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Chapter 1

Introduction

1.1 Motivation

The work done in this thesis was motivated by the developments in processor
architecture, performance studies and the functionality of user-level runtime
systems such as Cilk [3] and TBB [4]. These run-times were developed to sup-
port task based parallelism. These run- times support work stealing strategy
for load balancing. The features of these run-times are targeted for first gen-
eration multi-core processors with common bus interface to memory. The
strategies proposed in Chapter 3 aim to improve the performance of work
stealing run-time for such an architecture. But the next generation server
processors started supporting on-chip-interconnect technology such as Quick
Path Interconnect links from Intel (QPI) [5] and Hyper Transport links [6]
from AMD. These systems typically behave as non uniform memory archi-
tecture (NUMA) but the task based run-times (Cilk,TBB etc.) continue to
support the same shared memory paradigm in parallel programming. The lo-
cality issues to support process based and thread based programming in such
an environment were well addressed at operating system level and process
based programming in [7] [1] [8]. This work induced new research avenues
and allowed our study on user level run-times in general and task based
run-times in particular. In this thesis, we proposed strategies to adapt user
level run-times in NUMA multi-core architectures. Our contributions are
mainly in load balancing and locality aspects of work-stealing infrastructure
as depicted in the figure 1.1.
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Figure 1.1: Thesis taxonomy

1.2 Parallel Programming Paradigms

In this section, we explain the reason why our work is focused on task-based
parallelism briefing the parallel programming paradigms.

e Process based: Splitting the given job into multiple processes using
fork() like call. MPI programming is process based parallel program-
ming paradigm where the communication among processes is taken care
using active messages.

e Thread based: Within a single process, split the job into multiple
threads using pthread API or Java threads. Threads live within a single
address space and take the advantage of shared memory communication
avoiding the message passing delays. Each thread can access the shared
address space of the same process.

e Task based: Since creation of thread is also of some overhead, new
run-time entities called tasks are introduced at user level run-times.
Tasks are considered even lighter than threads. Tasks are in turn
mapped to threads or virtual processors which are created during the
initialization of user level run-time systems. Run-time systems of paral-



lel programming environments like OpenMP, Cilk, TBB are few exam-
ples of task based run-time system. Our focus in this thesis is mainly
on task based user-level run-times.

1.3 Task based run-times

Since thread creation is of some overhead due to its resource consumption, a
group of threads equivalent to the number of hardware threads is kept ready
during the initialization of the run-time and behave as a set of virtual pro-
cessors to execute parallel execution entities, we call it a thread pool. “A
thread pool is a set of pre-instantiated, idle threads which stand ready to be
giwen work”. Creating a task on fly for each job is a preferred approach over
instantiating a new thread on fly when there is a large number of short jobs
to be done rather than a small number of long ones.

Task is a unit of execution which is considered far lighter than thread.
A task is about 20 times lighter than thread on Linux environment and 100
times lighter on Windows. Task programming model can be effectively ap-
plied for the code with less amount of blocking statements. Task based run-
times have gained much importance in multi-core era. Multi- threaded pro-
gramming is more effective when the number of logical threads in thread-pool
is equal to the number of processors (cores or hardware threads). Though
multi-threading is a traditional way of programming shared memory, the
following disadvantages are observed in it.

e Undersubscription: occurs when the number of program instantiated
logical threads is less than the number of cores at hardware level.

e Over subscription: occurs when the number of program created logical
threads are more than available hardware threads. In this case, logical
threads follow some kind of multiplexing such as time slicing. These
create overhead of context switching. Hence, thread scheduling is de-
pendent on operating system’s scheduling strategy. In case of Linux,
threads are scheduled guaranteeing fairness. Fairness can be a hin-
drance for performance. If tasks are used, intelligent scheduling and
load balancing strategies to guarantee performance can be applied.

e Heaviness: Common resources of threads are instruction pointer, copy
of registers and stack. On Linux, a thread is also created using clone()
system call. Hence thread needs additional resources depending on



implementation making them heavy though they are of less weight
than process.

Hence task based programming can perform well because they are purely
implemented at user level implementations and can do better in the following
areas [9]:

e Matching parallelism to available execution resources

Less time consumption during task-start-up and task-shutdown

Improved evaluation order

Effective load balancing

Higher level thinking

Having realized the importance of task based parallel programming environ-
ments, our initial focus was to explore the popular load balancing techniques
like work sharing and work stealing. In the work sharing approach, all the
application instantiated tasks are managed at centralized storage and dis-
patched to one of the available free processors. Hence, it is a centralized
approach of load balancing. Worker threads of the thread pool execute the
tasks. In the work sharing approach, worker threads contend for accessing
the centralized task-queue every time a task is to be executed. To overcome
the contention involved in centralized approach, a distributed approach called
work-stealing strategy has been proposed where every worker has its own
queue of tasks. A worker thread becomes a thief when it’s own task queue is
empty and tries to steal tasks from other queue called victim. In case of work
stealing approach, a worker thread needs to access other worker’s queue only
iof it has no tasks in it’s own queue. Hence it is a distributed approach with
less contention. This popular approach has been implemented in many task
based run-time systems such as Cilk [3], TBB [4] and few implementations
of OpenMP. The study of these run-times and rapid changes in hardware
prompted us to contribute few extensions to work stealing infrastructures.

During the course of analyzing work stealing strategy and exploring the
source code of the run-times, few gaps were identified related to victim selec-
tion method. This analysis initiated us to contribute extensions to present
work-stealing approach. The method followed in these run-times is random-
1zed work stealing. We could identify gaps in randomized approach that
impair the overall performance of a task based application. In chapter 3,



we proposed a metric called false steal count that keeps track of those addi-
tional delays. Our proposed strategy in chapter 3, threshold constrained
work stealing attempts to mitigate the effects of those delays in randomized
stealing approach.

¥ 1

Memory |edp Northbridge : pC]
(Graphics and Memory Controller Hub)

1t Internal bus

1/0 Southbridge Chipset

1 (1/0 Controller Hub)

Figure 1.2: Multi-core Architecture with common bus interconnect

While proposing this idea, our assumption about the underlying architec-
ture was “Multi-core architecture with shared common bus among the cores”
as illustrated in the figure 1.2. Shared common bus was the prominent micro-
architectural trend in multi-core design when the number of cores on chip
was a small number. But such architectures suffer from memory wall problem
which means high speed cores interfacing with low speed memory. Hence, the
processor designers started introducing on-chip memory controllers and sep-
arate memory connected to each integrated memory controller (IMC). The
processors following this new micro architecture are called NUMA multi-core
processors or On-Chip NUMA multi-core processors. Nehalem[10] and later
architectures from Intel and Opteron series from AMD started supporting
multiple integrated memory controllers on chip during the year 2010 and
later. These architectures behave as NUMA in single machine. But the dis-
tributed programming models such as message passing (MPI) or Partitioned



Global Address Space(PGAS) can’t be applied to these architectures since
the interconnections among cores are high speed links such as quick path
interconnect (QPI) or Hyper Transport Links. The same shared memory
programming paradigm is followed at user level run-time layers only with
the difference being that the logical address space of a single process is now
spanned among different physical memory nodes. The figure 1.3 illustrates
such an example Nehalem micro architecture. A commercial NUMA system
today is available on single board in the form of multi-socket machine. In
a NUMA system, memory is classified into two or more NUMA nodes. A
typical high-performance server today contains two or more sockets and will,
therefore, have more than one NUMA nodes in a single machine. Memory
access latency within a node is approximately 100 ns and memory access of
all cores on same chip exhibit same access speeds. Memory access latency
to remote node memory is more than local memory access latency by 50-75
percent. The processing elements (cores) of the same NUMA node can access
memory with the best performance since they are locally attached. Memory
is said to be node local if it was allocated on the NUMA node which is nearest
to the processor. Processing elements of other node suffer from access delays
(NUMA penalty) when they access data from other NUMA nodes.

r

/o < 1/0 Hub PCl

F 3
k 4

> CPU Memory

F 3

Memory CPU

QPI

Memory

F 3
w

Memory “[ CPU CPU

I/O _ .| 1/OHub

PCl

F 3
L 4

Figure 1.3: An example NUMA Multi-core architecture [1]

The same shared memory model with on-chip-NUMA-multi-core hard-
ware environment attracted our focus towards further improving randomized-



work-stealing strategy. Work stealing environment supports identity affinity
policy (as a default policy or as a configurable feature) which means that there
is one to one mapping between worker threads and processors. If randomized
work stealing is applied in NUMA multi-core environment, the randomly se-
lected victim may refer a worker pinned to a core belonging to other node.
This additional requirement motivated us to add topology awareness of
NUMA architecture in work stealing environment which is presented in
the chapter 4. In chapter 4, we also introduce a metric remote steal count
that can measure how many randomly chosen attempts lead to remote victim
reference. An important finding of this chapter is the relationship between
remote steal count and the execution time of an application in the work steal-
ing run-time environment. A strategy called stealing domains is introduced
to limit the stealing activity mostly within a node. Topology aware work
stealing strategy with stealing domains could show significant performance
gain when compared to threshold constrained work staling-strategy.
NUMA multi-core environment also introduces locality issues in user level
run-times. In Linux kernel, approach of assigning memory to a process
in the system from the available NUMA nodes is called NUMA placement
policy[11]. As placement policy can influence only performance and not the
correctness of the code, heuristic approaches in memory placement can yield
acceptable gain in performance. There are various categories in which oper-
ating systems handle for the management of NUMA: accepting the perfor-
mance mismatch, hardware memory striping, heuristic memory placement,
static NUMA configurations, and application-controlled NUMA placement.
Our focus in this thesis is mostly on the Linux environment since it has
refined NUMA facilities at kernel level and most performance-critical en-
vironments use Linux today. Though the operating systems address the
NUMA related locality issues in the form of tools such as taskset and nu-
mactl [12], the programmer needs to understand the topology of hardware
to apply these tools. These tools allow to explicitly map the process to cer-
tain cores belonging to different memory nodes provided the programmer is
familiar with the numbering scheme of the processors and nodes. Our in-
tention in the chapter 5 is to relieve the programmer from being aware of
hardware topology while creating tasks. The extended proposal to the exist-
ing work-stealing infrastructure takes hints from the compiler directives and
maps the user created tasks based on what data objects the task is accessing.
In this contribution, our proposed strategy depends on kernel supported tool
libnuma [12] to automatically detect where the objects are mapped to. Us-
ing this metadata about the locality of objects and the compiler hints, tasks
are added to respective queues near to object binding location. We consider
Linux environment with kernel version 3.16 for all our experiments. In Linux
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kernel, the processes and threads are created using clone() system call with
minor differences. For the kernel, process and thread are the instances of
task_struct. Linux supports first-touch policy for memory binding of ob-
jects. According to this policy, the objects are bound to the memory node
where the thread accessed it for the first time. In user level run-times, all the
objects are initialized by master thread and tasks are spawned using fork-join
model programming. In this case, the first touch policy of Linux may result
in a situation where all shared objects are bound to single node where master
thread is pinned to. As a result, all the tasks executed by worker threads
pinned to a remote node suffer from NUMA delays. Hence it is a good prac-
tice in parallel programming to invoke initialization of objects in parallel.
This ensures the whole-object or parts of a larger objects scatter among the
available nodes. If the run-time ensures task mapping to the worker queues
based on where their shared object binding, it can automatically guarantee
locality. This also relieves the programmer from explicitly mapping tasks
on to cores. This idea motivated us to propose a strategy in the chapter 5
which is based on the compiler hints. We considered OpenMP run-time that
supports source-to-source translation to implement this policy. It could show
significant performance gain on standard benchmark programs.
The effort put in mapping tasks near to shared objects also motivated us
to work at a layer beneath the work stealing infrastructure. Work steal-
ing run-times extensively use native threads as worker threads and native
synchronization objects to implement virtual processors. Worker threads
frequently depend on mutex locks to know the task arrival into their respec-
tive queues. This motivated us to work on locality of synchronization objects
at native thread level. Recently implementation of synchronization objects
in NUMA multi-core environment is gaining much importance and issues re-
lated to locality are being addressed by researchers. Lock cohorting [13][14]
is one of such attempts towards porting existing locks on to NUMA multi-
core environment. Influenced by these developments, we proposed Affinity
awareness in work-stealing domains in chapter 6. This idean could show
little performance gain over the previous contributions.
This thesis is an effort towards bringing task based programming paradigm
suitable to NUMA multi-core environment. The benchmark programs for
illustrating performance comparison are also task based parallel programs
from Barcelona OpenMP Task Suit [15].

Our goal is to minimize the cost of accessing memory by achieving affinity
between tasks and data, and as a result minimizing overall execution time of
the application program.



1.4 Main contributions of the thesis

Main contributions of this thesis are:
e Study of existing user level run-time systems for multi-core processors.

e Study of modern multi socket multi core processor architecture empha-
sizing on multiple memory controllers and on-chip NUMA features.

e [dentifying the problems in adapting existing user level run-time sys-
tems to NUMA multi-core processors.

e Approaches in the form of algorithms to adapt existing work-stealing
technique to NUMA multi core processors.

e Approaches to improve shared object locality in multi-socket multi-core
processor architectures.

e Approaches to improve the internal performance of work stealing run-
time by applying affinity aware locks.

1.4.1 Proposed Architecture

The architecture presented in the figure 1.4 represents all hardware compo-
nents and chapter-wise contributions at software layer collaborating within
our proposed user level work stealing runtime. This architecture is compati-
ble with existing work-stealing infrastructure and easily adaptable.

1.5 Organization of the Thesis

This thesis is organized into seven chapters as mentioned below. Though the
chapters are interlinked with each other, we tried to present each chapter in
self-contained manner to the extent possible, to ease the sequential reading
of thesis document. Pictorial representation of the thesis organization is
presented in the figure 1.5.

e Chapter 1: Introduction. This chapter gives an overview of evolu-
tion of processor architecture and associated user-level run-times which
motivated us to attempt the work carried out. This chapter also dis-
cusses the research objectives.

e Chapter 2: Literature Review. This chapter provides a brief review
of previous contributions in the area of multi-core user level runtimes.
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Chapter 3: Threshold Constrained Work-stealing. Prior to 2010
the multi-core processors were single socket. Our contribution in this
chapter is to improve the performance of randomized work stealing ap-
plicable to both single socket and multi-socket multi-core environments.

Chapter 4: Topology Aware Work-stealing. NUMA multi-core
processors became popular in server environment from 2010 onwards.
The analysis of randomized work stealing for these architectures is stud-
ied in this chapter. Our contribution to minimize remote stealing at-
tempts is discussed in this chapter.

Chapter 5: Improving Shared Object Locality. This chapter
is aimed to improve shared object and task proximity in work staling
runtimes for NUMA architectures.

Chapter 6: Affinity Aware Synchronization. This chapter pro-
poses a strategy to improve synchronization in NUMA multi-core ar-
chitectures suitable to work-stealing environment.

Chapter 7: Conclusion and Future work. In this chapter, we
propose our future work plan and conclude the thesis.
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Chapter 2

Literature Survey and Related
Work

In this chapter, an overview of various scheduling and load-balancing strate-
gies for multi-core architectures proposed during 2005-2016 are summarized.
As the processor, memory and interconnect connection technologies evolve
during last two decades, various methods of performance improvements are
proposed in previous studies. These studies identified, analyzed and proposed
various strategies at operating system level, middle-ware runtime level, and
user-level. These studies address the performance issues assuming the unit

of scheduling in a parallel environment:
e Processes
e Threads

e Tasks
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Figure 2.1: Related work at various levels
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2.1 Process Level

2.1.1 The need of operating system scheduling to ad-

dress multi-core architectures

The trend of multi-processors prevailed in previous decades in the form
of loosely coupled clusters and tightly coupled symmetric multi processors
(SMP). The operating systems were developed targeting these processors
mostly. In SMP based architecture, machines with more than one processor
on board can access memory using the common bus with uniform access la-

tencies. Multi-core processors are different than SMP machines.

Siddha Suresh et al.(2007) in their work[16], studied the importance of
Operating system in detecting the topology of multi-core architectures. They
elaborated the differences between Symmetric Multi Processing (SMP) and
Multi-core processors. The main difference between SMP and multicore pro-
cessors is the shared resources such as last level cache (LLC), common bus
interface, pre-fetchers in the case of old multi-core processors and shared
interconnect and DRAM controllers in case of multi-socket multi-core pro-
cessors (MSMC). If threads that share data are bound to a group of cores
sharing LLC, they can take the full advantage of cache locality. They pro-
posed how scheduling domains of Linux can effectively be applied to improve
the throughput of processes in the multi-core environment. The challenges

to be addressed in their work are:

e The importance of operating system’s awareness about underlying hard-

ware topology.

e The operating system has to address the shared resources like cache

hierarchy within chip and the interconnect across CPU sockets.

e Contention for shared resources by execution entities like processes and

threads must be minimized.

e Power saving issues and dynamic acceleration technology of Intel’s

multi-core processors.
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This work leads us to keep topological parameters into consideration and
propose a similar model at user-level stealing domains. Many of the chal-
lenges posed in their work can be addressed at user-level in our work rather

than addressing them at the kernel level.

