*-chloranil 6 with aniline to give corresponding amino quinone 10 as a product.⁶ A mechanism involving the formation of aminoquinone through outer (π) -complex 8 and inner (σ) -complex 9 was proposed (Scheme 2).

Scheme 2

p-Chloranil 6 reacts with *n*-butyl amine 11 by electron transfer from *n*-butylamine 11 to *p*-chloranil 6 followed by substitution reaction to give the product 14 (Scheme 3).⁷

Scheme 3

Pyrolidine 11a was also reported to react with p-chloranil 6 to give mono and disubstituted aminoquinone 15 and 16 (Scheme 4).⁸

Scheme 4

The hydride transfer from dihydroflavins 17 to 2,3-dichloro 5,6-dicynao-*p*-benzoquinone (DDQ) 18 was reported.⁹ In this case, the back electron transfer is relatively slow and the proton transfer occurs within the radical ion pair complex 19 (Scheme 5).

Scheme 5

The reaction between p-chloranil 6 and diclofenac 23 leads to the charge transfer complex 24. This CT complex is readily converted to radical ion pairs 25 in methanol solvent (Scheme 6).¹⁰

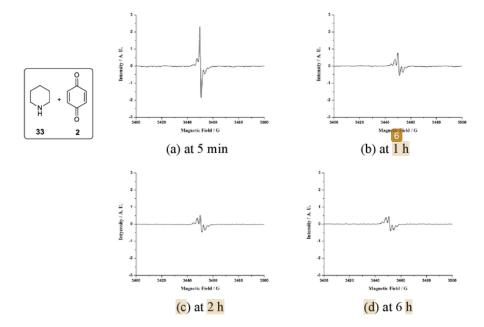
Scheme 6

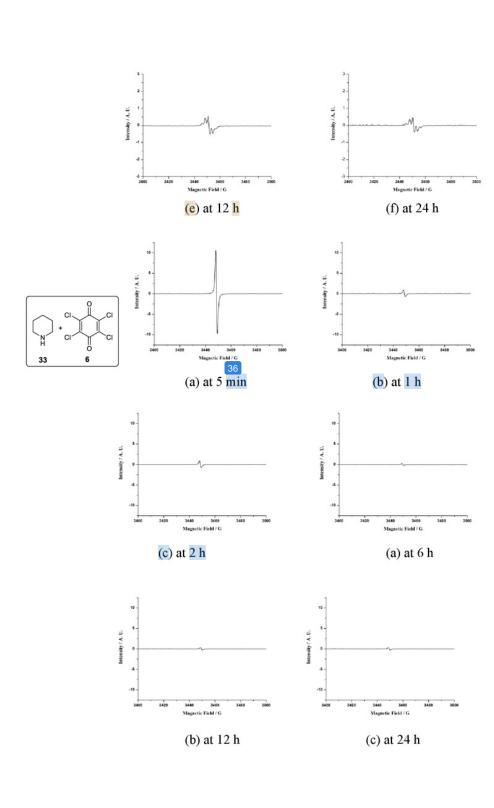
Tertiary amines are excellent electron donors and they strongly interact with electron acceptors. For example, DABCO 26 reacts with p-chloranil 6 in benzene solvent to give DABCO-chloranil 1:1 complex. The reaction of p-chloranil or p-bromanil with DABCO gives paramagnetic species 28 in benzene or in THF solvent (Scheme 7).

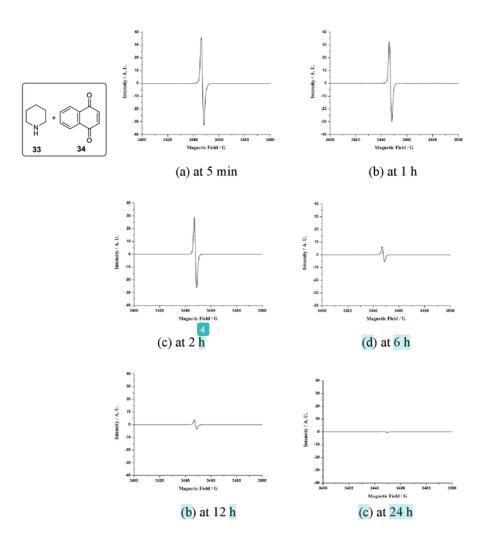
Scheme 7

The reaction of 2,2,6,6-tetramethylbenzo [1,2-d;4,5-d']bis[1,3]dioxole (TMDO) 29

DDQ 18 in polar solvents like acetonitrile or propylene carbonate leads to radical ion pairs 30.


The electron transfer from TMDO to DDQ is fast in polar solvents (Scheme 8). 12


Scheme 8


We have decided to investigate the electron transfer reaction of quinones with amine donors. The mechanism and intermediates formed in these electron transfer reactions are discussed in the next section.

3.2.1 Reaction of secondary amine with quinone acceptors

Piperidine 33 reacts with 1,4- benzoquinone 2 in DCM solvent to give paramagnetic species by electron transfer from piperidine 33 to 1,4- benzoquinone 2. The intensity of the epr signal decreases with time. We have also observed similar epr pattern in PC solvent with stronger signal. The reaction of piperidine with *p*-chloranil 6, 1,4-naphthaquinone 34 and 2,3-dichloronaphthaquinone 35 also gave similar results in epr spectroscopic studies (Figure 3).

Figure 3. EPR spectra of pipridine **33** with quinones (0.05 mmol) and (0.05 mmol) in CH₂Cl₂ solvent.

The reaction finally leads to the formation of diamagnetic 2, 5-di-piperidin-1-yl- [1,4] benzoquinone product **38** (Scheme 9).

Scheme 9. Electron transfer reaction of benzoquinone 2 with piperidine 33

A possible mechanism for the formation aminoquinone is outlined in Scheme 10.

Scheme 10

Similar reaction of *p*-chloranil 6 with piperidine 33 gave the ion radical pairs 45 followed by charge transfer complex 46 with subsequent formation of the diamagnetic 2, 5-dichloro-3,6-di-piperidin-1-yl-[1,4] benzoquinone product 47 (Scheme 11).

Scheme 11

12.

A possible mechanism for the formation of aminoquinone 47 is outlined in Scheme

Scheme 12

Similarly, the reaction of piperidine 33 with 1,4-naphthaquinone 34 and 2,3-dichloronaphthaquinone 35 results in aminoquinone derivatives 54 and 55 through the formation of paramagnetic intermediates 52 and the charge transfer complex 53 (Scheme 13).

Scheme 13

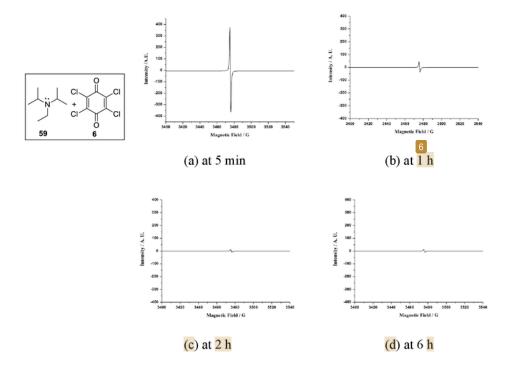
Recently, it was reported that the reaction of pyrrolidine 11a with p-chloranil 6 gives the corresponding mono substituted aminoquinone 15 through polar or ionic intermediate 56 (Scheme 14). 13

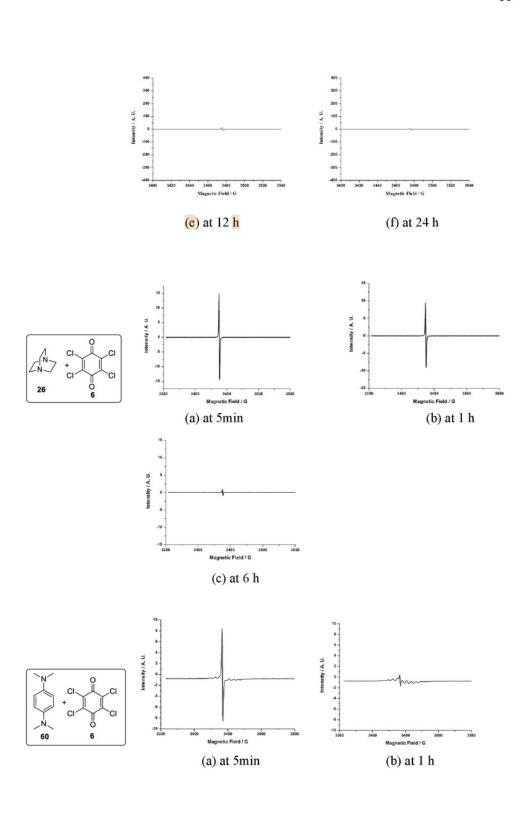
Scheme 14

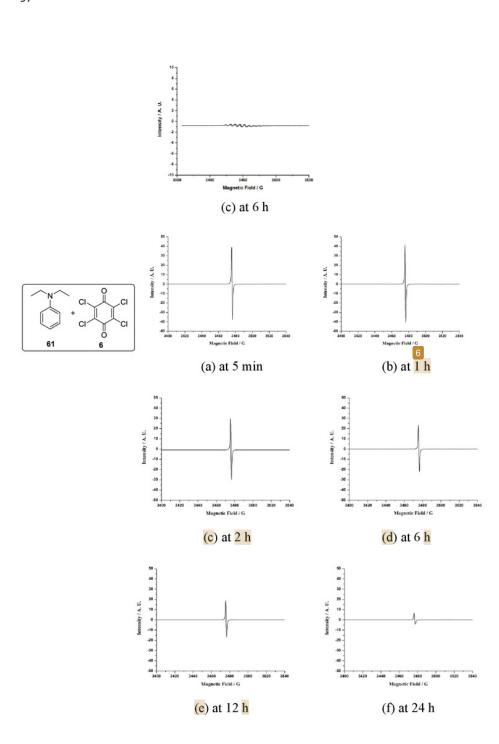
It was also reported that the formation C-C bond by the reaction of amine with quinones through polar pathway is several orders of magnitude faster than that expected for single electron transfer (SET) process. However, the epr data were not discussed by these authors. Also, there was no discussion on the formation of charge transfer or electron transfer complexes in the reaction between amines and quinones.

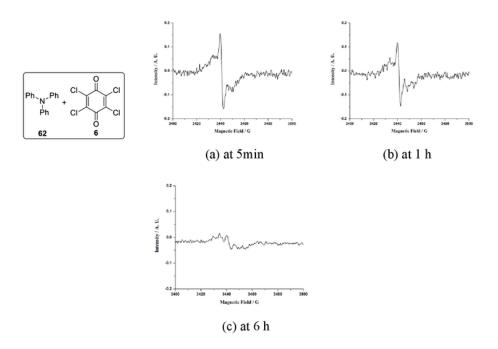
We have observed epr signal in accordance with the formation of paramagnetic intermediates upon mixing the secondary amine with quinones. Our results clearly indicate that electron transfer *via* initial cross exchange process to give the radical ion pair 45 with subsequent formation of charge transfer complex 46 and the aminoquinone product 47 with time (Scheme 15).

Scheme 15


Hence, the electron transfer reaction, the radical ion intermediates and charge transfer complexes cannot be ruled out in this transformations (Scheme 15).


3.2.2 Reaction of tertiary amines with quinone acceptors

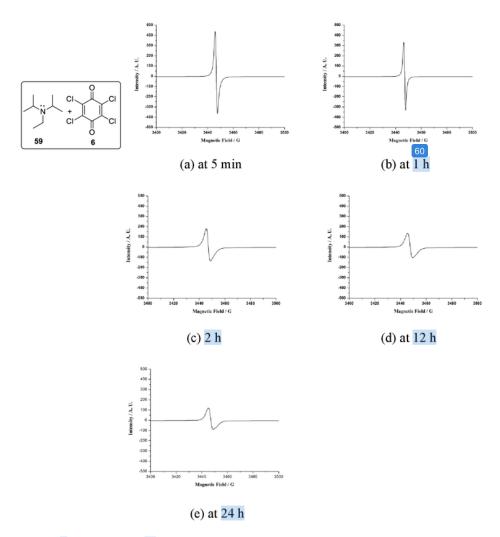

The reaction of secondary amine and quinones lead to the aminoquinone derivatives via radical intermediates and charge transfer complexes. We have then turned our attention towards the reaction of tertiary amines with p-chloranil.


We have observed that the reaction of *N*, *N*-diisopropylethylamine **59** (DIPEA) with *p*-chloranil **6** in PC solvent gave paramagnetic species detected by EPR spectroscopy with g value of 2.0037 (Figure 4). The electron transfer complex was stable up to 24 h but the intensity of the epr signal decreased with time in PC solvent (Figure 4).

The rapid formation of electron transfer and charge transfer complex was observed upon mixing of DIPEA 59 with *p*-choranil 6 in PC solvent. The mixture turns to bright green immediately. Similarly, the reaction using *p*-chloranil 6 with tertiary amines like 23 1,4-diazabicyclo[2.2.2]octane (DABCO) 26, *N*, *N*-tetramethyl-1,4-phenylenediamine (TMPDA) 60, *N*,*N*-diethylaniline (PhNEt₂) 61 and triphenylamine (TPA) 62 also gives paramagnetic intermediates as revealed by epr spectroscopy. The epr spectrum recorded at different time intervals are shown in Figure 4.

Figure 4. EPR spectra of p-chloranul 6 (0.05 mmol) and tertiary amine (0.05 mmol) in PC solvent.

