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Abstract

The most consistent theory that has unfolded the basic building blocks of visible matter
content and its dynamics to the level of experimental accuracy is questionable when it
comes to the ingredients and dynamics of dark matter in the Universe. The demand
for extended frameworks of the standard model that can flash light on this mysterious
matter component from the probes of available experimentally feasible observables are
piling up. In this concern, we scrutinize few simple beyond standard model frameworks

in connection to neutrino and flavor sectors possessing well measured observables.

We start by presenting a comprehensive study of singlet scalar and Majorana dark matter
in a U(1)p_r, gauge extension of the standard model, where three exotic fermions with
B — L charges as —4, —4, +5 are added to make the model free from the triangle gauge
anomalies. The enriched scalar sector and the new heavy gauge boson Z’, associated
with the U (1) p—1, symmetry make the model advantageous to be explored in dual portal
scenarios for the search of dark matter signal. Without the need of any ad-hoc discrete
symmetry, the B — L charge plays a crucial role in stabilizing the dark matter particle.
Analyzing the effect of two mediators separately, the scalar portal channels give a viable
parameter space consistent with relic density from Planck data and the direct detection
limits from various experiments such as LUX, XENONI1T and PandaX. While the Z’
mediated channels get additional constraints from the LHC searches for Z’ in the dilepton
channel. A massless physical Goldstone boson plays a key role in the scalar portal relic
density. We shed light on the semi-annihilation in the case of scalar dark matter. We
show the mechanism of generating the light neutrino mass at one-loop level where the

dark matter particle runs in the loop.

We then investigate neutrino phenomenology and dark matter in the context of the sco-
togenic model. We examine the the radiative neutrino mass matrix by considering the
neutrino mixing matrix to be of tri-bimaximal form with additional perturbations to ac-
commodate the recently observed non-zero value of reactor mixing angle ;3. We obtain
the relation between various neutrino oscillation parameters and the model parameters.
Working in degenerate heavy neutrino mass spectrum, we obtain light neutrino masses
obeying normal hierarchy and also study the relic abundance of fermionic dark matter
candidate including coannihilation effects. We display a viable parameter space consis-
tent with neutrino oscillation data, relic abundance and various lepton flavor violating

decays such as £, — £gy and £, — 343.

Moving on to dark matter and flavor connection, we explore Majorana dark matter
in a new variant of U(1),r, gauge extension of Standard Model, where the scalar

sector is enriched with an inert doublet and a (3,1, 1/3) scalar leptoquark. We compute



xii

the WIMP-nucleon cross section in leptoquark portal and the relic density mediated
by inert doublet components, leptoquark and the new Z’ boson. We constrain the
parameter space consistent with Planck limit on relic density, PICO-60 and LUX bounds
on spin-dependent direct detection cross section. Furthermore, we constrain the new
couplings from the present experimental data on Br(7 — puv;v,), Br(B — Xsv), Br(B —
K77), Rg and By — B, mixing, which occur at one-loop level in the presence of Z’ and
leptoquark. Using the allowed parameter space, we estimate the form factor independent
Pzi,5 observables and the lepton non-universality parameters R+ and Ry4. We also briefly

discuss about the neutrino mass generation at one-loop level.
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Chapter 1

Introduction

To the present knowledge, four different kinds of interactions, namely strong, weak, elec-
tromagnetic and gravitational exist. Understanding gravitational interactions requires
coordinate invariance as described in Einstein’s general theory of relativity. The rest
can be explained by the field theories based on Lorentz invariance. The manifestation of
interactions at fundamental level in theoretical view point is based on symmetries which
are the subsets of Lorentz transformations. Standard Model (SM) of particle physics
is one such low energy gauge theory, over the years has produced tremendous success
in giving theoretical demonstration for the fundamental physics in particle accelerators

with an optimal accuracy.

1.1 Revisiting the Standard Model

Standard model is a gauge theory, invariant under SU(3)c x SU(2), x U(1)y symme-
try group. The particle content with their corresponding charges are listed in Table.
1.1. The fermion content includes six quarks and six leptons and their anti-particles.
Left-handed particles transform as doublets, while right-handed particles transform as
singlets under SU(2)r, where L denotes the handedness. SU(3)¢c does not distinguish
the handedness, both left and right-handed quarks transform as colored triplets and all
the leptons are represented as singlets. Only quarks participate in strong interactions,
governed by SU(3)c gauge symmetry. All the left-handed fermions undergo weak in-
teractions dictated by SU(2); gauge group. Both the left and right-handed particles
participate in electromagnetic interaction, described by the U (1) gauge group. The elec-
tromagnetic and weak interactions can be studied in a unified framework of electroweak
interactions governed by SU(2)r, x U(1)y gauge symmetry, where Y denotes the hyper-

charge. All the interactions are mediated by the gauge bosons which are generators of

1
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y | Fields | SU@B)c |[SU@)L [UQy | T [Q=T{+Y |

T AAENERETCA NG
in : NEAN s
Leptons KLE<Z> 1 2 —1/2 (—11//22> (_01>
er ' 1 1 -1 0 -
Scalar H 1 2 1/2 (—1 1//22> <f1)>

TABLE 1.1: Fermions and scalars with their corresponding charges in the standard
model.

the associated group that governs the interaction. Eight massless gluons mediate the
short range strong interactions, three massive weak bosons transfer the short range weak
force and one massless photon mediates the long range electromagnetic interactions. Fi-
nally, the SU(2) scalar doublet H is introduced in the manifestation for the origin of

mass in standard model.

1.1.1 Symmetries and gauge invariance

One of the fantastic perception in theoretical physics is that the interactions are governed
by the principles of symmetries. These symmetries indeed point to the conserved quan-
tities in accordance to Noether’s theorem [1]. For instance, the invariance under global
transformation leads to a conserved quantity. However, from a physicist’s perspective,

it implies some unmeasurable quantity i.e.,
Y(z) = ePip(x), where S is unphysical. (1.1)

Furthermore, taking space time dependent transformation leads to the interesting re-
quirement of interacting field called ‘gauge field’, which mediates the interactions and
the invariance is termed as local gauge invariance. Concerning to SM, all interactions

obey local gauge invariance under SU(3)c x SU(2)r, x U(1)y symmetry group.

1.1.1.1 U(1) local gauge invariance

We start with the free Dirac Lagrangian

£ = (i3, — m)e. (1.2)
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We want this Lagrangian to be invariant under a more general transformation of the

fermion field v as
¥ () = 7 y(x). (1.3)
Under this transformation, the Dirac Lagrangian becomes
L= (iv" 0t — '9p0u B — mp) . (1.4)

Clearly, the Lagrangian is not invariant (£ # £’) due to the presence of derivative term.

Defining a covariant derivative D,, with a gauge field A, as

D, =0, —ieA,, (1.5)
where A, obeys the transformation rule

A Ayt 0,8 (1.6)
Now, one can obtain a U(1) local gauge invariant Lagrangian,

Lyay = (' Dy—m)y
= J (i')/uau - m) P+ (3@7“@[}14#. (1'7)

The introduced gauge field A, is paving the way for local gauge invariant dynamics.
The mass term for the gauge field is prohibited as it violates the gauge invariance.
The long range dynamics of electromagnetic interactions can be embedded in a U(1)
local gauge invariant Lagrangian, named Quantum Electrodynamics (QED) and the
associated gauge field in this regard represents the massless photon. The full Lagrangian

thus becomes

. - 1.,
Lapp = ¥ (i7" 0, —m) ¥ + ey Ay — TF" Ep, (L8)

where —e denotes the electric charge of the Dirac fermion 1, —iF‘“’ F,,, denotes the

kinetic term for the photon field A, with F,, = 0,A, — 0, A,.
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1.1.1.2 SU(N) local gauge invariance

Moving to the non-abelian case of SU(N), the fermion multiplet ¥ is represented by

Y1
V2

(0

Accordingly, the Dirac Lagrangian takes the form
L=V (iv"0, —m) ¥ = Z%(i’y“@u —m) ;. (1.10)
We perform the local SU(N) transformation to the fermion multiplet as
U(z) — e @Tag(g) (1.11)

where, the generators T, satisfy [T, Tp] = ifapele With fup. being real constants. In

analogy to the abelian case, we define
Dy = 0, +igTa Ay, , (1.12)
provided with Aj transformation rule
A7 a0~ Ly 0 fapac (1.13)
i m g 1uQla abcQb W .
Thus one can write the SU(N) local gauge invariant Lagrangian as
Lsyny =Y (iy"0, —m) ¥ — g (U, T) Al (1.14)

Following the above expression, the SU(3)¢ local gauge invariant QCD (Quantum Chro-
modynamics) Lagrangian that explains the strong interactions is given by

o _ 1
Lqocp = Y (V"0 —m) ¥q — gs (\I’qv“Ta\I'q) GZ — ZGZVGZV’ (1.15)

where ¥, stands for quark triplet, g, defines the coupling strength associated with SU(3)
group and Gy, = 0,G}, — 0,G}, — gs fachsz, corresponds to the gluon field tensor with
G}, (a=1,2,..8) denoting the eight massless gluon fields.
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1.1.2 Electroweak theory

Weak and electromagnetic interactions can be demonstrated in a unified framework of
SU(2)r, x U(1)y gauge invariant theory [2—4]. To illustrate, first we perform the local
gauge transformation to the chiral fermion multiplet

il (2) Ty +p' (2)Y]

YL — € PL,

iB@Y (1.16)

YR — €

where o1 r = 3(1 Fv5)p and T, = 7,/2 with 7, (a = 1,2, 3) being the Pauli matrices,

0 1 0 —1 1 0
7'1:< ), T2:<. ), 7'3:< ) (1.17)
1 0 i 0 0o -1

In the above transformation, Y and 7T, correspond to the generators of U(1)y and

SU(2)1, gauge groups respectively. They are normalized as
Q=T,+Y, (1.18)

where () denotes the electric charge and T4 stands for the neutral generator of SU(2)
group. The local gauge invariance requires the introduction of covariant derivative re-

placing the derivative in the interaction Lagrangian and is given as

L = ot <z’8u - %Ta W — g’YBM) o + PRy (10, — ¢V B,) ¢r
1

1
(BB = (W W, (1.19)

where, the field tensors are given by W,, = o,W, — oW, — gW, x W, and B,, =
0uB, — 0,B,,. In the above Lagrangian of unified framework, the coupling constants
g and ¢’ correspond to SU(2) and U(1) groups respectively. As mentioned earlier in
section. 1.1.1, the mass terms of the gauge fields violate the gauge invariance. However,
short-range behavior of weak force requires the gauge bosons to be massive. The puzzle
of mass generation for the gauge fields can be achieved by the mechanism of spontaneous

symmetry breaking, will be discussed in the following subsection.
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1.1.2.1 Higgs mechanism

In electroweak theory, mass can be generated for all the weak bosons using an SU(2)r,

complex doublet H with hypercharge Y = 1/2,

"= \2 (I;Z) . (1.20)

Adding its scalar potential V(H) and kinetic terms, the Lagrangian in Eqn. (1.19)
becomes

. g 2

Lew = L+ ((za“ ~ S gV B,) H’ —v(H), (1.21)

where
V(H)=p4(H H) + A\g(H H)2. (1.22)

For ,u%{ < 0 and Ay > 0, the potential finds the minima at H'H = —,u%{/Q)\H and the

vacuum can be denoted as

1 {0
(H) = 7 <U> ; (1.23)

where v = _AT Fluctuations near the vacuum can be parameterized in terms of four

fields h, 01, 02 and 63 as

1 02 + 16,
Hiz)= V2 <v + h(z) — i03> . (1.24)

For small perturbations, the above parameterization can be written in the form

o) o gioh@ L0
H(z) ~ > (U N h(x)) . (1.25)

Perturbation of this form avoids the unwanted massless fields 6123 appearing in the
model but they only stay as the additional degrees of freedom in the process of gauge
transformation. The vacuum expectation value (v) of the doublet H breaks the sym-
metry associated with the generator T3 i.e., SU(2)r. And also, with the presence of
non-zero hypercharge, it breaks U(1)y gauge symmetry as well. However, the symme-
try corresponding to the charge @ in Eqn. (1.18) remains unbroken i.e., U(1)em. In

simple words, the symmetry breaking pattern is given by

SU2)r x U(L)y — U(1)em. (1.26)
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The above mechanism of ground state violating the Lagrangian symmetry is called
spontaneous symmetry breaking, which is not forced by any external source but rather

the Lagrangian itself does it.

Now, substituting the perturbed doublet of Eqn. (1.25) in Eqn. (1.22), the field A (called

Higgs boson), obtains the mass

My, = /22 p02. (1.27)

Expanding the kinetic term of the Higgs doublet implies

2
g(Wj—zWi)
—gWi’—i—g’Bu
1 ? + M 1/1 2 12 ? iz
= | 3ve w,w +§ iv\/g +9g Z,Z",

(1.28)

2
1)2

8

/
‘(—igT“Wg -~ 2'923#) H =

1 2
L WiFw?
where, Wi = 7

(A, Z,) using the relation

(A“> = ( cos Oy sin9w> (B”> , where Oy = tan™? (g’/g). (1.29)

Zy, —sinfy  cos Oy Wg’

and the neutral boson basis (Wj’ Bu) is shifted to mass basis of

Thus, from Eqn. (1.28), one can see that the three weak bosons W and Z obtain mass,

while the photon A remains massless as expected. Now, rewriting Eqn. (1.24) in the
wt
HE@) = | | ). (1.30)
%(v + h(x) +1iz)

the charged (w®) and neutral components (z) called ‘Goldstone modes’ go as longitudinal

convenient form

polarizations of the massive W+ and Z bosons respectively [5-8]. This whole mechanism

is named after the theoretical physicist ‘Peter Higgs’, called Higgs mechanism [9-14].

Coming to the fermion masses, the Higgs doublet can be employed to generate mass to

the fermions through the gauge invariant Yukawa mass term

Loorm = — (Y(fEHeR +YIQLHdR + Y QL Hup + h.c.) , (1.31)
where H = —impH*. Thus the charged leptons attain the mass of the form M, = %v
_Ye

and similarly for quarks, M, = VoA
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1.1.3 Shortcomings of Standard Model

As every theory has its own limitations and region of validity, SM cannot explain some
compelling evidences such as existence of dark matter (DM), dark energy (DE), baryon
asymmetry of the Universe (BAU), neutrino mass and oscillations etc. These beyond
SM signals are assumed to have obtained from a higher energy theory obeying the basic

principles on which the SM is built upon.

Of all the above mentioned failures, one that is perplexing the high energy physics group
since 80 odd years is the existence of second major energy component of the Universe

i.e., dark matter, whose nature and identity is a mystery till date.

1.2 Introduction to dark matter

Unlocking the nature of DM of the Universe remains one of the long standing quest,
involving cosmology and particle physics. Observation of anisotropies in power spectrum
infer all the visible matter constitutes about 4%, dark matter and dark energy take the
share of 27% and 69% respectively, reported by well-known WMAP and Planck satellites.
The identity of the dominant particle component of the Universe still persists a secret
over eight decades since it was first pointed out by Zwicky in 1933. It is supposed to be
a massive neutral particle which does not interact with electromagnetic radiation. Its
existence is solely established by its gravitational influence. However, there are many
open questions still persist: (a) Is the dark matter fundamental? (b) Does the dark sector
is similar to visible sector with various kinds of fundamental particles? (c¢) Whether it
is fermionic or bosonic? Unravelling the pile of unknowns require huge theoretical and
experimental hardship. In the phenomenological point of view, this thesis centers its
attention to investigate DM in different beyond the SM scenarios and its implications

in neutrino and flavor sectors.

1.2.1 Brief history

First, we briefly review the observations [15] that drove to the belief of dark matter

existence and the necessity of its establishment in the theories that explain its nature.

1.2.1.1 Rotation curves

The hint of the unknown matter particle was first pointed out and named as ‘dark

matter’ by the pioneer astronomer Fitz Zwicky way back in 1930’s. In 1933, he used
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viral theorem to estimate the velocity dispersion of the visible galaxies in Coma cluster
[16]. He observed the average velocity dispersion to be nearly 1000 km/s rather than the
expected 80 km/s. Later in 1937, a more refined analysis [17], also gave the high mass-
to-light ratio implying the existence of DM in some state. Similar study was performed
by Sinclair Smith for Virgo Cluster in 1936. In 1960s, Rubin and Ford published their
spectroscopic observations of M31 rotation curve of Andromeda Galaxy [18]. The first
convincing claim of discrepancy in mass is made in the seminal paper [19], where Freeman
compared the photometric observations to the 21 cm rotation curve for M33 and NGC
300. Later in 1972, Rogstad and Shostak carried out the similar analysis for M31, M101,
1C 342, NGC 2403 and NGC 6946, where the mass-to-light ratios are found to be 20 for
large radii. In 1978, Ford, Rubin and Thonnard published a widely cited article [20],
confirming the flatness of optical rotation curves of ten most luminous spiral galaxies,

shown in Fig. 1.1.
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F1GURE 1.1: Rotation curves of high-luminosity galaxies as a function of radial distance
[20].

The flatness behavior can be illustrated as follows. Spiral galaxies have most of their
mass concentrated in the central bulge and the spiral arms spread out from the disc.
For a star at a distance r from the galactic center of spiral galaxy, Virial theorem relates
the average potential and kinetic energies as (P.E) + 2(K.E) = 0. The circular velocity
of the star is given by

v(r) o« , (1.32)

where M (r) denotes the mass enclosed in the disc of radius r. For the region within the
central bulge, the velocity goes v(r) ~ r as M(r) = %777"3p, with p denoting the average

density of the central hub. Outside the central hub, the velocity obeys the Keplerian

decline v(r) ~ r~%/2. However, observations claim that the velocity curve seems to
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flatten for large radial distance. An invisible matter component is believed to nullify the

radial dependence of velocity rotation curve.

1.2.1.2 Primordial nucleosynthesis and CMBR

Primordial nucleosynthesis is one of the earliest probes to test the standard model of
Cosmology. It indicates that the total luminous matter density (baryonic) is Qpum ~
0.01. Concordance between the observed and predicted abundances suggest 0.014 <
p < 0.16 [21]. These numbers give an intuition that some fraction of baryonic matter

is non-luminous. In other words, there is some baryonic dark matter in the Universe.

After the probe of detecting Cosmic Microwave Background Radiation (CMBR) was
discovered, experimentalists were able to look deep into the early Universe for the times
after the last scattering surface. The anisotropies in CMB gave a route map to predict
the energy budget of the Universe. Baryon acoustic oscillations in the primordial plasma
during the early Universe is the source of anisotropy in CMB power-spectrum. Baryons
and dark matter behave same when looked in gravitational point of view, however, can
be distinguished in terms of their interaction with photons. Their impact on acoustic
oscillations can be figured out from the CMB spectrum, shown in Fig. 1.2. In particular,
the first acoustic peak is mostly because of baryonic component and the third peak
is associated with dark matter in the Universe. According to Planck Collaboration,
fitting ACDM model parameters to the power-law of CMB anisotropy, the baryonic and
dark matter densities are given as Qph? = 0.02237 4 0.00015 (68% CL) and Qpyh? =
0.12£0.0012 (68% CL) [22]. This implies that the non-baryonic dark matter constitutes

more than 84% of the total matter content in the Universe.
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FIGURE 1.2: CMBR power spectrum [22] with the blue curve representing ACDM
based fit to Planck data. Error bars denote 10 diagonal uncertainties.
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1.2.1.3 Numerical simulations

Computer based simulations were used in early 60’s to understand the evolution of
gravitationally interacting massive bodies of the Universe. Considering dark matter in
the energy component, it was found that the resulting pattern of these cosmological
simulations is sensitive to the DM initial velocity distribution. This gave the hint to
the cosmologists to classify whether dark matter is relativistic (hot) or non-relativistic
(cold). At large scales, the impact of dark matter velocity on simulated structure is
minimal. However, in case of small scale structures, the density fluctuations get washed
out due to hot dark matter (HDM), thereby suppressing its growth. In contrast, cold
dark matter (CDM) with shorter free-streaming length can form very low mass halos.
These halos at early Universe merge with one another to give large scale structures.
The paper of 1984 [23], first appreciated CDM over HDM in the structure formation
simulation study. Later in 1996, Navarro, Frenk and White published the analysis of
the halos produced in their high-resolution CDM simulations [24].