2.1.2 Meta schedulers

Meta scheduler does not introduce a new scheduling policy but it tries to map
processes on to the cores based on heuristics obtained from dynamic execu-
tion parameters of a process. J K Rai (2009) proposed a meta-scheduler [17]
which uses solo-run-L2-cache-stress as parameter metric to evaluate the im-
pact of co-running processes on the last level cache. Taking these parameters
as input, machine learning approach is followed to decide how the process

mapping has to be done. The two options for mapping processes are:

e Bind the processes onto neighboring cores to take advantage of the

shared last level cache.
e Map processes on to different chips with no shared cache.

In their work, the unit of execution is a process and hence not applicable
for modern shared memory programming run-times such as Open MP, Cilk
and TBB. These run-times target shared memory programming paradigm
on SMP and multicore processors. Our work considers a task as a parallel

execution unit.

2.1.3 The main difference between SMP and Multi-

core
Zhuravlev et al. (2012) conducted a survey on process and thread scheduling
strategies quoting the key differences between SMP and multicore processors|[18].

They illustrate the flaws with present operating systems in considering each

core on a multicore chip as an isolated processor on SMP. Kernel level
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scheduling policies do not consider the cache and other shared resources
in taking wise decisions. If one of the thread pre-fetches the data needed
by other thread into the shared cache, other threads of same process ad-
dress space can take the advantage of locality of reference on these multicore
processors. This concept is termed as co-operative scheduling and can be
implemented at operating system layer. Their work addressed the following

points related to multicore processors:

e Cache miss rates experienced by a thread is influenced by a thread

running on neighboring core (co-runner) of same chip.

e Threads belonging to a different process may impede the performance
of each other by contending for shared resources if mapped onto cores

on the same chip.

e Threads of a single process can take advantage of shared resources if

mapped onto the cores of same chip with shared cache.

e The current DRAM controllers are built based on single threaded ap-
plications. Hence the need for multiple memory controllers on the chip

with high speed interconnect among chips is required.

e Time slice based priority scheduling followed by present operating sys-
tems doesn’t guarantee threads to effectively utilize the time-slice due

to the contention of shared resources.

e To reduce the cache contention, additional cache levels can be intro-
duced where every two cores on the same die have common L2 cache
and two such dies can have common L3 cache. This can mitigate the
contention at the same time, can take advantage of the co-operative

running of threads.

e The goal of contention aware schedulers is to decide which combina-
torial mapping of threads to cores yields best performance and which

mapping doesn’t.
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They also conducted an excellent survey on process based scheduling.
Our focus is on task based programming where tasks are even lighter than
threads and obviously than processes which can be adapted for user level

run-time systems.

2.2 Native Thread Level

To achieve parallelism within a single address space, a new thread can be cre-
ated by the programmer on the fly. This model follows fork-join parallelism.
Threads are created whenever there is need and hence called thread-per-
request architecture. Every thread owns its primary context consisting of the
instruction pointer, registers and stack depending on at which level( user-
level-thread(ULT), kernel-level-thread (KLT') or light-weight-process(LWP))
it is implemented. POSIX threads, Solaris user level threads are examples of
this model.

2.2.1 Based on run-time characteristics given by per-

formance monitoring units

Multi-core processor manufacturers started adding new features such as per-
formance counters, and performance monitoring units (PMU) event registers
at the hardware level. These counters can capture the details such as per
thread execution progress, cache misses, throughput and energy characteris-
tics. These values can be used as input to influence the decisions on thread
mapping and scheduling. David Tam et al.(2007) in their work [19], proposed
a method of clustering the running threads within a process which share com-
mon data. They proposed three step method to co-schedule related threads

on to symmetric multi processor architecture or multicore architecture.

e The data access pattern of the threads is determined using fine-grained

hardware level performance monitoring unit (PMU).
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e Signature of data access regions is maintained in a per-thread storage
called shMap.

e These shMaps are analyzed using dot product of access-patterns and
the threads with access pattern above a certain level are migrated on to
same chip and scheduled by operating system on to the nearest CPUs
possible.

This study was limited to symmetric multi-processors (SMP) and multicore
processors with common bus to access common memory. The approach is
not based on profile based learning and gave us hint for compiler directed

hints in our proposed work.

2.2.1.1 Stack Distance Profile

Some contention-aware approaches for mapping threads onto cores is based
on stack distance competition of two threads. Stack distance profile of a pro-
gram is the summary of its cache-line reuse patterns.This approach to some
extent can tell the run-time the pattern of cache access and memory access.
Chandra et al.(2005) in their work [20] analyzed the effect of last level cache
sharing among threads that are co-scheduled on neighboring cores. They pro-
posed stack distance based model to predict the impact of 1.2 cache sharing
on co-running threads. This model takes the isolated L2 cache stack distance
or circular sequence profile as an input of each thread. This model attempts
to estimate the number of additional LLC misses caused by sharing cache,
compared to solo-run of the thread (i.e. without sharing the L2 cache with
other co-runner). They used a cycle-accurate simulator for a dual-core CMP
architecture.

Constructing Miss Rate Curves (MRC) (2009)[21] is also one of such meth-
ods using stack distance algorithm. Here, memory address traces are taken
as inputs. These address traces can be obtained in one of the following two

ways:

e Running an application on the simulator for the first time and obtain

simulator memory traces.
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e Use instrumentation tools which dynamically get the address traces.
These methods require the application to be executed two times:

e In the first run, the trace log is constructed using stack distances.

e In the second run, prediction models are applied.

We tried to depict the common approach proposed by previous studies on
profile based methods in the Fig:2.2. These methods are well applicable for
study of architecture, but they can’t fit into a parallel run-time system since
an application has to be executed for more than once. Our approach takes
compiler directive based clues for improving the shared objects locality and

controlling the affinity of tasks accessing these shared objects .

Simulated Execution .
o First Run

or

Direct Execution

Trace Log }

Execution
with
Co-Scheduling

¢ Second Run

Figure 2.2: Common approach followed by profile based strategies

2.2.2 Work Stealing support at thread level

Gautier (2007) proposed thread based run-time library called KAAPI [22]
that supports thread level programming for global address spaces in clusters.
The thread API is provided as an extension to POSIX threads with work
stealing support. This interface supports M : N model of mapping threads
where M represents the number of user level threads and N represents the

number of actual processors at hardware level. This work has guided us

20



to propose the M:N model for task based run-times where M is far greater
than N. Whenever a processor finds no KAAPI threads in its own queue,
the processor can steal a KAAPI thread from another processor. In our
proposed work stealing model, the unit of work is a task which is lighter
than thread. Inspired by this work, the number of worker threads in our
proposed model are kept always equal to the number of processors N. M
tasks are multiplexed on to these N worker threads bound onto N cores or

hardware threads where M >>> N.

2.2.3 Dynamic re-scheduling

As the processor manufacturers added new features like performance coun-
ters, and performance monitoring units (PMU), the schedulers can keep
track of different counter values and can evaluate the progress of execu-
tion. Dynamic re-scheduling is one such technique, the scheduler captures
the run-time characteristics of a process. Zedlewski [23](2010) proposed a
solution to re-schedule threads during run-time based on the negative ef-
fect of co-scheduling those threads onto a particular core. After sensing that
the thread-group is not performing well using performance counters, the run-
time takes measures not to co-schedule the thread-group on a single processor
chip. The essence of this work is to conclude that only those threads which
are sharing common data have to be co-scheduled on to processor domain.
This work gave us clues on proposing user level task binding onto worker
threads that share data during compilation time itself so that the run-time

need not suffer until the negative effects are realized.

2.2.4 Operating system level

Rajagopalan et al.(2007) proposed a framework in [24] for multi-core pro-
cessors called McRT which helps the programmer to experiment with user
guided scheduling and user guided placement of threads on to cores. He also
proposed gang scheduling of threads using a group of related thread iden-
tifiers (RTID). The concept of thread grouping guided us to group worker

threads in our proposed run-time.
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Fedorova et al.(2007) in their work [25], addressed the performance penalty
of binding threads on to the cores of the same chip that with common last
level cache (LLC). This effect is called performance isolation. She proposed
cache-fair algorithm to alleviate this effect by adjusting more time quantum
to a thread that suffers from performance isolation. Their proposal guaran-
tees fairness in terms of instructions per cycle (IPC) among threads running
on multi core processors.

Matthias Diene et al.(2010) [26] studied the impact of thread placement on
shared cache multi-core processors. In their simulation study, they analyzed
thread data sharing effect if operating system default scheduler is used. As
the first step, a communication matrix is generated from the simulation.
Then applied two approaches of thread placement namely, exhaustive search
where communication matrix is generated for all combinations of threads and
heuristic approach where communication matrix is sorted as per sharing pat-
tern and place threads according to sharing pattern. In their experimental
results, it is analyzed that if two threads are placed on same core, perfor-
mance degrades due to thread interleaving. Threads with shared data when
placed on to cores sharing LLC, performance is better due to locality of ref-
erence to both threads. This work has guided us to create separate worker

threads per each core maintaining their own queues of tasks.

2.3 Task Based Programming Model

2.3.1 Importance of Thread Pools

Multi threading is a better choice than process based model for programming
Symmetric Multi Processing (SMP) and multi-core environments. But cre-
ating and destroying threads on the fly also incurs some amount of overhead
(stack space allocation and context creation overhead). These overheads
result in slowdown of system when there is sudden creation of many. To
mitigate these creation overheads, a pool of threads can be pre-spawned one
time and can be reused as on workloads arrive. Each pre-spawned thread

can be considered as a virtual CPU and can wait for work to be allotted.
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The optimal size of a thread pool is studied by (Yibei Ling 2000)[27] and
concluded that the performance of thread pool is optimal if the number of
pre-instantiated threads in pool is equal to the number of physical processors
at hardware. In our work, we dynamically count the number of physical cores
parsing Linux pseudo file system /proc/cpuinfo and create worker threads
equal to the number of cores present.

Belkin (2003)[28] proposes maintaining more than one thread pool depending
on the type of work loads. When a job belongs to a particular category, that
job is executed by one of the threads of a particular pool of that category.
When job execution is done the thread re-joins it’s pool back again getting
ready for next job of that kind. In our proposed run-time, we maintain

multiple worker thread pools

2.3.2 Task or Future based parallel programming

In the era of multi-core processors, programming using native threads adds
an overhead of creating user-level or kernel level thread context depending
on what type of threads(Kernel Level Threads or User Level Threads) are
taken. There were many proposals to support a lighter weight construct for
parallel programming than process and thread. The task or future construct
is a coarse grained parallel entity which is lighter than threads. The main
difference between a task and future is that a task does not return any value
where as a future may have a return value. In programmer’s view, a task can
be a small block of statements or a function. The task based run-times allow
the programmer to create and join tasks where ever parallelism is needed.
These task units are mapped to already created threads for completion dur-
ing run-time. User level run-time environments such as Cilk, Intel Threading
Building Blocks (TBB) and OpenMP 3.0 have support for these tasks.

2.3.3 Resolving Task Dependencies

Josep M.(2008) [29] proposed automatic parallelism applying compiler di-
rectives in their compiler called SMPS/CellS for the old generation SMP
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processors and dual core processors. It supports task based parallelism with
task dependency graphs automatically constructed. Among all threads cre-
ated during initialization, the role of the main thread is to analyze the task
dependencies and maintain a task dependency graph. Scheduling strategy
followed is depth first approach to resolve data dependencies among tasks.

This work also proposes task scheduling my maintaining two separate lists:

e tasks of high priority list are looked up by worker threads without any

data locality consideration.

e normal priority tasks are executed by worker threads when they are

free.

2.3.4 Work Sharing Approach

In work shared load balancing method, whenever a new parallel execution
entity is created, the master processor searches for free processors available,
and tries to schedule it on one of those free processors. The parallel entity
here can be a thread or a process. This approach is centralized approach
where one processor is dedicated to monitor what is the load on the indi-
vidual processor and distributes the executable entity on to the available
processors evenly. But it suffers from the problems of centralized approaches

such as contention on single queue.

2.3.5 Self Scheduling Approach

It is also a dynamic load balanced scheduling approach with minor differ-
ence to work sharing approach. In self scheduling [30] approach, whenever a
worker thread or a process becomes idle, it fetches a task from a centralized
queue and executes it. This approach is well suited for implementation of
loop-level-parallelism where, the chunk of statements within an iteration is
taken as parallel unit. Such tasks are added to a centralized queue from

where the worker thread or process can take a task out and execute it. The
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difference between work sharing and self scheduling is that that in work shar-
ing approach a dedicated process/thread has to monitor the balance where
as in self scheduling, individual workers will access the central queue of tasks.

There are two variants of self secheduling [31]:

e Chunk Self Scheduling (CSS) where the chunk size is fixed for all

iterations.

e Guided Self Scheduling (GSS) where the chunk size decreases as

execution proceeds.

The main disadvantage of self-scheduling approach is the cost of synchroniza-
tion in implementation of centralized task-queue. All workers share access to
the queue and hence it needs to be synchronized. If more than one workers
have become idle at the same instance, they contend to access the central
queue to get a task and only one worker wins the race. The other con-
tending worker threads have to waste their execution cycles for winning the

synchronization.

2.3.6 Hybrid Programming on clusters with multicore

nodes

Georg Hager (2007)[32] proposed a hybrid approach of MPT and OpenMP for
programming in the cluster environment where each node can be either SMP
or multicore architecture. The disadvantages of inter-node communication
of MPI can be minimized by applying this hybrid programming model. The
objective of their work is to improve performance of high-performance sci-
entific applications to take full advantage of cluster environment with multi-

processing nodes. Our work focuses on NUMA multicore architectures.

2.3.7 Work Stealing Run-times

RD Blumofe [33] proposed a distributed load balancing technique which is
purely distributed. It is distributed in nature because an individual processor

can monitor its own load rather than one dedicated processor monitoring
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work load of all processors. If it is under-loaded with work, it is eligible
to steal work from other processors. The processor from which the work is
stolen is called a wvictim and the processor which steals the work is called
thief. There are two approaches followed in stealing work from victim work

queues based on how many number of units of work is stolen:

e Steal-one Approach: A thief steals only one unit of work from the

vicetim.

e Steal-half Approach: A thief steals half of the units of work from

the victim’s queue[34].

In the first versions of work stealing implementation, randomized stealing
was followed where a thief selects the victim randomly with the seed value
equal to the number of processors. This approach has become so popular in
the multicore processor era and much research is done to enhance or adapt
this technique to various architectures. Our entire work is focused on adapt-

ing work stealing for NUMA multi-core processors.

2.3.7.1 Dynamic resource allocation based on feedback

K.Agrawal (2008) proposed [35] an adaptive work-stealing (A-STEAL)as an
enhancement to plain work-stealing. This strategy is analyzed for space-
shared processor scheduling using ”trim analysis”. The algorithm gives reg-
ular feedback to the scheduler on how much parallelism is obtained by a job.
The scheduler can alter the amount of processing to that job based on the
feedback. In this theoretical model, the parallel unit of execution is assumed
as a job which may take one or more processors during run-time. A task in

our work is executed only on one processor or core.

2.3.7.2 Work first and Help first approaches

Yi Guo (2009) [36]analyzed new enhancements in work stealing technique for
different kinds of workloads.
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e Work first policy: the worker thread executes the newly spawned task
first and leaves the parent task to be stolen. This policy is suitable for

recursive task spawning application.

e Help first policy: the worker thread executes the parent task first and
leaves newly created child task eligible to be stolen. This policy is well
suited for iterative based work loads where number of steals is high.
They also proposed [37](2010) a new scheduling enhancement when to
choose which policy based on parameters such as stack pressure and
double ended queue size. When stack pressure is greater than certain
threshold help first policy is followed and if local double ended queue
size reaches above certain threshold level, work fist policy is set by the
scheduler automatically. Our work is not to propose a new such policy.

Default work first policy is assumed in our run-time.

2.3.7.3 Cache Awareness in Work Stealing

Chen et al.(2012) in their work [38], adds cache awareness for multi-core pro-
cessors. When a workload is run for the first time, hardware performance
monitoring unit gets the task cache usage characteristics. Using these char-
acteristics, a directed acyclic graph (DAG) is constructed. This DAG is
partitioned in such a way that all tasks using the same data are grouped
together. When the workload is run for the second time, tasks are mapped
to the cores using this partitioned graph. The hardware assumption here is
multi-socket-multi-core processors(MSMC) with last level shared cache. The
limitation of this approach is, it is profile based task partitioning where an
application is run for the first time for gathering hardware counter data and

the second time, the cache awareness is applied.

2.3.7.4 Work stealing on Partitioned Global Address Space (PGAS)

James Dinan (2009) proposed randomized work stealing based load balancing

for partitioned global address space (PGAS) model[39]. It is meant for irreg-
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ular parallel tasks in distributed cluster environment. Their run-time system
is built on top of Aggregate Remote Memory Copy Interface (ARMCI) which
is meant for PGAS parallel model. In this model, each worker is a process
rather than a thread. The goal of this work is to minimize migration of
threads across nodes in a cluster. Our work focuses on work stealing en-
hancement for chip NUMA multi-core environment with shared memory and

the worker being a thread rather than a process.

2.3.7.5 Task-based Model in PGAS

Hartmut Kaiser (2014) proposed task-based model HPX [40] as an extension
to C++ 11 to support adaptive resource management at run-time. It comes
with the features such as scalability, active message passing across nodes

called parcels, fixed data and moving worker to the data.

