Computational modelling of nanomaterials / edited by Panagiotis Grammatikopoulos.
| Call Number | 620.1/15 |
| Title | Computational modelling of nanomaterials / edited by Panagiotis Grammatikopoulos. |
| Physical Description | 1 online resource |
| Series | Frontiers of nanoscience ; 17 |
| Notes | Includes index. |
| Contents | Front Cover -- Computational Modelling of Nanomaterials -- Series Page -- Computational Modelling of Nanomaterials -- Copyright -- Contents -- Contributors -- Preface -- REFERENCE -- 1 -- Perspective of computational modeling of nanomaterials -- 1. History -- 2. Rise of nanoscience -- 3. Computer simulation of nanomaterials -- References -- 2 -- Computational modeling of nanoparticles in inert environment -- 1. Historical background and current challenges -- 2. Computational modeling method -- 2.1 Calculating the energy of a NP: quantum versus classical -- 2.2 Study dynamics: molecular dynamics 2.3 Atomistic Monte Carlo method -- 2.4 Metropolis Monte Carlo -- 2.5 Simulation of diffusional processes -- 2.6 Kinetic Monte Carlo -- 2.6.1 Calculation of energy barriers for KMC simulations -- 2.6.2 Formation of Fe nanocubes by KMC methods -- 3. Multiscale modeling of NPs in practice -- 3.1 Modeling a NP in inert gas-phase thermostat -- 3.2 Simulation of NP nucleation and growth in gas-phase condensation -- 3.3 NP emission from a solid Ar matrix -- 4. Conclusion -- Acknowledgment -- References -- 3 -- Multiscale modeling of magnetic nanoparticle systems -- 1. Introduction -- 2. The model 2.1 Electronic structure calculations of single magnetic nanoparticles -- 2.2 Mesoscopic-scale modeling -- 3. Case studies -- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles -- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands -- 4. Concluding remarks -- Acknowledgment -- References -- 4 -- Formation and growth of fractal-like agglomerates and aggregates in the gas phase -- 1. Introduction -- 2. Nanoparticle characterization: size and structure -- 3. Nucleation, condensation, and surface growth -- 3.1 Metallic nanoparticles 3.2 Carbonaceous nanoparticles -- 4. Nanoparticle sintering -- 4.1 Sintering mechanisms -- 4.2 Sintering rates by molecular dynamics -- 4.3 Sintering rates by discrete element method -- 5. Coagulation -- 5.1 Coagulation by full coalescence -- 5.2 Coagulation by agglomeration -- 5.3 Coagulation by agglomeration and surface growth -- 6. Multiscale modeling -- 7. Concluding remarks -- References -- 5 -- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations -- 1. Introduction -- 2. Methodology -- 2.1 Molecular dynamics 2.2 Monte Carlo method for the solution of the Boltzmann transport equation -- 2.2.1 Introduction -- 2.2.2 BTE formulation for phonons -- 2.2.3 Monte Carlo implementation -- 3. Studies -- 3.1 Silicon nanowires with diameter modulation -- 3.2 Growth direction of Bi2Te3 nanowires -- 4. Conclusions -- References -- 6 -- Protein modeling -- 1. Introduction to protein structure modeling -- 2. Modeling of protein structure based on sequence -- 2.1 Terminology and molecular file format -- 2.2 Application programs -- 2.3 Homology modeling of L-PGDS -- 2.3.1 Target sequence -- 2.3.2 Template selection |
| Added Author | Grammatikopoulos, Panagiotis. |
| Subject | Nanostructured materials Computer simulation. Nanomat�eriaux Simulation par ordinateur. Electronic books. Electronic books. |
| Multimedia |
Total Ratings:
0
04654cam a2200493 a 4500
001
vtls001596371
003
VRT
005
20220902124800.0
006
m o d
007
cr |n|||||||||
008
220902s2020 ne o 001 0 eng d
015
$a GBC0B7156 $2 bnb
016
7
$a 019886970 $2 Uk
020
$a 9780128214985 $q (electronic bk.)