1.2.1.4 Bullet cluster

Bullet cluster 1E0657-558 [25] is one of the vivid direct evidence for dark matter exis-
tence. It was formed due to the collision of two enormous galaxies, where one passes
through other. The gas in these galaxies that got heated up due to the collision, emits
X-rays. The X-ray spectrum reveals the spread of baryonic matter of the system after
collision shown in the left panel of Fig. 1.3. It was found that the images of background
galaxies got distorted due to gravity of cluster’s mass. Measuring the magnitude of dis-
tortion by the method of weak lensing studies, the mass in the cluster can be estimated.
The green contours of Fig. 1.3 describe the reconstructed lensing signal for the pro-
jected mass in the system. If there is no dark matter, the contours will trace the X-ray
spectrum. From Fig. 1.3, it is clear that the contours do not trace the visible region
(baryonic). So, only the baryonic matter content in the system alone cannot explain
the amount of distortion. The hypothesis of collisionless dark matter was found to be
the most convincing argument that causes the lensing effect in the outer part of X-ray

region.

1.2.2 Possible nature of dark matter

Considering the above hints, the possible features of the dark matter particle can be

deduced as follows:
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FIGURE 1.3: Images of Bullet cluster [25] with green contours representing the weak
lensing reconstruction. Left panel shows the X-ray picture obtained by 500 ks exposure
to Chandra. Right panel shows Magellan pictures of merging cluster 1E0657-558.

e As it is indeed invisible, it should not undergo significant interaction with the

photons. Conclusively, an electrically neutral particle satisfies the requirement.

e The absence of any decay products in cosmic-ray observations [26], the dark matter
is stable over cosmological time scale and its abundance still contributes to energy

budget of the Universe.

e It should not be a colored particle. Strongly interacting massive particle (SIMP)
fails to produce the observed relic density [27].

e Structure formation simulation studies appreciate non-relativistic nature for dark

matter.

Standard model of particle physics, being a successful theoretical framework has no
answer to what dark matter is. The stable neutral particle, the neutrino is anticipated
to be a dark matter candidate. However, this choice fails because of two reasons. One is
due to its relativistic nature, the other is that it can contribute only a small fraction of
current relic density i.e., Q,h% = 0.0062 (95% CL) [28]. Left out with empty hands, one
can expect the unknown dark matter particle emerges from beyond SM frameworks. In
the upcoming section, we will show how an electrically neutral non-relativistic particle
that self-annihilates weakly i.e., Weakly Interacting Massive Particle (WIMP) can match
the predicted relic abundance of dark matter with a cross section of the order ov ~ 10~
GeV~2.

1.2.3 Early Universe dynamics

Early Universe was very dense and hot, with the interactions between particles are more

frequent than today. Production and annihilation went at similar pace maintaining the
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state of equilibrium. In statistical terms, this state is called as ‘Thermal equilibrium’,
characterized at definite temperature. It turns out that the thermal equilibrium de-
scription is a good approximation for most of the early Universe epochs. However, the
expansion of the Universe never gives a state of perfect thermal equilibrium. Universe
is said to be in nearly equilibrium state until annihilation rate I' is greater than the
expansion rate H (= %) i.e., I' < H. Departures from thermal equilibrium is essential
and the notable ones include neutrino decoupling, inflation, primordial nucleosynthesis,

decoupling of dark matter etc.

1.2.3.1 Equilibrium thermodynamics

In equilibrium thermodynamics, the most essential realization in case of scattering is that
the distributions of particles involved, obey the Bose-Einstein or Fermi-Dirac distribu-
tion (kinetic equilibrium). The description follows with two parameters, temperature
(T') and chemical potential (u), with u is conserved during the interaction (chemical
equilibrium), given as

1

f(P) = m’

(1.33)
E(p) infers the energy of the particle with momentum p and +(—) is taken for fermions

(bosons). The number and energy densities at the early times are given by

"= o [ s,

p = (2i)3/d3p E(p) f(p), (1.34)

where g denotes the internal degree of freedom of the particle. Neglecting the small

chemical potentials of the particles in early times, we get

AN R
or? J, PeEW/T L1

p = I OOalpM where E(p) = \/p? + m? (1.35)
212 Jo T eEW/T £1° ' ‘

Defining £ = p/T and using the standard integrals

S > 2 1._/1
/0 ef_ 146 =¢(n+1l(n +1), /0 et de = 5T (2(n + 1)> . (1.36)
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where ((z) denotes the Riemann zeta-function, the densities can be looked for, in two

cases. In relativistic limit i.e., for m < T, the integrals give

3 1 bosons, 2 1 bosons,
n:@ng P T g1 (1.37)

=30
2
& % fermions, 30 % fermions.
For m > T (non-relativistic limit), neglecting +1 in denominator, we obtain

m1

3/2
n=gyg <2W) e /T p=mn. (1.38)

Looking at the number density, one can infer that the number density of massive particles
is exponentially suppressed at low temperatures. Therefore, as the Universe has evolved
from a hot dense state to the present cooled state, the number density of any massive
particle today will be negligible. As the dark matter density still persists in the Universe,

we now discuss the non-equilibrium thermodynamics to explain its abundance.

1.2.3.2 Non-equilibrium thermodynamics - Relic density

First, we suppose that the dark matter particle (say 1) is stable with the lifetime more
than the age of the Universe. We also suppose that only annihilations and inverse
annihilations change the number of 1’s or 1)’s. The evolution of particle species in the

out-of equilibrium state can be inferred from Boltzamann equation, given by [21, 29, 30]

d
S+ 3Hny, = - / dIL, dI; dIL dITg x (27)*6%(py + b — Py — PY)
o [IMEG L ol B f) = IMP o Ffe(LE ) (1L f7)]
(1.39)
where dII = #%. In the above equation, 1+ f applies for boson and 1 — f stands for

fermion, denoting the Bose enhancement and Pauli blocking respectively. For systems
at temperatures T' < F;, Maxwell-Boltzmann statistics can be applied for all species i.e.,

fi = e Bi/T and the factors can be taken as, 1 + f ~ 1. Assuming CP-invariance i.e.,

|M ?ﬂ—w% =|M ]?&% o the Boltzmann equation simplifies to
dny, 454
- T 3Hny = — [ dlly dll; dIL dilg x (27)*6%(py + px — Py — )

x M x [fufy = fof] - (1.40)
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Assuming the output particles y, Y stay in thermal equilibrium,

fX = eiEX/Ta

fo=e BT, (1.41)
The d-function enforces energy conservation, £, + Ep=E, + Ex, therefore,
Fofs = e B HED/T - o (By+Eg)/T _ fong' (1.42)

Thus, the Boltzmann equation (1.40), takes the form

dny,

T 3Hny = —(olv|) [ni - (ngQY] ; (1.43)

where we have used

(ool = (nE2) / Ty, dTls; dTLy dlTy x (27)26%(py + i — py — py)| M [2e™EetEDIT.

(1.44)
Considering a dimensionless parameter Y, = ny/s, where s = %Q*ST 3 denotes the
entropy density!. Conservation of entropy density in the comoving volume implies sa® =

constant. Thus, the above equation can be written as

dYy _

% = —solo) [Yj - (YfQﬂ | (1.46)

It is useful to define a dimensionless parameter x = my /T as the interaction depends

on temperature. Furthermore, during the radiation-dominated epoch t and x satisfy

1 -1/2 372
Mplﬁ = 0301g* Mplmi?ﬁ. (147)

t = 0.301g;

Here m,, denotes the DM mass, Mp; = 1.22 X 10™ GeV and g, is a temperature depen-

dent function that counts the effectively relativistic degrees of freedom? given by

(T = > g (?)4 +£ Y g (?)4. (1.48)

i=bosons i=fermions

Here g, counts the effectively relativistic degrees of freedom contributing to entropy density

grs(T) = > gi<§f)3+; > gZ-(?)g. (1.45)

i=bosons i=fermions

%In early Universe, g, and g.s are equal as all particles are at same temperature.
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Now, the Boltzmann equation (1.46) simplifies to

dyy B s 9 EQ) 2
@ - mEm) {Yw (v)
2712 g sm3 2
o . *S 1/) 2_ EQ
= ~meHm D [Yw (Yw ) ] (1.49)
1/2 M

where H(my) = 1.67g, Y Eqn. (1.49) is a specific form of ‘Riccati’ equation,
which does not have any analytic solutions. However, the behavior of the solution can
be identified by using approximate methods. The annihilation cross-section in general
can have velocity dependence i.e., (ov) = (ov),z™", where n = 0 stands for s-wave

annihilation, n = 1 corresponds to p-wave annihilation. Now, the Riccati equation

becomes p
Yy —(n+2 2 EQ 2
= g~ (n+2) [Yw — (Y¢ ) , (1.50)
Here,
\ = 277'29*5 mi<0v>0 _ 0'2649*sm¢MP1<U'U>0 (1 51)
45 H(m) g/ ' '
At equilibrium,
EQ 3/2
n T
YEQ — v _ 0.145ix%e_x, where ngQ =g <m¢ > e/t (1.52)
s g*s 27T

Moving on to the differential equation of Eqn. (1.50), and defining Ay = Yy — Yf Q

yields
dy @
Ay = ——t =g, (2r ¢+ ay) (1.53)

where prime denotes d/dx. For 1 < x < xy i.e., at early times (xy = m/Ty stands for
freeze-out parameter), Yy, traces Yf Q Which implies A, and ‘Agp‘ are small. Setting
A, = 0, the solution is given by

1 3 x(n+2) m,(n+2)
A¢_2<1—2x> — =, (1.54)

where we have used the expression for Yf Qip Eqn. (1.52) and neglected higher order

terms in Ay. For late times i.e., x > xy, Ay ~ Yy and the terms of YfQ and its
derivative can be dropped, yielding

dAy AAZ

de z(+2)°

(1.55)
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Integrating from x = z; to x = oo, we get

(n+ 1)m§cn+1)
Ay =Yy = — (1.56)
Relic density:
Now, relic density at freeze-out can be computed by the formula
pw me S0
Q = = =——=
Pcrit Perit
(n+ 1)x(n+1)gi/2 GeV 1
= 1.07 x 10° ! : 1.57
h2g,.s Mpi{ov)o (1.57)
where, we have used
3Hg —29; 2 -3 . —1 -1
Perit = G ) = 1.88 x 107*"h* g ecm™°, with Hy = 100h km sec™ ™ Mpc™ . (1.58)

The current values of Hubble constant and entropy density are Hy = 67.2740.60 km sec™ " Mpc™?
[22] and sp = 2890 cm™> respectively. The freeze-out parameter x; takes the value
xy 2 3. Due to annihilations, the abundance can further gets reduced, the present day

abundance can be estimated by [31]

1.07 x 109 GeV~! 1

1.59
g1 /2 M) J(xs)’ (1.59)

Quh? =

where J(zy) reads as

> (ov)(z)
Jay) = /xf D) g, (1.60)
The thermally averaged annihilation cross section (ov) can be computed in more general
method [32]

/s

/400 o x (s —4m3) Vs K <m) ds. (1.61)

2
m?, ¥

X

(ov)(z) = W

In the above formula, s stands for center of mass energy, K1 and Ko denote the modified
Bessel functions.
WIMP Miracle

For s-wave, Eqn. (1.57) can be written as

1.6 x 1079 GeV‘2> <106.75>1/2 (xf> <1.22 x 1019 GeV

O,h% ~0.1 < —
v (ov)o g 20 Mp)

) . (1.62)

Hence, WIMP (ov ~ 1072 GeV~2) is the best motivated candidate for DM.
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1.2.3.3 Direct detection

In principle, the dark matter can scatter off the detector, is termed as direct detection.
In the process of scattering, it suffers a very low recoil (~ keV) due to weak interaction
strength. Analyzing the experimental data by filtering out the background is a challeng-
ing task. So, such detectors are installed in very low background environment to reduce

the noise in the signal.

To a good approximation, the total scattering cross-section (o) can be manifested in
terms of cross-section at zero momentum transfer (op) as the momentum transfers taking
place are usually small in comparison to the typical nuclear scales. The total scattering

cross-section is given by [33]

g0

_ —127172/15|2
v = o [ AP, (163

where v stands for velocity of DM relative to target, F(|g|?) denotes the form factor

satisfying F'(0) = 1, p denotes the reduced mass of WIMP-nucleon system and
4utv do(qg=0
_odo(g=0)
o9 = d|q)?———~. 1.64
o= [ aar (1.64)

WIMP-nucleon cross section has two parts, namely spin-independent (SI) and spin-
dependent (SD) contributions. Scalar part of SI contribution arises from the interaction
term of the form 11gq, while the term @7“1@7“61 accounts for vectorial part of SI con-
tribution. The axial vector term @7“751#6%7561 is responsible for SD contribution. The

cross-sections for each case can be illustrated as follows [34].

Scalar interaction:

We start with the scalar Lagrangian,
Lo = o, (1.65)
The SI contribution at zero-momentum transfer is given by
SI s 2
o5 = 1 Zfy+ (A= D))", (1.66)

With m,, M, denoting the proton and quark mass, the hadronic matrix element f, is

given as

Ip p Qg 2 a
Jp i BT N T P —4 1.
my Z qu Mq =+ 27 Z qu Z Mq ( 67)

q=u,d,s q=u,d,s g=c,bt
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neutron proton
A, | —0.48 £0.02 | 0.78 = 0.02
Ag | 078£0.02 | —0.48+0.02
Ag | —0.15+£0.02 | —0.15 £ 0.02

TABLE 1.2: Spin fractions for quark content in proton and neutron.

Typical values for proton are f7, = 0.020 £ 0.004, f7, = 0.026 £+ 0.005 and f7, =
0.118 4 0.062 [35].

Vector interaction:

The interaction Lagrangian is of the form
Ly = bgpy"Ygyug. (1.68)
The cross-section turns out to be
I 2
= —[Zby+ (A= 2)b], (1.69)

where b, = b, + 2bg, b, = 2b, + by, and Z, A denote the atomic and mass number of the

target nucleus.

Axial-Vector interaction:

The interaction Lagrangian reads as

La—v = dgpv" v ¥a7,754. (1.70)

The corresponding SD contribution becomes

2

4 2
oSh = % Y dgAg| In(Jy +1). (1.71)
q=u,d,s

Here, in case of free nucleon, A, represents quark spin fractions in the nucleon and
the values are provided in Table. 1.2. Currently, the the most stringent bounds are
provided by the collabortions LUX, XENONI1T, PandaX-II on the spin-independent
[36-38] contribution, PICO-60, LUX, PandaX-II collaborations on spin-dependent [39-
41] cross-sections, displayed in Fig. 1.4.
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FIGURE 1.4: Current experimental upper limits on WIMP-nucleon cross-section [42].
Left panel shows the bound on SI contribution and right-panel depicts the same in case
of SD cross-section.

1.3 Aim and overview of thesis

In the present chapter, we have given a brief overview of SM of elementary particles.
Then, we have provided a short description about DM, starting with obliging hints,
observables and the experimental limits obtained till the recent past. Concerning to DM,
the known is little and the unknown is plenty. The knowns promote WIMP as the best
motivated choice and the basic unknowns include mass, spin etc. A phenomenological
survey of all possibilities is essential to elevate the chance of detecting this mysterious

particle experimentally.

In this regard, we take a step forward to explore DM in few simple extensions of SM.
We confine ourselves to fermion and scalar boson type DM. In chapter 2, we propose
a U(1)p_1 gauge extension of SM with suitable extended fermion and scalar sector to
avoid the triangle gauge anomalies and generate masses to all the new particles respec-
tively. We shall make a comprehensive investigation of singlet scalar DM in chapter
2 and Majorana DM in chapter 3. In the process, we invoke collider constraints, an
interesting concept of massless Goldstone boson and its impact on DM relic density
will be addressed. Chapter 4 discusses fermionic dark matter in connection to recent
neutrino oscillation parameters. In chapter 5, we present the L, — L model to see how
the dark matter and flavor observables affect the anomalies associated with the rare

By — K~ (¢)IT1~ decay modes. Finally, we summarize the thesis in chapter 6.



Chapter 2

Singlet scalar dark matter,
massless (zoldstone and neutrino

mass in a new B — L model

2.1 Introduction to B — L frameworks

Models in which the difference between baryon and lepton number (B — L) is gauged,
are economic extensions of the standard model [43-55]. One of the interesting aspects of
this kind of models is that in the standard form, the presence of right-handed neutrinos
and thus, the type-I seesaw mechanism for neutrino mass generation appears naturally.
In addition, attempts have also been made within this economic extensions of SM where

dark matter can be incorporated as well [56-66].

It is widely believed that WIMPs fulfill the necessary criteria of DM, not too far from
the electroweak scale, which provides the opportunity to test them at the current or near
future direct or indirect DM detection experiments. One of the fundamental questions is
how to address the stability of the DM. Within the gauged B — L extensions of the SM,
the stability of the DM can be taken care of by imposing an extra discrete symmetry
on top of the gauge symmetry [51, 59-61, 64, 67]. In these class of models one of
the right-handed neutrinos introduced for gauge anomaly cancellation is odd under the
additional discrete symmetry and acts as a DM candidate. Attempts are also made
to ensure the stability of the DM by choosing the appropriate B — L charge of DM
[57, 58, 62, 63, 65]. There are other variants of gauged B — L extension of SM, where the

additional fermions carry exotic integer value of B — L charge. The discussion of scalar

21
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dark matter and neutrino phenomenology have been explored in the recent works [68—
70], while a beautiful connection between dark matter abundance and matter-antimatter

asymmetry has been investigated in Ref. [65] within WIMPy Leptogenesis.

In this chapter, we study the phenomenology of a scalar DM within the context of
gauged B — L model without the introduction of any right-handed neutrinos, which
are generally present in the conventional B — L theory. The induced gauge anomalies
are cancelled by assigning appropriate B — L charges to the additional fermions. The
key point to note here is that the stability of the scalar singlet dark matter is ensured
by the peculiar choice of B — L charges and not by introducing any ad-hoc discrete
symmetry. The proposed model provides another variant of the class of gauged B — L
models. Similar work on singlet scalar DM phenomenology has been recently explored
in [57] where three right-handed neutrinos are added to make the model anomaly free
and the model structure itself takes care of the stability of scalar DM. Dirac DM has also
recently been investigated in a B — L model [71], where four exotic fermions are added
to overcome the gauge anomalies. The current model describes a new variant of B — L
models with a different scalar content and exotic charges assigned to the newly added
fermions. Moreover, the B — L charge assigned to the scalar DM and its corresponding
annihilation channels, the arising parameter scan are different from the conventional
B — L models.