2.4 NUMA Multicore processors

From 2009, the multi-core processor manufacturers introduced new technol-
ogy to mitigate the effect of the memory-wall problem. In this trend of
high-performance server processors, more than one memory controllers are
kept on-chip along with processor and separate DRAM chips are connected
to these integrated memory controllers(IMC). The processor-cores on the die
along with integrated memory controller behaves like a node in non-uniform-
memory-architecture (NUMA). These memory controllers is an addition to
the existing shared resource list when compared to old generation multicore
processors. In essence, modern server processors consist of more than one
such nodes on chip. The components of these chips are interconnected by
high speed links such as Quick Path Inter Connect (QPI) from Intel or Hy-
per Transport (HT) links from AMD. Starting from Nehalem architecture
of Intel, all modern architectures continue supporting this on-chip-NUMA
feature. These multicore processors introduce new challenges to parallel pro-

gramming environment. Though the architecture follows NUMA, it offers the
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programmer with same shared memory programming paradigm as in SMP
and first generation multicore architectures. The memory locality policies
applicable to distributed memory NUMA may not be applicable to these ar-
chitectures. In this section, a brief survey of previous contributions suitable

for these modern architectures is presented.

[ DRAM ] EDRAM J
—_—

Shared Last-level Cache Shared Last-level Cache
L1 cache [ [L1 cache L1 cache L1 cache
Core-0 Core-1 Core-2 Core-3

Figure 2.3: NUMA multi-core architecture with 2 nodes and 2 cores per node

[1]

2.4.1 Operating System issues for NUMA multi-core

systems

Memory management is an important issue for on chip NUMA architectures.
Because the architecture can not be considered as distributed NUMA as
in the case of clusters. A process address space can span across different
memory modules on-chip and behave like shared memory architectures. The
same policies that are applicable for distributed NUMA can’t be applied here.
Majo (2011 ) studied the effects of memory subsystems for on-chip-interconnect
based architectures in [41]. In his other work [1], he studied the effects of
operating system’s memory management related to NUMA multi-core envi-

ronment and emphasizes its effect on compilers and run-time systems. Their
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work is focused on process vs data mapping on to the nodes.

e Contention for the resources shared on the single chip which was dis-

cussed in section 2.2.

e Improving data locality for processes.

Pldata || P2 data] Pldata || P2 data]
- - .a
Node 0 Node 1 Node 0 Node 1
a) P1and P2 processes and their data bound to same node b) Processes P1and P2 bound to different nodes. P1 with local data
P1data P2 data Pldata || P2 data]
- -
Node 0 Node 1 Node 0 Node 1
t) Both processes P1and P2 bound on different nodes with local data d) Both processes P1 and P2 bound to same node but their data is remote

Figure 2.4: Possibilities of Data mapping for processes P1 and P2 across two
nodes [1]

The effect of process and data mapping across all combinations of nodes
presented in Fig:2.4. The combination presented in case (d), represents the
worst data locality scenario. When P1 and P2 processes are bound to the
same node, they suffer from memory controller, LLC and common bus con-
tention. Case (b), represents the scenario where one of the processes gets
the advantage of data locality and the other suffers from remote data access.
Case (c) is the best case scenario where both processes find their local data
on respective nodes of processes and there is no contention for memory access
and other resources such as LLC and memory bus. The present operating

system schedulers do not address the data locality issue. If the scheduler tries
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to improve data locality, it can give negative effect on overall performance.
They proposed an extension to fair-share-scheduler of Linux called N-MASS
which sorts the process list in descending order of cache pressure and NUMA
penalty. This work is based on process level scheduling at kernel level. Our
work has taken inputs such as NUMA effects from this contribution but we

focus on user-level run-times at task level parallelism.

2.4.2 Data Locality improvement at Thread level

Broquedis (2009)[42] identified the data object locality discrepancy in thread
based parallelism because of first-touch policy of the operating systems.
Their study claims that the threads which allocate the data object is not
always the consumer of the object. If other threads of the application ac-
cess the objects initialized by threads pinned to different node. The consumer
threads will suffer from remote access penalty. To resolve this issue, they pro-
posed multi-level scheduling policy. According to this policy, work-staling is
limited to cores on the same node. If threads access the data object which got
allocated on a different node, that thread along with other data is migrated
to that node. This has to be done by the hints provided by the programmer
while creation of threads. To apply this strategy, the programmer needs to
have deep understanding of topology of hardware so that he can give hints
to the run-time about threads and the data binding.

Majo(2012) [43], proposed a program-level transformation method to im-
prove data locality. They provided an API as an extension to gcc compiler
which has the ability to transforms the parallel looping constructs to improve

data locality.

2.4.3 Data Locality improvement in Task-Level Steal-
ing run-times

Stephen Oliver (2013) [44] analyzed the causes of performance delays in task

based run-time systems. The total execution time of thread involves three
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types of delays:
e work-time during which the threads execute the tasks.

e idle-time during which threads remain idle due to imbalance in work

assigned to them.

e overhead-time is the overhead involved in implementation of task con-

struction and synchronization.

o work-time-inflation is the additional time taken by a multi-threaded
program than a sequential program. Operating system’s locality policy

is one of the causes of this overhead.

Their work also proposed an extension API to OpenMP library to im-
prove data locality in NUMA multicore. They introduced identifiable locality
domains in ROSE OpenMP compiler [45]. Locality domain concept does al-
most similar functionality which we proposed in chapter 4. To minimize the
idle-time component, we proposed a threshold based task stealing in 3 and

to minimize the overhead time, we propose lock and mutex locality issue in 6.

Muddukrishna (2013) proposed locality improvement in work-stealing
run-times for NUMA architectures in OpenMP. Their proposed strategy [46]
tries to improve locality by the hints provided by malloc calls for shared data.
These hints provide the task data footprints in terms of kernel level pages.
Based on this information their proposed scheduling strategy optimizes data
locality. They conducted experiments with default first-touch policy of Linux
and conducted the comparison with the results of explicit data placement us-
ing numactl tool.

Inspired by our work on topology aware task stealing in [47], Chen (2014)
proposed locality aware work stealing in his work [48] which limits the work
stealing within a socket of a multi-socket-multicore architectures. LifHande
(2014) proposed constrained work-stealing for improving data locality in
coarse-grained fork-join tasks. In their approach[49], the programmer gives

his priorities of locality in the form of a steal-tree before spawning a new task.

32



This approach allows the programmer to specify hints to the run-time using
special syntax of Cilk language. For locality improvement of tasks, three

types of improvements to existing work stealing scheduling are proposed.

e Strict Order Work Stealing: where the run-time follows the pro-

grammer specified order.

e Strict Unordered Work Stealing: a greedy schedule is followed in
addition to specified order of tasks.

e Relaxed Work Stealing: the scheduler need not follow the order speci-
fied by the programmer.

a technique called dynamic coarsening optimization is applied on steal-tree
input. Dynamic coarsening is also capable of adjusting the task size.

Inspired by compiler hints approach we also proposed data locality improve-
ment strategy which only depends on existing OpenMP directives related to

shared objects.

2.4.4 Explicite Task mapping

The execution of parallel entities such as tasks and futures is taken care
by the user level scheduler as part of the runtime system. Some previous
contributions suggest the programmer to have control over pinning of these
entities to respective processor cores. The key reason behind this proposal is
the programmer’s awareness about the topology of the underlying architec-
ture. The programmer can effectively utilize the hardware resources such as
shared cache, interconnections and NUMA features if he is given the freedom
of explicit scheduling. The tools of explicit affinity control are provided at

various levels.

e Process Affinity Conrol Commands affinity of processes can be

explicitly specified by command line utilities like taskset.

e Thread Affinity Control API the affinity of a thread can be set
and modified by sched _setaffinity() during the runtime by using
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G NU standard preprocessor macros such as CPU_SFET in Linux envi-

ronment.

e Node Mapping API tools such as numactl and likwid-pin sup-
port the feature of binding processes, threads to specific cores or nodes
within a NUMA system.

Wang(2015) proposed explicit task mapping for work-stealing based runtime
to improve the performance of matrix multiplication benchmark. Their work
[31], attempted to improve Winograd algorithm for matrix multiplication
on NUMA multi-core architectures. In their proposed method, matrix is
partitioned and allocated on to different nodes of the architecture. They
proposed a hierarchical task stealing approach to Winograd algorithm for
load balanced scheduling. Lower level stealing is applied among the cores
within a socket(node) to improve the locality of matrix units. Their pro-
posal aims at minimizing task stealing by using a threshold limited queue
length. This proposal was limited to one matrix multiplication technique.
We tried to propose a generic strategy to improve data locality for various

workloads.

Lee et al.(2016) proposed a programmer controlled affinity for the task
construct in OpenMP [50]. They provided an extension to GNU OpenMP
library, libgomp where a programmer can explicitly specify the data and task
mapping. As a first step, the programmer has to distribute the data across
nodes using API such as libnuma. In the next step, a new compiler clause
nodeyind can be used by the programmer to map the tasks to the nodes
where their data is located. We also propose a similar strategy which can
improve the locality of shared objects in OpenMP but we do not introduce
a new clause such as nodeyind but by utilizing the existing OpenMP clause

shared.
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Chapter 3

Threshold Constrained Work

Stealing Queues

3.1 Introduction

Programming models provide APIs or compiler directives to create paral-

lelism in the application. These parallel entities can be one of the following:
e Data Parallel
e Task Parallel

User level runtime systems such Cilk, TBB, Charm-++ targeting SMP or
multi core architectures implement work stealing as load balancing. All these
run-times support task as a primitive construct for supporting asynchronous
parallel entity. Almost all these run-times follow similar architecture pre-

sented in the figure 3.1.

User-level runtimes support APIs to the programmer for creation and
managing tasks. Common practice by all runtimes is to follow the most
popular fork-join model. We also consider this model throughout the the-
sis. As the programmer creates the tasks on the fly, these tasks have to be
mapped to the native threads called worker threads. During the initializa-

tion of these runtime systems, native threads are created to form a thread
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Figure 3.1: Generic Architecture of Userlevel Runtimes

pool. These threads remain alive till the end of application’s lifetime or the
run-time is explicitly shutdown by the programmer. The common practice
is that the total number of worker threads is equivalent to the number of
processor cores at hardware level. The runtime implementation also may fol-
low identity affinity where worker threads are pinned to individual cores or
hardware threads ( in case of hyper threading enabled at hardware level). In
OpenMP, the number of cores at hardware level can be explicitly controlled
using environment variable OMP_NUM _THREADS or using an API call
omp_set_num_threads(). In Cilk, the number of processors can be controlled
using the command line option ——nproc. The runtime also maintains a list of
task queues one task queue per worker thread. These task queues are prefer-
ably double ended queues [51]. As the programmer instantiates tasks using
task creation API, the task objects get added at the top end of the queue.
Tasks are popped out for execution by the worker thread(also called virtual
processor). Hence a worker thread view of the double ended queue is a stack
and worker thread mimics sequential execution since it works locally[52]. The

detailed version of figure 3.1 is presented in the figure 3.2.

36



Application Program
Application Level { | |
[ I Run-Time API |

i

/Kwkwqﬁ\\‘

User Level Run-Time —

T2
T2 Tu T, T.
L s SWorker Threadg S
Kernel Level { Operating System
[Core 0 ] [Core 1 ] [Care 2 ] [Care 3 ]
Hardware Level —
I Shared Last Level Cache I

Figure 3.2: Userlevel Task based runtime detailed architecture

Execution of tasks may lead to imbalance of load among the worker
threads due to:

e The variable length of execution time of tasks.
e Operating system scheduling decisions on worker thread execution.

When one of the queues becomes empty because of imbalance in load dis-
tribution, the worker thread associated with the queue becomes a thief and
attempts to steal one or more tasks from the queues associated with other
queues. The worker from which the task is stolen is called a victim. In other
words, “when worker thread has enough number of jobs in its own dequeue,
it operates locally and when it has no jobs for execution, it operates glob-
ally” [?]. The plain work stealing algorithm is also called randomized work

stealing [53]. In this approach, the selection of a victim worker is as follows.

e The thief worker-thread generates a random number within the range
[0..(n — 1)] where n represents the total number of worker threads cre-

ated during the initialization of the runtime. The random number
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generated victimID is the index of victim within the list of available

task queues.

e There is a possibility that randomly generated victimI D may represent
an empty queue which also may be trying to become another thief. In
this scenario, thief thread waits for an amount of time using back off
technique and attempts again to randomly select a victim queue. This

scenario is depicted in figure 3.3.

Thief Full Victim
(empty) (empty)

Figure 3.3: A thief worker thread randomly selecting an empty victim

In this chapter, an attempt is made to analyze the existing work stealing
algorithms and an improvement policy is proposed as an enhancement to

existing work-stealing technique.
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3.2 Problem identified in Randomized Work-

stealing

When we tried to analyze the randomized work stealing experimentally, the

following drawbacks are identified resulting an ineffective load balancing:

e A thief worker thread tries to steal tasks from other workers only af-
ter it becomes completely empty. In repeated attempts of finding a
right victim, the thief worker has to starve thereby affecting the overall

performance of the parallel application.

e Random selection of a victim thread may fail for number of times either
by selecting an empty victim or a queue which is about to become

empty.

e A worker is unaware of its status to announce its eligibility to become

a victim. It has to wait for a thief to detect it and steal tasks from it.

It can be realized that we can mitigate the delays involved in repeated
victim selection using an appropriate methodology. The proposed strategy
is based on the worker queue metadata which ensures that a thief worker
can find the right victim with minimal attempts. The metadata information
of worker queue is taken in the form of flags that indicate the stealability
status of respective worker queue. (s,S) [54] inventory model is adapted
to our domain for implementation of our proposed strategy. Every worker
queue sets minimum and maximum threshold levels based on (s, S) inventory
model[54] where s and S represent the minimum and maximum threshold

levels on size of the queue. The proposed improvements are:

e A worker thread need not wait until it becomes completely empty to
become a thief. It can start attempting to steal tasks after reaching

minimum threshold level s.

e All the worker thread queues which have reached certain maximum

threshold size have to announce themselves that they are eligible to
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become victims. The delays involved in repeated attempts of empty vic-
tims can be minimized by marking the queue whenever its size reaches
S state. A thief will attempt to select a victim only from the list of

queues which are really overloaded.

3.3 Implementation of Work Stealing Run-
time

To analyze the existing work stealing strategy, we implemented a small user
level work stealing run time.

Worker Thread Implementation: using the native pthread library on
Linux. We followed identity-affinity principle while implementation i.e. if
there are n cores at hardware, n worker threads are created. Identity affinity
ensures that threads are bound to respective processors at hardware level
(Thread 0 to CPU 0, Thread 1 to CPU1 .....). Linux’s non-portable pthread
affinity control library functions are used to achieve this.

Worker Queue Implementation:There are two approaches in the litera-

ture for implementation of worker queues:

e Concurrent Shared Double ended Queue: This approach allows
multiple worker threads to access on the same dequeue at the same
time. Implementation of concurrent dequeues require strong memory

consistency.

e Non-concurrent Private Dequeue: This approach does not allow
multiple worker thread access at the same instance. The possibility
of accessing by multiple workers is less since a dequeue has top and
bottom ends open. The bottom end can be dedicated for access by
local worker thread and the top end can be dedicated for global access

by other worker threads only in case of stealing activity.

Concurrent shared dequeues suffer from memory fencing issues and can’t be
suitable for non-divide and conquer based tasks implementation. Non con-

current private dequeue needs synchronized protection only in the instance
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where there is only one task remains in the dequeue and owner worker thread
and thief worker are attempting to pop a task from the queue. Because of
our threshold constrained stealing strategy, this case never arises. Hence,
we followed non-concurrent private double ended queue(dequeue) approach.
Such a dequeue is associated with each worker thread. The runtime system
architecture we implemented resembles the architecture presented in the Fig.
3.2.

Task Implementation: Our library provides API for primitive task man-
agement functionality like task_create(), task_join(). We implemented task
construct as a simple C structure with function pointer to task body, argu-
ments and other task attributes. Whenever a call to task creation API is
made, a new task object is constructed and is added to one of the queues
associated with cores. As a first step towards load balancing, round-robin
approach is followed to distribute these task objects among all the worker
queues. All these tasks are multiplexed to the worker threads. i.e. the worker
threads which are created during the initialization of runtime wait for the
tasks to arrive using the condition waits. As the queue is added with one
or more task objects, the associated worker thread comes out of barrier and
start popping out the tasks for execution. The worker thread comes out of
condition wait and starts popping out the task object and invokes the task

body using the function pointer. The task is allowed to run till its completion.

3.3.1 Handling Failures in Randomized Stealing

When a worker queue becomes empty, it randomly selects one of the other
queues in range [0..n— 1] where n represents the total number of cores(worker
threads). If randomly selected victim queue is empty, it is called false steal
attempt. Whenever such false steal attempt occurs, the worker can apply
one of the following techniques till it succeeds in stealing a task from other

queue.

e Repeat generating random index till success in stealing.
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e Make the thief worker wait for certain amount of time and start again

to select a random victim.

In our experimental work-stealing runtime, we followed the second approach
i.e. whenever a worker thread fails in selecting a victim for the first time, it
waits for an amount of back off time. This back off time is doubled on every

repeated successive failures.