020
$a 0128214988 $q (electronic bk.)
020
$z 9780128214954
020
$z 0128214953
035
$a (OCoLC)1198713605
035
$a (OCoLC)on1198713605
039
9
$y 202209021248 $z santha
040
$a YDX $b eng $e pn $c YDX $d OPELS $d EBLCP $d UKAHL $d UKMGB $d GZM $d OCLCQ $d OCLCO $d COM
050
4
$a TA418.9.N35
082
0
4
$a 620.1/15 $2 23
245
0
0
$a Computational modelling of nanomaterials / $c edited by Panagiotis Grammatikopoulos.
264
1
$a Amsterdam, Netherlands : $b Elsevier, $c 2020.
300
$a 1 online resource
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
490
0
$a Frontiers of nanoscience ; $v 17
500
$a Includes index.
505
0
$a Front Cover -- Computational Modelling of Nanomaterials -- Series Page -- Computational Modelling of Nanomaterials -- Copyright -- Contents -- Contributors -- Preface -- REFERENCE -- 1 -- Perspective of computational modeling of nanomaterials -- 1. History -- 2. Rise of nanoscience -- 3. Computer simulation of nanomaterials -- References -- 2 -- Computational modeling of nanoparticles in inert environment -- 1. Historical background and current challenges -- 2. Computational modeling method -- 2.1 Calculating the energy of a NP: quantum versus classical -- 2.2 Study dynamics: molecular dynamics
505
8
$a 2.3 Atomistic Monte Carlo method -- 2.4 Metropolis Monte Carlo -- 2.5 Simulation of diffusional processes -- 2.6 Kinetic Monte Carlo -- 2.6.1 Calculation of energy barriers for KMC simulations -- 2.6.2 Formation of Fe nanocubes by KMC methods -- 3. Multiscale modeling of NPs in practice -- 3.1 Modeling a NP in inert gas-phase thermostat -- 3.2 Simulation of NP nucleation and growth in gas-phase condensation -- 3.3 NP emission from a solid Ar matrix -- 4. Conclusion -- Acknowledgment -- References -- 3 -- Multiscale modeling of magnetic nanoparticle systems -- 1. Introduction -- 2. The model
505
8
$a 2.1 Electronic structure calculations of single magnetic nanoparticles -- 2.2 Mesoscopic-scale modeling -- 3. Case studies -- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles -- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands -- 4. Concluding remarks -- Acknowledgment -- References -- 4 -- Formation and growth of fractal-like agglomerates and aggregates in the gas phase -- 1. Introduction -- 2. Nanoparticle characterization: size and structure -- 3. Nucleation, condensation, and surface growth -- 3.1 Metallic nanoparticles
505
8
$a 3.2 Carbonaceous nanoparticles -- 4. Nanoparticle sintering -- 4.1 Sintering mechanisms -- 4.2 Sintering rates by molecular dynamics -- 4.3 Sintering rates by discrete element method -- 5. Coagulation -- 5.1 Coagulation by full coalescence -- 5.2 Coagulation by agglomeration -- 5.3 Coagulation by agglomeration and surface growth -- 6. Multiscale modeling -- 7. Concluding remarks -- References -- 5 -- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations -- 1. Introduction -- 2. Methodology -- 2.1 Molecular dynamics
505
8
$a 2.2 Monte Carlo method for the solution of the Boltzmann transport equation -- 2.2.1 Introduction -- 2.2.2 BTE formulation for phonons -- 2.2.3 Monte Carlo implementation -- 3. Studies -- 3.1 Silicon nanowires with diameter modulation -- 3.2 Growth direction of Bi2Te3 nanowires -- 4. Conclusions -- References -- 6 -- Protein modeling -- 1. Introduction to protein structure modeling -- 2. Modeling of protein structure based on sequence -- 2.1 Terminology and molecular file format -- 2.2 Application programs -- 2.3 Homology modeling of L-PGDS -- 2.3.1 Target sequence -- 2.3.2 Template selection
650
0
$a Nanostructured materials $x Computer simulation.