To proceed with the chapter, we start with a brief note on triangle gauge anomalies in
B — L scenarios and advertise the possible solutions to avoid them in a model design.
We then flash light on the new U(1)p_;, gauge extended framework. Then we move on
to the technical details in the thorough investigation of singlet scalar dark matter in the
vector boson and scalar portal context. We incorporate the collider constraints in the
analysis and also mention a discussion related to neutrino mass generation at one-loop
level. We finally give an appealing scenario of semi-annihilation in relic density context

and conclude the chapter.

2.2 The model framework

It is believed that the B — L gauge extension of SM is the simplest model one can
think of from the point of view of a self-consistent gauge theory where the difference
between baryon and lepton number is promoted to local gauge symmetry. The gauge
group of this simplest B — L model is SU(2), x U(1)y x U(1)p_r,, omitting the SU(3)c
structure for simplicity. Originally, these models are motivated to cancel the triangle

gauge anomalies
A [UME_ ], A [(gravity)2 xU(W)p_1|, (2.1)
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with the inclusion of right-handed neutrinos vg; (i = 1,2, 3) having the B— L charges —1
(the other gauge anomalies i.e., A3 [SU(3)% x U(1)p—1] and A4 [SU(2)7 x U(1)p—1]
trivially cancel). All the triangle gauge anomaly diagrams are shown in Fig. 2.1. These
right-handed neutrinos can generate light neutrino masses via the type-I seesaw mech-
anism [72-75] and account for matter-antimatter asymmetry of the Universe. However,

we present below few other possible solutions to overcome these anomalies.

U)p-1 U(l)p-1
Ul)p- Up—r  SU3)g SU@B3)e
U)p_y UL)p-1
gravity gravity SU(2)r SU(2).

FIGURE 2.1: The one-loop triangle gauge anomalies for the present B — L model.

2.2.1 Anomaly cancellation with additional fermions having exotic B —

L charges

In order to build an anomaly free B — L gauge extended framework, the charges of the

additional fermion content have to satisfy two simple equations given as [76]

Zx§:3 and inzs, (2.2)

where ng denotes the number of additional fermions and x; denotes the B — L charge
of each fermion. ng = 1 gives no solution and ng = 2 gives a complex solution. ng > 3
is always suitable to have real solutions. For instance, choosing the charges as —4, —4

and +5 is one such solution satisfying (2.2), and has been explored in [68, 69]. We show
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below the explicit check

AL UME L] = AN (UMW) p) + AV (U)5oy) = =3+ (4 +4° + (=5)*) =0,
Ay [gravity? x U(1)p_r] < ASM (U1)p-1) + AA™ (U p_r) = -3+ (4 +4+(-5)) =
(2.3)

There could also be a different solution to cancel the gauge anomalies, where one re-
quires four additional fermions carrying fractional B — L charges (first proposed in
Ref. [71]). We briefly describe below, how the non-trivial gauge anomalies A; (U(1)%_;)
and Aj (gravity2 x U(1)p— L) get cancelled by introducing four exotic fermions with
fractional B — L charges, i.e., £1(4/3), n.(1/3), x1r(—2/3) and x2r(—2/3), where the

corresponding B — L charges are shown in the parenthesis,

A UG- ] = AN (UML) + AT (U)h-_L)

[ ) ) ()

Az [gravity? x U(1)p-1] o A3 (U()p-1) + A (U(1) p-1)
-3+ _<§>+<;>+<3>+<3>] =0. (2.4)

In this work, we consider the first category of anomaly free model built up based on

=0,

U(1)p—r extension of the standard model which includes three neutral exotic fermions
N;r (where ¢ = 1,2,3), with the B — L charges —4, —4 and +5. We include two more
scalar singlets ¢; and ¢g to provide Majorana masses for all the exotic fermions and
also to spontaneously break the B — L gauge symmetry. We also introduce a scalar dark
matter ¢pm, singlet under the SM gauge group but charged under U(1)p_r. It does
not get any VEV, it does flow in the loop to generate light neutrino mass. The particle

content of the present model is given in Table 2.1.
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y \ Field | SU@2)L xUQQ)y | UM)p_y |
Fermions | Qp = (u,d)t (2,1/6) 1/3
uR (1,2/3) 1/3
dg (1,-1/3) 1/3
= (v, )t (2,-1/2) -1
er (1,-1) ~1
Nir (170) —4
Nog (170) —4
Nag (1,0) 5
Scalars H (2,1/2) 0
dDM (1,0) nDM
1 (170) -1
¢8 (170) 8

TABLE 2.1: Particle spectrum and their charges of the proposed U(1)p_1, model.

The relevant terms in the Lagrangian for fermions in the present model is given by

T o 1
Efermlon _ QLZ,Y <a,u + Zgz W, + =i g/ B,u, +

1.
5 Wutyg 20 9BL Z,Q) Qr

3
1. ,

+ugiv" *Zg "B, + 30 9BL Z, | ur

1 1

g wt 3ZgBL ZL) dr

, F
93

+dgiy" <8M

+lriv* (0, +

N

W —lng igBLZL>€L

—i—eRZ'y“ (9“ —ig B, —igpLZ, )

+Niriv" (8, — 4i gL Z,,) Nir + Narin* (0, — 4igsL Z,,) Nag

+N3giy" (8M + 51 gBL Z#) Nsp . (2.5)

The interaction Lagrangian for the scalar sector is as follows

Escalar = (DMH)T (DHH) + (DNQSDM)T (DMQSDM) + (Dﬂqbl)T (Dugbl)

+ (Dugs) (D) — V (H, dpm. b1, ¢s) (2.6)
where the covariant derivatives are

g /
Dy H =0, H +igW,y - gH + i%BNH,
Dyudpm = duppM + i nDMYBL Z, DM 5
Dyué1 = 01 — igL Z,,¢1 ,

Dyups = 0,08 + 8igpL Z,,¢s, (2.7)
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and the scalar potential is given by

V(H, dom, 1, 08) =V (H, b1, ds) + pbadhyépm + Aom(dhyoom)? + A (HTH) (65 6pm)
+Ap1(Bha¢oM) (6161) + As(Shydpm) (s). (2.8)

Here ¢pum = S%f‘ and

V/(H, ¢1,0s) = pHH + a(HUH)? + 120101 + M (0]¢1)? + p2olos + As(ohds)?
o (HTH) (65 61) + us(HTH) (0gs) + Mis(61o1) (ohos).  (2.9)

The Yukawa interaction for the present model is given by

Lyac = Y"QrHup+ Y QrHdgr+ Yl Heg

+ > Ya3hINegNsr + D YapdsNepNar - (2.10)
a=1,2 a,p=1,2

From the above Yukawa interaction terms, one can write the exotic fermion mass matrix

and diagonalize it to obtain non-zero masses to all the Majorana mass eigenstates.

2.2.2 Vacuum stability criteria and unitarity constraints

The vacuum stability conditions of the scalar potential are given by [77, 78]

A >0, Aup >0, Apm >0, A1 >0, Az >0,
Ap1 + vV AbMmAL 2> 0, Apg + vV ApmAs > 0, Aig + v/ A1Ag > 0,

vV ADMA1AS + )\Dl\/g + )\DS\/E + AsvV Apum > 0. (2.11)

Now we apply the tree-level perturbative unitarity constraints on the scattering processes

of the scalar sector. The formula for the zeroth partial wave amplitude [79] is given by

1 [4pFMp™M
apg = —— fZ/ d(cos ) Tsr_,o. (2.12)
321 S -1

Here pZ.C(I\}[) is the the centre of mass (CoM) momentum of the initial (final) state, s is the
CoM energy, and T5_,5 denotes the full amplitude of each 2 — 2 scattering processes.
At high energies, the partial wave amplitudes i.e., the quartic couplings gets constrained

from perturbative unitarity requirement [Re(ao)| < 3, giving

4
AH, A1, Ag, Apm < ?ﬂ-v

AHD; AD1, AD8, AH1, AHS, A1g < 4. (2.13)
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2.3 Spontaneous symmetry breaking, masses and mixing

The spontaneous symmetry breaking of SU(2)r, x U(1)y x U(1)p—r, down to SM gauge
group SU(2), xU(1)y is implemented with the scalars ¢; and ¢g. Then the spontaneous
symmetry breaking of SM gauge group to low energy theory is achieved by assigning
a non-zero VEV to SM Higgs doublet. Similar kind of B — L model with additional
scalars with ¢; and ¢9 has been discussed in Ref [71], which avoids the presence of any
accidental global U(1) symmetry because of cross term p (Qﬁ%T(bQ + qﬁ%qbg). However, in
our model gauge invariance forbids the inclusion of such cross terms between ¢; and
¢g, leading to an accidental global symmetry. As a result, after spontaneous symmetry
breaking two massless Goldstone modes arise such that one linear combination of them
will be eaten up by the neutral gauge boson corresponding to U(1) g1, gauge group and
gives mass to Z' and the other orthogonal combination remains as massless Goldstone
boson. We shall discuss the implications for this massless Goldstone boson in subsequent

discussions.

The neutral components of the fields H, ¢1 and ¢g can be parametrised in terms of real

scalars and pseudoscalars as

1
HY = —2(v+h) \[
¢1:12(v1+h1) \%
b5 = \2@8%8) s

Here the VEVs of the scalars are given as (H) = (0,v/v2)7, (¢1) = v1/V?2, (¢g) =
’Ug/\@.

2.3.1 Mixing in scalar sector

In the scalar sector, the CP-even scalar mass matrix takes the form

22102 AHivv1T AHsUUS
M%;: )\Hlvvl 2)\1’0% /\181)11)8 . (2.14)

)\Hgv’vg )\18’011}8 2>\8U§

We assume that the Higgs doublet H mixes equally with the two singlets and the mixing
is small so that the decay width of Higgs is consistent with LHC limits. We also consider
the VEVs of the new singlets v; ~ vg > v and the couplings Ag1 g < Ag, A1 ~ Ag
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then the mass matrix takes a simple form

a a a
Mg~|a y b |. (2.15)
a b y

Under the assumption of minimal Higgs mixing, the unitary matrix that connects the

flavor and mass states is

1 Bcosa—fBsina  Beosa+ Bsina

U~ |- Cos & sin « . (2.16)
-5 —sina cos &
Here g = ng is the mixing parameter for H — ¢1 g and a = %” denotes ¢1 — ¢g

mixing, obtained from the normalized eigenvector matrix of M% (2.15). Thus, the

relation between flavor and mass eigenstates is given by

h H Hy — H3pV?2
h|=U|H|=|-H5-2-3]. (2.17)
hs Hj3 —H 3+ % — %

The scalar couplings can be written as

20?2 = A\grov :M—%h
+1D)M%, + (14 B +4p%)M?
2)\11)%:2)\81)5:(5 ) H3 ( 52 A7) H27
2(14+ B+ 4p5%)

(B+1)Mz, — (1 + B8 +48%) Mz,
2(1+ 5 +46?%) )

A1gvivg = (2.18)

Here H; denotes the SM Higgs with My, = 125.09 GeV with v = 246 GeV. The mixing

angle 8 can be written in terms of the physical scalar masses as

—Mp + Mg, — \/ —15M3, — 10Mg Mg + M},
B= ; " . (2.19)
4 (203, + M3,

Since the Higgs mass (Mp,) is fixed, the mass parameter My, defines the amount of
mixing i.e., say My, > 1 TeV implies 5 < 0.016. As discussed earlier, Ag appears as

the longitudinal polarization of Z’ and the physical massless Nambu Goldstone, Ang
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are given by

8ug U1
Ag = — Ag + Al
N R N e

U1 8ug

Ang = —/—=As+ ———A 2.20

\/v% + 64v§ \/v% + 64v§ ( )
It should be noted that the massless mode (Ang) doesn’t couple to any SM particle
except Higgs, as we considered non-zero mixing between H and new scalars. It can
give rise to an additional decay channel contributing to the invisible width of SM Higgs,

given as

F(Hl — AN(;AN(;) ~ (2.21)

My osin?B [ v} 46403\
327 vivg(v? + 6403) )
where 8 denotes the mixing between H and new scalars. The invisible branching ratio

of Higgs is given as

I'(Hy — AncANg)
['(H; — AxgAng) + cos? f TG ee®

Briny = (2.22)

Using the constraint, Bri,, =~ 20% [80, 81], Fgﬁfgs ~ 4 MeV, we obtain the upper limit

on the mixing angle as

ltan 5] < 2.2 x 1074 x (G”elv) . (2.23)

Moreover, if the NG stays in thermal equilibrium with ordinary matter until muon
annihilation, then it mimics as fractional cosmic neutrinos contributing nearly 0.39 to
the effective number of neutrino species [82, 83] to give Neg = 3.36f8:g§1 at 95% C.L,
a remarkable agreement with Planck data [84]. This illustration was done by working
in the low mass regime of the physical scalar (~ 500 MeV) [82]. However, in [83] it
was found that for masses = 4 GeV the Goldstone bosons do not contribute to Neg-.
And since in the present work, we consider higher mass regime for the physical scalar
spectrum to discuss the effect of NG on relic density, the contribution of NG to Neg is
not applicable.

2.3.2 Stability of singlet scalar dark matter

Dark matter particle has to be electrically neutral and should be stable over cosmological
time scales. With this motivation numerous frameworks were proposed based on an
unbroken discrete symmetry [85, 86] forbidding the decay of DM. Furthermore, this
discrete symmetry is expected to break at Planck scale and thus, induce the decay of
DM making it unstable. In the present model, we do not assume any ad-hoc discrete

symmetry as such which can stabilize the DM. Rather we choose the B — L charge (say
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npm) in such a way that there shall not be any decay channel as displayed in Fig. 2.2, for
the DM ¢pym [87]. For example, to avoid the cubic term in the scalar potential of the form
¢pmH; Hj where H;, H; denote the physical masses for any of the scalars H, ¢ or ¢g, the
possible values of npy = 0, £2,+£7,+9, 16 are not allowed. Similarly if we do not want
terms like ¢pyH;H;jHy, the value of npy is restricted to npm # £1, £3,£6, £8, £10.
Thus, the allowed values of npyr are +4, 45 and fractional charges. The approach of
ensuring stability of scalar DM particle with the model structure has been recently
implemented in a B — L model with right-handed neutrinos [57], while our model is one
such variant with a modified scalar content and variety of exotic charges assigned to the

additional fermion content of the B — L model.

M ¢om - H;
[ - m)(E
H.
Ly *
o Hi .
. .
. .
o o
$pM . dpm 4 H;
LN 4 CE RN NN J
. .
. I .
o .
. o Hi

FIGURE 2.2: Feynman diagrams leading to decay of scalar singlet dark matter ¢pyg.
The choice of B — L charge to forbid these decay and stability of scalar singlet dark
matter ¢pyr is discussed in the text.

We choose npy = 4 to ensure the stability of the scalar singlet ¢py and study its phe-
nomenology in the prospects of dark matter observables such as relic abundance and
direct detection cross section. Based on the structure of the model built, the DM can
have scalar and gauge portal interactions. We proceed to study in detail the behaviour

of DM observables separately in dual portal scenario.
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FIGURE 2.3: Feynman diagrams for dark matter annihilation (left and middle) and

scattering of DM from nucleon/quark (right panel) through Z’ exchange. First two

diagrams contribute to the relic density observable and the third one is appropriate in
direct detection studies.

2.4 7' portal phenomenology

2.4.1 Relic abundance

The channels that contribute to relic density are shown in the left and middle panels of

Fig. 2.3 and the expression for the corresponding annihilation cross sections are

1
Grp = Y. nbi(nfy)2gbrer (5 = 4MEy) (s +2M7) (s — 4M7)>
11 - 127s [(s — MZ)? + MZT%,] (s — a2, )3
npnder (Cn)? (s — 4MBy) (s — (Mg + Mu,)*)(s — (Mg — Mp,)?)

OziH, = [1 +

167s [(s — M2,)?+ M2T%,] 12sM?2,

N

(5 = (M + M) (s — (Myr — Mp,)?)|

[s(s — 403, )]

: (2.24)

where ¢ = 1,2,3 and

CHl = 2,3(641)8 + ’Ul),
CH2 = \/5(641]8 — '1}1),
CH3 = \/5(6408 + vl).

The parameters cy and n]J;L denote the color charge and the B — L charge of the
fermion f with mass My. My is the mass of the heavy gauge boson Z’ associated with
the U(1) gauge extension, given by My = gBL\/m with the decay width T'y.
With the annihilation cross section, relic abundance can be computed from Eqn. (1.59).
We have implemented the model in LanHEP [89] to produce the model files required
for micrOMEGAs [90-92] package to compute the relic abundance of scalar DM. The
parameters that are fixed during the analysis are shown in Table. 2.2. The flexibility of
gauge portal study is that, just two parameters are relevant i.e., ggr, and Mz,. The value

of npm not only stabilizes the DM paricle but also scales the annihilation cross section
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Mz =2000 GeV, My, =1TeV, My, = 1.5 TeV

gsL = 0.3, My, =1 TeV, My, = 1.5 TeV
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FIGURE 2.4: Variation of relic abundance Qh? with the mass of DM shown with two
representative values of ggr, (left panel) and Mz, (right panel) for npy = 4. Here the
horizontal dashed lines denote the 30 range in current relic density [88].

Parameters | npm | Mp, [GeV] | My, [GeV] | v1g [GeV] B
Values 4 1000 1500 2000 0.007

TABLE 2.2: Fixed parameters for Z’-mediated DM observables.

thereby showing up in relic density. Fig. 2.4 displays the variation of DM abundance
Oh? with the singlet DM mass Mpy and the behavior with various parameters. All

the curves in Fig. 2.4 reach the current relic density of Planck [88] near the resonance

(Mpwm ~ MQZ' ). The gauge coupling gpy, scales the annihilation cross section i.e., lower
couplings give lower annihilation cross section. The channels SS — ff drive the relic
density until the channels SS — Z'Hy, SS — Z'Hy and SS — Z'Hj3 get kinematically

allowed.

2.4.2 Direct searches

Now we look for the constraints on the model parameters due to direct detection limits.
The effective Lagrangian for Z’-mediated t-channel processes shown in the extreme right

panel of Fig. 2.3 is given as

2 2
LYo —% (SO"A — AD"S) Tryu — % (SO"A — AD"S) dr,d.  (2.25)

Comparing with Eqn. (1.68), one can find the value of b, ,, as

2
NDMIBL

bP:bn:Mi%/
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From Eqn. (1.69), the ST WIMP-nucleon contribution is given by

2,2 4
g = - DMIBL (2.26)

T Mé,

We see that the B — L charge npy remains as a scaling parameter in oz alike relic
density in Eqn. (2.24). We show in the left panel Fig. 2.5, the parameter space that
satisfies the 30 range in the current relic density limit [88] and the most stringent direct
detection bound form XENONIT [37]. The right panel shows the WIMP-nucleon spin-
independent cross section with the DM mass for the parameter space shown in the left

panel.

0.30

0.25 OE
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L ]

0.10

0.05 e TS T e

500 1000 1500 2000 2500 3000 3500 4000 48 oo 1000 1500 2000
Mz [GeV] Mpwm [GeV]

FIGURE 2.5: Left panel denotes the parameters space in the plane of (Myz/, gg1,) that

satisfy the current relic density [88] in 30 range and XENONIT [37]. The right panel

depicts the WIMP-nucleon SI cross section with the mass of the scalar DM for the

parameter space shown in the left panel. Here, the horizontal dashed lines denote

the current bounds on spin-independent WIMP-nucleon cross section from the direct
detection experiments LUX [36] and XENONI1T [37].