3.3.2 MATMUL Becnhmark

To analyze the false steal attempts in randomized work-stealing, we imple-
mented matrix multiplication benchmark. Two bigger sized square matrices
Anwn and By, are multiplied to produce the result matrix C,,,, using reg-

ular matrix multiplication approach.

Cii = ApxBy  VYi=0.n—1)  V¥j=0.(n—1) (3.1)

Computation of C;; is considered as single task body which involves one loop
iteration with O(n) parallel time complexity. Since the sizes of multiplicand
and multiplier matrices are n x n, the result matrix C,,y,, must also contain
n x n elements. Since each task has to compute one element of the result
matrix, there are n x n tasks in the benchmark. Since the goal of running
the benchmark is to analyze task stealing, we took the matrices of size 8192
and 16384 which can fill the worker queues very soon, cause load imbalance
and result in substantial number of steal attempts.

MATMUL benchmark was executed on dual socket Xeon E5-2620 series pro-
cessor running Linux kernel 3.16. In each thread pool we introduced two

counters called falseStealCount and successStealCount.
e falseStealCount is incremented if a random steal causes a failure.

e successStealCount is incremented on the event of a successful steal

operation that yields a valid task to the thief worker.
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False steal operations and successful steal operations are counted for different
number of worker threads. The results presented in the table 3.1 are the av-

erage steal counts after running each experiment for 10 times. We introduce

Table 3.1: False Vs Success Steal attempts Analysis w.r.t. number of worker
threads

Number of Randomized Work Stealing
Worker thréads [ False Steal Count | Success Steal Count
2 1 34
4 38 72
6 46 82
8 62 84
10 87 68
12 221 191
14 373 243
16 561 595
18 499 888
20 322 846
22 136 546
24 172 101

a metric, steal-miss ratio for measuring the efficiency of victim selection in

work stealing strategy given by:

Number of steal attempts that choose an empty queue

Stealmissratio = —
Total number of attempts to select a victim

MATMUL benchmark was run 25 times and an average steal miss ratio
was measured using the counters introduced. The experiment was run with
different number of worker threads configuration for its effectiveness. The
table 3.2 gives the average stealing ratios obtained with respect to various
number of worker threads.

The following facts are stated after observing the steal miss ratios:

e There is no considerable relationship between the number of worker

threads and steal miss values.

e On an average, 40 percent steal attempts are leading to failures in
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Table 3.2: Steal miss ratios of MATMUL benchmark

Number Of Average
Worker Threads | Steal Miss ratio
2 0.03
4 0.35
6 0.36
8 0.42
10 0.56
12 0.54
14 0.61
16 0.48
18 0.36
20 0.28
22 0.20
24 0.63

finding a victim worker queue with enough load. These failure attempts

cause repeated random attempts for selection of victim workers.

3.3.3 Mathematical representation of delays

The delays involved in various stages of work stealing can be modeled
mathematically. Let Tx denote the time a worker thread spends between
minimum threshold state to reach an empty state. Let Tg, denote the delay
involved in i'h contiguous attempt for selecting a victim randomly and back
off time operation. Then the time involved in each steal attempt Ts in case
of a worker queue with non-trivial queue length is given by the following
equation )

Ts=Tp+ Y Tp (3.2)
i=1

In the equation 3.2, the term Zle Tr, indicates the delays involved in
k repeated attempts. The proposed method attempts to minimize 7% and

Zle TRi .
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3.4 Setting minimum and maximum thresh-

old levels for worker queues

The key idea of our proposal is that a worker monitors its own state and

announces its eligibility to become a victim and a thief.

e A worker thread will be eligible to become a victim if the number of
task objects in its associated worker queue reaches a certain threshold

limit by setting stealability flag.

e A worker thread will start attempting to steal tasks if the number of

task objects in its associated worker queue reaches to minimum thresh-
old.

The values of minimum and maximum threshold levels for worker queues
are set by using the inventory model proposed in [54]. Let the capacity of
the worker queue is C' that follows a poisons distribution with task object
arrival rate A and task execution rate by the worker thread p. If Tp,s, and
Tpop denote the time to perform push and pop operations on double ended
queue respectively, maximum and minimum threshold level values of each

worker queue can be computed by the following equations:

S = C — Npush (3.3)

s = UTpop (3.4)

Computation of S and s values does not involve any computational in-
tensive operations. Each worker thread maintains a counter of how many
tasks are currently present on its worker queue and average task execution
can be computed using time library calls. In our implementation, the val-
ues of S and s are computed only once when all task objects in a queue
have finished execution and these threshold values can be used for further
usage. Every worker thread can monitor these S and s levels and update the

stealabilitybitmask vector. If the number of tasks in an ith worker queue
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reaches S level, the worker thread sets i¢th bit of the bit mask to 1 announc-
ing that it is eligible to become a victim. The thief worker can steal tasks
only from victims whose stealability status is set to 1 thereby minimizing the

random attempts. This scenario is depicted in the figure 3.4

Qo Qs
Thief Victim

o] 1 2 3

0 1 1 (0]

Stealability bit-mask

Figure 3.4: Threshold Constrained Victim Selection based on S and s method

3.5 Algorithm

In the algorithm Worker Run 1(given in pseudo code form), the function
call searchForVictimQueue() searches for the run queues whose status is al-
ready set to VICTIM. The values of THRESHOLDMAXSIZE and THRESH-
OLDMINSIZE are computed using the S and s variables from equations 3.3
and 3.4 from section 3.3.3.
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Algorithm 1: Worker Run 1: Input ptrWorker

if (localTaskQueue.size ==THRESHOLDMAXSIZFE) then
L stealabilityStatus = VICTIM

N =

3 if (lisEmpty(localTaskQueue)) then

4 run:

5 popAtFront(localTaskQueue, task);

6 execute task;

7 if (size(localTaskQueue) == THRESHOLDMINSIZE) then
8 | stealabilityStatus = THIEF;

9 else
10 L stealabilityStatus = THIEF;

The Worker Run 1 algorithm is part of run method of every worker
thread. The role of the worker thread is to run the tasks created by the
programmer. The object localTaskQueue refers to the double ended queue
associated with each worker. As the tasks are added to the queue, the size
of the queue increases. When the size of the double ended queue reaches
THRESHOLDMAXSIZE, the worker announces itself as eligible to allow
stealing from its queue. This status is set by setting the status bit to VIC-
TIM.  Similarly when the value of localTaskQueue.size reaches a minimum
threshold level THRESHOLDMINSIZE, a worker thread announces its readi-
ness to become a thief by setting the status to THIEF. By incorporating these
optimizations into randomized work stealing, it is possible to minimize Tg
and Zle Tr, components of the equation 3.2. The values of THRESHOLD-
MAXSIZE and THRESHOLDMINSIZE are computed using the equations
3.3 and 3.4. Table 3.3 shows the effect of steal miss ratio between random-
ized work stealing and threshold constrained work stealings. By introducing
threshold limit on queue size for selection of a victim, the steal miss ratio
is reduced to 13% on an average for less number of threads. It can also be

observed that for higher number of threads, the false steals are almost zero.
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Table 3.3: Steal miss ratios of MATMUL benchmark

Average Steal Miss Ratios

Number of Randomized | Threshold Constrained
Worker Threads | Work Stealing Work Stealing
2 0.03 0.48
4 0.35 0.20
6 0.36 0.28
8 0.42 0.12
10 0.56 0.12
12 0.54 0.12
14 0.61 0.12
16 0.48 0.08
18 0.36 0.08
20 0.28 0.00
22 0.20 0.00
24 0.63 0.00

3.6 Benchmarks

To test the performance of proposed threshold constrained work-stealing
strategy, we had to choose task based benchmark programs that can explore
the features of work stealing run-time. We considered Barcelona OpenMP
Task Suit(BOTS) [15] among the available benchmarks. BOTS consists set
of programs that explore task parallelism where one of the subsets is the
iterative task based programs and another subset is recursive task based
programs.

Strassen Kernel: The Strassen benchmark calculates the multiplication of
dense matrices using the Strassen’s algorithm [15]. The algorithm splits the
number of matrix multiplication operations by dividing each matrix into 4
equal sized sub-matrix chunks. The output matrix C is split into 4 sub-
matrices in the first invocation of matrix multiplication function. Each sub-
matrix computation is done in parallel using independent tasks. Each task
further splits the sub-matrix into 4 smaller matrix chunks and generates

tasks to handle them. It is guaranteed in this parallel task generation that
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the child tasks always compute the output elements which are allocated in
the parent task. We executed strassen benchmark with matrix input sizes
2048 x 2048, 4096 x 4096 and 8192 x 8192.

Sort: benchmark is a recursive task implementation of merge-sort algorithm.
Instead of dividing the random list into two equal sizes, BOTS sort divides
the list into 4 equal parts[15]. Recursive tasking is applied on each sub-array
in parallel. When the sub-array size reaches the base condition minimum size
in successive recursion, one of the serial sorting methods is applied. When
sub-array size is big enough, serial quick sort is applied on it. If sub-array
chunk is too small insertion sort is applied to avoid the overhead of recur-
sion in quick-sort. sub-list for sorting. In the merge phase, parallel merge
operation is done on first two sub-arrays and second two sub-arrays. In our
experimental environment, we considered the default array size and cut off
values specified in BOTS. The input array size, N is taken 33554432:Sequen-
tial quick sort cut off value, ) is taken as 2048: Sequential insertion sort cut

off size, I is taken as 20:

SparseLU: benchmark calculates the LU decomposition of a sparse ma-
trix [15]. The input is a 2D array of which each element is the memory
pointer to the submatrix. SparseLLU allocates a submatrix to the locations
where the problem matrix has non-zero values. The LU decomposition is
carried out to the non-NULL submatrices. BOTS contains two versions of
this benchmark

e In Sparse-LU-for version, tasks are implemented using parallel for

construct of OpenMP
e In Sparse-LU-single version, tasks are implemented using single

construct of OpenMP

3.6.1 Experimental Evaluation and Results

All the benchmark programs are executed on dual socket Xeon E5-2620 ma-

chine, running Linux kernel version 3.16. Each benchmark is run for 10 times
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and their execution times are recorded. The parallel version programs are
run with work stealing supported OpenMP run-time where one implementa-
tion supports randomized work stealing and the other supporting threshold
constrained work-stealing. The execution times are presented in table 3.4.

Based on the execution times presented in table 3.4, we computed the speed

Table 3.4: Execution Time Comparison of Randomized Vs Threshold Con-
strained Work-stealing strategies

Benchmark Execution time in seconds
Randomized | Threshold Constrained | Serial
Name-Size Work Stealing Work Stealing
Strassen-2048 0.306036 0.287889 1.81542
Strassen-4096 1.848 1.781 13.139
Strassen-8192 12.045 11.742 92.7439
Sort-33554432 0.7114 0.669 6.696
SparseL.U-single 1.0023 1.0355 11.1524
SparseLLU-for 0.9901 0.9875 10.842

up values of both versions and are presented in 3.5.

Table 3.5: Performance Comparison of Randomized Vs Threshold Con-
strained Work-stealing strategies

— 1) ti T seria
Benchmark Speedup = g o Time
Randomized WS | Threshold Constrained
Name-Size Work Stealing Work Stealing

Strassen-2048
Strassen-4096
Strassen-8192
Sort-33554432
SparseLLU-single
SparseLLU-for

5.9320472101
7.1098484848
7.6997841428
9.4124262019
11.1268083408
10.9504090496

6.3059720934
7.3773161145
7.8984755578
10.0089686099
10.7700627716
10.9792405063

It can be observed from the figure 3.5 that the proposed threshold con-
strained work-stealing strategy is showing little performance gain over ran-
domized work- stealing. The performance of Strassen-2048 is improved by
6.3%, Strassen-4096 is improved by 3.76% and Strassen-8192 is improved
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Figure 3.5: Performance comparison of Randomized Vs Threshold Con-
strained Work stealing on BOTS benchmark

by 2.5%. By close observation, it can be realized that for bigger problem
sizes, the performance is not as expected. The performance improvement
contributed by threshold constrained work stealing is dominated by memory
overheads. The performance improvement in Sort benchmark is 6%. Ran-
domized work-stealing strategy is outperforming our proposed strategy by 3%
in case of Sparse-LU-single version benchmark . Though we could miti-
gate the delays involved in randomized task stealing, the memory overhead of
larger sized benchmarks is dominating the little performance improvement.

When statistical paired t-test was done on the speed up comparison of ran-
domized and threshold constrained strategies, we obtained the following re-

sults:

Mean : 0.26
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The value of t is 1.294729. The value of p is 0.125988. The result is not
significant at p < 0.05.

=1.29

Table 3.6: Steal Miss ratios of BOTS benchmark programs

Benchmark Success Steal | Steal Attempt | Steal Miss
Name-Size Count Count Ratio
Strassen-2048 534 4797195 0.999888685
Strassen-4096 786 19155228 0.9999589668
Strassen-8192 1063 76063619 0.9999860249
Sort-33554432 3601 26600561 0.9998646269
Sparse-LU-single 1292 106656 0.9878862886
Sparse-LU-for 1324 132329 0.9899946346

3.7 Conclusion

In this chapter, we proposed a threshold constrained work-stealing strategy
which mitigates the delays involved in random task stealing from other worker
thread queues. The proposed strategy is tested and little gain in performance
over randomized stealing is observed. Our assumption in proposing this
strategy is the uniform memory organization i.e. memory is at equal distance
for all the cores. But the proposed strategy is failing to show performance
gain for larger problem classes. The reason here is, we did not consider the
memory latencies involved in these benchmarks. The next generation server
processors also support non uniform memory access (NUMA) on chip. In
bigger sized classes of benchmark programs, the data accessed may span into
multiple virtual pages, and their respective physical pages may be bound

to different nodes on NUMA architecture. The applications will suffer from
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remote memory latencies in such cases. The next chapter details how to

adapt work stealing for such architectures.
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Chapter 4

Minimizing the remote task
stealing attempts in NUMA

multi-core processors

4.1 Introduction

Modern high performance processors consist of more than one integrated
memory controllers (IMC) on CPU chip to fill the gap between fast growing
speeds of CPU and stable data delivery rates of memory units. Introducing
more than one IMC serves the data needs of threads pinned to cores be-
longing to different chips simultaneously. These multiple DRAM controllers
increase the memory bandwidth and reduce contention for single memory
controller hub. The processors are grouped and deployed in a socket. Server
processors such as Intel Xeon or AMD Opteron the processors are connected
with high speed links such as Quick Path Interconnect (QPI) [55] links from
Intel or Hyper transport links from AMD. These links allow more than one
socket to be deployed on high performance servers. The presence of multi-
ple memory controllers makes these processors to behave like Non Uniform
Memory Architecture (NUMA). A two socket Xeon E5-2620 series processor

architecture is presented in the figure ?77.
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Figure 4.1: Dual Socket Xeon E5-2620 processor architecture
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It can be observed from the figure 4.1 that it is a two-node NUMA archi-
tecture since, separate memory controllers(MC) are attached to each socket.
A thread running on a core can access data from a memory bank connected
to its local controller at a faster rate than that of a remote memory module
belonging to different chip. The ratio of the remote memory access latency
to the local memory access latency is called NUMA ratio (Ryyma) and is
given by the following equation
Lremoteaceess (4.1)

RNUMA =
T'localaccess

This new improvement in hardware of high performance processors intro-
duces new challenge for user level runtime systems. The ratio of memory
access latencies can be in the order of 2. It can be measured by using the
command:

$numactl --hardware

We could measure the accurate memory access latencies of our target ar-
chitecture (Dual socket Xeon E5-2620) using the Memory Latency Checker
(MLC)[56]. Memory latencies on this two node machine are given in the
table 4.1. From the table 4.1, NUMA Ratio for our experimental setup is
1.625.

Table 4.1: Local vs Remote memory access latencies on Dual socket Xeon
E5-2620 series processor

NUMA Node 0 1
0 77.3ns | 124.7 ns
1 122.8 ns | 75.0 ns

4.1.1 NUMA Effects on Work Stealing Run-time Sys-

tems

The goal of work stealing is to balance the load among the available processor

cores. The main assumption in the implementation of work stealing run-time
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in the chapter 4 is the memory is uniformly accessible by all processor cores.
When chips with multiple memory controllers are available on single die, the
concept of locality of memory with respect to processor cores is an important

aspect in performance.

e As discussed in chapter 4, if identity affinity has to be guaranteed,
individual worker thread is pinned to processor core belonging to a

node.

e Associated with each worker thread, there is a worker queue. If under-
lying hardware is NUMA, the memory locality of these worker queues
is important since it being the frequently accessed by the associated
worker thread. In other words, the worker queue must be bound to the
memory node(socket) where the worker thread is pinned to. Worker
threads access these task queues in almost fully distributed way except
in the instance of stealing occurrence i.e. regular job of the worker
thread is to pop tasks from its own queue and execute the job on
its processor. If locality of these queues is not considered, and if the
worker thread and its task queue are mapped to different nodes due to
the default first-touch policy of Linux the overall performance may be

affected due to increased remote memory access.

o [f a thief and victim are pinned to two different cores belonging to
different sockets, the delays involved in stealing introduce additional

performance issues.