650
6
$a Nanomat�eriaux $0 (CaQQLa)201-0258061 $x Simulation par ordinateur. $0 (CaQQLa)201-0379159
655
0
$a Electronic books.
655
4
$a Electronic books.
700
1
$a Grammatikopoulos, Panagiotis.
776
0
8
$i Print version: $t Computational modelling of nanomaterials. $d Amsterdam, Netherlands : Elsevier, 2020 $z 0128214953 $z 9780128214954 $w (OCoLC)1130247926
856
4
0
$3 ScienceDirect $u https://www.sciencedirect.com/science/bookseries/18762778/17
999
$a VIRTUA
No Reviews to Display
| Notes | Includes index. |
| Contents | Front Cover -- Computational Modelling of Nanomaterials -- Series Page -- Computational Modelling of Nanomaterials -- Copyright -- Contents -- Contributors -- Preface -- REFERENCE -- 1 -- Perspective of computational modeling of nanomaterials -- 1. History -- 2. Rise of nanoscience -- 3. Computer simulation of nanomaterials -- References -- 2 -- Computational modeling of nanoparticles in inert environment -- 1. Historical background and current challenges -- 2. Computational modeling method -- 2.1 Calculating the energy of a NP: quantum versus classical -- 2.2 Study dynamics: molecular dynamics 2.3 Atomistic Monte Carlo method -- 2.4 Metropolis Monte Carlo -- 2.5 Simulation of diffusional processes -- 2.6 Kinetic Monte Carlo -- 2.6.1 Calculation of energy barriers for KMC simulations -- 2.6.2 Formation of Fe nanocubes by KMC methods -- 3. Multiscale modeling of NPs in practice -- 3.1 Modeling a NP in inert gas-phase thermostat -- 3.2 Simulation of NP nucleation and growth in gas-phase condensation -- 3.3 NP emission from a solid Ar matrix -- 4. Conclusion -- Acknowledgment -- References -- 3 -- Multiscale modeling of magnetic nanoparticle systems -- 1. Introduction -- 2. The model 2.1 Electronic structure calculations of single magnetic nanoparticles -- 2.2 Mesoscopic-scale modeling -- 3. Case studies -- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles -- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands -- 4. Concluding remarks -- Acknowledgment -- References -- 4 -- Formation and growth of fractal-like agglomerates and aggregates in the gas phase -- 1. Introduction -- 2. Nanoparticle characterization: size and structure -- 3. Nucleation, condensation, and surface growth -- 3.1 Metallic nanoparticles 3.2 Carbonaceous nanoparticles -- 4. Nanoparticle sintering -- 4.1 Sintering mechanisms -- 4.2 Sintering rates by molecular dynamics -- 4.3 Sintering rates by discrete element method -- 5. Coagulation -- 5.1 Coagulation by full coalescence -- 5.2 Coagulation by agglomeration -- 5.3 Coagulation by agglomeration and surface growth -- 6. Multiscale modeling -- 7. Concluding remarks -- References -- 5 -- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations -- 1. Introduction -- 2. Methodology -- 2.1 Molecular dynamics 2.2 Monte Carlo method for the solution of the Boltzmann transport equation -- 2.2.1 Introduction -- 2.2.2 BTE formulation for phonons -- 2.2.3 Monte Carlo implementation -- 3. Studies -- 3.1 Silicon nanowires with diameter modulation -- 3.2 Growth direction of Bi2Te3 nanowires -- 4. Conclusions -- References -- 6 -- Protein modeling -- 1. Introduction to protein structure modeling -- 2. Modeling of protein structure based on sequence -- 2.1 Terminology and molecular file format -- 2.2 Application programs -- 2.3 Homology modeling of L-PGDS -- 2.3.1 Target sequence -- 2.3.2 Template selection |
| Subject | Nanostructured materials Computer simulation. Nanomat�eriaux Simulation par ordinateur. Electronic books. Electronic books. |
| Multimedia |