2.4.3 Collider bounds

In recent past, both ATLAS and CMS experiments have provided extensive studies to
search for new heavy resonances in both dilepton and dijet signals. It is found that these
two experiments provide lower limit on Z’-boson with dileptons, resulting in stronger
bounds than dijets due to relatively fewer background events. ATLAS results [93] from
the study of dilepton signals for the Z’ boson provide the most stringent limits on the

heavy gauge boson mass Mz and the gauge coupling ggy,.

We use CalcHEP [94, 95] to compute the production cross section of Z’. In the left
panel of Fig. 2.6, we show the Z’ production cross section times the branching ratio of
dilepton (ee, pp) signal as a function of Mz/. The black dashed line denotes the dilepton
bound from ATLAS [96]. It is clear that the region below My ~ 3.7 TeV is excluded
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for ggr, = 0.4. For gpr, = 0.1, Mz < 2.3 TeV is ruled out. We have My 2 1.2 TeV
for gpr, = 0.03 and the mass region of My 2 0.5 TeV is allowed for gg;, = 0.01. The
plot in the right panel of Fig. 2.6 shows the parameter space that satisfies 30 range in
the Planck relic density limit and the XENONI1T constraint. The region to the right
of both the dashed curves is consistent with LEP-II [97] i.e., Mz /gpr, > 6.9 TeV and
ATLAS [96] dilepton limit. We see that the ATLAS gives more stringent limit in the
mass region My < 2.7 TeV.
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F1cURE 2.6: Dilepton constraints from ATLAS on the current model are shown here.

The black dashed line in the left panel represents the exclusion limit from ATLAS

[96], with the colored lines being the dilepton signal cross sections for various values

of gpr, as a function of Myz/. The right panel shows exclusion limits from LEP-IT and

ATLAS exclusion limits in the plane of Mz — ggr,. The red points are consistent with

the 30 range of the relic density limit of Planck and the direct detection limits from
XENONIT.

2.5 Scalar portal phenomenology

2.5.1 Relic density

With npy = 4, one can write a non-trivial term to the scalar potential as

V" =V (H, ¢pm, ¢1, ¢s) + % (6o) 205 + (D)2 | - (2.27)

The masses of real and imaginary components of ¢py; are given by

A A A )
M2 = i3y + 7I;D112 + %vf + %vg + 'ul\)/%s,

A A A v
M3 :u%M+£112+ ﬂv%—k Ev% - M]\D/E%B'

2 2 2
For simplicity, we consider Agp = Ag1 = Aus = Ap. The expressions for annihilation

(2.28)
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FIGURE 2.7: Feynman diagrams contributing to relic density in the scalar portal case
except the figure of t-channel process is relevant in direct detection studies.

cross section of various channels that contribute to relic density shown in Fig. 2.7 are

3

R 1 (s —4M?)2
67r =gruzg PP D Mey——

8mvs 7 (s —4M2,,)2

(2.29)
) s AMZ,  12M3\ (s —4M32)2
Fiw = PP (1 - —2 + =% w)® (2.30)
16mv s s (s — 4M3,y,)2
) s AM2  12MEN\ (s —4M2):
63, = mp (1- 1Mz, 120y AL (231)
32mv 5 s (s — 4M]%M)2
1 1 2 52
.5 2
_L f2 , 2.32
ING T3y (vwg(v% + 64v§)> £ (s —4M3,,)? (2.82)
where
P = ADH1 B V2BAph3
[(s — M)+ z‘MleHl]

[(s ~ MZ )+ z‘MH3rH3} ’
F=

B /\DHlﬁ(U% + 64’03) ADH2 (’U:f — 647)3) B ADH3 (’Ui3 + 641)5’)
[(S—MIQ_II)-i-Z‘MHlFHI} \/i[(S—M%IQ)+iMH2FH2:| \/§|:(8—M12_13)+iMH3PH3]

Finally, for the Higgs sector annihilation channels we have

1
~S _ 12
TH;H; _167rsnp! ‘F”’

N|—=

[(S - (MHz + MHj)Z)(S - (MHi - MH]‘)2)}

[s(s — 40M2,)]?

, (2.33)
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Coupling Expression [GeV]
ADHI1 vAp — 1B(8v1AD — V2ups)
ADH2 —bps
Apms | —V2uidp — v20Bp + B8

TABLE 2.3: Dark matter couplings to scalars.

where n,! denotes the permutation factor and

ADH2A2i;
(s = M3,) +iMy, T, |

ADH1 A1

+
(s = M) +iMy, Ty, |

Fyj =(1428*)Apéij +

ADH3A3i;
(s = M3,) +iMpy, Dy,

_l’_

In the above expressions A1;5, A2j;, A3;; having mass dimension denote the trilinear scalar
couplings with 4,7 = 1,2, 3 and Apy; denote the coupling of the terms A%2H;. We show in
Fig. 2.8, the scalar portal relic abundance as a function of DM mass. The Planck limit

on relic density is met near the resonance of three scalar propagators. The channels with
My,

H{H, and AngAnc in final state can only give resonance near Mpy ~ . However,
the coupling A217 vanishes. Hence, the channel with NG pair plays a crucial role in giving
the resonance in Hy propagator for non-zero Appe (= ups) given in Table. 2.3. One can
also notice that the coupling pps induces mass splitting in the scalar components given
in Eqn. (2.28), which is essential to generate light neutrino mass at one loop level to be

discussed in the upcoming section.

Ap = 0.1, My, = 1TeV, My, = 1.5 TeV, 8 = 0.007

0.100 % fFe/*
o
£
<}
0.010 \
Vi
0.001 ‘; Hps =10 GeV
tH
| Hps =100 GeV
LT A S T SRR S R
500 1000 1500 2000

Mpw [GeV]

FIGURE 2.8: Variation of relic abundance Qh? with the mass of DM for various values
of ups parameter.
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2.5.2 Direct searches

In the scalar portal scenario, the effective interaction Lagrangian takes the form

L% = a,SS7q. (2.34)

where ag = 7L ?\1;511 — */5]\}%2135} Referring to Eqns. (1.66), (1.67), the ST WIMP-

nucleon cross section is estimated as
2
7
o5 = ?fg. (2.35)

Varying the model parameters given in Table. 2.4, Fig. 2.9 left panel denotes the
parameter space in Mpy — My, plane satisfying 30 range on current relic density limit
by Planck and the right panel denotes the allowed parameter space (corresponding to
the allowed parameters of the left panel), consistent with XENONIT limit. We see that
the data points near the resonance of SM Higgs H; does not satisfy the XENONI1T limit

on WIMP-nucleon cross section.

Parameters Range

MUD8 [GGV] 10 — 100
AD 0.001 — 0.1

V1,8 [GGV] 2000

My, [GeV] | 1000, 2000

My, [GeV] | My, — 4000

Mpwm [GeV] 20 — 2000
I3 0.001 — 0.016

TABLE 2.4: Parameters and their ranges for scalar portal analysis.
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FIGURE 2.9: Region of Mpy — Mp, that meets the 30 range on current relic density

limit of Planck in left panel. Right panel denotes the parameter space taken from left

panel that satisfies the XENONIT limit as well. Dashed lines denote the upper limit
on WIMP-nucleon cross section by LUX [36] and XENONI1T [37].
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SL No. | ups | V|YierYjau! | Mpm [GeV] | A [TeV] | m, [GeV] QOh% | Log;yos [cm?]
1. 96.8 0.026 448 50 4.01 x 10~ [ 0.1154 —46.517
2. 21.3 0.056 483 50 4.09 x 107 | 0.123 —46.376
3. 21.3 0.22 483 100 3.95 x 10~ | 0.123 —46.376

TABLE 2.5: Sample benchmark for radiative v-mass.

2.6 Light neutrino mass

The light neutrino mass in this model can be achieved by radiative mechanism. The

model structure permits us to write a dim-6 Yukawa interaction term of the form

% Z Yia(Cr); HNoréDMO1 . (2.36)

a=1,2

Now, it is possible to generate the light neutrino mass at one loop level as shown in Fig.
2.10. We use Eqn. (2.28) and also assume that the masses of real and imaginary parts
of ¢pm satisfy the relation (M2 + M3)/2 > M2 — M3 = V2upgvs, then the expression

for the radiatively generated neutrino mass is given by [85]

(My)ij =

2
V20pgvgvv? YWYJQMD@ . M3, | mé 5 37
16722 Z SMR| T mE MR MR (2.37)
Da dDM Da Da

where we denote miDM = (M2+M3)/2 and Mp, represent masses of the exotic fermion

mass eigenstates. If M,%a > méDM, then

(My)i' = (2.38)
! miDl\/I

\f MDSUBU vl Z
16m2A4 MDa

in 2B _1].

Considering (v1,vs, Mpa) ~ (2,2,3) TeV, we show sample benchmark values in Table.
2.5 that satisfy Planck, XENON1T limit and v-mass simultaneously. We conclude that
this model is quite advantageous to explain the light neutrino mass even without the

small Yukawa couplings.

2.7 Semi-annihilations of scalar dark matter

Fractional B — L charge to the inert scalar can induce semi-annihilations which can show
up in dark matter relic abundance (see Refs.[57, 98]). For instance when npy = 1/3,

there is a quartic term in the Lagrangian of the form

/

A
=2 obadr +hee. (2.39)

Ly3=
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(¢1) (HO) (H®) (¢1)

FIGURE 2.10: Radiative generation of neutrino mass.

With the Feynman diagram shown in Fig. 2.11, the cross section of all possible semi-

annihilation channels are

$pM 1

FIGURE 2.11: Feynman diagram for the semi-annihilation vertex.

1
L 1/3 a8 [(s = (Mpy + My, )?) (s — (Mpy — My, )?)] 2
UH = 1 5
' 64ms [s(s — 4MBy\p)]2
1
S8 _ s [(s = (Mpw + Mp,)?) (s — (Mpy — My,)?)) 2
Hz 1287s [s(s — 4M2,,)]2 ’
1
s _ b’ [(6= Qo Ming ) = (ot = M)
Hs 1287s [s(s — 4M]23M)]%

We display in Fig. 2.12 the effect of semi-annihilation channel on the relic abundance

Ap=0.1, My, =1TeV, My, =1.5TeV, g =0.007

500 1000 1500 2000
Mpw [GeV]

FIGURE 2.12: Relic abundance Qh? with the mass of DM plotted for two values of
Apy with the choice of npv = 1/3.
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observable. Resonance near Mpy ~ M; 2 is not achieved for npy = 1/3, as Appz (in
Table. 2.3) vanishes. These new channels begin to pop up once mass of DM is above the
mass of the physical scalar appearing in the final state. We see that the channel with
H, and Hj as one of the final state particles have a significant effect while the Higgs
channel attains a (2 suppression. This scenario is very appealing as the dark matter
phenomenology is determined by three free parameters i.e, Ay, Mpwm and the mass of
the physical scalar. Similarly, one can also perform the same analysis for npy = 8/3 as

well.

2.8 Conclusion

We have presented in detail the scalar dark matter phenomenology in the context of
an anomaly free U(1)p_1 extension of SM. A possible solution to cancel out the result-
ing non-trivial triangle anomalies of the gauge extension, three heavy neutral fermions
N;r (i = 1,2,3) with B — L charges —4, —4 and +5 are added to the existing lepton
content of the standard model. Furthermore, the scalar sector is enriched with two
scalar singlets ¢1 and ¢g to spontaneously break the U(1)p_1 gauge symmetry and also
to provide the Majorana mass terms for the newly added fermions V;r. A scalar sin-
glet ¢pn is introduced such that the U(1)p_1 symmetry takes the burden to forbid its
decay making it a stable dark matter candidate. Three physical scalars and a heavy
gauge boson Z’, resultant of having U(1)p_, as local gauge symmetry act as mediators

between the visible and dark sector.

We have studied the scalar spectrum emphasizing the minimization conditions, vacuum
stability, perturbative unitarity conditions and their acquired masses after spontaneous
symmetry breaking of SU(2)y x U(1l)y x U(1)p_r gauge symmetry. Choosing a par-
ticular B — L charge that can stabilize ¢py, we have investigated thoroughly the relic
density and of scalar singlet dark matter in the Z’ and scalar-portal scenarios. Applying
the limits on relic density by Planck and the most stringent bounds on WIMP-nucleon
spin-independent cross section by LUX and XENON1T, we have obtained the consistent
parameter space. In collider studies, we have used ATLAS dilepton limits on the gauge
coupling ggr, and the mass of the new vector boson Myz/. We found that there is enough

region for the model parameters to meet all the experimental bounds.

This remarkable gauge extension is economical in particle content and rich in phe-
nomenology. A unique feature of this model is that a massless physical Goldstone boson,
which plays a key role in scalar-portal relic density. We have discussed the mechanism
to obtain the light neutrino mass at the one-loop level, with the dark matter singlet

running in the loop, and a suitable benchmark, where the dark matter observables and
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light neutrino mass are simultaneously consistent. Finally, we have included discussions
regarding semi-annihilations of dark matter and its imprint on relic density for a choice

of fractional B — L charge for the scalar dark matter.






Chapter 3

Majorana dark matter in a
U(1)p_j extension of the standard

model

In this chapter, we revisit the proposed B — L framework of the previous chapter. We do
not account the dark matter singlet ¢pn of the model in the present context, rather we
carefully observe the exotic fermion mass matrix to explore the Majorana dark matter
phenomenology. The procedure of investigation and the discussions will be analogous

to the preceding chapter.

3.1 Recap of proposed model and outlook

The new field content of the suggested model includes three exotic fermions with B — L
charges —4, —4 and +5 to make the model free of anomalies and two scalar singlets
charged —1 and +8 to generate the mass terms for all the new particles after spontaneous

breaking the U(1)p_1 gauge symmetry.

As mentioned in chapter 2, conventional B — L gauge extensions impose an additional
discrete symmetry besides the U(1)p_1, local gauge symmetry to qualify right-handed
neutrino as dark matter [51, 59-61, 64, 67]. Otherwise, the dark matter fermion can
decay through the Yukawa mass term ¢ H Np. However, the exotic B — L charges of the
new fermion sector can avoid this decay interaction term, thereby naturally providing
a stable dark matter fermion. This approach was followed in a model with four exotic
fermions charged 4/3,1/3,—2/3 and—2/3 under new U(1) and studied in dark matter

43
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context in [99]. However, we perform the analysis in our present choice of only three

fermions.

3.2 Revisiting the exotic fermion mass matrix

The heavy Majorana mass matrix can be written for the mass term in Eqn. (2.10) as

y11(Ps) vi2(ds) wy13(¢1)
Mp = | y12(ds) yo2(ds) wy23({1) | - (3.1)
Yi3(d1)  yo3(e1) 0

For simplicity, we consider the above mass matrix with real entries of the form?

T a b
Mr=|la =z ©b]l, (3.2)
b b 0

which can be obtained by assuming the Yukawa couplings to satisfy the relations y;; ~
192 and Y13 & yo3 along with v; =~ wg. The above mass matrix can be diagonalized
using the unitary matrix as (U; - K)T - Mg - (U; - K), where U is the normalized
eigenvector matrix of Mp and K = diag(1,1,1) is a diagonal phase matrix used to avoid
the negative mass eigenvalues. Thus, one obtains the mass matrix in the diagonal basis
Md28 = diag(Mp1, Mp2, Mp3) as

T—a 0 0
Mdiag — 0o 1 (—(:U +a) + /80?4 (z + a)2) 0
0 0 %<($+a)+\/8b2+(x+a)2)

(3.3)

To make the analysis simpler, we consider Mpo = %M D3, which implies b = x4+ a. Thus,

the final diagonal matrix! is given by

rT—a 0 0
diag(Mp1, Mp2, Mp3) = 0 z+a 0 : (3.4)
0 0 2xz+a)

!The lightest mass eigenstate is taken as the dark matter candidate while the heavier ones are taken
to be sufficiently massive such that they decouple from the phenomenology and play no role in our final
results. To illustrate this scenario, we make the assumption of Mpo = Mf?’ which makes Np; the dark
matter candidate while Np2 and Np3 are very massive and effectively decouple from the theory.
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Considering « > a, we get positive eigenvalues and the mass eigenstates Np; can be

written as
Ny — Ny
N, = —,
N i (N1+ N2 — 2N3)
D2 \/é ’
Ni 4+ No + N.
Nps = % (3.5)
The Yukawa couplings can be expressed in terms of the physical masses as
B V2 (Mp1 + Mpy)
Yyir = Y22 = )
2U8
V2 (=Mp1 + Mpy)
Y2 = )
2vg
V2 M
Y13 = Y3 = o 2. (3.6)

The interaction terms between the new fermions and the Z’ gauge boson can be written

in the mass eigenstate basis as
LY, = gBL| —ANH Y Npi +2N5,v"Nps — N3y Nps
— 3iV2 Nj,v"Nps + 3iV2 Nj3v" Npo | Z, . (3.7)

Similarly, the interaction terms with the singlets ¢; and ¢g are

o 1 - o
ﬁ%m = (y11 —v12)N5, Np1 ds + 3 (413N 5y Np2d1 — (y11 + y12) Ny Npaos)
2 _ _
+ 3 (2y13N 53 Npsd1 + (y11 + y12) N3 Npsgs)
2v/2i E— _
+ =3 (y13N 5y Np3d1 — (y11 + y12) Ny Npsos) - (3.8)

A glance at Eqns. (3.4), and (3.5) confirms that Np; is the lightest Majorana mass
eigenstate and we intend to perform a detailed study of Majorana dark matter in this

work.

3.3 Dark matter phenomenology

The proposed dark matter particle Npp, the lightest of the three Majorana states can

interact with the scalar sector and vector gauge boson Z’. Likewise singlet scalar DM,
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we proceed to explore the DM observables in this dual portal scenarios separately?.

3.3.1 Relic density for Majorana dark matter

3.3.1.1 Scalar mediated

Npy f Np1 wt.zZ Np1 Axc
4
4
4
4
............... /
Hy, H3 >H11H3 Hy,Hy, H3 'y
\
B \
Npy f Npy wW-,Z Np1 Axc
ND1 NDl
N, H;
Np1 Ang b , ‘ \\//
/ ’ ]
P / H H ]
’ ,' 1, Hs
_____ / ————— H
e S /\\
\
\
\ \ _
Np1 Hy, Hy, H: Np1 H; q q

Ficure 3.1: All the s-channel Feynman diagrams contribute to relic density while the
t-channel process is relevant for the direct searches.