In this chapter, the concept of remote stealing is analyzed and a solution
is proposed in the form of stealing domains that makes the work stealing

runtimes adaptable on to these NUMA multi-core processors.

e In randomized work stealing strategy, whenever a worker thread finds
no tasks in its own task queue, it becomes a thief and it can randomly
choose a worker queue as a victim for stealing tasks. But if randomly
chosen worker thread is pinned to a core belonging to a different node,

it is a remote steal attempt. This scenario is depicted in figure 4.2.
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e These remote task stealing attempts may introduce additional delays
such as task migration and TLB (translation look aside buffer ) misses
for data. Remote memory access page faults cause up to 30% degraded

performance|[1].

e As aresult of random stealing, unrelated tasks stolen from other work-
ers brought to execution on local worker thread may result in perfor-

mance isolation problems [57].
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Figure 4.2: Remote task stealing attempts in Randomized work-stealing on
two-node architecture

4.2 Analysis of remote steal misses

To analyze the remote work stealing attempts, MATMUL benchmark im-
plemented using our work stealing runtime is executed on our experimental

platform. The size of matrix is taken as 8192 x 8192 for the following reasons:
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e The size of matrix should cross the kernel supported virtual memory
page size, so that the data section of the program occupies multiple
virtual pages. Consideration of a large matrix also increases the possi-

bility of pages mapping across multiple nodes of NUMA architecture.

e Huge number of tasks must be generated quickly so that the run-time
overwhelms the worker queues with tasks thereby causing considerable

number of task stealing attempts by the worker threads.

The experiments are run using randomized work stealing policy with config-
urable implementation of thread to CPU pinning policy. Remote steal count
is measured for varying number of worker threads. While running the ex-
periments we ensured that the number of worker threads is even such that
two different halves of worker threads are bound to two different nodes. For
instance, the first entry of the table 4.2 represents the case with only two
worker threads. In such a case, we explicitly bound one thread on to a core
belonging one node and the other worker thread onto a different core belong-
ing to different node. These explicit affinity control is done using affinity
control functions of Linux environment.

While analyzing the remote steal attempts, special variables have to be main-

tained to find the values of the following interested counters:

e Remote Steal Attempts: counts how many randomly generated vic-

tim indexes are leading to refer a worker thread on remote nodes.

e Remote False Steals counts how many randomly generated victim

indexes are leading to a failure to select a proper victim.

The common approach followed in randomized work stealing to choose a
victim is:

victimID = random( seed ) % ncpus (4.2)

Where ncpus represents the number of processors or hardware-threads

in the machine. On a NUMA multicore machine, n is the count of cpus

on all nodes. For instance, if the machine is with 2 nodes where each node

has 6 processors, the victim index generated may be in range [0..11]. All
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the victim indexes generated in range [6..11] will cause a remote worker
access. The counter Remote Steal Attempts is used to count such remote
event occurrences. It can be observed from the table 4.2 that, 50% of the
steal attempts are remote. We already proposed technique to minimize the
value of false steal count in the chapter 4. If same technique is applied for
NUMA multi-core runtime, the second counter Remote False Steals can be

minimized.

Table 4.2: Remote steal miss ratios in Randomized work stealing

Number Of Average Average
Worker Threads | Remote Steal Count | Local Steal Count
2 23 21
4 41 49
6 46 54
8 56 55
10 66 56
12 61 45
14 123 88
16 243 235
18 334 401
20 354 473
22 226 312
24 102 77

4.3 Proposed method

To effectively map the worker threads on to cores belonging to memory nodes,
it is necessary to understand the hardware topology. Tools such as numactl
[12] or 1ikwid[58] can be used to easily obtain this information. Our interest
is to identify the number of cores per node. Hence, we depend on numactl
and /proc/cpuinfo commands output to group the cores belonging to a
node. These features are added to the simple threshold constrained work

stealing library (TC-WS) which was implemented in the chapter 4 and call
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it Topology Aware Task-stealing Library (TATL). As part of this runtime,
we propose, co-operative stealing domain based worker-pools. The pool of
worker threads are grouped into stealing domains based on locality with
respect to last level cache, and DRAM. Addition of the new feature stealing
domain restricts the work stealing activity within a memory node and it is
responsible for minimizing the cross node task steal attempts. To analyze the
remote stealing effects, a task stealing library was implemented using flexible
macro based API provided in wool [59]. This API allows us a flexible method
of spawning the tasks with variable number of arguments. For running the
benchmark programs, the proposed strategy was applied in the run-time layer

of OpenMP.

4.3.1 Topology of the architecture

During the initialization of our run-time library, the runtime divides the
available nodes and their associated processors into a tree like data structure
called topology tree. The construction of topology tree [47] is not so complex
as that of hwlock [60]. For illustration of topology tree construction, we took
our experimental architecture (dual socket Xeon E5-2620) of the figure 4.3
into consideration. This architecture is translated into the topology tree of
the figure 4.4. Once the topology tree is constructed, identifying the processor
core grouping can be done based on memory locality wise or last level cache
locality wise.

It can be observed from the topology tree in figure 4.4 that cores belonging
to the same memory node also give the advantage of sharing the last level-
cache (either L2 or L3). Most of the tasks in a parallel program constitute
similar task body and operate on different data. Overall performance of such
applications can be enhanced if such related tasks are bound to such group.
Stealing domain strategy is proposed to serve this purpose.

During the initialization of the run-time, the topology tree shown in figure
4.4 is partitioned into two sub trees. A worker pool array is created per sub
tree where each worker pool represents a stealing domain. This strategy can

be scaled easily and generalized: if there are M nodes and each node has
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Figure 4.4: Topology tree representation of Dual Socket architecture of 77
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N cores, then M worker pools are created where each pool has N worker
threads. The total worker threads are grouped into M stealing domains. By
restricting the task stealing within the same domain, the number of cross chip
references and remote cache misses are reduced. Task stealing from a remote
domain is allowed only when a thief worker is unable to find a victim worker
in its local domain. Grouping a total of M N worker threads in M domains
of N workers each gives the advantage of flexible implementation and does
not cause any overhead. The stealing domains also allow the run-time to
be easily scalable. During the initialization of the run-time, the run time
system can parse the processor topology and detect the number of NUMA
nodes creating the equivalent number of stealing domains. The number of
worker threads in each stealing domain will be equivalent to the number of

cores or hardware threads depending on hyper threading feature enabled or

disabled.

4.4 The proposed algorithm

In a task stealing run-time implementation, it is a common practice that
each worker thread invokes an outline function during the worker pool ini-
tialization process. This outline function is responsible for the activities of
task running and task stealing. We present the simplified version pseudo
code of such an outline function. For ease of readability, the synchronization
steps are not presented in the pseudo code. The algorithm Worker Run 2
presented here is a combined approach of stealing domain strategy (proposed
in this chapter) and steps introduced in threshold constrained work stealing
strategy of the chapter 3.

Threshold constrained work stealing strategy added with stealing domains
strategy could improve the efficiency by minimizing the remote socket steals.
This method puts the best effort to constrain a worker to select a victim
within a stealing domain. Remote stealing attempts are done only if all
workers of the local stealing domain are under loaded. We maintained sep-
arate counters to the stealing attempts in debugging mode and gathered
remote steal attempts at the end of each run. The MATMUL bench mark
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Algorithm 2: Worker Run 2

N =

input : Pointer to current worker context *this
if (this.localTaskQueue.size == THRESHOLDMAXSIZFE) then
| this.status = VICTIM;

if (lisEmpty(localTaskQueue)) then

run:

popAtFront(localTaskQueue, task);

execute task;

if (localTaskQueue.size == THRESHOLDMINSIZFE) then
| this.status = THIEF;

else
this.status = THIEF;
taskQueue= searchForVictimQueue ( thisStealingDomain );
popAtRear(taskQueue, task);
if (task) then
pushAtRear(localTaskQueue , task );
goto run;

else
if (node_stealability; > 0) then
taskQueue = searchVictim( remoteStealingDomain; );
popAtRear ( taskQueue, task );
if ( task ) then
pushAtRear(localTaskQueue , task );
goto run;
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Table 4.3: Remote steal miss ratios after stealing domains

Number Of Remote Steal Local
Worker Threads | Steal Count | Steal Count

2 0 0
4 0 72
6 0 1001
8 0 85
10 0 69
12 0 271
14 0 251
16 0 638
18 0 835
20 0 823
22 0 522
24 0 24

was run 10 times and average remote stealing miss ratio is computed. The
results are presented in the table 4.3. It can be observed that remote steal

miss ratios are almost zeros when compared to the results presented in the
table 4.2.

4.4.1 Impact of Remote Steals on Performance

To investigate the effect of remote steal attempts on the performance of
the workload, we ran the MATMUL benchmark for 50 times. Unlike the
tables 4.2 and 4.3 we fixed the number of threads equivalent to the number
of cores to follow identity affinity and collected data on remote tasks steal
attempts and respective execution times. The relationship is presented in
the figure 4.5. When we applied Pearson Correlation Coefficient Calculator
on the obtained data, the value of R was 0.9123 and it is a strong positive

relationship between remote steals and execution time.

Ty = 1.609907157Np + 1723.235601 (4.3)
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Figure 4.5: Effect of Remote Stealing on the Execution Time

The equation 4.3 shows the linear relationship between remote steal count
and execution time of the program. T represents the time taken for execu-
tion and Ny represents the remote steal count.

Correlation Coefficient: r = 9.122574337 x 10( — 1)

Residual Sum of Squares: rss = 66779.39655

Coefficient of Determination: R2 = 0.8322136254

4.5 Implementation

The concept of stealing domains from this chapter and threshold constrained
work stealing from the chapter 4 are implemented as part of OMPi OpenMP
runtime. OMPI1 is an open source implementation of OpenMP runtime with
work stealing support. We added the new features by changing the code
of the runtime to adapt it for NUMA multicore processors. The num-
ber of worker threads created in this runtime can be configured by set-
ting the environment variable OMP_NUM _THREADS or using API call

omp_get_num_threads(). To implement the concept of stealing domains, we
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divided the total number of threads into number of stealing domains which
is equal to the number of nodes based on memory topology. The selection
procedure of victim worker is modified in such a way that work stealing is
confined mostly within the stealing domain. This can be done by modifying

the equation 4.4.
victimID = of fset + random( seed ) % ncpussp (4.4)

The term ncpussp reprsents the number of CPUs within the stealing do-
main(SD) and the offset indicates the index of first worker thread within
the stealing domain. The modulo operator guarantees that the generated
victimID is within the range [0 .. ncpusgp]. Though the physical CPU
numbers configured at hardware may not be contiguous numbers, the worker
thread numbers allotted at runtime level can be considered for grouping of
worker threads into stealing domains. Implementation of stealing domain
for a two node architecture with 4 cores per node is depicted in the figure
4.6. The figure presents the worker threads belonging to a stealing domain
attempting to steal tasks from other worker queue of the same stealing do-
main.

An additional feature to minimize the remote false steal attempts is added to
the runtime. A worker thread pinned to a socket will attempt to steal a task
only if one or more worker queues of remote node have stealability status set
to one. Stealability status of a node is the sum of stealability status of worker
queues belonging to that node. The equation 4.5 gives the stealability status

of a node.
k

node_stealability = Z stealability; (4.5)

=1

where, k represents the number of worker threads within the node.
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Figure 4.6: Stealing Domain Implementation for two node architecture

4.6 Benchmarks and Results

Barcelona OpenMP Task Suit(BOTS) [15] consists of set of task based bench-
marks. These task parallel programs spawn large number of tasks. Propor-
tionate to the problem size, these programs also exhibit NUMA sensitiveness.
We executed the same benchmarks as in the chapter 4 for assessing the effect
on performance.

The Strassen benchmark calculates the multiplication of dense matrices
using the Strassen’s algorithm. The algorithm divides the number of multipli-
cation operations by splitting each matrix into 4 equally divided sub-matrix
chunks. The output array C is split into 4 sub-matrices in the first matrix
multiplication function call. Each sub-matrix is calculated in parallel using
independent tasks. Each task splits the submatrix into 4 smaller submatrices
and generates tasks to handle them. This recursive computation guarantees
that the child tasks always compute the output elements which are allocated

in the parent task. If parent task and child tasks belong to the same node,
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these tasks can take the advantage of data locality. The tasks should not
be migrated to a different node because of stealing action initiated at other
node. We distributed the array elements explicitly by using the OpenMP
parallel construct and libnuma APIs. First, aligned_alloc() is used to allo-
cate the output array with a page boundary alignment. The starting index
of the corresponding submatrix is calculated in a parallel region. A thread
is selected for each NUMA node in the parallel region. Then the thread
calls numa_setlocal_memory() to migrate memory pages to the local NUMA
node.

The Sort benchmark is a recursive task implementation of merge-sort algo-
rithm. Since sorting involves permuting the elements of vector, it leads to
remote memory access. Instead of dividing the random list into two equal
sizes, BOTS sort divides the list into 4 equal parts[15]. Recursive tasking
is applied on each sub-array in parallel. These recursive subtasks are the
children of the parent task and mostly access the array data. If task is stolen
by a worker of remote node, it has to depend on remote memory access.
Again in the merge phase, if the four sub arrays are located on the same
node, merging subtasks can take the locality of reference advantage. In our
experimental environment, we considered the default array size and cut off
values specified in BOTS. The input array size, N is taken 33554432.

SparseLLU benchmark calculates the LU decomposition of a sparse ma-
trix [15]. The input is a 2D array of which each element is the memory pointer
to the submatrix. For larger matrix size, SparseLLU allocates a submatrix to
the locations where the problem matrix has non-zero values possibly on dif-
ferent NUMA node. The LU decomposition is carried out to the non-NULL

submatrices. BOTS contains two versions of this benchmark

e In Sparse-LU-for version, tasks are implemented using parallel for

construct of OpenMP

e In Sparse-LU-single version, tasks are implemented using single

construct of OpenMP

The results shown in Table 4.5 present the execution times obtained using
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our proposed library TATL compared to randomized OpenMP implementa-
tion of BOTS Benchmark applications. The performance improvement ob-
tained using TATL is due to minimizing the latencies involved in selection of
random victims (94% as stated in the table 4.2 ) and remote victim selection
(50 % as stated in Table 4.2). In case of remote victim selection, additional
overheads are involved, and contribute to remote memory access latencies
while accessing remote worker queues and stealing tasks from remote worker
queues. To assess the remote access effect on performance, we measured re-
mote data volume of each benchmark program using performance counters.

The reason for delays in randomized task stealing technique may be due to

Table 4.4: Remote data volumes accessed by benchmark programs

Benchmark Remote Data Volume
Name - Size Accessed by benchmark in GB
Strassen-2048 0.3423
Strassen-4096 1.1157
Strassen-8192 2.8416
Sort-33554432 1.6365
SparseLLU-single 0.0675
SparseLLU-for 0.0613

the assumption of shared memory paradigm in its implementation. The pro-
posed strategy resulted in 22% improvement in overall performance. The
results presented here are obtained on our experimental platform with dual
socket Xeon E5-2620 12-core machine with 24 worker threads(hyper thread-
ing enabled). Though the performance improvement appears to be primitive,
it may scale well on machines with more than two nodes.

In case of Strassen-2048 benchmark, TATL has shown 23% performance
gain over randomized work stealing and it is little improvement over thresh-
old constrained work stealing. In case of Strassen-4096 benchmark, TATL
could yield 20% speedup gain over randomized work stealing and in case of
Strassen-8192, the speed up gain is 18%. It can be observed that the speedup
gain is diminishing as the problem input size is doubled.

Sort-33554432 benchmark could achieve speedup gain of 33% over random-

ized work stealing which is significant.
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Table 4.5: Execution Time Comparison of Randomized Vs Topology aware
Work-stealing strategies

Benchmark Execution time in seconds
Randomized | Topology Aware | Serial
Name-Size Work Stealing | Work Stealing
Strassen-2048 0.306 0.247600539 1.81542
Strassen-4096 1.848 1.5349547822 13.139
Strassen-8192 12.045 10.12196554 92.7439
Sort-33554432 0.7114 0.533518016 6.696
Sparse-LU-single 1.0023 0.82665136 11.1524
Sparse-LU-for 0.9901 0.860222 10.842

SparseLU-single has shown a speedup gain of 21% where threshold con-
strained work stealing could not show any improvement over randomized
work stealing.
SparseLU-for benchmark could give only 15% speedup gain over random-
ized work stealing. Threshold constrained work stealing of 4. The speedup
improvement is illustrated in the figure 4.8

The run times illustrated for performance comparison are GNU OpenMP
and OMPi [61]. GNU OpenMP supports task level parallelism in addition
to loop level parallelism but does not implement work stealing at runtime
level. OMPi runtime is a work stealing based implementation of OpenMP
4.0 standard specification. Within OMP1i runtime, stealing domain feature
was added with minor changes to source code. It can be observed from the
figure 4.8 that the speed up achieved by Topology aware task stealing is
better than both Randomized work stealing and threshold constrained work
stealing strategy proposed in the chapter 4. Threshold constrained work
stealing could improve the performance to little extent in case of certain
benchmarks by minimizing the false steal attempts but it could not localize
the task steals within a memory node. The task stealing activity from remote
memory is costly in terms of memory cycles. Introducing topology awareness
in work stealing activity confines the task steals within the memory locality.
The reason for significance in the improvement is, memory cycles are far

slower compared to CPU cycles and stealing domain strategy could reduce the
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Figure 4.7: Performance comparison of OpenMP vs Topology Aware Task
stealing Strategy
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Figure 4.8: Speedup comparison of Randomized, Threshold constrained and
Topology-aware work stealing techniques

72



remote memory task steal cycles and hence could contribute to performance

gains.