The reaction of DIPEA **59** with *p*-chloranil **6** gave the amine radical cation and quinone radical anion pairs **63** followed by charge transfer complex **64** (CT 1). The epr signal is mainly due to the presence of quinone radical anion **65** which may react with neutral *p*-chloranil to give the corresponding CT complex, CT 2. The amine radical cation would undergo fast exchange of electron with the neutral amine and hence does not exhibit epr signal (Scheme 16). Similarly, the other amine donors also react with *p*-chloranil to give radical ion intermediates followed by charge transfer complexes.


Scheme 16

The reaction of N,N-diethylaniline (PhNEt₂) **61** with p-chloranil **6** gave paramagnetic intermediates. Presumably, the initially formed amine radical cations are slowly coupled to give the tetraethylbenzidine product **68** besides the formation of a small amount (<5%) of the corresponding hydroquinone (Scheme 17).

Scheme 17

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\$$

Similarly, the reaction of DIPEA 59 with p-chloranil 6 in gamma butyrolactone (GBL) solvent gives paramagnetic intermediates which was also confirmed by epr spectroscopy (Figure 5).

Figure 5. EPR spectra of p-chloranul 6 (0.05 mmol) and DIPEA **59** (0.05 mmol) in GBL solvent.

In all the cases, we have observed a single signal in the epr spectrum. Earlier, it was reported⁸ that the line broadening was observed in the epr spectra of naphthalene radical ion by the addition of excess of naphthalene. The rate constants for electron transfer between naphthalene radical ion and naphthalene are in the range 10⁷-10⁹ liters mole⁻¹ sec.⁻¹

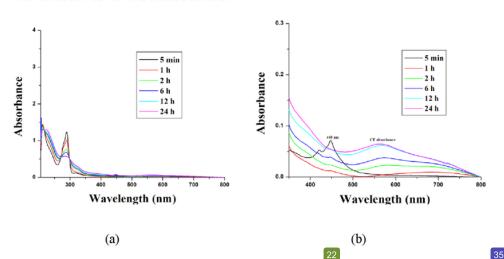
Such single line broadening was also reported 14,15 in the case of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) radical anion 31 with DDQ 18 with a fast exchange rate constant of $2.5 \times 10^9 \,\mathrm{M}^{-1} \,\mathrm{S}^{-1}$ and activation energy of 1.6 kcal mol⁻¹ at 23 °C. The electron is transferred from HOMO of donor amine to the LUMO of *p*-chloranil acceptor. Electron transfer leads to the formation amine radical cation and quinone radical anion. But, in epr spectrum, we have observed only one peak for the paramagnetic complex. This indicates that there is a fast self- exchange of electron between neutral amine with amine radical cation.

J. K. Kochi *et al* reported self-exchange and cross exchange reactions between 2,2,6,6-tetramethylbenzo[1,2-d:4,5-d']bis[1,3]dioxole 29 (TMDO) donor with 2,3-dichloro-5,6-dicyano-p-benzoquinone 18 (DDQ) acceptor in CH₂Cl₂ (Scheme 18). 12

Scheme 18

(1) Cross exchange electron transfer process

TMDO + DDQ
$$\xrightarrow{K_{ET}}$$
 $\left[\text{TMDO}, \text{DDQ} \right] \xrightarrow{\text{diffuse}}$ TMDO + DDQ $\xrightarrow{\cdot}$ 29 18 69 32 31


(2) Self-exchange electron transfer process

Hence, the line-broadening of epr signals observed for the intermediates obtained from DIPEA **59** and *p*-chloranil **6** can be explained by considering the electron exchange phenomenon.

It was reported that the reaction of *p*-chloranil 6 with 1,4-diazabicyclo[2.2.2]octane, DABCO 26 gives 1:1 charge transfer complex. 11 The formation

of the charge transfer complex was also confirmed by UV-Visible spectroscopy and the absorption band at 450 nm of DABCO-chloranil system was assigned to the chloranil anion radical. Also, the formation of charge transfer complex between electron deficient DDQ with electron rich π-system like cyclic enol ethers was reported. The charge transfer absorbance band at 589 nm in UV-Visible spectroscopy indicates the formation of charge transfer complex between DDQ and cyclic enol ethers system.

We have also examined the formation of charge transfer complex in the reaction of DIPEA 59 with *p*-chloranil 6 by UV-Visible spectroscopy (Figure 6). The color change was not observed for this diluted solution.

Figure 6. a) UV-Vis spectra of a mixture of DIPEA **59** (1 \times 10⁻³ mol L⁻¹) and *p*-chloranil **6** (1 \times 10⁻⁴ mol L⁻¹) in PC at 25 °C. b) Expanded UV-Visible spectrum.

However, the characteristic absorbance band for chloranil anion radical was observed at 448 nm in 5 minutes and no charge transfer absorption band appears at that time. The new absorbance band developed slowly with time beyond 500 nm can be assigned to the absorption of the charge transfer (CT) complex 64, because neither *p*-chloranil 6 nor DIPEA 59 absorbed in this region. The UV-Visible spectrum is shown in

Figure 6. We have also recorded the UV-Visible spectrum of solution of N, N-diethylaniline **61** (1x10⁻³) and triphenyl amine **62** (1x10⁻³) with p-chloranil **6** (1x10⁻⁴) at different time intervals. The results are shown in Figure 7.

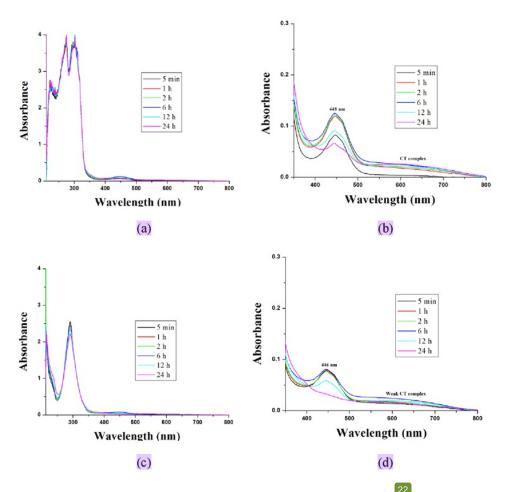
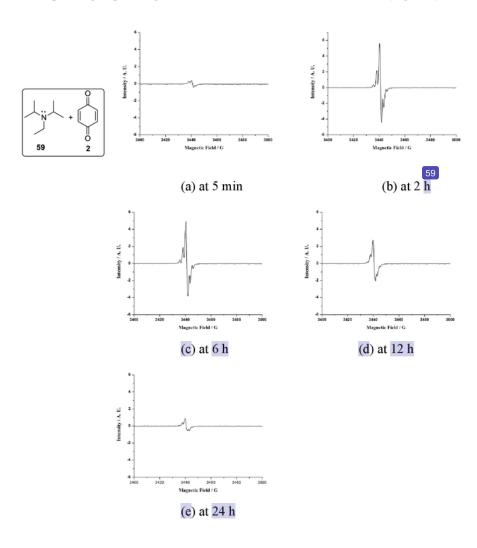
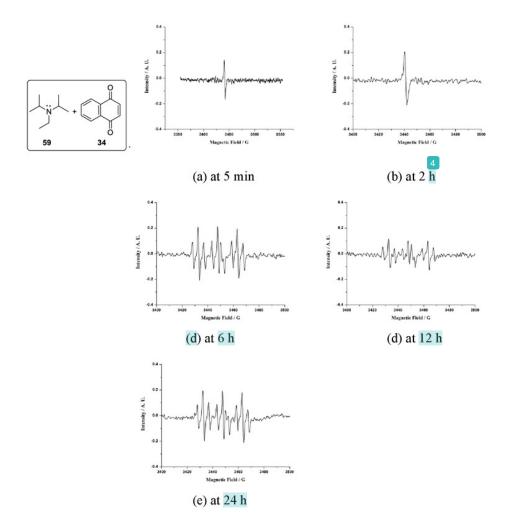
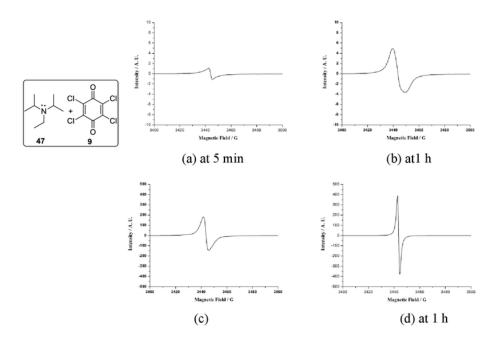




Figure 7. (a) and (c) UV-Vis spectra of a mixture of PhNEt₂ 61 (1 x 10⁻³ mol L⁻¹) and $\frac{35}{10^{-3}}$ TPA 62 (1 x 10⁻³ mol L⁻¹) with *p*-chloranil 6 (1 x 10⁻⁴ mol L⁻¹) in PC at 25 °C. (b) and (d) Expanded UV-Visible spectrum.

We have also performed the reaction of DIPEA 59 with weak acceptors such as 1,4-benzoquinone (BQ) 2 and naphthoquinone (NQ) 34 also gave weak epr signal corresponding to paramagnetic intermediates formed in the reaction (Figure 8).


Figure 8. EPR spectra of 1,4- benzoquinone **2** and naphthoquinone **34** (0.05 mmol) with DIPEA **59** (0.05 mmol) in PC solvent.

It was reported that use of polar solvents in the bimolecular interaction of DDQ 18 with TMDO 29 increases the diffusive separation of radical ion pairs (Scheme 19). ⁵

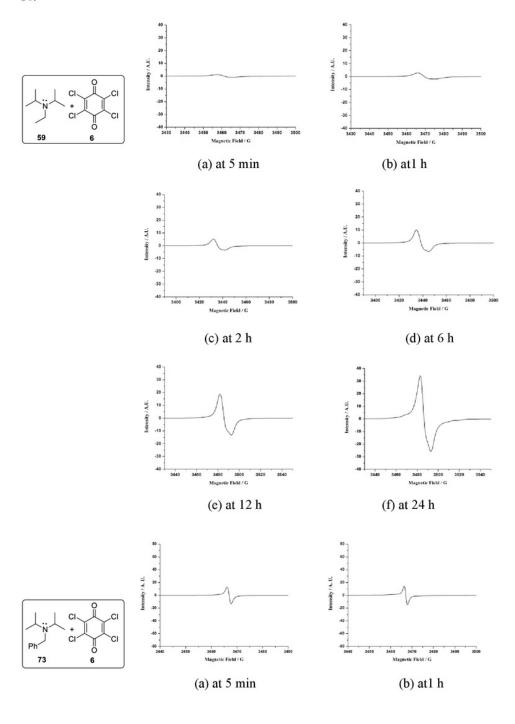
Scheme 19

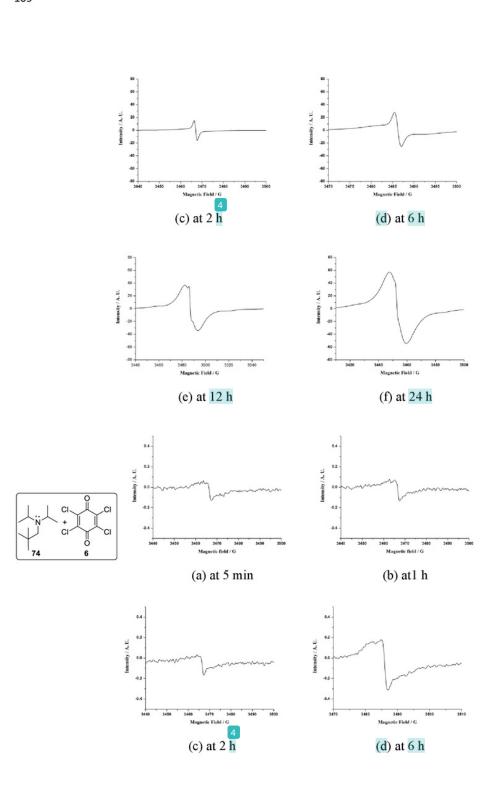
TMDO + DDQ
$$\xrightarrow{K_{ET}}$$
 $\left[\text{TMDO}, \text{DDQ} \right] \xrightarrow{\text{diffuse}}$ TMDO + DDQ $\xrightarrow{\cdot \cdot}$ + DDQ $\xrightarrow{\cdot \cdot}$ 29 18 69 32 31

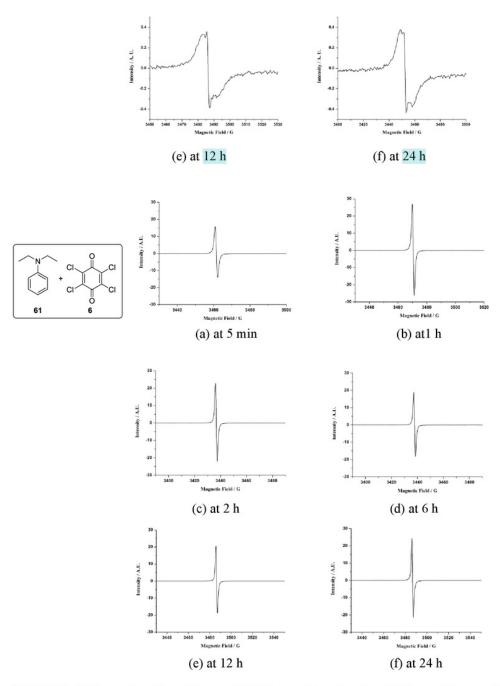
Hence, we have also reacted the amine DIPEA **59** with *p*-chloranil **6** (1:1 ratio) under neat condition. Interestingly, addition of drop of polar solvents like PC or *N*-methyl pyrrolidone (NMP) to the paramagnetic complex leads to increase in the strength of epr signal. The results are shown in Figure 9.