The possible annihilation channels that can drive the relic density in the scalar portal
scenario are shown in the first five Feynman diagrams of Fig. 3.1. These channels can
be either SM fermions, SM gauge bosons (W, Z), Higgs sector scalars and the mass-
less physical Goldstone mode. The cross section for the annihilation channels into SM

fermions and gauge bosons are given by

1
C (s —4M?)2
A5 22 2 2 2 f
ves 7 (s — 4M]%1) 2
1
s Cs _ 9 AMZ,  12ME N\ (s —4M3E)2

AM2Z 1204 —4AM2)3
Z Z) (s = A7) (3.11)

Cs
LS 200 Ans2 B
077 —rvngl\ (s —4Mpy) (1 5 32 (54 %1)%

2 The phenomenological study is quite different as we shall see that WIMP-nucleon cross-section is
insensitive to direct detection experiments in Z’-portal, whereas one can have stringent experimental
limits in the scalar-portal. Moreover, the discussion becomes more transparent as the limits from ATLAS
and LEP-II are only applicable in Z’-mediated observables and the effect of massless Goldstone is visible
only in scalar mediated DM relic density.
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while the expressions for channels with NG in final state turn out to be

1
Cs S2
55 2 2
oNG = |Fo|*(s —4Mp) ———— (3.12)
N 4u2v3 (v + 640v3)? p (s — 4M1%1)%
1
Cp? 9 (s —4M2%,)2(s — M? )3
.S 3 3 D1 H,
& = vy + 64v , 3.13
NG H 202 (v} + 64032)3 (v ) o3 (3.13)
1
C o (s —4M} )2 (s — M} )3
5S 3 3 D1 H,
o = vy — 64v , 3.14
NG Ha 402 (v? + 64032)3 (1 ) 53 (3.14)
1
C o (s —4M} )2 (s — M} )3
58 3 3 D1 Hs
19 L= vy + 64v , 3.15
NG Hy 4v§(v% + 64@%)3 ( 1 8) 53 ( )
where
_ 2
C _(yu —y12)° : (3.16)
8T
== o + 2 : (3.17)
[(s - MJ%II) + iMHIFH1:| [(3 - M12{3) + ZMHJFHJ]
Fy = B2 (v + 6403) N 1/2 (v} — 6403) N 1/2 (v$ + 6403) |
[(s ~ M} + z‘MleHl] [(s — MZ)+ iMH2rH2} [(s - M%)+ z‘MHBI‘HB]
(3.18)
Finally, the Higgs sector annihilation channels we have
1
C s — (Mu, + Mu,)*)(s — (Mu, — My,)?)]?
i, = 95 |Fijl (s — 4MBy) o = (M, + M, (o — ( il )] . (3.19)
o [s(s —4Mp,)]?
where

B Aij 3
(s = M3,) +iMy, Ty, |

n A2ij V2 B As3ii/ V2

(5 = M) + M, T, [(s = M) + My, T,

where n,! denotes the permutation factor for identical final state particles and Aq;5, A2, A3ij
having mass dimension denote the trilinear scalar couplings with 7,7 = 1,2,3. Thus we
compute the relic density using the formula in Eqn. (1.59). As mentioned in the previous
chapter, the mass parameter My, determines the value of scalar mixing parameter 3 in
Eqn. (2.19). Fig. 3.2 displays the behavior of relic density with the dark matter mass
where the Planck limit is reached on the either side of resonance of the propagators. For
lower DM mass region, the channels ff and AnxgAng maximally contribute to relic den-
sity. Then, the rest of channels contribute to relic density once they get kinematically
allowed. The channels with H1 H; and AngAng in final state can give the resonance in
Hy propagator. Emphasis is given more to the mass of Hs as the WIMP-nucleon cross

section also involves this mass parameter.
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FIGURE 3.2: Scalar-portal relic abundance as a function of DM mass Mp; for two

specific mass values of the physical scalar H3. The horizontal dashed lines represent
the 30 value of the current relic density [88].

3.3.1.2 Vector mediated

Moving to the vector boson portal, the annihilation channels are shown in Fig. 3.3. The

cross sections are given by

1

. A(nfy ) gl | Fy (s — 4M3)2

oYy =D =P B (s — AMBy ) (s + 2M7) L
7

(s — 4M3,)2

1
Y _ 4(64vs +v1)* g8 [PV [® ((s — (Mg + Mp,)?) (s — (Mg — My, )?))? Cr
’ s (s(s— 4M%1))% ’

1
- _ A(64vs — v1)°gBy [PV ((s — (Mzr + Mp,)*)(s — (Mg — Mu,)*))? Cr
i s (s(s —AM2)))z 2

1
E _ 8(64vs + v1)* B2y [FV[* ((s — (Mg + Mp,)*)(s — (Mlz — My,)?))?
' s (s(s —4Mpy,))2

where
1
Fy = ,
v [(8 — M%,) + iMZ/FZ/]

(s —8Mp,) , 1 o (s+ M2, — M2)?
(:E; = 11 kaé%l 2!9]»1i)1 =+ zi

g8 (5~ AMB) s — (M + Moo — (M = MsP) )|
with S = Hy, Ho, H3. Fig. 3.4 shows the behaviour of relic abundance with the mass of

dark matter particle for various sets of gauge coupling gy, and the mediator mass Mz

consistent with the LEP-II bound. Near the resonance the major contribution comes

from the NpiNpi — ff channel. As we go towards high mass regime of Mpi, the



Chapter 8 Majorana dark Matter in a B — L model 49

Npy f :
Np1 zZ'
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FIGURE 3.3: Feynman diagrams contributing to relic density in the vector-mediated
case.
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FIGURE 3.4: Variation of relic abundance Qh? with the mass of DM with (M, , My,) =

(1,1.5) TeV. Left panel depicts the variation for fixed Z’ mass and varying B — L gauge

coupling gpr,. The right panel displays the behavior for constant coupling gg;, and
varying mediator mass.

channels NpiNp1 — Z'Hi 23 become dominant resulting in a slight decrease in the

relic abundance.

3.3.2 Direct searches

In this section, we discuss the direct detection prospects for our model in both scalar
and vector mediated DM scenarios. Since the vector boson Z’ couples differently to
Majorana fermion and quarks i.e., axial vector and vector type, the contribution by
WIMP-nucleon interaction is insensitive to direct detection experiments [34, 60]. Hence,
we shall only focus on the scalar mediated DM scattering and constraints on it from
various experiments. The effective Lagrangian term of scalar mediated channel shown
in Fig. 3.1 (t-channel) that contributes to the spin-independent cross section for direct

detection is
Let = agNp1Np13q, (3.21)

where

M —
aq — Q(yll yl?)ﬁ 12 _ 12 ) (322)
V2u MH3 MH1
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FIGURE 3.5: Left panel shows the parameter space satisfying the 3o range in current
relic density and the most stringent PandaX limit. Right panel depicts WIMP-nucleon
cross section for the parameters space depicted in the left panel. The dashed lines denote
the upper bound on SI cross section from LUX [36], XENONIT [37] and PandaX [38].

Thus from Eqns. (1.66), (1.67), the WIMP-nucleon SI contribution reads as

os1= —pfp - (3.23)

The additional 4 factor in the numerator comes in the context of Majorana fermion.

Varying the parameters in the range shown in Table. 3.1, we show in Fig. 3.5 (left

Parameters Range
V1,8 [GeV] 2000
My, [GeV] 1000 — 2000
MH3 [GGV] MH2 — 3000
15} 0.016 — 0.0016

TABLE 3.1: Parameters and their ranges for scalar portal analysis.

panel), the parameter space that satisfies the 30 range in the current relic density [88]

and the PandaX limit [38]. Since the mixing parameter § is small, the direct detection

limits on the parameter space is not stringent. It is mainly constrained by relic density

where the Planck limit is met near the resonance in two propagators Hg (vertical data

points) and Hs (diagonal data points). Right panel depicts the WIMP-nucleon cross

section with varying mass of the DM of the parameter space shown in the left panel.

3.4 Collider studies

Moving on to the ATLAS dilepton constraints on the gauge parameters, we follow the

similar procedure as in previous chapter. Working in the mass range of Mz < 4 TeV, we

show in the left panel of Fig. 3.6, dilepton (ee, uu) signal in Z’ production as a function
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FIGURE 3.6: ATLAS dilepton constraints on the proposed model are shown. In the

left panel, the black dashed line represents the exclusion limit from ATLAS [93], while

the colored lines represent the dilepton signal cross sections for different values of ggr,

as a function of Mz,. The right panel shows ATLAS and LEP-II exclusion limits from
dilepton searches in the plane of Mz — ggr,.

Field SU(Q)L X U(l)y U(l)B_L
' (2,1/2) -3

TABLE 3.2: Inert doublet and its charge assignment.

of Myz:. It can be seen that for gg, = 0.4, the region below My ~ 3.7 TeV is excluded
while for ggr, = 0.1, My < 2.3 TeV is excluded. Thus, for ggy, 2 0.1 the parameter
space is pushed to heavier My above 2.3 TeV. For ggr, < 0.03 we have My 2 1.2 TeV
and for gg;, = 0.01 we have Mz = 0.5 TeV. We see that the dilepton signal in Z" decay
can impose stringent constraints on these models. The right panel in Fig. 3.6 describes
the parameter space in My — gpr, plane consistent with the current 3¢ limit on relic
density from Planck [88]. The region to the right of both the curves is consistent with
ATLAS [93] and LEP-II [97] bounds. With ATLAS limit being the most stringent one,
from the plot one can see that the model still has a significant portion of the parameter

space that can satisfy the relic density. Thus, in general, we conclude that dilepton

searches from LHC in Z’ models can pose stringent limits on the parameter space.

3.5 Light neutrino mass

Since the current model doesn’t contain the right-handed neutrinos, the standard type-I
seesaw mechanism to generate light neutrino mass is not feasible with the existing par-
ticle content. However, the neutrino masses can be generated at one-loop level through
radiative mechanism, which will be briefly described in this section. For this purpose, we
Mo
e t-in;

introduce an additional inert doublet ' = (
V2

) with the charges shown in Table.
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3.2. Thus, the trivial scalar potential in Eqn. (2.9) gets modified with the inclusion of
additional terms given as
A
V"(H,¢1,¢8,1") = V'(H,¢1,88) + (™) + Ay (n'T')? + % [(HT ') s d? + h.c.}
Ny (HO T H) 4 0 [Nz (V) + M (8]61) + As(@lis)]
(3.24)

where A is the cut-off parameter. The masses of real and imaginary components of the

inert doublet 7’ are given as

)\ /1 )\ /8 U2 U2U2U8
Mgr = /L%/ + %’U% + %Ug + ()\Hn/ + )\,Hn/) ? + AU/lsTg[\:ﬁ’
Ar/1 A8 v? vivivg
M2 o= o+ 5 v} + %vg + sy + Ny) 5 = Anqgm. (3.25)

With these particle content, one can write the interaction term to generate light neutrino

Vi vy

FIGURE 3.7: Radiative generation of neutrino mass.

mass at one-loop level as shown in Fig. 3.7 as

> Yio(0L) 7' Nag. (3.26)
a=1,2

Thus, from Fig. 3.7, one can write the light neutrino mass matrix [85], as

)\/ 1}21)2?) 2 Y/ Y/ MD M2 m2/

(M) = 2228 21 38 Z e e I oy (3.27)
32v27m2A3 L= my, — Mp,, m2, — Mp, ~ Mp,

where m%, = % (Mgr + Mvi) We further assume that inert doublet components are

heavier than the DM mass. Note that for the parameter space considered here, the
range of cutoff scale A, which is allowed by perturbative limits is ~ [50,10%] TeV. For
example, with (Y, A1) ~ (1071,1072) and (vi,vs, my, Mpa, A) ~ (2,2,2,0.5,100)
TeV, one can have m, ~ 10~'' GeV. Thus, the light neutrino mass generation can be

successfully achieved in the proposed model.
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3.6 Conclusion

The lightest mass eigenstate upon the diagonalization of exotic fermion mass matrix,
plays the role of dark matter. The scalar portal relic abundance has been studied with
all possible annihilation channels and the effect of massless physical Goldstone boson is
suitably addressed. The SI cross section has been calculated and investigated with the
current limits from LUX (2016), XENONI1T (2017) and PandaX (2017). Similar strategy
is repeated for Z’-portal channels. But in the Z’ case, it is not possible to study for
direct searches as the Majorana dark matter couples axial-vectorially with the Z’, while
SM quarks couple to Z’ vectorially. In collider searches, the ATLAS bounds on the Z’
mass and ggr, impose strong constraints. However, we still have a viable parameter space
satisfying the current relic density and the dilepton bounds. We have also addressed the
generation of light neutrino mass by adding an additional inert doublet ' with B — L
charge assigned as —3. We have made a complete systematic study of Majorana dark

matter in a new variant of B — L gauge extended model.

This simple model survives the current collider limits while satisfies dark matter con-

straints and can be probed in future high luminosity data from LHC.






Chapter 4

Fermionic dark matter and
neutrino oscillation in the

scotogenic model

We have already been familiar to the concept of the radiative neutrino mass with the
dark matter (fermion or inert scalar) running in the loop in the earlier chapters. It
would be interesting to do a phenomenological study with the combined application of

constrained dark matter observables and the measured neutrino oscillation parameters.

4.1 Brief note on neutrino oscillation

Considerable progress has been made in the determination of neutrino mass squared dif-
ferences and mixing parameters from the data of various solar and atmospheric neutrino
oscillation experiments. Theoretically, the smallness of neutrino mass can be generally
explained by the well known seesaw mechanisms namely: type-I [72-75], type-II [100-
105], type-1III [106] and radiative seesaw [85]. In standard parametrization, the mech-
anism of mixing can be described by the unitary Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix Vpyrng [107, 108] written in terms of three rotation angles 6,5, 653, 0,5
and three CP-violating phases namely dcp (Dirac type) and p, o (Majorana type) as

—iécp
C12€13 $12€13 S13€
= . — _ _ idcp _ idcp
Vpuns = Upuns-F, S12€C23 — C12513523€ C12C93 — S12513523€ C13523
_ idcp _ idcp
S12823 = €12513C23€ C12523 — S12513C23€ C13C23
(4.1)

55
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where ¢;j = cos 9”», S4j

mixing angles as well as the mass squared differences have been well constrained by

=sinf;; and P, = {eir ¥ 1} is a diagonal phase matrix. The

various neutrino oscillation experiments. Recently, the Daya Bay [109, 110], RENO
[111] and T2K [112] Collaborations have precisely measured the reactor mixing angle
015 with a moderately large value. However, there are several missing pieces such as the
neutrino mass hierarchy, the magnitude of the CP violating phase dcp, the absolute scale
of the neutrino mass, and the nature of neutrinos (whether Dirac or Majorana). Various
neutrino oscillation parameters derived from a global analysis of recent oscillation data

taken from Ref. [113] are presented in Table. 4.1.

Mixing Parameters Best Fit value 30 Range
sin? 019 0.323 0.278 — 0.375
sin? 63 (NO) 0.567 0.392 — 0.643
sin? 13 (NO) 0.0234 0.0177 — 0.0294
dcp (NO) 1.347 (0 — 2m)
Am2,/1073 eVZ (NO) 2.48 2.3 — 2.65
AmZ,/107° eV? 7.60 7.11 — 8.18

TABLE 4.1: Best-fit values with their 30 ranges of the neutrino oscillation parameters
from [113] where NO indicates normal ordering.

The chapter proceeds as follows. We begin with the one-loop radiative neutrino mass
matrix in the scotogenic model and derive the conditions on the model parameters to
explain recent data of measured neutrino oscillation parameters. The lightest degen-
erate fermions running in the loop are explored in relic density perspective including
co-annihilation effects to further restrict the parameters. Finally, with the allowed pa-

rameter region, we make predictions on lepton flavor violating decays.

4.2 Scotogenic model

The scotogenic model is a minimal extension of the SM with an additional inert scalar
doublet 1 and three heavy Majorana right-handed neutrinos N; (i = 1,2,3). The poten-
tial is imposed with a discrete symmetry under which all the new particles i.e., N; and
7, are odd, and SM particles are even. The unbroken discrete symmetry guarantees the
inert doublet doesn’t produce a VEV. This model is rich in phenomenology providing
scalar and fermionic dark matter candidates. Scalar dark matter in this model has been

studied extensively in the literature [114-116].
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The scalar potential of this model is given by [85, 117]

Vae(H,n) = piHH + pln'n+ Aa(HTH)? + X\ (n'n)? + s (HTH)(n'n)

1
+ M H ) H) + S5 [(H ) + (" H)?), (4.2)
nt
where n = o |- The Yukawa Lagrangian of this model is
n
_ M;—— _
Ly = N;ii PRN; + (Dyn)" (D*n) — 5 Ni®PrN; + hailon' PrN; + hc., (4.3)

where h,; are the Yukawa couplings, a denotes the lepton flavor and M; are the masses

of heavy neutrinos N;. The radiative neutrino mass matrix can be computed for Fig.

4.1, given by
3
(Mv)aﬁ = Z haihBiAia (4.4)
i=1
where A; is defined as
A5v? 72 z? 9

Here the parameters r; are defined as r; = M;/mg and m% = u% + (A3 + )\4)§. We take

FI1GURE 4.1: Radiative generation of neutrino mass.

A5 ~ 10710, a very small value, in order to have correct neutrino masses and also probe
for lepton flavor violation [117-120]. We now diagonalize the radiative mass matrix (4.4)

using the PMNS matrix to explain neutrino oscillation data.

4.3 Neutrino phenemenology

Various neutrino experiments have confirmed that neutrinos have tiny mass and oscillate
from one flavor to another as they propagate. The phenomenon of neutrino oscillation
is described by solar (#12), atmospheric (623) and reactor (613) mixing angles. Of these

three rotation angles, two are large (612 and 623), and one is not so large (613). Originally,
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it was believed that the reactor mixing angle would be very small and with this motiva-
tion numerous models were proposed which are generally based on some discrete flavor
symmetries such as S3, Sy, Ay, etc [121-125] to explain the neutrino mixing pattern. For
instance, the tri-bimaximal (TBM) mixing pattern [126-134], a well motivated model
which has sin? 61y = % and sin® fyg = % and which can be expressed in a generalized

form as
cosf sind 0
1

u=| -2 < 5| (4.6)
sin 6 _cosf® 1
V2 V2 V2

with 6 ~ 35°. However, in the TBM mixing pattern the value of 613 turns out to
be zero. After the experimental evidence of a moderately large 6:3, it was found that
by adding suitable perturbation terms, the TBM mixing pattern can still describe the
neutrino mixing pattern with sizeable #13. As discussed in [135], here we consider a
simple perturbation matrix i.e., a rotation matrix in the 13 plane, which can provide the
required corrections to the various mixing angles of the TBM mixing matrix. Assuming
the charged lepton mass matrix as diagonal (i.e., the identity matrix), one can write the
PMNS mixing matrix, which relates the flavor eigenstates to the corresponding mass
eigenstates as
COS 0 e “sing
Upyns =U,) 0 1 0 : (4.7)

—eCsing 0 cos ¢

In our work, we consider the phase { to be zero for convenience. Now we diagonalize the
mass matrix (4.4) by the mixing matrix (4.7) using the relation U}, ygMoUpnng =
diag(mq,mg, m3). This in turn provides the following conditions (vanishing off-diagonal
elements of the mass matrix) to be satisfied:

Ay hei(hyui — hri)
Z ¢ gin 20 cos p + ——H___TV

p il V2
hez’(hm + hTi) (hiz - h72'z)

(hm’ - h”-)2
4

cos 260 cos ¢ — sin 26 cos ¢

—T sin 6 sin p — 5 cosfsinp =0, (4.8a)
g}?sinQHSin@-i- Wcos%siw - Wsin208in¢
+h“(hli’f;_h”) sin # cos ¢ + (h’z“;h%) cos B cosp = 0, (4.8b)
g thZ cos? f'sin 2 — W sin 20'sin 2 + (s = hri)” sin? @ sin 2¢

+ hei(hm + hm)
V2

(h2; — hZ) (hui + hai)?

cos 6 cos2¢p — T sin 6 cos 2¢ — sin 2¢ = 0.