4.7 Conclusion

This chapter focuses on analyzing the effect of on chip NUMA multicore pro-
cessor architectures on user level work stealing run-time systems. This study
emphasizes on porting work stealing runtime systems on to machines with
on chip NUMA architecture where memory domain of a process is scattered
across more than one node. The contributions proposed in this chapter are
aimed to provide better performance by limiting the task stealing activity
within memory locality. The concept of stealing domains is introduced in
this chapter keeping memory locality as an assumption. This strategy can
be extended to even last level caches provided, the cache topology parameters

can be obtained by using sophisticated tools such as hwloc[60].
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Chapter 5

Improving Shared Object
locality in NUMA multi core

Processors

5.1 Introduction

Modern HPC server processors are containable of multiple cores and in-
tegrated memory controllers (IMC) [5] on chip. These processors support
the feature of connecting separate memory bank to individual memory con-
troller. Hence the system can be visualized as an On chip NUMA multi-core
architecture. These architectures introduce a new challenge for work stealing
run-times. Stealing tasks from a worker belonging to a remote socket core
may increase memory latency thereby affecting the overall performance. This
issue was addressed in the chapter 4. User level work stealing runtime sys-
tems like Cilk and TBB provide task construct for programming multi core
processors. Starting from version 3.0 specification, OpenMP also started

supporting task construct. OpenMP task support in two forms:

e Implicit Tasks: The code written as part of parallel is automatically
translated to a task body by the runtime. In this case, synchronization

is done at barriers.
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e Explicit Tasks: The tasks created by the programmer using task
construct are also considered as tasks at the runtime level. Explicit
tasks also allow task to spawn child tasks and synchronize with them

using taskwait construct.

The task body contains a set of statements that define the piece of parallel
work. The execution statements of a task also can access task local data and

also shared data. The shared objects are of two types:

e Global objects which are created prior to parallel region or task cre-

ation.

e Heap objects which are allocated using dynamic memory allocation.

The virtual memory mechanism of Linux allows the programmer to visual-
ize the data organization as continuous storage. Shared data is also divided
into virtual pages and these pages are logically contiguous in virtual ad-
dress space. But when these virtual pages are mapped to physical memory,
the physical memory frames need not be allocated contiguously on physical
memory (Dynamic RAM). In particular, in a Non Uniform Memory Archi-
tecture(NUMA), these physical pages may be scattered across the available
memory nodes to mitigate the memory bus bottleneck problem. In partic-
ular, large sized (more than a page size) shared data objects accessed by
tasks experience this scattered physical allocation in parallel environment.
As a result, the memory of a large shared object is scattered across physi-
cal memory pages belonging to different nodes in a multi socket multi core
architecture. To minimize the remote memory latencies, the user level work
stealing run-time must maintain proximity between shared objects and the
tasks that access these objects. In other words, the runtime must guarantee
task-mapping at a minimum possible distant to the physical memory bank
where the shared data is located. At the same time, the user-level runtime
system must ensure load balancing among the multiple cores.

In user level run-time systems, there is a trade off between ensuring object
locality and load balancing. In a work staling runtime, a task belonging to
a worker queue on one socket may access an object bound to other NUMA

node.
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e [f work stealing run-times are developed only with the goal of load bal-
ancing, the object locality may be compromised. Due to work stealing
strategy, a stolen task may be migrated to a memory node where it’s

shared data is not physically mapped to.

e [f the runtime system is built only keeping goal of object locality, load
balancing may be compromised. If all tasks accessing shared objects
are grouped on to single socket, those worker threads experience high

load and load-balancing can not be guaranteed.

In this chapter, we address the issue of shared object binding onto NUMA
nodes, propose an adaptive solution for work-stealing runtime systems. A
strategy to bind the shared objects across the memory banks to mitigate
memory latencies is proposed particularly for work stealing run-times. This
proposal is an extension of the work presented in [47]. The proposed solution
is in the form of hints to the runtime system and the runtime system dynam-
ically manages the object binding effectively so that shared object locality
and load balancing are not compromised. These hints are compatible with
newly introduced environment variables of OpenMP4.0 specification and are
easily adaptable in future implementations. Experiment results show that

this policy can improve the performance of standard benchmarks.

5.2 The effect of First Touch Policy

The default behavior of Linux kernel to address memory locality is to allocate
an object nearest to the thread which first attempts to access it. This policy is
not applied during allocation of virtual pages for the object but applied when
a thread accesses the object for the first time. This strategy is called first
touch policy. The common method of creating heap objects is invoking one of
the standard C library functions: malloc(), calloc() or realloc(). These
function calls do not allocate any physical memory immediately after the call.
Later, when one of the threads belonging to the process tries to access this
object, Linux first finds to which processor core the thread is pinned to and

to which memory node the core belongs to. Based on the thread affinity,
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physical memory is allocated on the memory bank to which the processor
core is attached via the integrated memory controller. Such shared objects
defined in standard workloads are dynamically allocated. These objects may

be accessed by threads as a whole or in a part.

e Whole Object Access: Objects whose size is less than a page size
and aligned to page boundary can be accessed by multiple threads.
If all threads are pinned to the cores of same node, they can access it
locally. Otherwise, remote memory access is done by few of the threads

based on which node they are bound to.

e Part Of Object Access: In case of large 1D arrays or 2D arrays,
different parts of the array may be accessed due to loop level paral-
lelization. If such arrays are initialized by master thread (In fork join
model like OpenMP, master thread starts first), due to first touch pol-
icy, all virtual pages may be mapped on single node as depicted in the
figure 5.1. In such a scenario, all threads belonging to other socket

experience remote access latencies.

If the initialization of 1D or 2D array is done by multiple threads, physical
pages are allocated based on the affinity of initializing thread. In such a
case, the memory allocation of a process is distributed among the nodes. All
threads pinned to the node containing the memory page find local access
whereas the threads pinned to processors of other node find it a remote

access. This scenario is depicted in the figure 5.2.

5.2.1 Analysis

To analyze the impact of work stealing environment in NUMA multi-core
environment, we executed matrix multiplication benchmark program on our
experimental server with dual socket Xeon E5-2620. By instrumenting the
code with libnuma API calls, we tried to find the total number of accesses to
the base address of each row in a matrix. We did not consider the individual
element address since all the remaining elements of the row are stored in

contiguous locations after the first element and caches guarantee locality of
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reference for the rest of elements in same row. It can be observed from

Table 5.1: Analysis of scattered data among NUMA nodes

Matrix Size Row-wise Access Count
Node 0 Node 1
512 512 0
1024 1024 0
2048 254 1794
4096 3873 223

the table 5.1 that for smaller sized matrices 512 x 512 and 1024 x 1024,
all the elements are stored on single node. The reason is entire matrix row
did not cross a page size (4096 bytes in our experimental setup). All the
row elements of smaller sized matrix are mapped to a single node. In this
scenario, the threads pinned to cores belonging to Node 1 will experience
remote memory access latency as depicted in the figure 5.1. But for the
larger sized matrices, the physical pages are scattered across the nodes. In
case of 2048 x 2048 matrix, more physical pages are mapped to the Node 1
whereas for 4096 x 4096 matrix, more number of physical pages are mapped
to Node 0. In this scenario, depending on the allocation of physical pages,
few threads pinned to minor allocated node will experience remote memory
access latency. For larger sized matrices, the matrix is split across the nodes.
In turn, each row of the matrix may also scatter across multiple pages when
an entire row can not fit into a single page. A single array being mapped to

multiple nodes is depicted in the figure 5.2.

5.3 Tasks and Shared Objects

When call to task creation API is made during the runtime, the newly
created task is added to the worker queue. The task creation APIs generally
allow the programmer to pass the local arguments to the task. The syntax
of task creation function in most runtimes looks like

void creatTask( typel argl, type2 arg2,typen argn );
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The shared objects such as global and heap objects are accessed by these
tasks with default privileges without mentioning them in their prototypes.
But few environments like OpenMP provide few additional constructs such
as shared, critical, atomic etc. Recent specification of OpenMP 4.0
[62] adds few more features how the tasks are to be pinned to the processor
group keeping NUMA multi-core processors. These constructs give hints to
the runtime to manage the object state. For example, the keyword shared
gives hint to the runtime that the object is accessed by multiple tasks and
suitable locking and synchronization care need to be taken. Setting the
value for OMP_PLACES environment variable in OpenMP 4.0 [62] almost
does the same grouping as that of stealing domains introduced in the chapter
4. But the stealing domain strategy we proposed is particularly meant for
work stealing run time systems which is not strictly mentioned in OpenMP
specification [62].

In a task based parallel runtime, the allocation of shared objects is done
prior to creation of the tasks and all these objects are treated as heap ob-
jects. These shared objects are allocated according the default first-touch
policy [1] in Linux environment. The first-touch policy is the main cause
of object scattering across different memory nodes. The key idea in our
proposed work is, the keywords specified while programming tasks can play
important role in task binding and object binding. This helps the runtime to
become more dynamic and the programmer need not depend on explicit man-
agement of task affinity using environment variables like KMP_AFFINITY
from intel compilers [63]. The proposed strategy puts its best effort to map
the user created tasks automatically on to the processor cores to improve
object locality. To achieve this, the runtime depends on the hints given by

the programmers in the form of directives and clauses.

5.4 Mathematical Model

In a work stealing runtime, task is a unit of work that is executed asyn-

chronously by a worker thread. Each task has its own data and whole or
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part of the data may be shared with other tasks. We made an attempt to
model the relationship between tasks and the objects accessed by the tasks.
Let there be N number of memory nodes in the system and shared data ob-
jects are bound to these nodes according to first-touch policy of Linux. Each
memory node may consist of zero or more number of shared data objects
and let Dy denote such mapping of shared data objects onto these memory
nodes. We assume that there are 7" number of tasks created in the system.
These set of task tasks may try to access the set of shared data objects and
let Dy denote such mapping. Hence, at a given instance, there are a total
of D shared data objects involved in the system where D is given by the
equation 5.1.

D =DrUDy (5.1)

In this scenario, a page fault can occur on a system whenever Dy — Dy = ®
The vector cross product, Dy x Dy consists of all the possible ordered quadru-
ples between node-object and task-object mappings. The factor which is used
to decide effective task to shared data object binding is called similarity index

and is modeled in the equation 5.2

. ’DTi mDNj‘

S
’ D]

(5.2)
The similarity index indicates the relationship between shared object and
the tasks that try to access the object. If objects can be mapped on to the
memory nodes such that the S;; value is high, most of the tasks can access
the shared objects at minimal access delays there by reducing overall mem-

ory latency.

5.4.1 An Example

Let the set of tasks in a run-time system are tg, t1, to, t3, t4 and t5 and let the
set of shared objects be sg, s1. Let us assume that the tasks tg, t;, t3 and
t5 access shared object sg and the tasks ¢1,t; and ¢4 access shared object sy

respectively.
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Then the mapping of tasks and shared objects can be represented using

Dr = {(to, s0), (t1, 50); (t2, 51), (t3, 50), (ta, 51), (5, 50) }

where t;, s; values of each ordered pair (¢, s;) represent ith task and s; jth
shared object respectively. The ordered pair is based on access relationship
between t; and s;.

The mapping of shared objects to nodes is given by:

Dg = {(s0,m0), (51,71)}

The ordered pair (s;,n;) means that shared object s; is mapped to memory
node ny.

The mathermatical relations, Dr and Dg can be transformed into matrix
form for the ease of implementation. The matrix Dp represents the mapping
of tasks to shared objects where s; represents jth shared object. The matrix
Dg represents object to memory node mapping where, s; represents jth
shared object and n; represents kth node to which s; is bound to in each

ordered pair (s;,ny).

S

Il
— O = O = =
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The matrix Dg represents the mapping of shared objects to nodes.

10
D¢ =

The matrix Dy x Dg represents the task mapping matrix on to the nodes.
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The example considered here is a trivial one and each element of the matrix is
significant. But in a real scenario, where the number of tasks are in thousands
and the count of shared objects is high, most of the matrix entries may
be null resulting in a sparse matrix. While implementing the concept of
similarity, hash tables were used to avoid storage overhead of sparse matrix

representation.

5.5 Implementation

Though the mathematical model involves sets and join operations, imple-
menting them as they appear at runtime level may introduce additional space
and performance overheads. Hence the concept of similarity between shared
object mapping onto nodes and task using shared objects is simplified with
the help of libnuma API [12] and hash tables. The API of libnuma allows the
runtime to find the node where the shared object is bound to. Each shared
object is represented by an index in the hash table and the tasks accessing
that shared object are mapped to that hash index. Hash index directly hints
the runtime to identify which tasks access a particular shared object. The
runtime can easily derive memory node mapping of shared object using lib-
numa API calls. Indirectly, the runtime could achieve task clustering based
on shared objects access. Since a stealing domain at runtime level represents
a memory node at physical level, task mapping can be done based on locality.
Then the work-stealing runtime maps the tasks to respective worker queues

of specific stealing domain according to object locality.
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5.5.1 Task Level Dispatcher

Maintenance of object-locality is taken care by introducing an additional mod-
ule within the runtime architecture called task-locality-dispatcher (TLD). The
main job of TLD is to dispatch the newly created tasks on to the appropriate
worker threads. A task is mapped to a worker thread pinned to a core of a

socket (memory node) on which shared object is bound to.

Task Creation API

‘

Dispatcher

|
|
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-

Stealing Domain O Stealing Domain 1

(555555555555
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Kernel
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Figure 5.3: Dispather added to existing work stealing run-time for dual socket
12-core Xeon-2620 architecture [2]
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5.5.2 Generic Approach to Handle Shared Objects

Conventionally all task based run-times provide task construct and allow the
programmer to implement task body as a block or a function. The argu-
ments required by the task are sent as formal parameters to the function. In
case of directive based languages like OpenMP, task body is translated to an
outline function by the compiler. This outline function consists a block of
code with an additional information about the object. This additional infor-
mation is all about the object is a value type or a reference type. Since all
shared objects are translated as reference types, the memory node mapping
of the object can be obtained using libnuma API calls. TLD depends on
this information to take a decision on mapping tasks to respective workers

belonging to memory nodes.

The common syntax followed by C/OpenMP translators to create a task
is given below listing. This syntax allows the programmer to specify the
arguments used by the task. Our runtime adds some additional information
such as pointer to the task object (thisTask())

void createTask( typel arg_1, type2 arg 2, ...type_n arg.n ){
shared(objl, thisTask() );
shared(obj2, thisTask());
/*Task body */

by

In the above task definition, argl, arg?2, .... argn are the task local arguments
used by the task for processing. obj1 and obj2 are the reference objects that
may be shared by more than one task. These shared objects might be allo-
cated on one of the memory nodes according to first-touch policy of operating

system. In NUMA multi core environments, memory allocation is done based
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on default first touch policy of Linux if NUMA feature is enabled. That is,
memory allocation of objects is done on the memory bank to which the
worker thread is bound to. The clause shared gives a clue to the run time
the necessary memory node binding information. The directives or clauses
are just the macros which get expanded to runtime system function calls.
These function calls guide TLD to map the task to the memory node where
the object is bound to. The code snippet given in the example above is trans-

lated by the preprocessor into equivalent C code presented in the algorithm 3.

Algorithm 3: Add Task
input : void * obj, Task t
1 node; = getNUMALocality(obj);
2 sd; = getMemoryStealingDomain ( node; );
3 enqueue(t , sd;.workerqueue );

TLD’s job is to find out to which node the shared object is bound and add
the task to the worker queue which belongs to the stealing domain associated
with that node. TLD executes the following procedure taking libnuma API
help. If the programmer specifies a shared object as part of task syntax,
the algorithm Create Task tries to add the newly created task to a worker
queue belonging to the stealing domain where shared object is bound. It also
tries to add the task to a queue with less load (chapter 4) within the stealing
domain. This algorithm is invoked during task creation.

In the algorithm Create Task, the values s and S are computed lower
and upper threshold values of the task queue loads [47]. By introducing these
minimum and maximum threshold values to the queue levels, the selection
of a wrong victim in task- stealing can be avoided. The algorithm ensures

two purposes:

e Newly created task is bound to the same stealing domain where the

shared objects are bound to.

e The task is added to only such queue with less work load.
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Algorithm 4: Create Task
input : task parameter list
1 initialize task object;
2 if (task t does not use any shared object ) then
3 L add t to the queue with load below s;

4 else if (t uses a sharedobject o ) then
5 node, = getNUMALocality( o );

6 sd, = getMemoryStealingDomain( node, )

7 i = getWorker(sd,);

8 if (taskCount(que;) < S ) then

9 L enqueue(t , que;);

10 else

11 L find queue que within sd, with load < S ;

12 enqueue( que, t);

13 else if ('t uses a shared object but object is unbound ) then
14 find que such that taskCount(que) < S of stealing domain sd,;
15 enqueue( t , que );

5.6 Experimental Evaluation

To evaluate our proposed shared object locality strategy, we added the pro-
posed task stealing functionality library with topology awareness [47] to an
existing OpenMP runtime. The worker threads created during initialization
of the runtime are grouped as stealing domains discussed in the chapter 4.
TLD strategy proposed in this chapter is implemented as a module and em-
bedded as part of the runtime. The entire architecture of topology aware
task stealing along with TLD is presented in the figure 5.3. Since, we have
been using OMPi[61] [64] runtime for all our previous chapters, the TLD

module is implemented as an add on module to this runtime.