Figure 9. EPR spectra of p-chloranil 6 (0.05 mmol) and DIPEA **59** (0.05 mmol) in neat condition (a) at 5min (b) at 1 h (Intensity 10 to -10) (c) After addition of NMP (d) at 1 h (Intensity 500 to -500).

Presumably, the addition of polar solvents increases the concentration of paramagnetic intermediates due to the diffusive separation of ion pairs leading to more intense epr signal.


The nature of the paramagnetic species observed in the reaction and the reason for the decrease in epr signal intensity with time is not clearly understood. Presumably, a diamagnetic 1, 4-addition product could be formed as the reactivity of the tertiary amine and secondary amine is expected to be similar or the initially formed ion pair intermediates are slowly converted to the charge transfer complex that may lead to decrease in epr signal intensity (Scheme 20).


Scheme 20


3.2.3 Reaction of tertiary amine with p-chloranil 6 under neat condition

We have also reacted *N*, *N*-diisopropylethylamine **59** (DIPEA) with *p*-chloranil **6** under the neat condition (without solvent). The paramagnetic species formed were detected by epr spectroscopy with g value of 2.0031. In this case, an increase in the epr signal was observed with time. Presumably, the electron transfer reaction of *p*-chloranil and DIPEA will be slower under neat condition. Also, the reaction of DIPEA derivatives like *N*-benzyl-*N*-isopropylpropan-2-amine **73**, *N*, *N*-diisopropyl-2, 2-dimethylpropan-1-amine **74** and *N*,*N*-diethylaniline **61** with *p*-chloranil **6** gave the paramagnetic

intermediates under neat condition. The epr signal changes with time are shown in Figure 10.

Figure 10. EPR spectra of p-chloranil 6 (0.05 mmol) and amine (0.05 mmol) in neat condition.

Interestingly, the epr signal strength increased with time, whereas under solvent condition (Figure 4) the signal strength decreased with time. Presumably, the formation of radical ion pairs is slow under neat condition. However, the epr signal at 5 minutes in PC is much stronger (DIPEA 59, Figure 4) indicating the presence of more amounts paramagnetic species in the polar solvent.

3.2.4 Reaction of 2,2,6,6-tetramethylpiperidine derivatives 76 with *p*-chloranil Synthesis of polymeric amine

We have synthesized polymers containing amine as a pendant group through transesterification of PMMA (polymethylmethacrylate) 75 using 4-hydroxy-2,2,6,6-tetramethylpiperidine 76a. The polymer 76b is also readily converted to the corresponding TEMPO derivative 77 (Scheme 21). The prepared radical polymer PTMA 69 was characterized by epr spectroscopy with g value of 2.0063 (Figure 11). The epr of prepared PTMA radical is in accordance with the reported epr signal. 16

Scheme 21

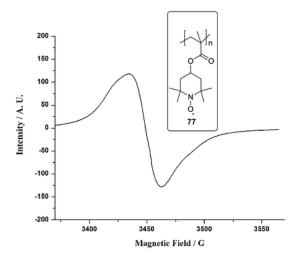
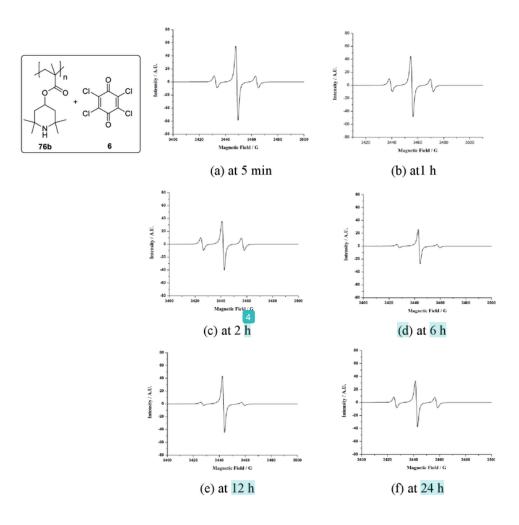
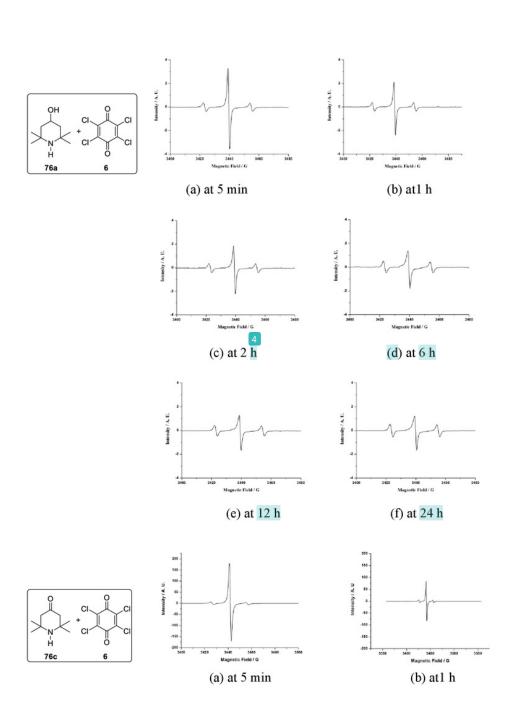


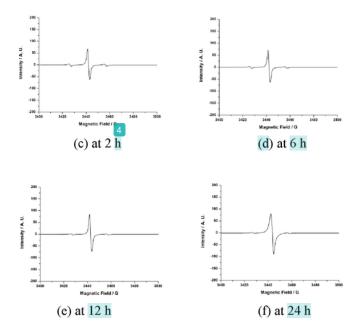
Figure 11. EPR spectra of synthesized PTMA radical polymer 77

The present method for the preparation of PTMA radical polymer 77 is simple and convenient compared to the methods available in the literature. Previously, the PTMA 49 77 was synthesized by the polymerization of 2,2,6,6-tetramethylpiperidine methacrylate monomer 79 followed by the oxidation of the precursor secondary amine polymer 76b (Scheme 22). An advantage of the present method is that commercially available PMMA samples with different molecular weight can be utilized in the preparation of different polymeric derivatives.

Scheme 22


The PTMA 77 has the nitroxide radical 2,2,6,6- tetramethyl-1-piperidinyloxy (TEMPO) as repeating unit. TEMPO possesses good chemical stability because of


resonance structures and steric protection of the radical center. TEMPO and PTMA 77 polymer exhibit reversible oxidation-reduction behavior in aprotic solvents. On oxidation of the nitroxide radical, the p-type doping occurs in a reversible manner and the oxoammonium cation is formed. The existence of such a redox couple of radical makes PTMA 77 an attractive cathode-active material for use in lithium batteries. As PTMA 77 is an electrical insulator, the addition of a suitable conductive material in the cathode composition is essential for effective transport of charges. The PTMA 77 is thermally stable at high temperature. This radical concentration remains unchanged for over one year under ambient conditions. This polymer displays appropriate solubility in organic solvents.


We have also observed that the reaction of sterically hindered 2,2,6,6tetramethylpiperidine derivatives 76 with p-chloranil 6 in PC solvent gave the
paramagnetic species 80 (Scheme 23).

Scheme 23

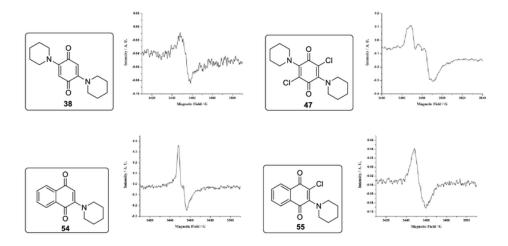
Interestingly, the reaction of the polymeric amine derivative **76b** with *p*-chloranil **6** gave moderately stable paramagnetic intermediates. In all these cases, we observed a triplet signal in the epr spectroscopy corresponding to amine radical cation (Figure 12).

Figure 12. EPR spectra of p-chloranul 6 (0.05 mmol) and 2,2,6,6-tetramethylpiperidine derivatives 76a, 76b and 76c (0.05 mmol) in PC solvent.

However, even in the reaction of sterically hindered 2,2,6,6-tetramethylpiperidine with p-chloranil decrease in the strength of epr signal was observed with time. Presumably, complex formed here is outer-sphere in nature and not affected by the steric hindrance by the methyl groups.

Scheme 24

The charge-transfer complex 96 of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPDA) 4 with p-chloranil 12 was reported.²¹ It was proposed that such complex interchanges reversibly with radical ion pairs (Scheme 25).²² Also, in solid state the TMPDA-p-chloranil complex was diamagnetic in nature.²³ We have observed that in this case also the epr signal strength decreases with time in PC solvent (Figure 4).


Scheme 25

3.2.5 EPR Studies of aminoquinone

The aminoquinones (38, 47, 54 and 55) were prepared by the reaction of piperidine with corresponding quinone in CH₂Cl₂ solvent. We have already discussed that the aminoquinones are by electron transfer mechanism and the paramagnetic intermediates were confirmed by epr spectroscopy.

Scheme 26

The aminoquinones behave as both donor and acceptor when present in the same molecule. Interestingly, we observed a weak epr signal for aminoquinones in the solid state but did not observe epr signal when aminoquinone was dissolved in CH₂Cl₂ solvent (Scheme 26). Presumably, one of the aminoquinone molecule acts as a donor and another one acts as an acceptor in solid state leading to single, broad and weak epr signals (Figure 13).

Figure 13. EPR spectra of aminoquinone in solid state (The aminoquinone solid (5 mg) was taken into epr tube and epr spectrum was recorded).

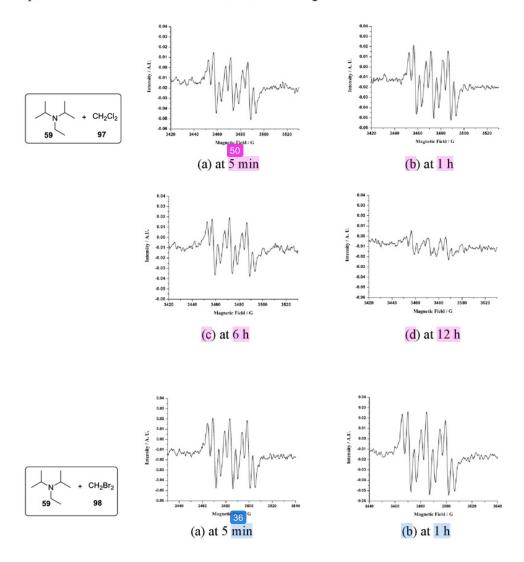
3.2.6 Attempt towards the electron transfer reaction of amines with halo compound acceptors

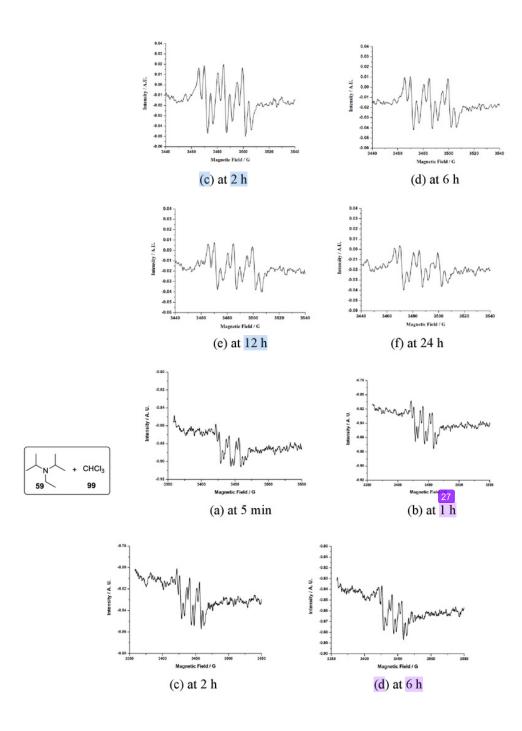
We have already discussed the results of the reaction of amines with quinone acceptors. The electron transfer readily takes place from donor amine to acceptor quinone leading to the formation of corresponding radical cation – anion pair as confirmed by epr spectral analysis.

Electron donor acceptor complexes and charge transfer interactions of amines with tetrahalomethanes were reported.²⁴ For example, DABCO **26** and quinuclidine **91** gives 1:1

donor-acceptor (DA) complex with tetrahalomethanes. Also, crystal structures were reported for the of 1:1 complex of DABCO and quinuclidine with CBr₄ **92**. The photochemical reaction of the DABCO-CBr₄ charge transfer complex leads to formation of radical ion intermediates (Scheme 27).

Scheme 27


X= N DABCO (26) X= CH Quinuclidine (91)


Similarly, electron donor acceptor complexes and charge transfer complexes of carbon tetrabromide, CBr₄ **92** and bromoform, CHBr₃ **96** with various donors such as halides, pseudohalide anions, aromatic hydrocarbons and aromatic compounds containing nitrogen and oxygen centers were reported.²⁵ Hence, we have studied the electron transfer reaction of sterically hindered amines with halometahne.

We have observed a weak epr signal for ion-pairs when the amine and halo compounds are reacted together. Previously, de Meijere *et al.* prepared the triisopropyl radical cation by the oxidation of triisopropylamine with SbF₅ in CH₂Cl₂ solution at 195K which gave the hyperfine epr spectrum.²⁶ They also noted that this radical cation has unusual thermodynamic and kinetic stability.²⁶ Also, these authors concluded that trialkylamine with at least two isopropyl substituents would lead to nearly planar structure for the corresponding radical cation, thus making it more stable.