(4.8¢)
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The neutrino mass eigenvalues are given by

3

m; = Z(h2»0082 6 cos® p — Lh i(hyi — hyi) sin 26 cos® ¢ — Lh i(hyi + hri) cos B sin 2¢
- el \/Q ei\lui T \/i ei\bus T

1 1
+ i(h,ﬂ + hyi)?sin® @ + §<h;2n — hZ,)sin fsin 2¢ + i(h“i — hri)?sin? 0 cos® ) A;

.

. 1 . 1
1(h3i sin” 0 + ﬁhei(hui — hri)sin26 + §(h“i — hyi)?cos? O)A,; ,

3
I
M-

<.
w |l

1 1
ms = (hgz cos? fsin? ¢ — —hei(hyi — hyry) sin 260 sin? o + ——hei(hyi + hri) cos @ sin 2¢
= V2 V2
1 1 1
+ i(hm + hyi)? cos? p — §(h’2” — h2,)sin@sin 2 + i(hm — hri)? sin? 0sin? @) A;. (4.9)

Solving (4.8a), (4.8b) and substituting in (4.8c), we obtain two solutions given by

(hTil - h,uil )

1. R —hr ) tang: ’
pir 7 ~hria V2he,
hs s hei —h2;
_ <h511(hﬂ\}12+h”1) cosf — (“’12”1)sin«9>
tan 2¢ =

h2; heiy (hyiy —hori) (hyiy —hriy) 2 (hyiy Hhri))? )
ety 20 _ Deu\Ppy 70T ) o5 pig iy 02 \uiy TR
( 5+ Cos 0 W) sin 20 + I sin“ 6 7\

2. hyiy = —hriy, tanf = \/I;:u (4.10)
where i1, io can take any value of i(=1,2,3). As shown in Ref. [135], the above mixing
matrix can explain recent neutrino oscillation data with the unperturbed mixing as TBM
type (i.e., with 8 = 35°) and the perturbed angle ¢ = 12°, which accommodates the
experimentally measured mixing angles. Thus, Eqn. (4.10) gets further simplified to
three simple solutions and the obtained flavor structure written in terms of he;(= h;) in
a matrix labelled with the lepton flavor « as row index and i = 1, 2,3 as column index,
is given by
hi ho hs
hai = | —0.68 hy hy 3.56 hs |- (4.11)
0.31 hy —hgo 4.55 h3

Here i1 = 1,3 and o = 2 is assumed so that the mass eigenvalues (4.9) get non-zero

contributions given as

mi = Cl(h%/\l),
mo = CQ(h%AQ),

ms = c3(h3As), (4.12)
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where the coefficients ¢; = 1.55, ¢ = 3.04, ¢ = 34.44. Thus, the flavor structure
(4.11) is suitable to explain normal hierarchy i.e., (ms > mgo > m;) provided we assume
that N; and Ny are degenerate. Imposing the best fit values given in Table. 4.1, the

constraints from neutrino mass squared differences are given by

[(c2h3)? — (c1h})?] AT = 7.6 x 107° eV?,
[(c3h3A3)? — (c2h3A1)?] = 2.4 x 1073 V2. (4.13)

Thus, we have a free parameter space spanned by h;, 71 3 and M 3. We now proceed to
constrain the parameter space with the DM relic abundance choosing the lightest of the

odd particles as a DM candidate.

4.4 Relic abundance

We choose N; as the lightest odd particle and since N; is its degenerate partner, the relic
abundance gets contributions from annihilation as well as coannihilation channels. To
include the coannihilation effects, we adopt the procedure given in [31] in the estimation
of relic abundance. We introduce a parameter § given by § = (My — M;)/M; which
depicts the mass splitting ratio of the degenerate neutrinos. The effective cross section

oo including contributions from coannihilations is given by

2 2
g _ g _
Off = %UNlNl + 29N129N2 ony N, (14 6)3/2e70% 4 %UN2N2(1 + 6)3e 207,
geff geff geff
gt = 9gn, +gn,(1+ 5)3/26_6x. (4.14)

Here ger denotes the effective degrees of freedom, gn, , are the number of degrees of free-
dom for Majorana fermion and = = M; /T, where T is the temperature. (Co)annihilation
proceeds via t-channel processes mediated by 7° and * giving the lepton-antilepton pair

in the final state. The corresponding cross section of N; and Nj; is given by [117]

X Y (haihg; — hajhgi)?
a?ﬁ

1 M? mi — 3m2M?2 — M4
UNiNj|Ure1| 1 )2 |:1 0 01 1,2 :|

- v
8 (M2 +m3 3(M3? 4+ md)? rel
1 MP(M; +my) s
Tr (M7 + )t Ui 2 haitaihailsi
1 0 a,B

(4.15)

In the above expression 4,5 can be 1 or 2 and v, represents the relative velocity of
annihilating particles. The effective annihilation cross section is defined as oef|vrel| =

aoft + beﬂrvrzel. The coefficients aeg and beg for the obtained flavor structure (4.11) are
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given by
1 M}

= h3h3 4.16

Qeff

1 MM+ mi)

487 (M? +m3)*
1 M} mg — 3m3M? — M}

160 (M2 +m2)2 | 3(M2+m2)?

befr [(31}1411 + 52h3)]

(812 h%h%), (4.17)

where s; = 2.42,s9 = 9.24 and s12 = 9.47. Now the thermally averaged cross section is
given as (Oeff|Urel|) = aoft + 6besr/z and the relic abundance can be estimated by using
the Eqn. (1.59). Using the first relation in Eqn. (4.13), we eliminate hy and since Nj is
the lightest odd particle, we take r1 < 1 [117, 120] and |h;| < 1.5 [118]. Fig. 4.2 depicts
the allowed parameter space (h1, 1) consistent with current bounds on relic abundance
[136]. Fig. 4.3 displays the relic abundance as a function of DM mass for various values
of hy at two representative values of rq i.e., r1 = 0.5 in the left panel and r; = 0.6 in the
right panel. This shows that the mass range of DM mass consistent with current relic

abundance is proportional with the parameter r; and the Yukawa coupling h;.
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FIGURE 4.2: Parameter space of h; and r; consistent with 3o relic abundance.

As the light neutrinos oscillate in flavor, one-loop diagrams can contribute to lepton
flavor violating (LFV) decays. We now further constrain the parameter space of the

model using these decays.

4.5 Lepton flavour violating decays

The observation of neutrino oscillations has provided an unambiguous signal for lepton
flavor violation in the neutral lepton sector, even though individual lepton number is

conserved in electroweak interactions in the SM. The evidence of light neutrino masses
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FIGURE 4.3: Variation of relic abundance with DM mass for various values of h; at

r1 = 0.5 (left panel) and r; = 0.6 (right panel) where the horizontal line (magenta)

represents the central value of the relic density [136] and the black lines denote their
corresponding 30 range.

and mixing and the violation of family lepton number could in principle allow flavor
changing neutral current (FCNC) transitions in the charged lepton sector as well, such

as fa — 557 and Za — Eﬁ%ﬁﬁ.

The expression for the branching ratio of the LF'V decay process £, — £z written in

terms of dipole form factor Ap is given by [119]

3(47)3aem

Br(lo — {57) =
4G3,

|Ap|?Br (bo — Lsva?p), (4.18)
where qey = €2 /4w is the electromagnetic fine structure constant, Gp is the Fermi
constant and «, (8 represent the lepton flavor. The diagrams contributing to Ap are

shown in Fig. 4.4 and the expression is given by

3 .
Ap = Z mﬁg}f} (ri) . (4.19)

Here the expression for the loop function F»(x) is given in Appendix A and for simplicity
we consider \; < A3, thus we get n* and 1° to be degenerate [117]. Applying the flavor
structure (4.11), the relation (4.18) becomes

3Qem

2
irci |(h3 = 0.6813) Fa (m) + (B560)Fy (rs)|”. (4.20)
F''°0

Br(u —ey) =
We consider r3 > 1, My < 2 TeV and M3, mg < 8 TeV and thus we work in the mass
regime M7 ~ My < mg < Ms. Of all the LFV decays, the decay channel p — ey

provides the most stringent constraint on the parameter space of this model.

Imposing the constraints from neutrino mass squared differences, relic abundance and

current upper bound on Br(u — ev) [137], Fig. 4.5 (left panel) shows the allowed region
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hs M;[GeV]

FIGURE 4.5: Parameter space of hs and r3 (left panel) and variation of hy with M;
(right panel) consistent with neutrino oscillation data, relic density and Br(u — e7y).

in the (hs, r3) parameter space of the model. From the figure, the lower bound on r3 is 2
(i.e., 73 > 2) and the upper bound on hg is 0.33 (i.e., hg < 0.33 ). Fig. 4.5 (right panel)
depicts the variation of hy with the mass of DM. It shows that Br(u — ev) excludes the
values above 1.2 for hy. Now taking all the constraints from the flavor and dark sector,

one can tabulate the allowed parameter space shown in Table. 4.2.

We follow a similar procedure to compute the branching ratios of 7 — ey and 7 — py
decays. Using the allowed parameter space given in Table. 4.2, we show in Fig. 4.6 the
correlation plot between Br(r — ey) and Br(7 — uv). In our analysis, we have used the

measured branching ratios for p — v,ev., 77 — vyu" U, and 7T — vre” U, processes
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Parameters Range
71 02—1
r3 2—12
|h1] 0.2 —-1.2
|hal 0.2 —1.0
|hs| 0.1 - 0.33

TABLE 4.2: Scotogenic model parameters with their range.

from [137] as

Br(p — vyeve) = 100% ,
Br(t — vypp,) = (17.41+0.04)%,
Br(r — vreve) = (17.83£0.04)% . (4.21)

e
o

©

Br(t- py)x 10"

Br(t - ey) x 10"

FIGURE 4.6: Correlation plot between Br(r — ey) and Br(7 — py).

Now we study lepton flavor violation in 3-body decays. As discussed in Ref.[119], these
decays get contributions from three types of loop diagrams namely: ~-penguin, Z-

penguin and box diagrams. The branching ratio for £, — 3¢z in the scotogenic model
is given by [119]

— 3(4m)2a?2 5 5 (16 Ma 22 1, .9
Br (bo, — l5lgt = — A A —1 - — B
r (ba — Lplpls) sar | Avel b e | 00 ) =5 )+ 515l
1 2
+ <_2ANDAE + gANDB* — gADB* + hC>:|
X Br (o — Lgra7g) . (4.22)

The coefficient Ap denotes the photon dipole contributions given in Eqn. (4.19), while

the coefficient A p represents the form factor with the photonic non-dipole contributions
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FIGURE 4.7: Penguin diagram contributions to £, — 3¢g. The mediator (wavy line)
denotes either a photon or a Z-boson.

FIGURE 4.8: Box diagram contributions to ¢, — 3 ¢3.

given by
highia 1
A = G i) 4.23
ND ;6(477) 2 (1) ( )

Here G() is a loop function, which is given in Appendix A. Z-pengiun diagrams shown
in Fig. 4.7 give a negligible contribution to the decay width as explained in [119, 120].
Apart from photon dipole and non-dipole penguin contributions, the box diagrams shown

in Fig. 4.8 also contribute to the decay width given by
B= e 62 e Z [ Dy (ri,75)Wghjghighia + 1iriDa(ri,75))Wigh’shighia | . (4.24)

The loop functions D1 (x,y) and Ds(x,y) are provided in Appendix A.

Using the allowed parameter space from Table. 4.2, we show in Fig. 4.9 the correlation
plot between p — ey and pu — eee (left panel). Similarly the right panel in Fig. 4.9
depicts the correlation plot between branching ratios of 7 — eee and 7 — ppup. From
these figures we conclude that all the obtained branching ratios in the viable parameter

space are within the experimental limits.



Chapter 4 Fermionic dark matter and neutrino oscillation in the scotogenic model 66
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FIGURE 4.9: Correlation plots between Br(u — eee) and Br(u — ey) (left panel) and
between Br(r — puu) and Br(r — ece) (right panel).

4.6 Conclusion

We have considered the scotogenic model, which is an extension of the standard model
with an additional inert scalar doublet and three heavy Majorana right-handed neutri-
nos. We have diagonalized the neutrino radiative mass matrix using the TBM matrix
with an additional perturbed matrix as a rotation matrix in the 13 plane. The mixing
angles are chosen (f = 35° and ¢ = 12°) to accommodate a sizeable ;3. Working in a
degenerate heavy neutrino mass spectrum, we have obtained a flavor structure favorable
to explain normal neutrino mass ordering. Choosing the lightest of the odd particles
as dark matter, we have computed the relic abundance including the co-annihilation
effects. Scanning over the entire parameter space and applying the constraints from
neutrino oscillation data, dark matter observables and bounds from lepton flavor vio-

lating decays such as o, — fgvy and £, — 3{g, we have shown the suitable range for

various parameters in the model.



Chapter 5

Exploring Majorana dark matter

in connection to flavor anomalies

So far, we have explored dark matter phenomenology in connection to neutrino sector. In
the present chapter, we shift our emphasis to reconcile the quark sector anomalies, which

are indirectly linked to new physics beyond the SM, in a simple theoretical framework.

5.1 Brief note on flavor anomalies

Recently, the LHCb experiment has reported discrepancies of (2 — 4)o [138-143] in
several physical observables associated with flavor changing neutral current b — sl™1~
processes. Especially, the observation of 30 anomaly in the P? angular observables [141]
and the decay rate [142] of B — K*utpu~ processes have attracted a lot of attention
in recent times. The decay rate of B, — ¢ut i~ has also 30 deviation compared to its
SM prediction [140]. Furthermore, the LHCb Collaboration has observed the violation
of lepton universality in BT — K171~ process in the low ¢% € [1,6] GeV? region [139]

pipt _ Br(BT = Kutu)

=0.7457999 4 036 5.1
K Br(B+ N K+6+6_) —0.074 ) ( )

which has a 2.60 deviation from the corresponding SM result [144]

RSM = 1.0003 + 0.0001. (5.2)

67
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In addition, an analogous lepton non-universality (LNU) parameter (Rx~) has also been
observed in B® — K*0I*]~ processes [138]
Br(B® — K*u*tu™)
RZPt = = 0.6670% £0.03, ¢* € [0.045,1.1] GeV?
K Br(B? — K*0ete™) —0.07 T €] 1.1] GeV7,
= 0.69705 +£0.05, ¢*€[l1.1,6] GeV?,  (5.3)

which correspond to the deviation of 2.2¢0 and 2.40 from their SM predictions [145]

RM , =092+0.02, RM

, =1004001.  (5.4)

q2€[0.045,1.1] GeV q2€[1.1,6] GeV

To resolve the above b — sll anomalies, we extend the SM gauge group SU(3)c x
SU(2)r x U(1)y with a local U(1)r, -1, symmetry. The anomaly free L, — L, gauge
extensions [146, 147] are captivating with minimal new particles and parameters, rich
in phenomenological perspective. The model is quite simple in structure, suitable to
study the phenomenology of DM, neutrino and also the flavor anomalies. It is well
explored in dark matter context in literature [148-151], in the gauge and scalar portals.
The approach of adding color triplet particles to shed light on the flavor sector thereby
connecting with dark sector is interesting. Leptoquarks (LQ) are not only advantageous
in addressing the flavor anomalies, but also act as a mediator between the visible and

dark sector. Few works were already done with this motivation [152-155].

Leptoquarks are hypothetical color triplet gauge particles, with either spin-0 (scalar) or
spin-1 (vector), which connect the quark and lepton sectors and thus, carry both baryon
and lepton numbers simultaneously. They can arise from various extended standard
model scenarios [156-167], which treat quarks and leptons on equal footing, such as
the grand unified theories (GUTs) [156-159], color SU(4) Pati-Salam model [160-164],
extended technicolor model [165, 166] and the composite models of quark and lepton
[167]. In this chapter, we study a new version of U(1)r, 1, gauge extension of SM
with a (3,1,1/3) scalar LQ (SLQ) and an inert doublet, to study the phenomenology of
dark matter, neutrino mass generation and compute the flavor observables on a single
platform. The SLQ mediates the annihilation channels contributing to relic density and
also plays a crucial role in direct searches as well, providing a spin-dependent WIMP-
nucleon cross section which is quite sensitive to the recent and ongoing direct detection
experiments such as PICO-60 and LUX. The Z’ gauge boson of extended U(1) sym-
metry and the SLQ also play an important role in settling the known issues of flavor
sector. In this regard, we would like to investigate whether the observed anomalies in
the rare leptonic/semileptonic decay processes mediated by b — sl transitions, can
be explained in the present framework. We analyze the implications of the model on
both the DM and flavor sectors, in particular on B — VItl~ (V = K*, ¢) decay modes.
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In literature [168-188], there were many attempts being made to explain the observed

anomalies of rare B decays in the scalar leptoquark model.

5.2 New L, — L, model with a scalar leptoquark

We study the well known anomaly free U(1)r, 1, extension of SM with three neu-
tral fermions N, Ny, N, with L, —
singlet ¢, charged +2 under the new U(1) is added to spontaneously break the lo-

L, charges 0,1 and —1 respectively. A scalar

cal U(1)r, -1, gauge symmetry. We also introduce an inert doublet () and a scalar
leptoquark S1(3,1,1/3) with L,

model. We impose an additional Z3 symmetry under which all the new fermions, n; and

L; charges 0 and —1 to the scalar content of the

the leptoquark are odd and rest are even. The particle content and their corresponding

charges are displayed in Table. 5.1.

\ Field | SUB)e x SUR)L xUL)y |UM)p,—1, | Z2 |

Fermions | Qr = (u,d)t (3,2, 1/6) 0 +
UR (3,1, 2/3) 0 +

dr (3,1, —1/3) 0 +

er, = (Ve, e)F (1, 2 —1/2) 0 +

eR (1,1, —1) 0 +

n = e 1)} (1.2, —1/2) 1 +

P (1,1, —1) 1 +

1L = (Vr, T)L, (1,2, —1/2) -1 +

TR (1,1, —1) -1 +

N, (1,1, 0) 0 -

N, (1,1, 0) 1 -

N, (1,1, 0) -1 —

Scalars H (1,2, 1/2) 0 +
" (1,2, 1/2) 0 -

P2 E ’ ) 2 +

S1 (3,1, 1/3) -1 -

TABLE 5.1: Fields and their charges of the proposed U(1)r, 1, model.
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The Lagrangian of the present model can be written as

1 , _ _ _ _
L=Lsy— ZZ,’WZ M — 9B 1L 2y, — Gur R Y URZ,, + 9T TLZ), F 9urTRVMTRZ,

Nl Ne+ N (08— gr Z47#) N+ N (0 + gr Z37#) N7 — 22 (N0} )

o R 1 — — _
~ % (NN +hec) = SMeNEN, = My (NEN: + NEN,) = S (ygn diSiNy + hic.)
q=d,s,b
/ 2 / 2
- Z Yﬁyz(lL)ﬁﬁ]NzR + ‘ (23# — 57'(1 . W;j — '923“) nr| + ’ <Z8u — %BN + 9ur Z;) Sl
i=e,u,T
. 2
+ (104 — 29ur Z),) $2|” = V(H,nr1, ¢2, 51), (5.5)

where the scalar potential V is

V(H,nr, ¢2,51) = 3 HUH + A (H H)? + oy, (0r" 1) + Xy (01" 00)? + Ny (HTH) (01 1)

"

A
iz (H ) H) + 252 [ (H ) 4 e + i3(0heo) + a(@hen)? + 3 (51751)

FAs(5110) + [ Ara(@ho2) + Ams(STS) | (HH) + Asal@heo) ($1751)

Fnp2(502) (nrtnr) + A, (S1TS1) (). (5.6)

The gauge symmetry SU(2)r xU(1)y xU(1)L, L, is spontaneously broken to SU(2)r, x
U(1)y by assigning a VEV vy to the complex singlet ¢o. Then the SM Higgs doublet
breaks the SM gauge group to low energy theory by obtaining a VEV v. The new neutral
gauge boson Z' associated with the U(1) extension absorbs the massless pseudoscalar in
¢2 to become massive. The neutral components of the fields H and ¢2 can be written

in terms of real scalars and pseudoscalars as

1 i
H= —=(w+h)+—=z,
VARG
1 i
= —(va+ ha) + —=A42. 5.7
b2 \/5( 2 + ho) Ntk (5.7)
nt
The inert doublet is denoted by n; = e fmo . The masses of its charged and neural
V2

components are given by

g Anr2
2 _ 2 nr 2 n 2
My, =y, + 0T 0,
A9 v2
Mge = “3]1 + ?;1 Ug + (/\HWI + A}fm + )‘}/1”71) ?’
M2 _ 2 )‘TIIQ 2 A \, " f 5.8
mo = Hpr T 2U2+(H771+ Hnr — Hm)2' (5.8)
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The masses obtained by the colored scalar and the gauge boson Z’ are

Mgl = 2M%+)\H5'7)2+A52’U§,
MZI = 2U2g“7-. (59)

In the whole discussion of the results, we consider the benchmark values for the masses
of the scalar spectrum as (Mg, , M, , My, ) = (1.2,2,1.5) TeV.