TLD maintains the hash map with the number of buckets equal to the
total number of shared objects. Shared objects in an OpenMP program are
explicitly specified using directives and clauses. These shared objects can be

identified even before the compilation begins or during preprocessing phase
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of C compiler. As the tasks are created during, they are added to the hash
map based on the shared objects they depend on. TLD ensures that all the
tasks that use a particular object are pinned on to the worker threads which
are bound to the same stealing domain or same socket. Though TLD is guar-
anteeing locality of the objects, task implementation model we followed is a
untied model so that the task can be allowed for stealing without restriction.
Stealing domains ensure that the task stealing is limited within the local

socket to avoid task migration from remote socket.

OMPi[61] is a light weight compiler of OpenMP 3.1 specification which
does source to source translation of OpenMP directives to a specific thread
library. It also supplies an implementation of runtime system with work
stealing strategy for load balancing. The runtime is built with support of
pthreads as worker threads from native pthread library of Linux. It also
supports other threads such as psthread [65] library. It gives flexibility to
the programmer to link any thread library with minimal implementation of
headers and start up functions with prototype ort_zxz() where xzz can be

replaced by thread library implementation.

In the following C/OpenMP code snippet, two tasks have been defined
as part of parallel region. Hence a total of 2 x OMP_NUM _THRFEADS
tasks are created. These tasks are scheduled on OMP_NUM _THRFEADS
worker threads. The integer object shObj is given with shared clause and

is accessed by all tasks.

#pragma omp parallel

{
int shObj = O;
#pragma omp task shared(sh0bj)
{
shObj++;
}
}
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OMPi source to source translator generates the following code:

static void * _taskFuncO_(void * __arg)
{
struct __taskenv__ {
int (* shObj);
s

struct __taskenv_

* _tenv = (struct __taskenv__ *) __arg;

/* byref variables */
int (* shObj) = _tenv->sh0bj;

(*sh0bj)++;
CANCEL_task_10 :
b
ort_taskenv_free(_tenv, _taskFuncO_);

return ((void *) 0);

The node binding of tenv->shObj can be known using libnuma [12]
API calls. The task is mapped onto the worker thread of that particu-
lar stealing domain where the object is physically bound to as explained in
the algorithm??. The detailed description of threshold constrained, locality

awareness and shared object locality algorithm is explained in the algorithm
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Add Task.

5.6.1 Benchmark Programs

Barcelona OpenMP Task Suit(BOTS) [15] consists of set of task based bench-
marks. These task parallel programs spawn large number of tasks. Propor-
tionate to the problem size, these programs also exhibit NUMA sensitiveness.
We executed the same benchmarks as in the chapter 4 for assessing the effect

on performance.

The Strassen benchmark calculates the multiplication of dense ma-
trices using the Strassen’s algorithm. The algorithm divides the number of
multiplication operations by splitting each matrix into 4 equally divided sub-
matrix chunks. The output array C is split into 4 sub-matrices in the first
matrix multiplication function call. Each sub-matrix is calculated in parallel
using independent tasks. Each task splits the submatrix into 4 smaller sub-
matrices and generates tasks to handle them. This recursive computation
guarantees that the child tasks always compute the output elements which
are allocated in the parent task. If parent task and child tasks belong to the
same node, these tasks can take the advantage of data locality. The tasks
should not be migrated to a different node because of stealing action initiated
at other node.

We parallelized the initialization of matrix in init_matrix() function
such that the matrix elements are interleaved across the available nodes.
This parallelization mitigates the poor first touch policy effects as depicted
in the figure 5.1. aligned_alloc() library function is used to allocate the
output array with a page boundary alignment. The starting index of the
corresponding sub-matrix is calculated in a parallel region. A thread is se-
lected for each NUMA node in the parallel region. Then the thread calls

numa_setlocal_memory() to migrate memory pages to the local NUMA node.

The Sort benchmark is a recursive task implementation of merge- sort
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[15]. Since sorting involves permuting the elements of vector, it leads to re-
mote memory access. The array size (N) we considered while running the
program is, 33554432 which is the default input defined by the benchmark.
The page size supported in our experimental setup is 4K. Hence, the array
occupies 32,768 pages of virtual memory and has to be mapped on to physical
memory. The program consists of a function £i11 array() which initializes
the array sequentially. If this initialization is done by single thread, all the
array data may be bound to a single node where the master thread is pinned
to as depicted in the figure 5.1. Hence, we modified the benchmark code in
sort.c file such that, the array elements are initialized in parallel. Parallel
initialization ensures that those threads which initialized part of the array
can find that part of the array physical pages in local node. During sorting
phase, recursive tasking is applied on each sub-array in parallel. These re-
cursive subtasks are the children of the parent task and mostly access the
array data. If a task is stolen by a worker pinned on remote node, it results
in a remote memory access. Such remote steals are minimized because of
stealing domains. Again in the merge phase of sorting, if the four sub arrays
are located on the same node, merging subtasks can take the locality of ref-
erence advantage within the same node. In our experimental environment,

we considered the default array size and cut off values specified in BOTS.

SparseLLU benchmark calculates the LU decomposition of a sparse ma-
trix [15]. The input is a 2D array of which each element is the memory pointer
to the submatrix. For larger matrix size, SparseLLU allocates a submatrix to
the locations where the problem matrix has non-zero values possibly on dif-
ferent NUMA node. The initialization of matrix code in function genmat ()
was made parallel such that the matrix data is scattered across the available

nodes. BOTS contains two versions of this benchmark:

e [n Sparse-LU-for version, tasks are implemented using parallel for

construct of OpenMP

e In Sparse-LU-single version, tasks are implemented using single

construct of OpenMP
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The programs are executed on server with dual socket 24 thread (6 cores
per socket and two hyper threads per core) Xeon E5-2620 with Linux Kernel
version 3.11 environment. All workers are mapped to cores using identity
affinity with the help of likwid tools [58].

Table 5.2: Execution Time Comparison Topology aware Work-stealing Vs
Locality binding strategies

Benchmark Execution time in seconds
Topology aware | NUMA aware Serial
Name - Size Work Stealing | Locality Binding
Strassen-2048 0.2476 0.182148 1.8142
Strassen-4096 1.53495 1.091279 13.139
Strassen-8192 10.1219 7.010121 92.7439
Sort-33554432 0.5335 0.496975 6.696
SparseLLU-single 0.8266 0.719509 11.1524
SparseLLU-for 0.8602 0.641538 10.842

Strassen benchmark code doesn’t contain any task code with shared

clause, but by using the source to source translator of OMPi, we added
the statements to improve the locality of a matrix row by the tasks which
access it. The speed up gain in case of 2048, 4096 and 8192 is significant.
Sort benchmark is computation intensive benchmark and doesn’t contain any
task definition with shared clause. In this benchmark, the number of remote
accesses during merge phase are dependent on the array element values. The
list is initialized with random element values, and based on these values and
element permutation is done accordingly. We could notice little performance
gain. The possible speedup gain was achieved only by threshold constrained
and topology aware work-stealing strategies of chapters 3 and 4.
SparseLLU is again a matrix based program and is bandwidth(data) intensive.
This program makes use of shared objects among tasks. Despite the load bal-
ancing optimization effort put in chapters 3 and 4, it could not yield better
speed up gain. But locality object binding strategy allows the tasks to bind
to the nodes, with proximity of data. Hence significant gain in performance
can be noticed both SparseLU_for and SparseLU_single versions.

To investigate the reasoning for achieved speed-up, we compared the total
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Figure 5.4: SpeedUp comparison of topology aware workstealing with locality
object binding strategy

remote data volume accessed by each benchmark. This comparison is done
between load balancing strategy proposed in the chapter 4 and locality object
binding strategy proposed in this chapter. We could measure remote data
volumes of each program using command line performance counters tool lik-
wid [58]. The remote data volumes accessed by each program are given in
the table 5.3.

Table 5.3: Remote Data volume access Comparison: Topology aware Work-
stealing Vs Locality binding strategies

Benchmark Remote data volume access by in GB
Topology Aware NUMA Aware
Name - Size Work Stealing Locality Binding
Strassen-2048 0.9986 0.7836
Strassen-4096 5.2197 4.1961
Strassen-8192 39.3668 30.7298
Sort-33554432 3.4797 2.4709
SparseLLU-single 5.2117 3.705
SparseLLU-for 3.4587 1.996
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It can be observed that in Strassen benchmark, the remote data volume
is proportionate to the problem size. The speed-up improvement is on par
with decreased remote data volume. Sort benchmark is 1D array based pro-
gram and the percentage of random remote data access is less due to problem
splitting and sequential sorts are applied on smaller sized data. When base
condition is reached, sequential quick-sort and insertion sort routines mostly
find locality of reference except the starting element. Sparse-LU versions
is highly susceptible to problem size and remote data volume. Though the
input matrix size was 128 x 128, since the memory allocation and accessing

of matrix elements is highly random, the impact on performance is very high.

5.7 Conclusion

Deciding which objects are shared among which tasks is a pure runtime issue.
Several proposals are made to provide a solution to this problem but many of
them are static in nature or profile based[8] [66] [67] . Static solutions try to
analyze the source code and detect the object access among parallel entities.
Profile based solutions require the program to be run for first time to know
the access patterns of the threads in the form of mamory access profiles.
These profiles are used to decide which threads can be mapped to which
worker threads in the user level runtime. The work proposed in this chapter
is neither completely static nor dynamic. It is a hybrid approach based on
the fact that parallel directives give enough information to the runtime. The
programmer knows better during programming that what shared objects are
required by that task. The proposed strategy is an approach based on the
compiler and runtime hints and can be easily added in OpenMP 4.0 [62]

compatible implementations.
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Chapter 6

Affinity aware synchronization

in Work Stealing runtimes

6.1 Introduction

Task based programming environments like Cilk [3] and TBB [4] implement
work stealing based load balancing in their user-level runtime implementa-
tion. These run-time systems assume uniform memory access in multi-core
processors, as the earlier multi-core architectures were behaving like symmet-
ric multi processors (SMP). Recent multi-socket multi-core processors sup-
port multiple memory modules thereby resulting in a Non Uniform Memory
Access (NUMA) architecture. Work stealing run-times can be more effective
if they are aware of the underlying NUMA topology. Work stealing run-times
typically rely on lock-based synchronization to guarantee the coherency of
shared mutable state among the worker threads. Synchronization constructs
such as mutex locks, condition variables and barriers are extensively used in
the implementation of these run-times. The worker threads or virtual proces-
sors of these run-times are implemented using user level threads (ULT) such
as pthreads. Hence, the synchronization constructs provided by respective
ULT libraries are directly adopted for synchronization implementation. The
locality of these synchronization constructs in NUMA multi-core processors

has considerable impact on the performance of these run-time systems [68]
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[69] [70]. This chapter studies the effect of locality of these synchronization
constructs and proposes NUMA awareness to them. The proposed methodol-
ogy is implemented using a source to source translator of OpenMP run-time

and evaluated using OpenMP micro-benchmark programs.

In multi-socket multi-core processors, each socket has a separate inte-
grated memory controller(IMC) interfacing with separate memory module
to minimize overall memory latency. The processors(cores) on each socket
are connected via an interconnection network such as Quick Path Intercon-
nect (QPI) [5] in case of Intel processors and Hyper Transport link [6] in case
of AMD processors. The processors within a socket can access the memory
locations at faster rate via IMC. But when a processor of one socket tries
to access a memory location attached to other socket, the accessing latency
is more than local memory access latency. This is a common phenomena
in NUMA architectures. The fraction of the time taken to access a remote
memory location to the time taken to access a local memory location is called
NUMA ratio [71] (Ryuma) and is given by the following equation
Lremoteaccess (6.1)

RNUMA - T
localaccess

If the operating systems are aware of the interconnection topology, kernel
itself can manage proximity between processing elements and storage ele-
ments. It will allow the user applications to access the data from memory
in such a way that the memory latencies are minimized. But the kernel’s
memory management unit can address locality issue at process level but not
at thread level. Linux kernel uses the same system call clone() for creation
of process and thread, thread and process are treated as same at kernel level
using the same task_struct object [72][73]. Linux kernel follows first touch
policy[41]. The first-touch policy ensures the data locality to threads based
on first write accesses to the memory location. It is not based on allocation
affinity i.e. physical memory for an object is not allocated on node when

a thread requests heap memory allocation rather when actually thread ini-
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tializes(write) the object for the first time. This is applicable to all types of
dynamically allocated objects.

Synchronization constructs such as spin lock, mutex, condition variables are
not an exception for this first touch policy. Implementation of primitive syn-
chronization constructs is done using either busy waiting or blocking and

follows generic code given below.

int  acquire_lock ( lock_t *lock ){
while ( ! cmp_and_swap(lock, 0, 1 ) )

pause();

int release_lock ( lock_t *lock){
*lock = 0;

To acquire a lock, a thread repeatedly reads the value of lock variable as
part of while loop in acquire lock() function. Repetition for testing the
lock value is done (n — 1) times and thread could succeed in nth attempt of
cmp_and_swap operation. Hence, there are a total of n — 1 read attempts
for testing the lock object value and one write attempt on acquiring and
updating its value. These lock variables can not take the advantage of cache
locality since they need frequent update (lock is defined volatile in im-
plementation). If these lock objects are all initialized by a single thread (
the master thread in fork-join model), there is a possibility that in addition
to busy wait overhead, threads also suffer from remote memory access la-
tency in multi-socket architectures. Figure 6.1 depicts the scenario where
the main thread whose affinity is on node 0 initializes a lock object. The
threads pinned on to the cores of other node suffer from remote memory
latency to access. The delay is in multiplied by number of attempts of this

remote latency in the process of acquiring the lock.
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6.1.1 User Level Work Stealing Run-time Systems

Because of the creation overhead of process and thread constructs, task based
run-times are moved to user level. The parallel run-times such as Cilk, TBB
and OpenMP operate at user level maintaining a pool of threads using the
native thread library support of kernel. Instead of creating a thread for ev-
ery parallel activity, these run-times provide a lighter construct than thread
called task. During the initialization, the master thread of these run-times,
creates a pool of native threads called worker threads whose life time is till
the end of parallel program. After creation, these worker threads wait for
user created tasks, waiting on a condition variable associated with a mutex
lock. These tasks are generally kept in a queue. The run-times of Cilk, TBB
and few implementations of OpenMP extend the functionality of thread pool
concept as work stealing pools where each worker thread maintains a separate
double ended queue [51]. One end of the queue is accessible to worker thread
to pop and execute the task body. The other end of the queue is accessed by
other workers which are idle with empty task queue[53]. The worker thread
which attempts to steal a task from other worker queue is called thief and
the worker thread from which a task is stolen is called a victim.

In a work-stealing based run-time, there is a need of synchronization protec-

tion to avoid race conditions among worker threads in the following cases:

e All worker threads wait for tasks waiting on its own condition variable

and associated mutex lock.

e Each worker queue maintains a lock to inform that no more tasks can

be added further until there is enough space in it.

e A thief worker has to acquire a lock before stealing a tasks from other

queue so that no other thief attempts to steal on the same queue.

e A barrier is maintained so that if a worker thread has finished all its

work, it waits until all other workers finish.

The affinity of worker threads can be controlled explicitly using numactl [12]
or likwid tools [58], or by setting environment variables KM P_AFFINITY
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from Intel compilers or OMP_PLACES in OpenMP 4.x specification [62].
But these are static settings and can be specified while starting program
execution. The affinity can’t be changed during run-time of the applica-
tion using external tools. All the synchronization constructs such as lock
variables, condition variables and barriers are created and initialized by the
master thread of a work stealing run-time. If these objects are allocated by
the master thread, the physical memory of these objects may be allocated
on the node where master thread is executing. As a result, all primitive syn-
chronization operations of the worker threads which are pinned on different
node processors suffer from remote access latency. Hence, the study of lock
variables and synchronization techniques at user-level implementation has re-
gained its importance because of NUMA multi-core processors [13][14]. The
purpose of this chapter is not to propose a new locking methodology, but to
suggest how to design and implement existing locking techniques in a work
stealing run-time for NUMA multi-core environment. We study the effect
of lock object’s affinity and propose NUMA extensions to pthread lock API
particularly for work stealing run-times and evaluate the proposed method

using micro-benchmark [74] [75] [76]programs.

6.2 Effect of Synchronization constructs Lo-

cality in Work Stealing

The important component in work-staling run-times is a thread pool. The
run-time starts its execution with a master thread. This master thread is
responsible for initializing all threads and data structures. Master thread of
a work stealing runtime does the following actions before any new fork-join

activity takes place.

e A pool of worker threads is created during the initialization of the run-
time. The total number of worker threads (including the master thread)

is equal to the number of processing elements at hardware level.

e Memory allocation for the worker queues and the associated mutex
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locks is done during initialization.