We have briefly studied the electron transfer interaction of amines such as DIPEA 59, 2,2,6,6-tetramethylpiperidin-4-ol 76a and polymeric 2,2,6,6-tetramethylpiperidine derivative 76b with halo compounds like CH₂Cl₂ 97, CH₂Br₂ 98 and CHCl₃ 99 by epr spectroscopy.

The reaction of DIPEA 59 and dichloromethane CH₂Cl₂ 97, CH₂Br₂ 98 and CHCl₃ 99 at room temperature gave very weak epr signals in epr spectroscopy (Figure 12). In these cases, we have scanned the spectra 10 times to get a clear epr signal. The epr spectrum with different time intervals are shown in Figure 14.

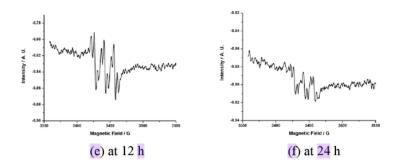
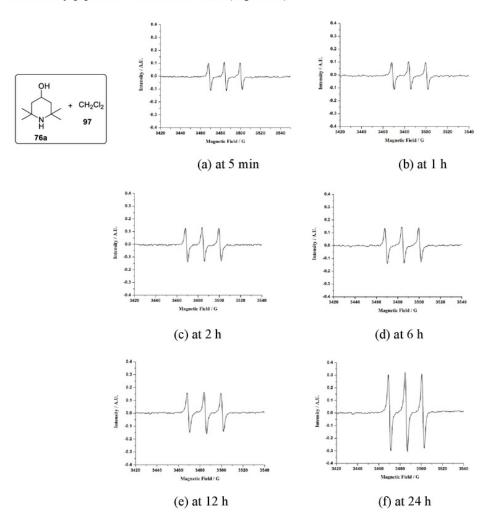
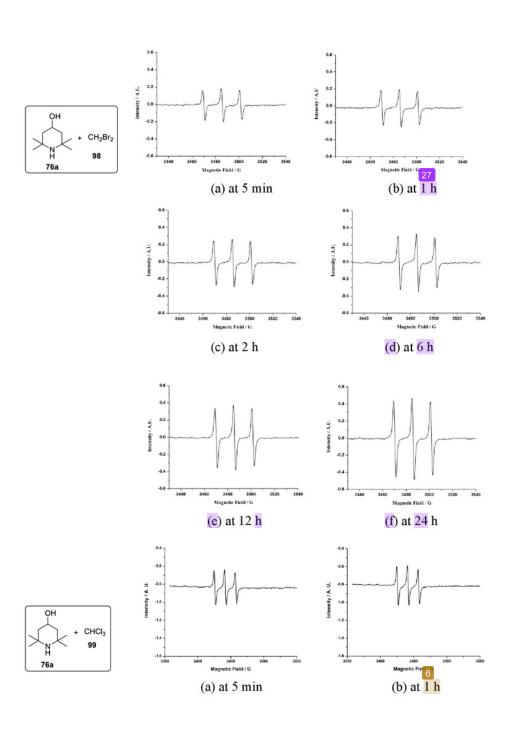


Figure 14. EPR spectra of DIPEA 59 and CH_2Cl_2 97, CH_2Br_2 98 and $CHCl_3$ 99 (Number of scans = 10).

The epr signal observed here due to the presence of amine radical cation and the signal due to the dichloromethane, dibromomethane and chloroform radical anions were not observed. Presumably, these radical anions may undergo fast exchange with the corresponding neutral species and hence do not give epr signal (Scheme 28).

Scheme 28


$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}$$


In all these cases, weak hyperfine splitting was also observed in epr spectroscopy. The reaction of N, N-diisopropylethylamine, DIPEA **59** with acceptors such as CH_2Cl_2 **97**, CH_2Br_2 **98** and $CHCl_3$ **99** gives a weak hyperfine splitting by the interaction of the radical cation present on nitrogen with two methylene β – protons of ethyl or isopropyl substituent of the radical cation.

We have also performed reaction with other donor amines N, N-diethyl aniline 61 and triphenyl amine 62 with halo compounds, but we did not observe the presence of

paramagnetic intermediates. Presumably, these relatively weak amines do not undergo electron transfer reactions with CH_2X_2 compounds.

Also, we have observed that the sterically hindered amine 2,2,6,6-tetramethylpiperidin-4-ol 76a reacts with CH₂Cl₂ 97, CH₂Br₂ 98 and CHCl₃ 99 to give a triplet signal in epr spectroscopy indicating the formation of corresponding 2,2,6,6-tetramethylpiperidin-4-ol radical cation (Figure 15).

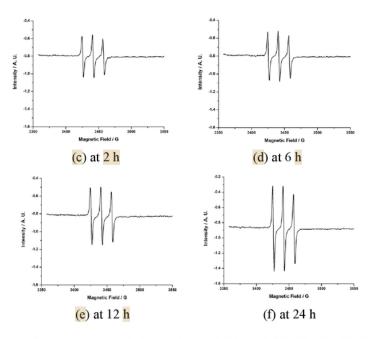
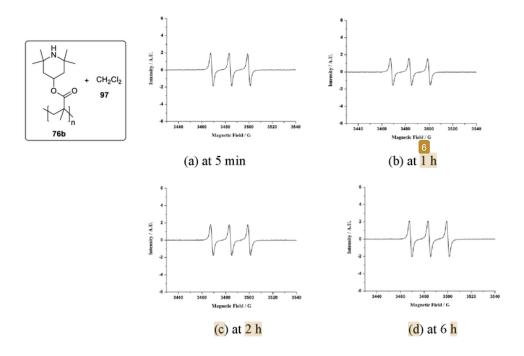



Figure 15. EPR spectra of 2,2,6,6-tetramethylpiperidin-4-ol 76a and CH_2Cl_2 97, CH_2Br_2 98 and $CHCl_3$ 99 (Number of scans = 5).

Hence, the electron transfer reaction of 2,2,6,6-tetramethylpiperidin-4-ol 76a with halomethane can be rationalized by the formation of ion radical pairs followed by charge transfer complex 103 (Scheme 29). Interestingly, the epr signal strength increases with time. As expected, the reaction with sterically hindered amine may be slow with more amounts of paramagnetic species formed with time (Figure 15). However, formation of charge transfer complex of the type 103 is equilibrium with paramagnetic radical ion cannot be ruled out.

Scheme 29

We have also carried out similar electron transfer reaction with polymeric derivative of 4-hydroxy-2,2,6,6-tetramethylpiperidine 76b with CH₂Cl₂ 97 and CH₂Br₂ 98 and obtained evidence for paramagnetic species with triplet epr signal (Figure 16). In these cases also, subsequent formation of the corresponding charge transfer complexes of the type 105 cannot be ruled out.

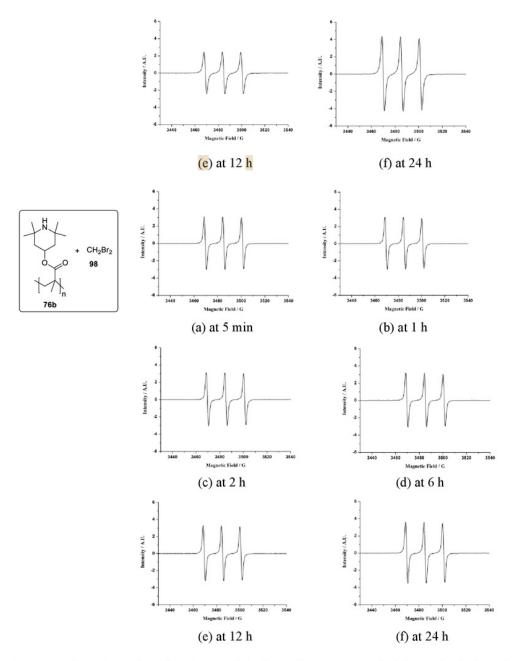


Figure 16. EPR spectra of polymeric 4-hydroxy-2,2,6,6-tetramethylpiperidine 76b and CH_2Cl_2 97 and CH_2Br_2 98 (Number of scans = 5).

The electron transfer reaction may be rationalized as outlined in Scheme 30.

Scheme 30

The reaction of 4-hydroxy-2,2,6,6-tetramethylpiperidine 76a and polymeric derivative of 4-hydroxy-2,2,6,6-tetramethylpiperidine 76b with CH₂Cl₂ 97, CH₂Br₂ 98 and CHCl₃ 99 gives triplet in epr spectroscopy but there is no hyperfine splitting due to absence of β – hydrogen in the corresponding amine radical cation.

3.2.7 Preliminary studies on electron transfer reaction of amines with viologen acceptors

Viologens are 1,1'-disubstituted-4,4'-bipyridinium salts. Michaelis first reported the electrochemical behaviour of this class of compounds which possess excellent photoelectrochromic properties.²⁷ The viologens are electron acceptors and are widely used as herbicides and for electron mediation in photosynthesis,²⁸ in electrochromic display devices,²⁹ in organic electrical conductors,³⁰ in chemically modified electrodes,³¹ for solar energy storage and photocatalytic reduction of water to hydrogen.³² The viologens were originally investigated as redox indicators in biological studies. Their electrochemically reversible behaviour and the marked colour change between the

oxidation states, make the viologens as favored candidates for electrochemical display devices as alternative to LEDs and LCDs.²⁹ The viologens exist in three main oxidation states as shown in Figure 17.

Figure 17. Three common bipyridinium redox states.

Reductive electron transfer to viologen dications 106 gives stable radical cations 107 (Figure 15) due to electron delocalization throughout the π -framework of the bipyridyl nucleus. Whereas the bipyridinium dication salts are normally not coloured, the viologen radical cations are intensely coloured, with high molar absorption coefficients. This is due to charge transfer between the +1 and 0 valent nitrogens.

The reaction of viologen derivatives with amine gives a rapid color change by the formation of electron transfer and charge transfer between viologen derivatives and amine, which is useful for the detection of amines.³³ The reaction of viologen molecules with *N*, *N*-dimethylformamide (DMF) generates an organic dopant for molybdenum disulfide (MoS₂) in metal-oxide-semiconductor field-effect-transistor (MOSFET).³⁴ Polyviologen are well known material useful as an interfacial layer and cathode buffer layer in polymer solar cell.³⁵

Previously, we have studied the electron transfer reaction of an acceptor *p*-chloranil with donor amines. Hence, preliminary studies were undertaken on reaction of amine donors with other acceptors such as viologen derivatives. Hence, we have decided to examine the possibility of electron transfer reaction between viologen acceptor with readily accessible amines. We have prepared a series of viologen derivatives 111 by the

reaction between 4,4'-bipyridyl **109** and alkyl halide **110** in DMF solvent following a closely related reported procedure (Scheme 31).³⁶

Scheme 31

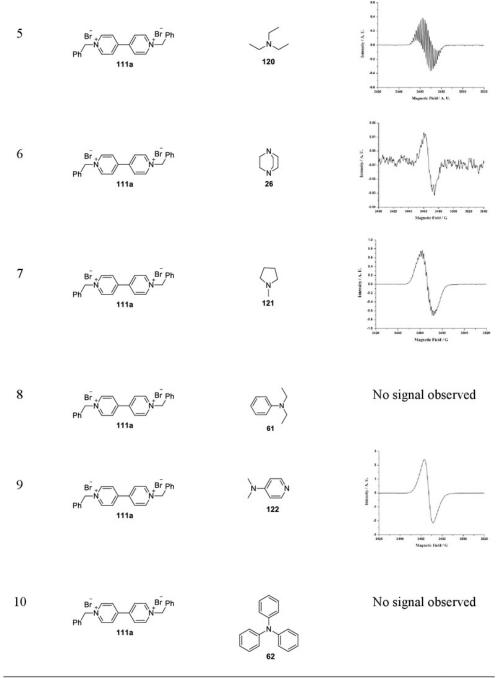
We have also synthesized the 1, 4-dipyridyl benzene 115 *via* preparation of synthesizing 1, 4- phenylenediboronic acid 113 followed by Suzuki coupling with 4-bromo pyridine 114 (Scheme 32).³⁷

Scheme 32

Similarly, the 1,4-dipyridyl benzene 115 was readily converted to extended viologen 116 by reaction with 1-bromo butane in DMF solvent (Scheme 33).

Scheme 33

We have investigated the reaction of the viologen salt such as benzyl viologen


111a with various readily accessible electron donor amines to examine the electron

transfer by epr studies. The epr studies of viologen compound with different amines were

carried out by PC and methanol solvent. In the case of reaction of benzyl viologen 111a with amines like diphenyl amine 118, N, N-diethyl aniline 61 and triphenyl amine 62 no epr signal was observed (Table 2, entries 2, 8 and 10). The reason may be the weak donor nature of amines as the lone pair of electrons on the nitrogen atom are delocalised in the aromatic ring, which is unavailable for electron transfer to viologen acceptors. Also, it indicates that viologen is a weak acceptor and it can interact only with strong amines.

Table 2. EPR of benzyl viologen 102a with various amines in methanol solvent^a

Entry	Acceptor	Donor	EPR spectra
1	Br Ph Ph	Ph — CH ₂ NH ₂ 117	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2	Ph Br Ph	NH 118	No signal observed
3	Ph N N N N N N N N N N N N N N N N N N N	59	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
4	Br Ph N 111a	N 119	0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

^a EPR experiment were carried out by mixing amine (0.2 mmol) with benzyl viologen **111a** (0.2 mmol) in methanol. The mixture was taken into epr tube and recorded the spectra.