5.3 Mixing in the fermion and scalar sector
The fermion and scalar mass matrices take the form

My =

1
—f,v M.+ 2202 A
valure M) ( e sz?) . (5.10)

M;rr %fT’Ug /\HQU'UQ 2/\21)%

One can diagonalize the above mass matrices by Ug(@)MN(S) Uq(e) = diag [MN_(HI), MN+(H2)],

where
cosf sinf
Up = , (5.11)
—sinf@ cos6
A M,
with © = %taurf1 (2[{27)1}22) and o = %tanf1 a .
)\27)2 — Agv (fT _fu)(UQ/\/i)

We denote the scalar mass eigenstates as H; and Hsy, with H; is assumed to be ob-
served Higgs at LHC with My, = 125.09 GeV and v = 246 GeV. The mixing parameter
O is taken minimal to stay with LHC limits on Higgs decay width. We indicate N_ and
N to be the fermion mass eigenstates, with the lightest one (N_) as the probable dark

matter in the present work.

5.4 Dark matter phenomenology

5.4.1 Relic abundance

The model allows the dark matter (N_) to have gauge and scalar mediated annihilation
channels. The possible contributing diagrams are provided in Fig. 5.1 which are medi-
ated by (Hi, H2,nJ, Ne.0, 51, Z'). Majorana DM in Hj 5 portal (upper row in Fig. 5.1)
has already been well explored in literature [99]. Here, we focus on (Z’, S1,nr)-mediated

channels (middle and bottom rows in Fig. 5.1) contributing to DM observables, which
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we later make connection with radiative neutrino mass as well as flavor observables.

N_ N_ .
! N_ Z,2' W~ Hi
/
/
2
/
............... 4
>H1H2 Hy, Hy Hy,Hy
\
\
~ \
N- f N- H;
N- (1, 7)
Z/
Zl
N (7,7) Hy, 1,
N- (d,s,b) N_ (1, 7)
| | |
Sq 1 Ne,o 1 ni 1
| | |
N (d,5.b) N (O 0r) N (7, 7)

FIGURE 5.1: Feynman diagrams contributing to relic density.

(Yayar) = (0.01,0.5) Mgz = 500 GeV, (Yy,g,r) = (0.01,0.02)
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FIGURE 5.2: Behavior of relic density plotted against DM mass with Mg, = 2.2 TeV,
shown with varying Mz and g,, (left panel) and y,r (right panel). Black horizontal
dotted lines denote the 30 range of Planck limit [22].

From the annihilation cross section, the relic density can be estimated by the formula
given in Eqn. (1.59). As seen from the left panel of Fig. 5.2, the relic density with
s-channel contribution is featured to meet the Planck limit [22] near the resonance in
propagator (Hy, Ha, Z'), i.e., near M_ = % We restrict our discussion to the mass
region (in GeV), 100 < Mz < 1000, 80 < M_ < 1000 and also Hs is considered to be
sufficiently large such that its resonance doesn’t meet the Planck limit below 1 TeV re-
gion of DM mass. Now, in this mass range of DM, the channels mediated by (Z’, n;, S1)

drive the relic density observable, where the gauge coupling g, controls the s-channel
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contribution, while Y and y4r are relevant in ¢-channel contributions. The relevant pa-
rameters in our investigation are (M_, gur, Mz, Y",y4r). The effect of these parameters
on the relic abundance is made transparent in Fig. 5.2, where we fixed Y” ~ 1072, in
order to explain neutrino mass at one loop level. Left panel shows the variation of relic
density with varying gauge parameters g,, and My, right panel depicts the behaviour
with varying y,r parameter. No significant constraint on My, g,, parameters is ob-
served, however relic density has an appreciable footprint on M_ — (qu)2 parameter

space, which will be discussed in the next section.

5.4.2 Direct searches

Moving to direct searches, the Z’-portal WIMP-nucleon cross section is insensitive to
direct detection experiments as mentioned earlier in section. 3.3.2. The ¢-channel scalar
(H1, Hy) exchange can give spin-independent contribution, but it doesn’t help our pur-
pose of study. In the scalar portal, one can obtain contribution from spin-dependent

interaction mediated by SLQ, of the form

ng cosla ___

Leg ~ N A"y’ N_gv7°q.- (5.12)

T A(ME - M?)
Comparing with Eqn. (1.70), the corresponding cross section can be derived from the

formula in Eqn. (1.71),

©? cost a

o [y2.A 2. A, 2 1 1
(M2, — M2 [YarAd + yspAs)” In(In + 1), (5.13)

o5, =
The values of quark spin fractions Ay s are provided in Table. 1.2. Now, it is obvious that
it can constrain the parameters M_ and (yqr)?. Fig. 5.3 left panel displays M_ — (ng)
parameter space (green and red regions) remained after imposing Planck [22] 30 limit
on current relic density. Here, the region shown in green turns out to be excluded by
most stringent PICO-60 [39] limit on SD WIMP-proton cross section, as seen from the
right panel.

5.5 Radiative neutrino mass

From the Yukawa interaction term involving the inert doublet 77 in Eqn. (5.5), neutrino

mass can be calculated for the diagram shown in Fig. 4.1, as

" 2 .
(MV),B _ HﬂIU YQVZY’YVZMDz M%z In M%’L (5 14)
y = E .
1672 e m — M3, m%l — M3, m%l
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FIGURE 5.3: Left panel depicts the M_ — (y,r)? parameter space consistent upto 3o

level of Planck limit [22] on relic density. Right panel gives the SD WIMP-proton cross

section as a function of DM mass. Dashed lines represent the recent bounds obtained

from PICO-60 [39] and LUX [40]. Green (red) data points in both the panels represent
Planck allowed and PICO excluded (Planck and PICO allowed).

Here Mp; = (UTMNU)i = diag(Mee, M_, M) and the fermion mass eigenstates Np; =
U;ijj. With a sample parameter space, (Y, ’1’{771) ~ (1072,107°) and (Mg My Mg, M) ~
(1.5,0.4,3,3) TeV, one can explain neutrino mass (m, ) near eV scale. Thus, the light

neutrino mass generation can be successfully achieved in the proposed model.

5.6 Flavor phenomenology

The general effective Hamiltonian responsible for the quark level transition b — si*i~

is given by [189, 190]

6
Ha = —Evv [ S amot Y (Gwo;+ clwo))

. (5.15)
\/i i=1 1=17,9,10

where G is the Fermi constant and V;, denote the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. The C;’s stand for the Wilson coefficients evaluated at the renormal-
ized scale p1 = my [191], where the sum over 7 includes the current-current operators
(i = 1,2) and the QCD-penguin operators (i = 3,4,5,6). The quark level operators

mediating leptonic/semileptonic processes are given as

0 - _° (3 v
O = W(SUW (ms Priry +myP R(L>)b)F "
Qem ,_ - Qem ,_ 7,
0y = TR Puwb)ind), O = " Pumb)(yosh) - (5.16)

where aem denotes the fine-structure constant and Pr, g = (1 F 5)/2 are the chiral
operators. The primed operators are absent in the SM, but can exist in the proposed

L, — L; model.
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The previous section has discussed the available new parameter space consistent with
the DM observables which are within their respective experimental limits. However,
these parameters can be further constrained from the quark and lepton sectors, to be

presented in the subsequent sections.

5.6.1 B, — B, mixing

In this subsection, we discuss the constraint on the new parameters from the mass dif-
ference between the By meson mass eigenstates (AMj), which characterizes the Bs — B,
mixing phenomena. In the SM, By — By mixing proceeds to an excellent approximation
through the box diagram with internal top quark and W boson exchange. The effective
Hamiltonian describing the AB = 2 transition is given by [192]

Gt

Hot = 7655 AL My So(we)ns(5)v-a(3b)v-a (5.17)

where Ay = Vi V%, np is the QCD correction factor and Sp(x;) is the loop function [192]
with o, = m?/M3,. Using Eqn. (5.17), the By — By mass difference in the SM is given

as

<Bs|,Heff’Bs> _ %
MB 67‘(’2

s

AMPM = 9| ME)| = M3 22 g Bufd Mp,So(x) . (5.18)

The SM predicted value of AM; by using the input parameters from [193, 194] is
AMSM = (17.426 £ 1.057) ps~*, (5.19)
and the corresponding experimental value is [193]
AME*P = 17,761 4 0.022 ps— L. (5.20)

Even though the theoretical prediction is in good agreement with the experimental

B, — B, oscillation data, it does not completely rule out the possibility of new physics.

The box diagrams for By — B mixing in the presence of singlet SLQ and N are shown
in Fig. 5.4. The effective Hamiltonian in the presence NP is given by
(ysrybR)*

2 s 2 NP /- S
Het = WCOS Q81N CVCYB5 (Sb)V-l,-A (Sb)v_;,_A 5 (521)
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FIGURE 5.4: Box diagrams of B, — B, mixing with leptoquark in the loop.

where

CEY = 2k(x—,x=,1) +4k (x=, X4+ 1) + 2k (X4, X4+ 1) + x—F (x=» X, 1)
+ 20X X+J (X=X 1) + x47 (x4 x5 1), (5.22)

with x+ = M%/Mg1 and the loop functions k (x+, x5,1), j (X4, X5, 1) are presented in
Appendix B [152]. Using Eqn. (5.21), the mass difference of By — B, mixing due to the

exchange of S7 and N4 is found to be

2
AMNY = Mco@asinz aCXPnpBp, f3 Mp, . (5.23)
48m2 Mg, s s
Including the NP contribution arising due to the SLQ exchange, the total mass difference

can be written as

AM, = AMSM |1+

Cgf cos? asin® av ( (ysRbe)2 ) ] (5 24)

BGEVipVis® My So(we) \ - M3,
Using Eqns. (5.19) and (5.20) in (5.24), one can put bound on (y,z)? and M_ parame-

ters.

5.6.2 B — KI'l~ process

The rare semileptonic B — KITI~ process is mediated via b — slTl~ quark level
transitions. In the current framework, the b — slTl~ transitions can occur via the Z’

exchanging one-loop penguin diagrams shown in Fig. 5.5.
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FIGURE 5.5: Penguin diagram of b — sll processes, where [ = p, 7 with leptoquark in
the loop.

The matrix elements of the various hadronic currents between the initial B meson and
K meson in the final state are related to the form factors f o as follows [144, 195]

M%_Mlz( n

(K (px) 157"b|B (pB)) = f+ (¢*) (0B +pE)" + [fo () — [+ (¢°)] R ,(5.25)

where pp (px) and Mp (M) denote the 4-momenta and mass of the B (K) meson
and ¢? is the momentum transfer. By using Eqn. (5.25), the transition amplitude of

B — Kptu~ process is given by

1 beyng,%T

M= _——=
2572 M%,

Vo (X—» x+)[a(pp)y" (1 + v5)u(pr )] [0(p2)vuulp1))],  (5.26)
where p; and po are the four momenta of charged leptons and Vg,(x—, x+) is the loop
function [152, 196]. Now comparing this amplitude (5.26) with the amplitude obtained
from the effective Hamiltonian (5.15), we obtain a new Wilson coefficient associated

with the right-handed semileptonic electroweak penguin operator Oy as

CNP _ V2 beyngiT

_ 5 (Y . 5.27
9 FnGromVaVe My Vb (X=» X+) (5.27)

The differential branching ratio of B — Kl process with respect to ¢? is given by

dBI‘ G%’agm“/;bV;*P 2 2 2 2 2 Cl(q2)
dg? =7B 287T5M]?§ > /\(MB,MK,q )5zf+(az(q )+ 5 ) , (5.28)
where
A MZ,J\J2 ,q2
al(q2) = qz‘FP‘Q‘FM(\FAP—i—]FVP)

4
+2my (Mg — Mi + ¢*)Re(FpE}) + 4mi M3|Fal?
A(M2E, M2, ¢?)

alg?) = —S BTG (1F R+ R, (5:29)
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with
2
Fy = 04 o5t T, Fy = O,
Mp
M2 _ M2 fO(q2)
Fp = mC [ B K( —1)—1}, 5.30
r o q> f+(d?) (5.50)
and

Aa,b,c) = a® +b* + c* = 2(ab+bc+ca), By =1/1—4m?/q¢>. (5.31)

For numerical estimation, we have used the lifetime and masses of particles from [193]
and the form factors are taken from [197]. The upper limit on the branching ratio of

Bt — K777~ process is [193]

Br(B* — K+rtr7)|"™ < 2.5 x 1073, (5.32)
while its predicted value in the SM is
Br(B* — K+rtr)|™ = (1.486 £ 0.12) x 107", (5.33)

Since Z’ doesn’t couple to electron, the branching ratio of BT — KTete™ process is
considered to be SM like. The anomalies of b — sll decay modes can put constraint on

all the four parameters i.e., (y,r)%, gur, Mz and M_.

5.6.3 B — X,y process

The B — X,y process involves b — sy quark level transition, the experimental limit on

the corresponding branching ratio is given by [198]

Br(B — X,7) E’;‘jl.ﬁ oy = (3:32£0.16) x 1074, (5.34)

Fig. 5.6 represents the one loop penguin diagram of b — s process mediated by SLQ
and Ni.

Including the NP contribution, the total branching ratio of B — X7 is given by

car /NP 2
Br(B — Xs7) =Br(B — Xoy)|” |14+ —Lg7 | - (5.35)
o
where the predicted SM branching ratio is [199]
SM 4
Br(B — X,7) = (3.36+£0.23) x 1074, (5.36)

Ey>1.6 GeV
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FIGURE 5.6: Feynman diagram of b — s processes in the presence of scalar leptoquark.

The new C NP Wilson coefficient obtained from Fig. 5.6 is given by
V2/3  ybryYsk
CYNP — _ H (R cotat ina)), 5.37

where the loop functions Jj (x4 ) are given by [152]

1 —6x+3x* +2x* — 6x?log x

Jl(X) 12(1 _X)4

(5.38)

Using Eqns. (5.34, 5.36, 5.37) in (5.35), the parameters (y,z)? and M_ can be con-

strained.

5.6.4 T — uv.v, process

In the presence of Z’ boson, the 7 — puv, v, process can occur via box diagram as shown
in Fig. 5.7. There are four possible one-loop box diagrams with the Z’ connected to

the lepton legs. The total branching ratio of this process is given by [200]

Vr

-
> > >
A w

]
1 - - v,

FIGURE 5.7: One loop box diagram of 7 — puv,, processes.

(5.39)

2
395y log(Mpy, /M2,
42 1— M2, /M2, |’

Br(r — pv;v,) = Br(t — ;LVTEH){SM <1 +
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where the branching ratio in the SM is given by [200]
_\|SM
Br(r — pvri7,)|” = (17.29 £ 0.032)%. (5.40)
Now comparing the theoretical result with the experimental measured value [193]
Br(r — pwr )| = (17.39 4 0.04) %, (5.41)
one can put bounds on Mz — g,, parameter space.
0.20 5 PLANCK allowed
PICO excluded
0.15} . o . 10 a flavor excluded
c. . 5 a viable region
& o.10f . s _— e o
. o .. = 050 " o
._'- T e ,% St
0.05}¢ .:: FRICY ‘..:0:', 010 -
Y 0.05
* -
200 400 600 800 1000

200 500 1000

M_[GeV]

FIGURE 5.8: Left panel projects the constraint on g,, and Mz obtained from Ry,

Br(B — Kr77) and Br(r — pv,p,) observables. In the right panel, blue data points

denote the allowed parameter space obtained from Ry, Bs — B, mixing, Br(B — K77),

Br(B — X,v) experimental data, which are also consistent with Planck [22] and PICO-

60 limit [39]. Here, green (red) data points denote PICO-60 and flavor excluded (PICO-
60 allowed and flavor excluded) region.

] Parameters ‘ DM-I DM-II \ DM+Flavor ‘
M_ [GeV] 103 — 560 | 561 — 988 103 — 560
(y4r)* 0—351 | 1.94—256 0—1.26

TABLE 5.2: Predicted allowed range of parameters M_ and (qu)2. Here DM-I
and DM-IT represent two regions in Fig. 5.3 consistent with only DM observables,
DM+Flavor denotes the region favored by both the dark matter and flavor studies.

Now correlating the theoretical predictions of Ry, Br(BT — K*7t77) and Br(r —
pv-0,) with the corresponding 30 experimental data, we compute the Mz — g, allowed
parameter space. Since Z’ does not couple to quarks, these gauge parameters couldn’t
be constrained from b — sy decay modes and B, — B, oscillation data. The constraint on
M_ — (yqr)? parameter space is obtained from Ry, Br(BT — KT7777), Br(B — X4v)
and B, — B, mixing results. In addition, the branching ratio of rare semileptonic B —
K,y process can play a vital role in restricting these parameters. Though the proposed
model can allow b — sy;7; decay modes, but the contributions of p and 7 leptons cancel
with each other in the leading order of NP due to their equal and opposite L, — L
charges. Since there is no Z’ur coupling, the neutral and charged lepton flavor violating

decay processes like B — K™y Fr* 7= — =+, 7 — ppp do not play any role. In this
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analysis, we consider that the y,g coupling is perturbative i.e., |y,r| < V47 Left (right)
panel in Fig. 5.8 denotes the parameter space in the plane of My — g,r (M— — (y4r)?)
consistent with DM and flavor studies. From left panel, one can obtain the lower limit
on the ratio My /g, around 4615 GeV, which is far more stringent than the lower limit
imposed by neutrino trident production [201, 202] i.e., 540 GeV. It is also noted that the
allowed region favored by the (g —2), anomaly is completely excluded by the constraint
from the neutrino trident production [200]. In the right panel of Fig. 5.8, we redisplay
M_ — (qu)2 parameter space of Fig. 5.3 after a combined analysis made by imposing
the DM and flavor experimental limits, with the surviving region shown in blue color.
In Table 5.2, we report the allowed region of the parameters M_ and (y, r)? which are
consistent with only DM studies (DM-I, II), both DM and flavor sectors (DM+Flavor).