When a worker thread is created, it does not start execution immediately
since it’s worker queue is empty. Hence it waits on a condition variable
until task level dispatcher (TLD) adds newly created tasks to its queue. The
worker thread is engaged in busy waiting state using system level atomic
primitive such as CAS(compare-and-swap). If the worker thread attempts n
times to read the condition variable’s value which is allocated on local node,
the busy waiting time can be given by the following equation where T},
represents the time spent on acquire_lock() operation, Tjocaraccess the local
memory access latency time and Txas the time spent of compare and swap

operation at machine instruction level.

T’lOCklocaz = (Z ﬂocalaccess) + TCAS (62)

1=1

Since the master thread initialized memory for lock objects, all physical mem-
ory for such locks is done on the node where master thread runs. But the
worker threads are pinned to different cores on different nodes. If the condi-
tion variable and the associated mutex lock variables are stored on a remote
node, the delay involved in busy waiting can even be greater than that of
equation 6.2. Because on every primitive CAS operation, it has to access
remote memory location to compare the lock variable value. In this scenario,

the busy waiting time can be given by the following equation

n
Tiockremote = (Z Tremoteaccess) + Teas (6.3)
i=1
If synchronization objects are not NUMA-aware, they are susceptible to
NUMA effects. These effects not only result performance mismatch between
cores but also cause starvation or even live-lock. By the time lock is available
and its status in known to the thread on other node, a local thread on same
node where lock object is located may grab the lock. The effect of locality of
spin locks is studied in[77]. These circumstances may cause the thread on re-

mote node to starve. Optimizing the placement of shared lock objects across

101



cores of different sockets minimizes NUMA effects. If shared lock is accessed
by a group of worker threads on a single socket, and if lock objects resides
on same socket, the workers can take advantage of locality of reference.

On the experimental set up of dual socket Intel’s Xeon-E5 series running
Linux kernel, Memory Latency Checker program [56] results presented in the
table 6.1. which yields average NUMA ratio Ryyya = 1.625.

Table 6.1: Memory latency values on dual socket Xeon E5-2620 series pro-
cessor

NUMA Node 0 1
0 77.3ns | 124.7 ns
1 122.8 ns | 75.0 ns

Hence it can be observed from the equations 6.1, 6.2 and 6.3 that the
additional delay involved in testing a remote condition variable and lock is
about a factor of (Ryuma — 1) Y iy Tiocalaccess- This leads to a performance
penalty of ~ Rypara times.

The delays explained in the equations 6.1, 6.2 and 6.3 are also applicable to
worker thread barriers. If barrier variable is allocated on a different node, the
worker threads have to experience the same delays while joining the worker
threads. To evaluate the above theoretical concept, a simple spin lock based
program was run on dual socket Xeon E5-2620 Linux machine. Average
starvation time of spin lock access by two threads pinned on same socket

cores versus pinned on cores of different sockets is presented in the table 6.2.

Table 6.2: Comparison of spin lock access times local vs remote

Scenario Average lock access time
Contending threads on same socket 15.435 ns
Contending threads on different sockets 38.428 ns
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6.3 Thread Affinity Lock API for NUMA multi-

core processors

The possible improvements that can be done for work stealing run-times in

NUMA are:
e Using NUMA aware locks.

e Allow worker threads to access local locks whenever there is contention

among threads within a node.

e Access remote lock only when a worker thread has to steal tasks from

other node worker queues.

Recently, lock cohorting [74] [75] [76] was proposed as a generalized method-
ology for bringing NUMA awareness in lock implementation. Lock cohorting
approach is based on a combination of two locks: one used as a global lock
and another used as local locks (there is one global lock for all nodes and
one local lock per NUMA node). In the work staling run-time we group all
worker threads pinned to the cores of single socket as stealing-domain (chap-
ter 5). As a general rule, if there are M sockets with N cores on each socket,
at runtime level, there are N stealing domains. If work stealing run-time is
implemented using the proposed local locks along with lock cohorting, all N
worker threads belonging to a single socket can depend on local lock for syn-
chronization within the socket. When one of these N workers has to access
a remote node for task stealing among M nodes (in rare situations), it can

depend on global lock.

POSIX standard pthread library defines pthread xxx_init () for initial-
izing lock object; pthread _xxx_lock() for acquiring a lock; and pthread xxx
—unlock () for releasing a lock where xxx may be either mutex or spin. But
POSIX standard locks are specifically meant for symmetric multi processing
(SMP) and not aware of NUMA environment. Hence, we propose NUMA and
first-touch policy aware API with common syntax pthread NUMA xxx_lock()
and pthread NUMA unlock(). Simlarly, for condition variables, the proposed
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syntax is pthread NUMA_cond_init (), pthread NUMA_cond wait() and pth
read NUMA _cond_signal(). These proposed API calls can collect the thread
information to which node the thread is pinned to using libnuma API calls
[12]. The common steps in pseudo code form of the proposed API calls are

presented in pthread NUMA xxx init( ) function.

int pthread_NUMA_xxx_init( pthread_xxx_t *var)
{
tid=pthread_self () ;
cpu_id=sched_getcpu(tid);
node=numa_node_of_cpu(cpu_id);

var=numa_alloc_onnode(sizeof (¥var) ,node) ;

6.3.1 Affinity aware Worker Threads Implementation

In our proposed system, the number of nodes and CPUs per node infor-
mation is collected during initialization of run-time. This information can
be obtained with the help of libnuma [12] API calls. Associated with each
core(CPU), a new worker thread is created during initialization of the run-
time. The group of worker threads that are pinned to the cores belonging to a
single socket is called a stealing-domain [47]. The concept of stealing-domain
is introduced to put best efforts of allowing the worker threads to steal tasks
only from worker queues belonging to the same node. It is an improvement
to plain work stealing technique which selects the victim worker randomly.
Applying stealing domain concept doesn’t completely avoid remote node task
stealing but minimizes the remote node steal attempts to maximum extent.
The concept of affinity awareness API described in the section 6.4 can be ap-
plied to the stealing-domains so that the worker threads belonging to same
domain also operate on mutexes and condition variables belonging to same
node. Then all worker threads of same stealing domain can access to syn-
chronization constructs locally. The architecture of stealing domains along
with lock cohorting is presented in the figure 6.2. Even the barriers can be

restricted to the worker threads belonging to same stealing-domain.
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Algorithm 5: WorkerRun3

N =

25
26

27
28
29

input : Pointer to current worker
if (localTaskQueue.size ==THRESHOLDMAXSIZFE) then
L this.status = VICTIM;

if (lisEmpty(localTaskQueue)) then

run:
popAtFront(localTaskQueue, task);

execute task;

if (localTaskQueue.size ==THRESHOLDMINSIZE) then

L this.status = THIEF,

Ise

this.status = THIEF,

if (global lock G is acquired by localnode) then

/*Stealing a task from local node */

local Stealing Domain.acquireLock();

taskQueue= searchForVictimQueue ( thisStealingDomain );
popAtRear(taskQueue, task);

local Stealing Domain.releaseLock();

f (task) then
pushAtRear(localTaskQueue , task );
| goto run;

o

else

/* Stealing a task from remote node*/

if (global lock G is acquired by remote node;) then
stealing Domain,;.acquireLock();

runQueue = searchForVictimQueue (
remoteStealingDomain; );

popAtRear ( taskQueue, task );

stealing Domain;.releaseLock();

if ( task ) then
pushAtRear(localTaskQueue , task );
goto run;
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Figure 6.2: Stealing Domain and Lock cohorting Collaboration

The following two improvements are done to existing work stealing technique

proposed in [47].

e The condition variable on which the worker thread waits is located
on the same node where the worker thread is pinned. Hence, the
Tremoteaccess component of the equation 6.2 (from the Section 6.2) in

each attempt is minimized.

e Whenever a worker thread finds no tasks in its queue, it becomes a
thief and it attempts to steal a task from other queue belonging to the
same domain. Before stealing, the thief worker has to acquire a lock
of the victim’s queue. Since the queues and locks of workers are all
located on the same node the thief does not attempt any remote lock

access.

e [f all the queues belonging to same stealing domain are with less load,
an attempt is made to steal tasks from other stealing-domain. Only in

this case, the worker thread has to poll at a lock on remote node and
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Table 6.3: Remote steal miss ratios after stealing domains

Number Of Worker threads | Remote Steal Miss ratio
12 0.000001
24 0.0000002

suffers from remote memory access. The probability of remote stealing

is very minimal due to the implementation of stealing domains[47].

6.4 Results and Analysis

To evaluate the results of the proposed Affinity Aware NUMA lock library,
open source OpenMP run-time OMPi [78] [61] was taken which supports work
stealing load balancing among the worker threads. OMPi is a open source
implementation of OpenMP runtime. At runtime level, it supports processes,
pthreads, or any other native threads as worker threads. We configured this
runtime only to support pthread library. As part of this run-time, we replaced
the lock initialization primitives in othr.c file of ee_pthreads module. The
function othr_init_lock(othr_lock t *lock, int type) is modified using
affinity aware lock primitives and OpenMP micro bench mark programs [74]

[75] [76]are run to evaluate the proposal.

6.4.1 Micro Benchmarks

OpenMP micro benchmark [74] [75] [76] is a set of programs to assess the
implementation overheads of synchronization at runtime level. It gives the
overhead details of OpenMP directives such as parallel for, arrays loop and
scheduling constructs offered by OpenMP specification. The set of programs
include Array based programs of various sizes, scheduling benchmark whose
purpose is to evaluate the scheduling overhead in OpenMP implementation.
Since our intention is to evaluate the NUMA aware synchronization con-
structs such as locks and mutexes, we ran syncbench on our experimental

setup. The experimental environment is a dual socket Xeon E5 2620 series
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processor running Linux kernel 3.10 version.
After running the experiments for 10 times, average overhead of various syn-

chronization constructs is collected from the output of the benchmark.

Table 6.4: Comparison of benchmark Synchronization Overheads

Average Overheads of Implementation in ms
OpenMP construct NUMA Oblivious Affinity aware
Synchronization Synchronization
parallel 10.812 8.661
parallel for 6.893 6.09
barrier 2.219 2.092
critical 0.252 0.2438
lock/unlock 0.291 0.267
atomic 0.365 0.158
reduction 8.805 6.839

e [t can be observed from the figure 6.3 that the overhead of OpenMP
constructs such as parallel and parallel for is significant. This
is due to the worker threads waiting on condition variable located on

remote node for the chunks of work.

e barrier construct is also a kind of lock where all the worker threads
wait for others to finish. Locality of barrier object contributes to the

difference in performance.

e lock/unlock and atomic constructs of OpenMP are internally trans-
lated to native mutex locks and the difference in performance is due to

the locality of lock variable across the nodes.

e reduction overhead is due to the critical section code placed at the end
of parallel for in its expanded form uses again locks for protection
of reduction variable. The sync benchmark contains many parallel

for with reduction clause. Hence the difference of overheads is more.

To crosscheck whether the overhead observed is due to the remote memory

access delays or for some other reason, likwid tools[58] are used to measure
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Figure 6.3: Implementation overhead comparison of synchronization con-
structs
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performance counter values related to uncore NUMA events. The sum of
remote data volumes are presented in table 6.5. It can be easily concluded
that the excess remote data volume in the default approach is the cause of

additional overhead observed in Table 6.4.

Table 6.5: Comparison of Remote Data volumes in GB

Synchronization method
Affinity aware | NUMA Oblivious
0.0420 GB 0.0772 GB

6.4.2 BOTS Benchmarks

To assess the impact of affinity aware synchronization on overall performance
on work stealing runtime, we continued to execute the same benchmark pro-

grams as done in previous chapters. The speed up comparison is done be-

Table 6.6: Execution Time Comparison NUMA Oblivious Vs Affinity aware
synchronization

BenchmarkName-Size Execution time in seconds
NUMA Oblivious | Affinity aware Serial
Synchronization | Synchronization
Strassen-2048 0.182148 0.171838 1.8142
Strassen-4096 1.091279 0.983134 13.139
Strassen-8192 7.010121 6.259036 92.7439
Sort-33554432 0.496975 0.447725 6.696
SparseLU-single 0.719509 0.741776 11.1524
SparseLLU-for 0.641538 0.675303 10.842

tween the best of our previous contributions and affinity aware lock imple-
mentation. The figure 6.4 depicts little improvement case of Strassen-2048,
Strassen-4096, Strassen-8192 and Sort benchmarks. All these programs are
exclusively meant for computational intensive and the number of tasks and
other OpenMP directives used in these programs are more. Hence there is

significant performance improvement (11%). Among the benchmark classes,
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single and for implementations of Sparse LU program are bandwidth in-
tensive and could not take the advantage of minute improvement contributed

by affinity aware synchronization.

NUMA Oblivious Vs Affinity Aware Synchronization
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Figure 6.4: Speed-up comparison of NUMA Oblivious vs Affinity aware lock
implementations

6.5 Conclusion

This chapter is an effort put to analyze the importance of locality of synchro-
nization constructs in NUMA multi-core processors. The analysis is helpful in
adapting existing work stealing based run-times to NUMA multi-core which
use native thread library and synchronization constructs. If NUMA aware
locks are used in these run-times, the performance of run-time and target
application can be improved. These locality aware constructs can be imple-

mented at run-time layer and do not effect the source code of the application.
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Chapter 7

Conclusion and Future Work

The thesis contributes strategies for adapting the existing task stealing based
run-time systems to NUMA multi-core architecture environment. While ana-
lyzing the randomized work stealing strategy, few metrics such as false steals
and remote steals are introduced to analyze the effectiveness of victim selec-
tion. The proposed strategies were presented in mathematical and implemen-
tation form and were applied on standard task based benchmark programs
for evaluation. The proposed strategies are intended to improve the over-
all performance of user level task based run-time systems by reducing the
false steals and remote steal attempts, improving task-data proximity and
synchronization affinity. The first three contributions of the thesis in chap-
ters 3, 4 and 5 are proposed and implemented at the work stealing run-time
layer and last contribution in the chapter 6 is proposed at native thread layer

located below the work-stealing run-time layer.

7.1 Summary of Contributions

The first contribution, Threshold constrained work-stealing strategy proposed
in the chapter 3 aimed to improve randomized victim selection in standard
work-stealing run-times assuming uniform memory access in multi-core ar-
chitecture. This strategy is based on queuing theory inventory model and

applies min-max constraints on the task queues. This strategy could show
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little performance gain on certain applications which are computational in-
tensive but it was observed that the performance gain is insignificant in case
of data intensive parallel applications. The results presented in the chapter
3 also are statistically insignificant though there is little performance gain.
Topology aware task stealing strategy proposed in the chapter 4 considers
the topological features of modern NUMA multi-core architectures to fur-
ther improve work-stealing run-times. This strategy is proposed to minimize
the remote task stealing attempts which are specific to NUMA multi-core.
Stealing domain concept introduced in this chapter is a best effort approach
to minimize the remote task stealing actions which impact the performance
of data intensive applications. The proposed strategy could show significant
performance gain since it also addresses the remote task steal attempts in
work stealing environment.

Shared object binding strategy proposed in the chapter 5 is an approach to
improve task-data affinity in work-stealing environment. It is an extension to
the contribution in chapter 4 to further improve the performance of data in-
tensive applications in NUMA multi-core environment. This strategy is based
on the compiler hints and guides the task dispatcher module of the run-time
to map the tasks on to the same memory nodes where the dependent data
objects are mapped to. This strategy relieves the programmer from explic-
itly mapping tasks based on object binding. The proposed strategy could
show additional performance gain in case of data intensive applications with
shared objects larger than page size.

In the chapter 6, we extend the concept of locality to native thread syn-
chronization objects in NUMA multi-core environment. Affinity aware syn-
chronization constructs are proposed at worker thread layer which lies below
the work stealing layer. These synchronization constructs add an additional
performance gain to all the previous contributions.

All the contributions of this thesis are tested on dual socket NUMA multi-core
platform with Linux environment. The user level task based run-time con-
sidered for experimentation is OMP1i source to source translator. Barcelona
OpenMP Task Suit benchmark programs used for illustration in all con-

tributed chapters are all task based programs composed with computational
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and data intensive applications. The strategies proposed in this thesis can

also be adapted in Cilk, TBB and other work stealing run-time environments.

7.2 Future Work

Our contribution in chapter 6 is an effort to address locality issues at user
level thread layer. This work gave us new avenues in synchronization object
locality and motivated us to further address locality issues at kernel level.
The proposed strategy in chapter 6 was tested only for mutex objects. We
wish to apply these strategies to all other synchronization constructs such as
condition variables and semaphores and come out with NUMA aware native
thread synchronization library.

If more than one virtual machine is running on a NUMA multi-core envi-
ronment, the data locality of one VM is going to impact the performance of
other VM. Scheduling strategies such as Completely Fair Scheduler(CFS) at
hypervisor layer are not aware of the NUMA topology. We wish to contribute
our future work on locality aware VM scheduling for NUMA multi-core ar-
chitecture based on hardware topology.

The present high performance servers follow Integrated Many Core architec-
ture. In these machines, hundreds of co processors are attached on single
unit along with main processor. Xeon Phi(KNL) is an example for such
processor, where the main processor is a dual socket Xeon (discussed in our
thesis) and associated co-processors with floating point computational abili-
ties. We wish to extend the task based work stealing infrastructure for these
integrated multi-core architectures as part of our future work.
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