Similarly, we have studied the reaction of benzylviologen **111a** with different amines in PC solvent. In this case, we have observed weak epr signal in the reaction of benzylamine **117**, *N*, *N*-diisopropylethylamine **59** and triethyamine **120** with benzyl viologen acceptor (Table 3, entries 1,3,5). The weak epr signal or no signal also indicates the poor solubility of viologen in PC solvent. The reason for weak epr signal may be also due to the fast disproportionation of the viologen radical cation to give back the starting viologen (Scheme 34).

Scheme 34

Table 3. EPR of benzyl viologen with various amines in PC solventa

Entry	Donor	Donor	ESR spectra
1	Ph N Br Ph	Ph — CH ₂ NH ₂ 117	A SE ASS Magnetic Field I G
2	Ph Br Ph	NH 118	No signal observed
3	Ph Br Ph	59	4877 - 4887 - 48

PC. The mixture was taken into epr tube and recorded the spectra.

^a EPR experiment were carried out by mixing amine (0.2 mmol) with benzyl viologen 111a (0.2 mmol) in

Electrochemistry of viologen were reported extensively.³⁸ The high resolution epr spectra of photochemically generated viologen radical cation derivatives in ethanol-water system has been also reported.³⁹

Here also, we have observed a epr signal only for viologen radical cation formed in the reaction of benzyl viologen with amines. The amine radical cation formed after electron transfer to viologen would undergo fast electron exchange with the neutral amine and hence may not show epr signal (Scheme 35).

Scheme 35

We have investigated the electron transfer reaction of acceptors like quinones, halomethanes and viologens with amine donors. Also, we proposed tentative mechanisms for the formation of paramagnetic intermediates in these reactions in accordance with epr spectroscopic studies. Among the acceptors studied, *p*-chloranil which has a very high electron affinity (EA=2.78 eV) gives strong epr signals with donor amines. The electrochemistry of quinone is also well studied and hence we have selected the *p*-chloranil as an acceptor for studies on the construction of organic electrochemical cell

	136
based on electron transfer reaction with tertiary amines. The results are discussed in next chapter.	the

3.3 Conclusions

We have investigated the electron transfer reaction of quinones with piperidine. The corresponding aminoquinone was formed in good yield (55% to 75%) *via* the corresponding radical ion intermediates. The formation of paramagnetic intermediates were confirmed by epr spectroscopy.

$$\bigcap_{\substack{N \\ H}} + \bigcap_{\substack{C \\ C \\ I}} \bigcap_{\substack{C$$

We have also studied the reaction of tertiary amines like *N*, *N*-disopropylethylamine, *N*, *N*-diethylaniline, triphenylamine, *N*-benzyl-*N*-isopropylpropan-2-amine and *N*, *N*-diisopropyl-2, 2-dimethylpropan-1-amine with *p*-chloranil acceptor. We have observed that electron transfer from amine donor to quinone acceptor was fast. The formation of ion pair intermediates and charge transfer complexes were confirmed by epr and UV-Visible spectroscopic studies. The epr analysis of the intermediates formed in PC solvents indicate that the initially formed ion pair by electron transfer from donor to acceptor are converted to charge transfer complexes in equilibrium with small amounts of radical ions. The epr signal corresponds to the presence of quinone radical anion and the amine radical cation signal does not appear as it undergoes fast self-exchange with another amine.

We have developed a simple method for the preparation of polymers containing amine as a pendant group through the reaction of PMMA (polymethylmethacrylate) and 4-hydroxy-2,2,6,6-tetramethylpiperidine. The sterically hindered polymeric 2,2,6,6-tetramethyl-4-piperidinol product reacts with p-chloranil to give radical ion intermediates followed by charge transfer complex. The radical ion intermediates gave triplet signal in epr spectroscopy which corresponds to the presence of amine radical cation. Similar results were also obtained in the reaction of 4-hydroxy-2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethylpiperidin-4-one with p-chloranil.

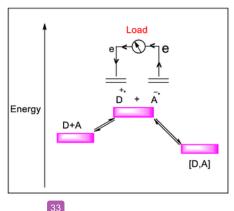
Charge transfer complex

We have briefly studied the reaction between N, N-diisopropyl ethylamine, DIPEA with CH₂Cl₂, CH₂Br₂ and CHCl₃. The formation of paramagnetic intermediates were confirmed by epr spectroscopy. The epr signal with very weak hyperfine splitting for the

nitrogen radical cation was observed. We have also investigated the reaction of 2,2,6,6-tetramethylpiperidin-4-ol and polymeric 2,2,6,6-tetramethylpiperidine derivatives with CH₂Cl₂, CH₂Br₂ and CHCl₃. Similar paramagnetic intermediates with triplet epr signal were observed. The results indicate that the halogenated solvents also behave like acceptor in the presence of strong amine donors.

We have also studied the reaction of viologen acceptors with different amines. Again, the formation of paramagnetic intermediates was confirmed by epr spectroscopy. The releatively weak aromatic amine donors did not undergo electron transfer reaction with viologen derivatives.

Davidanment	of Floor	aahamiaal	Chapter 4
			cell exploiting between tertiary
amine donors	and p-chlor	anil accept	or


4.1 Introduction

In the previous chapter, we have already discussed that electron transfer readily takes place from donor amines to acceptor quinones resulting the formation corresponding radical cation – anion pair (Scheme 1).

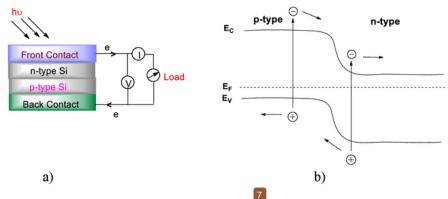
Scheme 1

We have also observed that the reaction of tertiary amines with *p*-chloranil gives radical cation-anion pair first followed by formation charge transfer complex (CT complex) in equilibrium with the ion pair (Scheme 2). These reversible reactions take place at ambient temperature conditions in the ground state of the donor and acceptor. Accordingly, energy barrier or activation energy for the formation of the ions and ions is overcome by surrounding heat (Figure 1).

Scheme 2

Figure 1. Ground state electron transfer between organic electron donor (D) and acceptor (A)
- Construction of an electricity harvesting cell.

We have envisaged the construction of an electrochemical cell that could transport the charge carriers (i.e. electron in Q⁻ and the hole in R₃N⁺) formed in such reactions to produce electricity (Figure 1). The difference between such ground state electron transfer process in such cells and the electron transfer involved in donor/acceptor photovoltaic or solar cell is that in the later case the electron transfer from a donor to an acceptor takes place after photoexcitation of the electron from the ground state to excited state. Accordingly, a brief review of reports on the construction of various types of solar cells including donor/acceptor organic photovoltaic cells would facilitate the discussion of the present results.


4.1.1 Photovoltaic cell

Electrochemical cell which produce electric current through chemical reactions are called voltaic or galvanic cell. In a photovoltaic cell or solar cell, the light or solar energy is converted into electrical energy and produces an electric current in the circuit. Solar cells are made up of semiconductors which absorb light in the visible region. The research on solar cell

focused mainly on technologies involving the silicon and other inorganic semiconductors, dyes, perovskites and organic donor/acceptor molecules.

4.1.2 Silicon solar cell

Silicon (Si) solar cell consists of n-type Si and p-type Si semiconductor material. The Addition of atoms (boron or gallium) having one electron less than silicon in their outer energy level produce a p-type silicon. Addition of atoms (phosphorus or arsenic) having one electron more than silicon in their outer energy level produce an n-type silicon. When sunlight (photons) strikes the solar cell the electrons ejected from the silicon moves to the n-type layer and holes moves to the p-type layer. The produced electron and holes will move to the electrodes to produce electricity (Figure 2).

Figure 2. (a) Schematic diagram for crystalline silicon solar cell. (b) Energy level diagram for crystalline silicon solar cell (E_V-Valance band energy level, E_F-Fermi energy level and E_C-Conduction band energy level)

In 1954, scientists in Bell laboratory produced the first practical photovoltaic cell based on silicon semiconductor material with 6% efficiency.¹ The crystalline solar cell

requires complex fabrication process and high production cost even though the efficiency of single crystal silicon solar cell reached up to 25%.² At present, amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and gallium arsenide (GaAs) materials are used in thin film solar cells.

4.1.3 Thin film solar cell or Inorganic solar cell

Thin film solar cells also called as second generation solar cells are made by placing one or more thin layers of photovoltaic material on glass or metal current collector.

4.1.3.1 Amorphous silicon solar cells (a-Si)

Amorphous silicon (a-Si) is an allotrope of silicon and widely used in thin film technology. The absorption of solar radiation by amorphous silicon is 40 times more than that of single crystal silicon solar cell. The thin layer of silicon is coated using a gaseous mixture of silane and hydrogen on transparent conductive oxide (TCO) glass. The basic electronic structure of amorphous silicon solar cell is p-i-n junction (Figure 3).

The efficiency of amorphous silicon solar cell is around 5-7% and lower than that of crystalline solar cell.³ The efficiency of amorphous silicon solar cell was improved to 10% by stacking the two or more cells together with micro crystalline silicon (μ -c-Si) solar cell. This type of stacking improve the performance of the cell (Figure 3b).

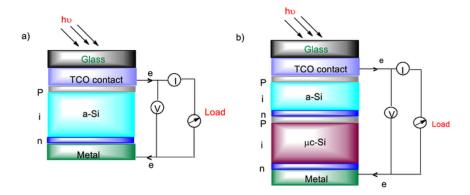


Figure 3. (a) Schematic diagram for thin film amorphous silicon solar cell. (b) Tandem a-Si and μ -c-Si solar cell.

4.1.3.2 Cadium-telluride (CdTe) thin film solar cell

This cell is a simple heterojunction contains p-type CdTe and n-type CdS semiconductors (Figure 4 a).

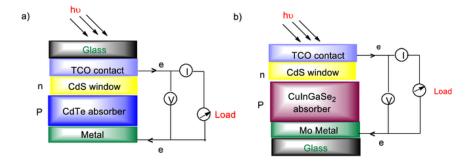


Figure 4. (a) Schematic diagram for thin film CdTe solar cell. (b) Thin film CuInGaSe₂ (CIGS) solar cell.

The efficiency of CdTe solar cell varies between 10-16%. However, the rare abundance of tellurium and toxicity of cadmium are the main disadvantage of this cell.

4.1.3.3 Copper indium gallium selenide (CIGS) thin film solar cell

The fabricating process of CIGS thin film cell is similar to that of CdTe process but the light conversion efficiency is higher than that of CdTe cell (Figure 4 b). This material absorbs sunlight effectively because it has high absorption coefficient. The efficiency of CIGS solar cell was around 20% and higher than that of other thin film cell.⁶

4.1.4 Dye-sensitized solar cell (DSSC)

In 1968, Gerischer and co-workers⁷ developed the electrolytic cell using the p-type perylene organic dyes and with n-type zinc oxide (ZnO). The modern DSSC was invented by O' Regan and Grätzel⁸ in 1991. The use of mesoporous titanium dioxide (TiO₂) as photoanode and the electrolyte containing iodide/triiodide redox shuttle leads to the DSSC with up to 12% efficiency. The cell was further improved by the introduction of N3 (cis-Bis(isothiocyanato) bis(2,2'-bipyridyl 4,4'-dicarboxylatoruthenium(II)) dye with efficiency of around 10%.

The DSSC was fabricated by coating TiO₂ on the conductive glass plate. Then the plates were soaked into the organic dye solution. The redox electrolyte couple was drop coated on the organic dye layer and the counter electrode was fixed above the fabricated conductive glass. When the solar radiation (light) strikes the dye molecule and it goes to excited state. The photo induced electron is injected to the conduction band of mesoporous TiO₂. The oxidized dye molecule gets regenerated by electron donation from the electrolyte I⁻/I₃ redox couple. The holes move towards the counter electrode to complete the electronic circuit (Figure 5).

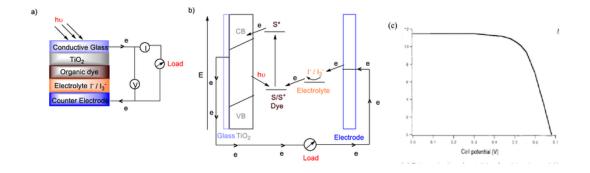
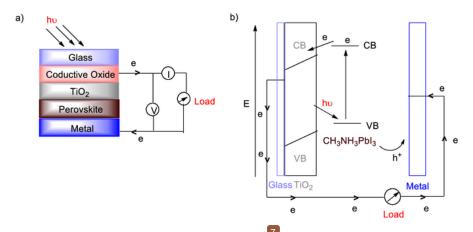


Figure 5. (a) Schematic diagram for DSSC solar cell. (b) Energy level diagram of liquid DSC based on mesoporous TiO_2 photoanode and I^7/I_3^- redox couple (c) Typical current voltage curve for DSSC (Cell efficiency = 7.12% with FF = 0.684, Reference. 8).