5.7 Implication on B — K*(¢)u" i~ processes

The constrained parameter space discussed in the previous section can have an impact
on the observables of B — VI*I~ process, where V = K* ¢ are the vector mesons.
The B — V hadronic matrix elements of the local quark bilinear operators can be

parametrized as [203, 204]

2 2
V (051 =B ) = s s 0 o i )2 — )
ey (Mp 4 M)Ay () + z’”q{‘” (e ) [A5(¢®) — A0(¢)] g
(5.42)
where v v v \
Aafs) = ) g 5) - B8 22 1), (5.43)

¢? is the momentum transfer between the B and V mesons, i.e., qu = pu — Kk, and €, is
the polarization vector of the V' meson. The full angular differential decay distribution

in terms of ¢2, 6, O, and ¢ variables is given as [205-207]

dq? dcosf; dcosby dp 32w q,01,0v,9) , )
where
J (%, 01,0v,0) = Jisin? Oy + Jf cos® Oy + (J5 sin® Oy + J5 cos” Oy ) cos 20,

Js sin? 0y sin® 0; cos 2¢ + Jy sin 20y sin 26, cos ¢ + Js sin 26y sin 0 cos ¢

(J§ sin? 0y + Jg cos? Oy ) cos 0 4 J sin 20y sin 6; sin ¢

+ o+ +

Jg sin 26y sin 26; sin ¢ + Jg sin? Oy sin® 6; sin 2¢ (5.45)
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0; is the angle between [~ and B in the dilepton frame, 6y is defined as the angle
between K~ and B in the K~ 7t (K~ K™) frame, the angle between the normals of
the K~ 7t (K~ K™) and the dilepton planes is given by ¢. The complete expressions
for J (q2, 0,0y, gb) as a function of transversity amplitudes are given in the Appendix
B [208]. The transversity amplitudes written in terms of the form factors and Wilson

coefficients are as follows [208]

V(g?) 2my,
A = NV2| ((cs® + NPy £ ¢ C:Ty (¢
LL.R [((9+ 9 ) F 10)MB+MV+Q2 71(Q)},
Aq1(g? 2m,
AiLr = —NV2(Mp— M) [ <(C§lcf +C3) F Clo) MBliq]\)h T qsz7T2(q2)} ,
_ N eff INP
Ao =~y | (G8+ G Cuo)
A 2
X ((M% — ME - ¢*)(Mp + My)A1(¢%) — /\]\4324(:1]\)4‘/)
A
+2mpCy <(M% +3MY — ¢*)Ta(q?) — > :
M?% — MZ }
A
Ay = 2N1/?C10A0(q2), (5.46)
where
* G%’agm 2 2 2 2 2
N =V Vi {?m%q 51\5] , A= XMy, Mg, q°). (5.47)

The dilepton invariant mass spectrum for B — VITI~ decay after integration over all

dl’ 3 Jo
== . 4
d¢? 4 (Jl 3 > ’ (5.48)

where J; = 2J7 + Jf. The most interesting observables in these decay modes are the

angles [205] is given by

lepton non-universality parameter defined as

Br(B — Vutu™)

= 4
Ry Br(B — Vete )’ (5:49)
the form factor independent (FFI) observables [209]
J. J.
pl=—2__  p=_75__ (5.50)

NS 2\/—J5JS

After getting familiar with the different observables and the allowed values of the new

parameters, we now proceed for numerical analysis in the full dilepton mass region i.e.,
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FIGURE 5.9: The ¢* variation of Ry~ (left panel) and Ry (right panel) LNU parameters

in the L, — L; model. Here the blue dashed lines represent the SM prediction, the cyan

(magenta) bands stand for the NP contribution from the dark matter studies i.e., DM-I

(DM-II). Orange bands are due to the contribution from both the flavor and DM sectors

(DM+Flavor). The experimental data points (with 20 error bars) [138] are shown in
black lines.
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FIGURE 5.10: Top panel represents the variation of P; (left panel) and P! (right
panel) observables of B — K*u*u~ process with respect to ¢>. The behaviour of Pj
(left panel) and P? (right panel) for Bs — ¢u™p~ are shown in the bottom panel. The

bin-wise experimental data points with error bars are shown in black [141]. Note that
LHCb

A =-Pj.
4ml2 <@ < (Mp— MV)27 leaving the regions around ¢? ~ m?] /i and m?p,. The cuts are
employed to remove the dominant charmonium resonance (c¢) = J/, 1’ backgrounds
from B — V (cc) — VItI~. In Fig. 5.9, we show the behaviour of R~ (left panel) and
R, (right panel) with respect to ¢ in the full kinematically accessible physical region.
In these figures, the blue dashed lines stand for the SM contribution, the orange bands
are due to the allowed region of parameters shown in Table 5.2 | favored by both DM and
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flavor (DM+Flavor) and cyan (magenta) bands for only DM case i.e., DM-I (DM-II).
The bin-wise experimental values of Ry are shown in black. From the left panel of
Fig. 5.9, it can be seen that the measured value of Ry« in the ¢? € [0.045,1.1] GeV?
region can be accommodated within 2¢ (DM-I), the ¢ € [1.1,6] GeV? bin result can
be explained within 1o (DM-I) and 20 (DM-II and DM+Flavor). Though there is no
experimental evidence for Ry parameter, the additional NP contribution arising from
the allowed parameter space of all cases (DM-I,IT and DM+Flavor) provide significant
deviation from the SM prediction, implying the presence of lepton universality violation
in the By — ¢utpu~ process. In Table 5.3, we present our predicted values of Ry« and
Ry for different bins. The q? variation of famous optimized observables —P; (top-left
panel) and P! (top-right panel) of B — K*u*u~ process are depicted in Fig. 5.10.
The bottom panel of this figure describes analogous plots for By — ¢u™p~ process in
both the high and low recoil limit. It should be noted that PMLHCb = —Pj. In the low
q? region, our predictions on — P} observable of B — K*utpu~ process is in very good
agreement with the LHCb data. For B — K*u*u~ decay mode, we are able to explain
the P! observable within 1o of the experimental limit in the full ¢? region (excluding
the intermediate resonance regions). We notice profound deviation between the results
of SM and the presented L, — L, model on the Pi,5 observables for By — ¢u™p~ decay
modes. The numerical values of all these observables are given in Table 5.3. We found
that our results on the angular observables of B — VIl process, obtained from DM-I
parameter space are almost consistent with the corresponding measured experimental

data.

’ Observables ‘ SM Values DM-I Values DM-II Values DM+Flavor Values
Ry~ ’q2€[0.04571.1} 0.949 0.825 — 0.949 0.884 — 0.89 0.9 —0.949
Ry |q2’e[1.1,6] 0.993 0.732 — 0.993 0.852 — 0.865 0.887 — 0.993
Ry~ ]q2214_18 0.998 0.793 — 0.998 0.882 — 0.893 0.91 — 0.998
Pg|q2€[176} —0.057 +£0.004 | —0.074 — —0.057 | —0.064 — —0.063 | —0.063 — —0.057
Pg|q2214.18 —0.805 +0.064 | —1.144 — —0.805 | —0.942 — —0.926 | —0.921 — —0.805
Pi|q2€[1’6} 0.398 £ 0.024 0.025 — 0.398 0.242 — 0.26 0.288 — 0.398
P4|q2214.18 0.852 4+ 0.068 0.662 — 0.852 0.78 — 0.789 0.8 —0.852
R¢|qze[0,04571,1] 0.9499 0.794 — 0.9499 0.868 — 0.876 0.89 — 0.9499
R¢\q2€[1_176] 0.994 0.712 — 0.994 0.843 — 0.858 0.881 — 0.994
Ryls2>1418 0.998 0.776 — 0.998 0.874 — 0.886 0.9 —0.998
ngqgem —0.049 +0.004 | —0.064 — —0.049 | —0.055 — —0.054 | —0.053 — —0.049
Pg|q2214.18 —0.743 +0.059 —1.07 — —0.743 —0.875 — —0.86 —0.837 — —0.743
Pﬂqze[lﬁ] 0.421 £0.036 | 4.91 x 1073 — 0.421 0.266 — 0.284 0.311 — 0.421
Pi|q2214‘18 0.872 +0.07 0.687 — 0.872 0.8 —0.812 0.825 — 0.872

TABLE 5.3: Predicted numerical values of LNU parameters (Ry ) and Pj 5 observables
of B — VI, V = K* ¢ processes in the high and low recoil limits. The upper part

represents the results for B — K*utpu~

and the lower part is for B, — ¢u+u~. Here
¢? is in GeV2.
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5.8 Conclusion

To conclude the chapter, we have studied Majorana dark matter in a new version of
U(1)L, L, gauge extension of the standard model. The model is free from triangle gauge
anomalies with the inclusion of three neutral fermions with L, — L; charges 0,1 and —1.
A scalar singlet, charged +2 under the new U(1) is added to spontaneously break the
L, — L; gauge symmetry, thereby giving masses to the new fermions and the neutral
boson Z’ associated with gauge extension. In addition, the scalar sector is enriched
with an inert doublet and a (3,1,1/3) scalar leptoquark to obtain the neutrino mass
at one-loop level and address the flavor anomalies respectively. All the new fermions,
leptoquark and inert doublet are assigned with charge —1 under Zs symmetry. Choosing
the lightest mass eigenstate of the new fermion spectrum as dark matter, we made a
thorough study of Majorana dark matter in relic density and direct detection perspective.
The channels contributing to relic density are mediated by the scalar leptoquark, Z" and
inert doublet components. As Z’-mediated cross section is insensitive to direct detection
experiments in Majorana dark matter case, only leptoquark portal channels contribute to
spin-dependent WIMP-nucleon cross section. Imposing Planck limit on relic density and
well known PICO-60, LUX bounds on spin-dependent cross section, we have constrained
the new parameters of the model. We have also shown the mechanism of generating light

neutrino mass radiatively using an inert doublet.

We have further restricted the new parameters from quark and lepton sectors i.e., by
comparing the theoretical predictions of Br(r — pv;i,), Br(B — Xgv), Br(BT —
K*t7777), Rg and Bs — B, mixing with their corresponding 30 experimental data.
The neutral and charged lepton flavor violating decay processes are absent due to zero
Z'Ttu coupling. And also the vanishing Z’qq coupling restricts the involvement of Z’
in B, — B, mixing, b — sy processes at one-loop level. We have then investigated the
implication on Py 5, Rk« and Ry observables of By — K *(¢)IT1~ decay modes in the
full kinematically allowed ¢? region for two cases i.e., dark matter and flavor allowed,
only dark matter allowed parameter space. We found that the Ry~ observable obtained
from the parameter space consistent with only dark matter (M_ < 560 GeV) is within
its 1o, only dark matter (M_ > 560 GeV) and both dark matter and flavor is within 20
experimental limit. In the presence of new physics, the violation of lepton universality
is observed in Bs, — ¢utu~ process, thus, can be probed in LHCb experiment. We
noticed that the proposed L, — L, model is also able to explain the LHCb experimental
data of the famous optimized PAL5 observables of B — K*IT1~ process in the high recoil
limit. We also perceived that the form factor independent observables for By, — ¢u™pu™

decay modes have sizeable deviation from the standard model. We observed that the
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parameter region satisfying only dark matter observables for M_ < 560 GeV have a

good impact on the flavor anomalies.



Chapter 6

Summary and outlook

The stipulation of going physics beyond the standard model is doubtless. The most
victorious theory in unravelling the dynamics of visible matter content at elementary
level is silent when it comes to dark matter identity. A series of experimental and
observational events hint that there is much more in the Universe that is invisible but
dynamic. Conclusively, there is a need for a more general framework obeying the basic
principles of the well tested theory i.e., the standard model, to unfold the envelope of

the second most energy component of the Universe.

In the introductory chapter, we presented a short note on the gauge symmetries that
govern the interactions of elementary particles in the framework of standard model. We
then outlined some of the important observational evidences that support the existence
of dark matter. From the available hints, a possible picture of dark matter from a
theoretical view point is advertised. Working through the Boltzmann equation in non-
equilibrium state, we have explicitly derived the present abundance of dark matter and
also provided a convincing mathematical argument, elevating the chance of a weakly
interacting massive particle meeting the requirements levied by the observations and
observables. The current experimental bounds on the cross section when dark matter

particle meets the detector are also projected.

Chapters 2 and 3 are devoted to the study of dark matter in an uncomplicated U(1)p_p,
gauge extension of the standard model. We have presented the discussion on triangle
gauge anomalies associated with the gauge extension and posted the possible B — L
charges required for the new fermion content to overcome. We have put forth a new
variant of such extension with three neutral fermions charged —4, —4 and 45 under the
new U(1). The scalar sector is enriched accordingly so that every new particle attains
mass after the U(1) gauge symmetry is spontaneously broken. The lightest Majorana

mass eigenstate is naturally stable as the exotic B — L charge forbids its decay to

87
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Higgs boson and the light neutrino through Yukawa interaction term. In chapter 3, we
have explored its dark matter phenomenology. Chapter 2 contains the detailed study
of scalar singlet dark matter, for which we have added a scalar singlet to the model
that doesn’t produce any value in vacuum. We have avoided its decay by allotting a
suitable B — L charge. The primary feature of the proposed framework is that the B — L
gauge symmetry plays the role of ad-hoc discrete symmetry in conventional models that
stabilize the dark matter particle. The model is fruitful in providing two mediators
i.e., the scalar and vector boson, for the dark matter to communicate with the visible
matter. Both the portals were analyzed carefully in concern to relic density and direct
detection observables. We have included the constraints obtained from ATLAS dilepton
jet study, LEP-II data on the gauge coupling and gauge boson mass, associated with
the B — L symmetry extension. A leftover massless degree of freedom (Goldstone mode)
originating from an accidental global U(1) symmetry is studied in the spotlight of relic
density. Additionally, we have also discussed the concept of semi-annihilation in scalar
dark matter study. Tiny neutrino mass is demonstrated with the well known one loop
diagram involving the dark matter (both scalar and fermion). We have scrutinized
the parameter space that survives the constraints from Planck limit on relic density,
upper limits on direct detection cross section from various collaborations such as LUX,
XENON, PandaX, and collider searches as well.

The interrelated concepts of neutrino mass and oscillations are opaque in the standard
model. Theoretical picture for the precisely measured parameters from neutrino oscilla-
tion experiments can be drawn in extended frameworks. Tempted to the task of studying
neutrino oscillations and dark matter by a common theoretical view point, chapter 4
is included with the investigation of radiative neutrino mass matrix in the scotogenic
model. We have projected complete technical details in the process of examining the
mass matrix with a tri-bimaximal mixing matrix and a perturbation to trigger for the
recently observed non-zero reactor mixing angle (613). Working in degenerate heavy
neutrino mass spectrum, we have obtained the constraints on the model parameters
that provide light neutrino masses obeying normal hierarchy and also gives the correct
relic abundance of fermionic dark matter including co-annihilation effects. Using the
available parameter space that is consistent with neutrino sector and dark matter sec-
tor, we made our estimation on the decay channels that violate lepton flavor such as

lo — Ly and £o — 3 43.

Many devoted experiments like Belle, BaBar as well as LHCb are currently running
to verify the utterance of lepton universality violation in the B sector. Chapter 5 is
based on the challenging problems of flavor physics in association with the dark matter
observables. Revisiting L, — L; model with an additional inert scalar doublet and a

singlet scalar leptoquark, we have scrutinized Majorana dark matter. The channels
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mediated by the scalar leptoquark, Z’ and inert doublet components contribute to relic
density and leptoquark portal s-channel process gives spin-dependent WIMP-nucleon
cross section. Using Planck limit on relic density and the most stringent PICO-60, LUX
bounds on spin-dependent cross section, we have constrained the new parameters of the
model. We have also shown the mechanism of generating light neutrino mass radiatively
using the inert doublet. Forbye, the allowed regions of new parameters are procured by
implementing the experimental limits on Br(7 — uv,,), Br(B — X,7), Ri and B;— B;
oscillation. We then looked at the impact of compiled parameter space, predicted from
only dark matter observables and from both dark matter and flavor observables, on the
R+, Ry and optimized Pzi,5 parameters of By — K*(¢)utpu~ decay modes. We have

noticed that the dark matter observables describe the flavor anomalies effectively.

Winding up with general remarks, it is fair enough to say that dark matter in particle
physics viewpoint encompasses different phenomenological aspects such as neutrino and
flavor sector, that have already produced a precisely measured physical observables. In
this connection, we have attempted to glitter the probable ingredients and dynamics of
invisible component in few simplified frameworks. The approach chosen and the results

obtained could be helpful in prospects of upcoming dedicated experiments.






Appendix A

Neutrino oscillations and

fermionic dark matter

A.1 Loop functions

The loop functions used in LFV decays are given by

1 — 622 + 3z% 4 225 — 62 log 2

FQ(x) = 6(1 —$2)4 ) (Al)
2 — 922 + 18z% — 1125 + 625 log 2.2
Gy(z) = 61— 2)1 : (A.2)
1 z*log 2 4log y?
Di(z,y) = - - : — e (A3)

=i —y) - a22 =y (- 2P~ 2
1 z2log 2 y?log y?

DQ(a?,y) = _(1 — 1,2)(1 — yz) - (1 _ I2)2($2 _ yz) - (1 _ y2)2(y2 — x2)' (

Ad)

In the limit y — z, the functions D; and Dy become

—1 + 2% — 222 log x*

Dy(z,z) = e , (A.5)
— 1'2 — $2 O .1'2
Dy(z,7) = —2+2 . _<1$j)3 Jlog ™ (A.6)
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Appendix B

Flavor sector in L, — L; model

B.1 Loop functions required for B, — B, mixing and B de-

cays

The loop functions used to compute the By, — B, mixing and rare B decays in L,—L;

model are given by [152]

FOxasxs, ) — flxa, xs, )

,X2, X3, ) = , B.1
SO xa, x3, ) P (B.1)
where f = j, k with
joo = KIBX gy - Xloex B2
— e :
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B.2 J; coefficients of B(,) — VIl processes

The complete expression for the J; coefficients of B, — VIl processes is given by
[206, 208]

2 2
- (225’) |AT]? + |Af* + (L = R) +4qn;lRe (AﬁA + A AT ) (B.3)
T = AR +ARP + |At|2+2Re(ALAR*) + 67 1A4s (B.4)
5 = Elareeiatp+ - R, (B.5)
Jy = —5; [|AG1? + (L = R)], (B.6)
Js o= B [IARP - 1afP + (@ R, (B.7)
Ji = 751 [Re (AgA” )+(L—>R)], (B.8)
Js = V2B |Re (AgAﬁ*) (L= R)— \/(TR (AﬁA + Af AS> (B.9)
J = 28 [Re (A”AL*)—(L—>R)], (B.10)
J§ = 45lﬁRe [A§AS + (L — R)], (B.11)
Jo = V3B |Im (Af Al )—(L—>R)+\7qL21m (AL A5 + AR A%) (B.12)
Js = \1[@2 [t (A AT ) + (2 - R, (B.13)
Jo = B? [Im (A” Aﬁ) +(LHR)}, (B.14)
where
Aid] = AL (@) A (@) + AT () A5 () Gi=0,].1), (B.15)

in shorthand notation.
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