In last two decades research efforts were undertaken to improve the performance of DSSC by designing the organic dye molecules with high extinction coefficient and also with modified redox shuttle⁹⁻¹³ like cobalt (II/III), copper (I/II), ferrocene (Fc)/ferrocinium (Fc⁺), Nickel (III/IV), TEMPO/TEMPO⁺. The redox shuttle can reduce the electron-hole recombination process with efficient electron transport properties.¹⁴⁻²¹

It was reported that the highest efficiency of 13% observed for the cobalt (II/III) electrolyte used in the DSSC.²² The first solid-state dye sensitized solar cell (sDSSC) using 2,2',7,7'-tetrakis (*N*,*N*-dimethoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM) was also reported. ²³ The efficiency of the DSSC was improved to 7.2% by the use of spiro-OMeTAD with the addition of cobalt complex (p-type dopant).²⁴ The sDSSC was further improved by using other hole transporting material like poly(3-hexylthiophene-2,5-diyl) (P3HT).²⁵ But, the efficiency is lower than that of liquid DSSC.^{26,27}

The decrease in efficiency is due to the higher recombination rate and intrinsic properties of spiro-OMeTAD with TiO₂.

4.1.5 Perovskite solar cell

The perovskite (ABX₃) is hybrid inorganic/organic material with efficient light harvesting structure. The construction of perovskite solar cell is similar to that of dyesensitized solar cell as shown in Figure 6. In 2009, the first perovskite solar cell was reported with methylammonium lead iodide (CH₃NH₃PbI₃) which gave 3.81% power conversion efficiency.²⁸

Figure 6. (a) Schematic diagram for perovskite solar cell (b) Energy level diagram of perovskite solar cell without hole transport material.

The iodide redox couple degrades the perovskite that leads to the lower efficiency.

The replacement of the liquid electrolyte with solid-state p-type semiconductor spiro
OMeTAD as a hole transport material (HTM) improves the efficiency to 9.7%.²⁹

Figure 7. (a) Schematic diagram for perovskite solar cell. (b) Energy level diagram of perovskite solar cell with hole transport material.

Recent reports³⁰ on mixed lead halogen perovskite solar cell indicated that the efficiency was improved to 20.7%. Some of the hole transporting materials used for the studies on perovskite solar cell are listed in Figure 8. The research efforts on the perovskite solar cells are still under progress.³¹⁻³⁵

Figure 8. Hole Transporting Material (HTM) used in perovskite solar cell.

4.1.6 Organic solar cell

The organic photovoltaics or solar cells are flexible devices with low manufacturing cost compared to the rigid inorganic solar cells. In organic solar cells, upon excitation of organic material creates positive charge on the donor layer (p-type) and negative charge on the acceptor layer (n-type) like p-n junction.

The operating mechanism of the organic solar cell is almost similar to that of the inorganic solar cell. The photo excitation of the light harvesting organic material produces an exciton (coupled electron-hole pair). The field splits the exciton into the charge carrier (separated electron-hole pair) which then moves to the respective electrodes to produce

electricity. Some typical donor and acceptors used in the organic solar cells are shown in Figure 9.

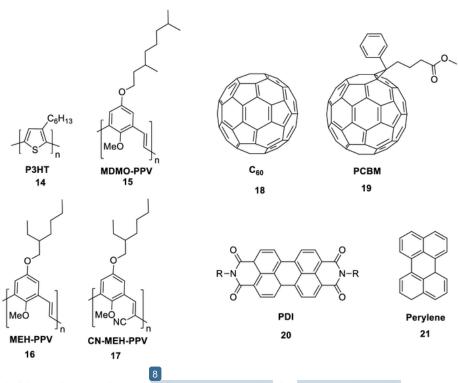
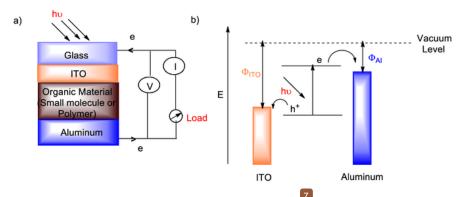



Figure 9. Major donor polymers and acceptors used in the organic solar cells.

4.1.6.1 Single layer organic solar cell

The cell was made by sandwiching an organic material between the two metal conductors having high work function such as ITO and low work function such as aluminum, magnesium or calcium (Figure 10). The organic material absorbs the light which excites the electrons to the LUMO and leaves holes in the HOMO. The potential created by the different work functions of the metals splits the exciton pair. The electrons move to the positive electrode and holes to the negative electrode. The magnesium phthalocyanine (MgPc) used in the single layer solar cell (Al/MgPc/Ag) produces 0.01% efficiency.³⁶

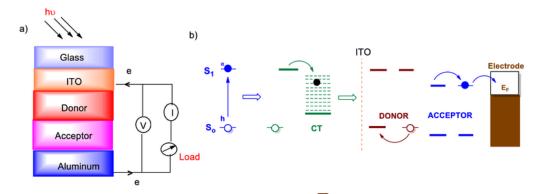
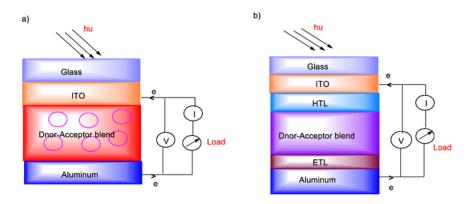


Figure 10. (a) Schematic diagram for single layer organic solar cell (b) Energy level diagram for organic solar cell.

The single layer cell using poly-3-methyl thiophene gave 0.15% power conversion efficiency.³⁷ Another single layer cell using the conjugated polymer polyacetylene gave 0.3% efficiency.³⁸ These types of cells produces low quantum efficiency (<1%) and less than 1% power conversion efficiency.

4.1.6.2 Bilayer or Planar donor-acceptor heterojunction

Bilayer cells are constructed by sandwiching two different layers contains donor and acceptor between two conductive electrodes (Figure 11 a). The difference in electron affinity and ionization energy of two layers could generate the electrostatic forces at the interface. The layers having high electron affinity and ionization energy are called as electron acceptor and electron donor, respectively. Tang *et al.* investigated copper phthalocyanine (CuPc) as an electron donor and perylene tetracarboxylic derivative as an acceptor in two layer organic cell which gave 1% power conversion efficiency.³⁹


Figure 11. (a) Schematic diagram for Bilayer organic solar cell (b) Energy level diagram for bilayer organic solar cell.

Perylene amide derivatives are chemically stable and have high electron affinity. Sariciftci and co-workers reported⁴⁰ that the use of C₆₀/MEH-PPV in double layer cell gave 0.04% power conversion efficiency. Here, C₆₀ acts as an acceptor and poly (2-methoxy-5-(2'-ethylhexyloxy- 1,4-phenylene-vinylene), MEH-PPV as a donor. The bilayer cell with donor polymer poly (p-phenylenevinylene), PPV and acceptor C₆₀ produces around 9% power conversion efficiency. ⁴¹

4.1.6.3 Bulk heterojunction solar cell

In organic photovoltaics the layer thickness is important for effective absorption of light. The increase of layer thickness increases the exciton diffusion pathway in the donor-acceptor interface. The exciton has shorter life time and it recombines before reaching the electrodes if thickness of the layer is more. In bulk-heterojunction cell, the exciton diffusion pathway is minimized by placing a mixture of electron donor and acceptor blend and it also increases the light absorption efficiency. The light absorbing layer of bulk heterojunction

solar cell consists a blend of donor and acceptor materials. In bulk heterojunction the donor and acceptor are mixed together and deposited over the ITO electrode (Figure 12a).

Figure 12. (a) Schematic diagram for Bulk heterojunction solar cell (b) Use of buffer HTL and ETL layers

The active layer consists of conjugated donor and fullerene based acceptor. The efficiency of polymer photovoltaic cell (single layer cell) was improved by the introduction of fullerene based derivatives in bulk heterojunction. The cell with blend polymer MEH-PPV donor and fullerene acceptor as the heterojunction was reported.⁴² The device using Ca/MEH-PPV/PCBM/ITO gave 2.9% power conversion efficiency. It was reported that the introduction of poly (3-octylthiophene) P3OT in place of polymer MEH-PPV improved the quantum efficiency as well as power conversion efficiency.⁴³

Recently, it was reported⁴⁴ that the higher power conversion efficiency of 11% was obtained using thiophene based PTB7-Th polymer and PC₇₁BM as an acceptor. The use of donor MEH-PPV polymer and acceptor CN-PPV polymer in polymer/polymer blend heterojunction cell gave power conversion efficiency of 1% under monochromatic light.⁴⁵ It was found that the cell efficiency improved by incorporating hole conducting material such as

PEDOT:PSS.⁴⁶ The organic bulk heterojunction was further improved by sandwiching the active layer between the electron and hole transport material.^{47,48}

We have decided to examine the possibility of constructing an organic electrochemical cell with ground state electron transfer using readily accessible donor amines and acceptor quinones. The radical cation - radical anion intermediates formed in the reaction could lead to generation of electric current. To construct the cell, we have chosen the readily accessible aluminum foil (Al) and stainless steel or graphite as electrodes/current collectors.

4.2 Results and Discussion

Organic charge transfer complexes and electron transfer reactions from organic donors and acceptors were known for more than 60 years. ⁴⁹ In recent years, attention was turned towards mostly solid state high conductivity or superconductivity of organic charge transfer salts. For instance, the highly conductive donor-acceptor complex of TTF-TCNQ was called as organic metal. ⁵⁰ Recent reports reveal that these complexes have interesting and important semiconductor properties useful in the construction of electronic devices. ⁵¹

The charge transfer complexes formed from the donor and acceptor in solution have entirely different properties compared to that of the parent compounds. Mechanistic schemes were proposed involving the formation of charge transfer (CT) complex followed by equilibrium involving formation of radical cation and anion pairs, dissociated ions in such organic electron transfer reactions (eq. 1). 52a The electron transfer kinetics were reconciled with an electron transfer process and formation of paramagnetic intermediates (eq. 2) without involving initial formation of a CT complex in a manner analogous to self-exchange (SE) of the D/D⁺ and A/A⁻ based on two state model. 52b,c Formation of radical cation and anion pairs followed by slow formation of CT complex was also considered in polar solvent (eq. 3). 52a The epr spectroscopic results obtained in present work (chapter 3) are in accordance with the initial formation of paramagnetic intermediates followed by formation of diamagnetic CT complexes (eq. 3).

$$D + A \xrightarrow{K_{CT}} \begin{bmatrix} D, A \end{bmatrix} \xrightarrow{hv_{CT}} \begin{bmatrix} \cdot \cdot \cdot \cdot \cdot \\ D', A \end{bmatrix} \qquad (eq. 1)$$

$$CT complex \qquad ET complex$$

$$D + A \xrightarrow{K_{ET}} D' + A \qquad (eq. 2)$$

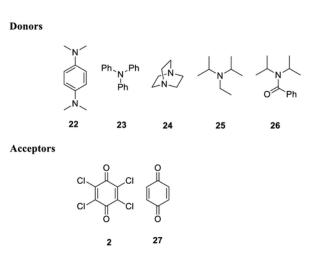
$$D + A \xrightarrow{v^+} D' + A \qquad [D, A] \qquad (eq. 3)$$

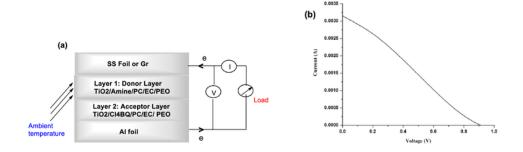
In 1966, it was reported⁵³ that conductometric titration could be carried out by titrating a donor solution with an acceptor and the conductivity pass through a maximum when the donor and acceptor were present in the stoichiometry required for the formation of the CT complex.

Surprisingly, there was no attempt on the development of an electrochemical device based on transport of charges in these radical cation and anion pair species to the electrodes and regenerating the donor and acceptor for further electron transfer reaction. If the electron transfer from the amine donor to the quionone acceptor could happen reversibly, then the device would be useful in converting the heat around it continuously to electricity. Therefore, we have decided to construct the electrochemical cell using *p*-chloranil acceptor with amine or amide donors.

4.2.1 Construction of Donor and Acceptor Electrochemical Cell

We have selected the readily accessible acceptor quinones and donor amines to construct the electrochemical cell which can produce electricity from the surrounding heat without using visible light (Figure 13). We have already discussed that a variety of readily accessible, inexpensive and simple tertiary amine donors react with quinone acceptors like 1,4-benzoquinone, *p*-chloranil, 1, 4-naphthoquinone and 2,3-dichloro-1,4-naphthoquinone to give paramagnetic intermediates.




Figure 13. Donors and acceptors used in the electrochemical cell studies.

We have selected the highly electron deficient p-chloranil 2 as acceptor for detailed studies as it acts as an acceptor even with tertiary amides (Figure 13). Also, we have selected the donors like N,N'-tetramethyl-1,4-phenylenediamine (TMPDA) 22, triphenylamine (TPA) 23, 1,4-diazabicyclo[2.2.2]octane (DABCO) 24, N, N-diisopropylethylamine (DIPEA) 25 and N,N-diisopropylbenzamide (DiPrBA) 26 for the construction of the electrochemical cell (Figure 13).

4.2.1.1 Two Layer Cell Configuration

After extensive experimentation, we have found that the cells can be easily constructed by making donor and acceptor pastes using TiO₂, polyethylene oxide (PEO) and propylene carbonate (PC) for coating on commercially available Al (0.2mm x 5cm x 5cm) and SS (SS 304, 0.05mm x 5cm x 5cm) foils or graphite sheet (0.4mm x 5cm x 5cm). Initially, a simple two layer cell was constructed using Al and SS foils. The mixture of TiO₂, *p*-chloranil, PC, EC and PEO was coated on Al foil and the mixture of TiO₂, amines, PC, EC and PEO was coated on SS foil. The foils were then sandwiched to construct the electrochemical cell. The configuration of this two layers electrochemical

cell is almost similar to the bi-layer in organic solar cell⁵⁴ but the electron transport would have contributions from both ionic conduction and also through exchange reactions involving D/D⁻⁺ and A⁻/A with formation of corresponding charge transfer complexes (CT 1, CT 2 and CT 3). The current (I) and voltage (V) characteristics observed for the cells using different amines are summarized in the experimental section in Table ES1 (ES: Experimental Section), entries 1-3.

At 28°C, With SS Foil Cathode

DIPEA

TPA

DABCO

Pmax=0.756mW/FF=0.263

Pmax=0.665mW/FF=0.233

Pmax=0.306mW/FF=0.254

With Graphite Cathode:

Pmax=1.415mW/FF=0.235

Pmax=0.139mW/FF=0.194

Pmax=0.794mW/FF=0.240

DIPEA

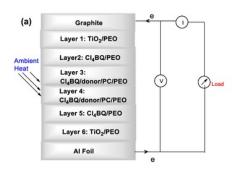
TPA

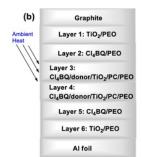
DABCO

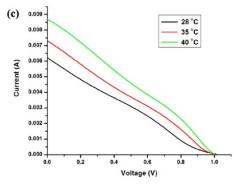
4.			
(c)			e Al
Gr	TiO ₂ /\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		e Al
	DC PC	CITCI	

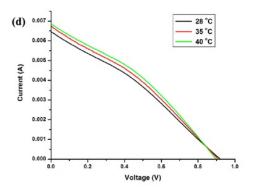
Figure 14. (a) Schematic diagram of cell with two layer configuration (b) Representative IV curve for the two layer cell (Table ES1, entry 1, DIPEA donor). (c) Tentative mechanism for electron transport via D/D⁺ and A⁻/A exchange reactions.

The representative IV curve for this cell is shown in Figure 14b for the cell in (Pmax = 0.756 mW, FF=0.263). Similarly, the cells prepared using amines DABCO and TPA with *p*-chloranil gave power output of 0.665 mW with FF=0.233 and 0.306 mW with FF=0.254, respectively.


However, visible holes were formed on the SS foil indicating corrosion, probably due to the formation of Fe²⁺-amine species by the reaction of SS foil with the amine radical cation present in the reaction mixture. We then constructed the cell with similar configuration using Al foil (0.2mm x 5cm x 5cm) anode and graphite (0.4mm x 5cm x 5cm) cathode. The results obtained are summarized in the experimental section in Table ES1, entries 4-6. The cells constructed did produce power in these cases (Table ES1, Figure 14), but there was only very little or no power output after 24 h. A possibility is that ionic conduction may lead to the deposition of the radical ion pairs on the respective electrodes which may not dissolve back into the solution preventing reversible equilibrium necessary for continued power generation. Also, the formation of amine-*p*-chloranil CT complex to more extent may lead to reduction in power output, especially if this complex precipitates out of the PC solution.


4.2.1.2 Multi-layer Cell Configuration


We have then decided to construct multi-layer cell to improve the performance of the cell. Recently, there were several reports⁵⁵⁻⁶¹ that the stability of the solar cells improved by coating additional buffer layers or electrode interfacial layer using metal oxides like TiO₂.


Accordingly, we have constructed the cells in two different configurations (Figure 15a and 15b) by coating TiO₂/PEO on both electrodes, followed by coating of Cl₄BQ/PEO on TiO₂/PEO/Al and TiO₂/PEO/Gr. Then, the Cl₄BQ/Amine/PC/PEO (Figure 15a) or

Cl₄BQ/Amine/PC/TiO₂/PEO pastes (Figure 15b) coated above the Cl₄BQ/PEO layers. The results are summarized in Table ES2, entries 1-10.

1 h after packing

Donor	Pmax/mW/FF(40 °C)
TMPDA	1.469/0.221
TPA	1.333/0.255
DABCO	5.492/0.313
DIPEA	5.695 /0.296
DiPrBA	2.198/0.260

Donor	Pmax/mW/FF(40 °C)
TMPDA	3.099/0.261
TPA	0.375/0.245
DABCO	6.155/0.206
DIPEA	8.147/0.347
DiPrBA	4.193/0.295

48 h after packing

Donor	Pmax/mW/FF(40 °C)
TMPDA	0.790/0.309
TPA	0.428/0.285
DABCO	2.320/0.267
DIPEA	2.228 /0.347
DiPrBA	1.047/0.261 (35 °C)

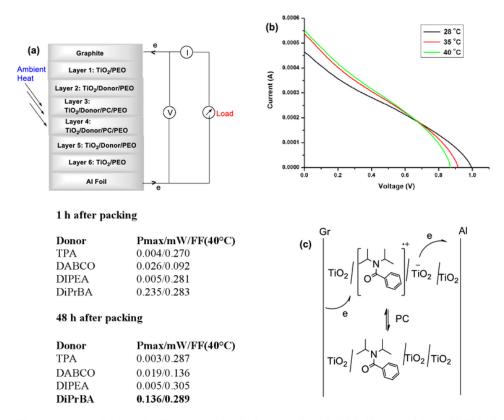
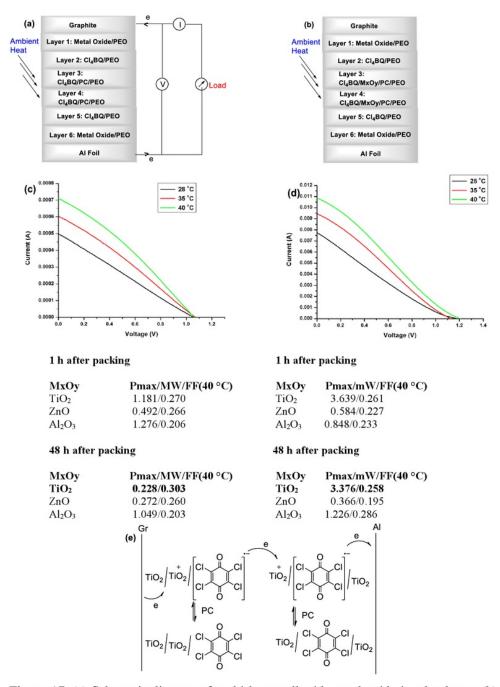

Donor	Pmax mW/FF(40°C)
TMPDA	1.822/0.250
TPA	0.142/0.256
DABCO	1.216/0.249
DIPEA	2.057/0.334
DiPrBA	2.969/0.273

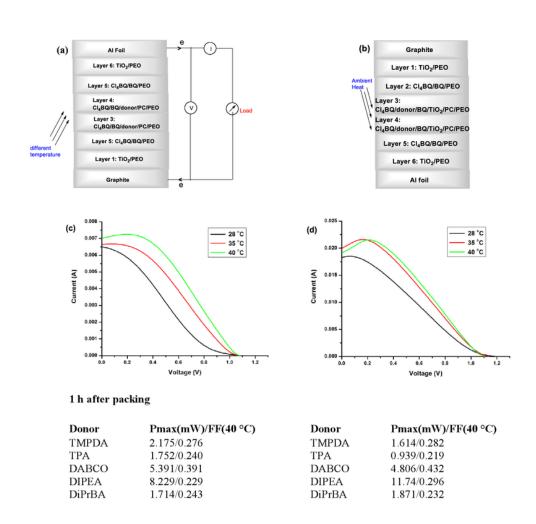
Figure 15. (a) Schematic diagram of multi-layer with Cl₄BQ/donor/PC/PEO configuration and (b) Schematic diagram of multi-layer with Cl₄BQ/donor/PC/TiO₂/ PEO configuration (c) Representative IV curve for the cell (Table ES2, entry 3, DABCO donor) after 48 h packing (d) Representative IV curve for the cell (Table ES2, entry 9, DIPEA donor) after 48 h packing (e) Tentative mechanism for electron transport to the electrodes via D/D.+ and A-/A exchange reactions.


The IV-data were recorded after 1 h and 48 h after packing. The higher power outputs (Pmax) were observed 1 h after packing compared to that observed after 48 h. Presumably, the power output becomes less as the initially formed amine radical cations and p-chloranil anions are converted to the corresponding charge transfer complex (CT 1) (Figure 15e). The complexes CT 2 and CT 3 may also contribute to the conduction. The data for the cells with similar configuration with additional TiO₂ in PC layer (Figure 15b) are summarized in Table ES2, entries 6-10.

The data (Table ES2) indicate that increase in the temperature of the cell (from 28 °C to 40 °C) increases the power output due to increase in the rate of electron transfer between the donor-acceptor and also dissociation of formed charge transfer complexes into radical ion pairs. Also, the increase in temperature would help in crossing the activation energy barrier for transport of ions to the electrodes and hence would improve the conductance.

The TiO₂ rutile and TiO₂ and anatase were reported to have very high electron affinities of 4.8eV and 5.1eV, respectively.^{62a,b} It was also reported that the TiO₂ surface could donate or accept electrons depending on the nature of the adsorbed molecules.^{62c} Accordingly, it was of interest to us to examine whether the donors used in the cell experiments could produce power by interaction with TiO₂ without using *p*-chloranil. Indeed, this was observed and diisopropylbenzamide gave slightly higher power upon interaction with TiO₂ (Figure 16). Presumably, the interactions outlined in Figure 16c may also play a role in the reaction and transport of charge carriers using *p*-chloranil.

Figure 16. (a) Schematic diagram of multi-layer cell with TiO₂/donor without Cl₄BQ (b) Representative IV curve for the cell (Table ES3, entry 4, DiPrBA donor) (c) Tentative mechanism for electron transport.


Figure 17. (a) Schematic diagram of multi-layer cell with metal oxide in edge layers (b) multi-layer cell with metal oxide in edge layers and also in PC layer (c) Representative IV curve for the cell (Table ES4, entry 1, TiO₂ donor) (d) Representative IV curve for the cell (Table ES4, entry 4, TiO₂ donor) (e) Tentative mechanism for electron transport.

Previously, there were also reports on the formation paramagnetic intermediates when *p*-chloranil was adsorbed on the surface of TiO₂.⁶³ Such intermediates may play a role in the electron transport at the interfaces, thus improving the performance of the device. The TiO₂ sample used in the present studies did not give paramagnetic species with *p*-chloranil. However, we have also constructed the cell without using other donors. Interestingly, the cells constructed using the metal oxides TiO₂, Al₂O₃ and ZnO in the configurations shown in Figure 17a and 17b without using donor amines or amide did produce power with TiO₂ giving higher power when it is present in the middle PC layers (Figure 17b). The results indicate that the metal oxides transfer electron to *p*-chloranil as visualized in Figure 17e. This may also play a role in the transport of charges in the cells using donors.

We have observed that in the cells constructed using different donors and *p*-chloranil acceptor (Figure 15 and Figure 17), the power output decreases with time. Possibly, the chloranil radical anion may get deposited on the Al electrode and the *p*-chloranil may not fully dissolve back in the PC solvent (only 0.03 g *p*-chloranil soluble in 1 mL PC), thus preventing the reversible formation of amine or amide radical cation and *p*-chloranil radical anion.

The *p*-chloranil has a very high electron affinity (EA) of 2.78eV.⁶⁴ Interestingly, it was reported that anion radicals of molecules with lower electron affinity are solvated to more extent.^{64a} Therefore, we have carried out experiments using *p*-benzoquinone (BQ) which has lower electron affinity (EA=1.91eV) to examine whether the chloranil anion radical can transfer electron to BQ to form the corresponding radical anion for further electron transport to the Al electrode. Also, the BQ is more soluble in PC solvent (0.1 g BQ soluble in 1 mL PC) which may be also helpful. We have carried out experiments by

constructing the cell in two different configurations, Figure 18a and 18b. Some improvements were observed in the power outputs, but still the Pmax values decreased with time (Figure 18a and 18b). Presumably, the more soluble BQ accepts electrons from *p*-chloranil anion radical effectively for transporting to the Al electrode improving the power output to some extent. The results of cells 18a and 18b are summarized in Table ES 5, entries 1-10.

48 h after packing

	Donor TMPDA TPA DABCO DIPEA DiPrBA	Pmax(mW)/FF(40 °C) 1.205/0.273 1.216/0.240 3.023/0.399 2.074/0.231 1.534/0.258	Donor TMPDA TPA DABCO DIPEA DiPrBA	Pmax(mW)/FF(40 °C) 1.299/0.263 0.728/0.219 3.776/0.434 8.338/0.394 1.411/0.243
(e)	$\begin{array}{c c} Gr & O & CI \\ \hline TiO_2/CI & T & CI \\ \hline \end{array}$	PC CI CI CI CI CI CI CI	PC CI CI	CT-4 e O O O O O O O O O O O O
			` \ CT-1	

Figure 18. (a) Schematic diagrams of multi-layer cell using BQ along with p-chloranil without TiO₂ in PC layer (b) multilayer cell using BQ along with p-chloranil with TiO₂ in PC layer (c) Representative IV curve for the cell (Table ES5, entry 3, DABCO donor) and (d) Representative IV curve for the cells (Table ES5, entry 9, DIPEA donor) (e) Tentative mechanism for electron transport to the electrodes via D/D.+ and A-/A exchange reactions.

As discussed in Chapter 3, epr spectral studies indicated that the radical ions are transformed to charge transfer complexes with time. This could account for the reduction of current and Pmax values with time as the concentration of radical ions would be lesser with time. One way to prevent the formation of such charge transfer complexes is to remove the charges from the radical ions by using the cells to charge a rechargeable battery. The results obtained on the performance of the cells while charging a rechargeable Ni-Cd battery is summarized in Table 1.

The performance of the cells with configurations as in Figures 18a and 18b using BQ improved when the cells were used for charging batteries (Table 1, entries 3 and 4) compared to cells with configurations without using BQ (Figures 15a and 15b, Table 1,

entries 1 and 2) indicating that the BQ may transport the electron from the *p*-chloranil radical anion as it is formed thus preventing the formation of the corresponding CT complex which otherwise would reduce the concentration of radical ions with time. The electron acceptor BQ would accept electron from the *p*-chloranil radical anion as the corresponding anion radical formed from these compounds with lower EA are expected to interact with solvents to more extent, preventing the formation of CT complex. In case of DABCO (Table 1, entry 5) there was not much power output was observed. This may be due to the formation of stronger charge transfer complex with *p*-chloranil thus preventing the reversible reaction for charge transport. The donor DIPEA gives higher power output for longer time in these configurations compared to other donors. This may be due to the formation of more amount of radical ion pairs in case reaction of DIPEA with *p*-chloranil as revealed by epr spectroscopic studies. Further, it is sterically hindered and hence formation of CT 1 complex may be also difficult.

Table 1. Performance of Cells by Charging Ni-Cd Battery after packing.^a

entry	Figure/Donor	Pmax/mW/FF at	Pmax/mW/FF at	Pmax/mW/FF at
1 ^b	15(a)/DIPEA	8.988/0.300	2.893/0.473	1.738/0.391
2 ^b	15(b)/DIPEA/TiO ₂	7.626/0.286	2.911/0.437	2.027/0.366
3°	18(a)/DIPEA/BQ	17.49/0.189	13.46/0.239	14.57/0.260
4°	18(b)/DIPEA/BQ/TiO ₂	13.21/0.172	12.77/0.270	10.65/0.277
5°	18(b)/DABCO/BQ/TiO ₂	4.022/0.413	2.733/0.316	1.291/0.160
6°	18(b)/TMPDA/BQ/TiO ₂	1.883/0.279	0.620/0.249	0.373/0.248
7°	18(b)/TPA/BQ/TiO ₂	0.985/0.255	0.855/0.231	0.698/0.218
8°	18(b)/DiPrBA/BQ/TiO ₂	2.606/0.238	1.660/0.234	0.592/0.223

^aAfter packing the cell was connected immediately to charge a Ni-Cd battery through Zener diode and disconnected while carry out the IV-curve measurement (Table ES6 and ES7). The battery connection was removed from the cell after 48 h. ^bConfiguration without BQ. ^cConfiguration with BQ.

Also, charging the rechargeable battery would lead to removal of charges from the radical ions, resulting in the recycling of the neutral species for continuous reactions. The donors TMPDA, TPA and DiPrBA which are relatively weak donors and also produce lower power output as concentration of radical ion formed may also be lower (Table 1, entries 6, 7 and 8).

In recent years, there have been several reports on the conversion of low-grade waste heat (<130 °C) to electricity by thermally regenerative electrochemical cycles. 65a,b A thermoelectrochemical device based on ferrocene-iodine redox couple was also reported. but the device produced only μW/m² power with respect to the electrode surface area. ^{65c} The power density of the cell in this case was calculated by using the amount of power produced with respect to the electrode surface area. The cell constructed from the donor DIPEA (Table 1, entry 3) gave power density at 40 °C was 0.5384 mW/cm² or 5.384 W/m² (13.46 mW (Pmax)/25 cm² (electrode surface area)). The methods reported in the literature for construction of the devices are very complex compared to methods described here. In the present case, the device utilizes very inexpensive materials that are already manufactured in large scale. Further, since there are established methods are available for heating air at even below 0 °C to 40 °C using solar radiation and methods available for storing solar heat in simple chemicals like aq. NaOH, CaCl₂ and methods are also available for using these solar heat stored materials for heating the air to 40 °C to 60 °C,66 the present low/ambient heat harvesting electricity producing cell device has potential for use 24x7 in all seasons, day and night.

4.3 Conclusions

We have developed a simple method and device for constructing the electrochemical cell based on ground state electron transfer reaction of amine or amide donor and *p*-chloranil acceptor in various configurations. These low/ambient heat harvesting electricity producing and air cooling cells can be readily stacked.

The present case, the device utilizes very inexpensive materials and hence has potential for household, automobile and large scale applications. However, long term performance of this cell device remains to be established and there is plenty of scope for further research and developments to improve the performance of this device. Accordingly, the low/ambient heat to electricity converting electrochemical system disclosed here has the potential to meet the increasing energy requirements without having to burn fossil fuels. Further systematic studies on improve the stability of the cells with different electron donors and acceptors are expected to lead to the discovery of cost effective stable electrochemical cells.

Development of Synthetic Methods and Electrochemical Cells Based on Organic Electron Transfer Reactions

ORIGINALITY REPORT

SIMILARITY INDEX

INTERNET SOURCES

11%

PUBLICATIONS

STUDENT PAPERS

4%

2%

PRIMARY SOURCES

Mariappan Periasamy, Polimera Obula Reddy, Masilamani Shanmugaraja. "Organoboranes Oxidation and Lewis Base Borane Complexes Preparation Using Oxygen Adsorbed Carbon Materials", ChemistrySelect, 2017

Publication

Mariappan Periasamy, Masilamani Shanmugaraja, Polimera Obula Reddy, Modala Ramusagar, Gunda Ananda Rao. "Synthetic Transformations Using Molecular Oxygen-Doped Carbon Materials", The Journal of Organic Chemistry, 2017

Publication

uu.diva-portal.org Internet Source

www.ijcep.com Internet Source

Sergiy V. Rosokha, Jay K. Kochi. "Fresh Look at 5 Electron-Transfer Mechanisms via the

Donor/Acceptor Bindings in the Critical **Encounter Complex"**, Accounts of Chemical Research, 2008

Publication

- Ahmed, K., Q.-L. Zhao, Y. Matsuya, D.-Y. Yu, T. <1% 6 L. Salunga, H. Nemoto, and T. Kondo. "Enhancement of macrosphelide-induced apoptosis by mild hyperthermia", International Journal of Hyperthermia, 2007. Publication
- Fan, Rundong, Yuan Huang, Ligang Wang, Liang Li, Guanhaojie Zheng, and Huanping Zhou. "The Progress of Interface Design in Perovskite-Based Solar Cells", Advanced Energy Materials, 2016.

Publication

Serap Günes. "Organic Solar Cells and Their Nanostructural Improvement", Green Energy and Technology, 2011

Publication

須賀 健雄. "酸化還元ラジカル高分子: 合成と有 機二次電池への展開", [出版者不明], 2009. Publication

Xianwu Zeng, Yong X.. "Chapter 8 10 Nanocomposites for Photovoltaic Energy Conversion", InTech, 2011

Publication

<1%

<1%

11	Submitted to Institute of Technology, Nirma University Student Paper	<1%
12	Sajjad Dadashi-Silab, Sean Doran, Yusuf Yagci. "Photoinduced Electron Transfer Reactions for Macromolecular Syntheses", Chemical Reviews, 2016 Publication	<1%
13	Roger J. Mortimer. "Electrochromic Polymers", Encyclopedia of Polymer Science and Technology, 03/15/2004 Publication	<1%
14	Submitted to Jamia Milia Islamia University Student Paper	<1%
15	vdocuments.site Internet Source	<1%
16	Xue, Wei Wei, Xiu Qin Zhang, Qiang Chen, Ji Jin, and Guo Yuan Lu. "Synthesis and Crystal Structure Hindered Amine with Methaerylate", Advanced Materials Research, 2015. Publication	<1%
17	Shun-Ichi Mitomo. "The Reactions of Sulfilimines withTCNQ and their Characteristic Charge-Transfer Complexes as Products", Molecular Crystals and Liquid Crystals, 4/1/1998	<1%

18	Submitted to Jawaharlal Nehru Technological University Student Paper	<1%
19	www.jove.com Internet Source	<1%
20	Duoli Sun, Sergiy V. Rosokha, Jay K. Kochi. " Reversible Interchange of Charge-Transfer versus Electron-Transfer States in Organic Electron Transfer via Cross-Exchanges between Diamagnetic (Donor/Acceptor) Dyads ", The Journal of Physical Chemistry B, 2007 Publication	<1%
21	thieme-connect.de Internet Source	<1%
22	Anees A., M. Alhoshan, M.S. Alsalhi, A.S. Aldwayy. "Chapter 2 Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors", InTech, 2010 Publication	<1%
23	MacManus-Spencer, Laura A., Betsy L. Edhlund, and Kristopher McNeill. "Singlet Oxygen Production in the Reaction of Superoxide with Organic Peroxides", The Journal of Organic Chemistry, 2006. Publication	<1%

24	J. W. Verhoeven. "Glossary of terms used in photochemistry (IUPAC Recommendations 1996)", Pure and Applied Chemistry, 1996 Publication	<1%
25	Bai, Yu, Iván Mora-Seró, Filippo De Angelis, Juan Bisquert, and Peng Wang. "Titanium Dioxide Nanomaterials for Photovoltaic Applications", Chemical Reviews	<1%
26	www.pearsonpatents.com Internet Source	<1%
27	www.mdpi.com Internet Source	<1%
28	Michael P. Barham, Peter G. Enticott, Russell Conduit, Jarrad A.G. Lum. "Transcranial	<1%
	electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis", Neuroscience & Biobehavioral Reviews, 2016 Publication	
29	declarative (but not procedural) memory consolidation: Evidence from a meta-analysis", Neuroscience & Biobehavioral Reviews, 2016	<1%

31	Ljubisa R. Radovic, Bradley Bockrath. "On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbon Materials", Journal of the American Chemical Society, 2005 Publication	<1%
32	Gassner, George, Lihua Wang, Christopher Batie, and David P. Ballou. "Reaction of Phthalate Dioxygenase Reductase with NADH and NAD: Kinetic and Spectral Characterization of Intermediates", Biochemistry, 1994. Publication	<1%
33	Reddy, . "Organic and dye-sensitized solar cells", Solar Power Generation Technology New Concepts & Policy, 2012. Publication	<1%
34	Chunhe Yang, Erjun Zhou, Shoji Miyanishi, Kazuhito Hashimoto, Keisuke Tajima. "Preparation of Active Layers in Polymer Solar Cells by Aerosol Jet Printing", ACS Applied Materials & Interfaces, 2011 Publication	<1%
35	redalyc.uaemex.mx Internet Source	<1%
	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

V. Vishnyakov, S. E. Donnelly, G. Carter.
"Scanning tunnelling microscopy observations of the evolution of small-scale topography on

<1%

gold surfaces following irradiation with lowenergy argon ions", Philosophical Magazine B, 2006

Publication

37	www.freepatentsonline.com Internet Source	<1%
38	Submitted to University of KwaZulu-Natal Student Paper	<1%
39	ubm.opus.hbz-nrw.de Internet Source	<1%
40	Fauzia, Vivi, Akrajas Ali Umar, Muhamad Mat Salleh, and Muhammad Yahaya. "Study Phase Separation of Donor:Acceptor in Inkjet Printed Thin Films of Bulk Heterojunction Organic Solar Cells Using AFM Phase Imaging", Advanced Materials Research, 2011.	<1%
41	Submitted to University of California, Los Angeles Student Paper	<1%
42	Submitted to Heriot-Watt University Student Paper	<1%
43	www.slideshare.net Internet Source	<1%
44	www.solenergi.dk Internet Source	<1%

45	Setsuo Takamuku, Nobuyuki Ichinose, Kazuhiko Mizuno, and Yoshio Otsuji. "Cis-trans isomerization of 1,2-bis(4-methoxyphenyl)- cyclopropanes via a cationic chain mechanism.", Chemistry Letters, 1988. Publication	<1%
46	Sergiy V. Rosokha, Jay K. Kochi. "Continuum of Outer- and Inner-Sphere Mechanisms for Organic Electron Transfer. Steric Modulation of the Precursor Complex in Paramagnetic (Ion-Radical) Self-Exchanges", Journal of the American Chemical Society, 2007 Publication	<1%
47	eprints.nottingham.ac.uk Internet Source	<1%
48	Cui, Zheng. "Printed Organic Thin Film Solar Cells", Printed Electronics, 2016. Publication	<1%
49	K Nakahara. "Rechargeable batteries with organic radical cathodes", Chemical Physics Letters, 20020627 Publication	<1%
50	Submitted to Ewha Womans University Student Paper	<1%
51	Submitted to The Hong Kong Polytechnic	

_	University Student Paper	<1%
52	www.thieme-connect.de Internet Source	<1%
53	www.google.com Internet Source	<1%
54	Esmaeilpour, Mohsen, Jaber Javidi, Farzaneh Dehghani, and Saeed Zahmatkesh. "One-pot synthesis of multisubstituted imidazoles catalyzed by Dendrimer-PWAn nanoparticles under solvent-free conditions and ultrasonic irradiation", Research on Chemical Intermediates, 2016. Publication	<1%
55	pesquisa.bvsalud.org Internet Source	<1%
56	en.wikipedia.org Internet Source	<1%
57	高橋 悠輔. "Radical-bearing redox polymers and their application to electrochromic cell", [出版者不明], 2009. Publication	<1%
58	Submitted to Windermere Preparatory School Student Paper	<1%
59	www.omicsonline.com	

www.cheric.org Internet Source

Exclude quotes On Exclude matches < 10 words

Exclude bibliography On