Green energy materials handbook / Ming-Fa Lin and Wen-Dung Hsu.
Lin, Ming-Fa| Call Number | 621.3028/6 |
| Author | Lin, Ming-Fa, author. |
| Title | Green energy materials handbook / Ming-Fa Lin and Wen-Dung Hsu. |
| Physical Description | 1 online resource. |
| Contents | <OL><LI>Introduction</LI><P><LI>Molecular effects of functional polymer binders on Li<SUP>+</SUP> transport on the cathode surface within lithium ion battery</LI><P></P><P>2.1 Introduction</P><P>2.2 Molecular dynamics simulation details</P><P>2.3 Results and discussion</P><P>2.4 Summary and future perspectives</P><P><LI>Essential properties of Li/Li<SUP>+</SUP> graphite intercalation compounds</LI><P></P><P>3.1 Introduction</P><P>3.2 The theoretical model</P><P>3.3 Rich geometric structures of graphites and graphite intercalation compounds</P><P>3.4 Unusual band structures of graphite-related systems</P><P>3.5 van Hove singularities in density of states</P><P>3.6 Chemical bondings and charge distributions</P><P>3.7 Summary</P><P><LI>Defective and amorphous graphene as anode materials for Li-ion batteries: a first-principles study</LI><P></P><P>4.1 Introduction</P><P>4.2 Computational methods</P><P>4.3 Results and discussions</P><P>4.4 Conclusion</P><P><LI>Rich Essential Properties of Si-Doped Graphene</LI><P></P><P>5.1 Introduction</P><P>5.2 Computational methods</P><P>5.3 Geometric structures of Si-adsorbed and Si-substituted graphene</P><P>5.4 Rich electronic structures</P><P>5.5 Spatial charge densities</P><P>5.6 The diverse density of states</P><P>5.7 Summary</P><P><LI>Diversified essential properties in transition metals adsorbed Graphene</LI><P></P><P>6.1 Introduction</P><P>6.2 The theoretical model</P><P>6.3 Results and discussions</P><P>6.4 Summary</P><P><LI>Combining neural network with first-principles calculations for computational screening of electrolyte additives in lithium ion batteries</LI><P></P><P>7.1 Introduction</P><P>7.2 Materials and methods</P><P>7.3 Results and disscussions</P><P>7.4 Conclusion</P><P><LI>Metal oxide-reduced graphene oxide (MO-RGO) nanocomposite as high performance anode materials in Lithium ion batteries </LI><P></P><P>8.1 Introduction</P><P>8.2 Potential binary metal oxides asanode materials in LIBs</P><P>8.3 Complex metal oxides as anode materials in LIBs</P><P>8.4 Metal oxide-graphene/reduced graphene oxide nanocomposite as anode materials in LIBs</P><P>8.5 Our research contribution toward LIB</P><P>8.6 Conclusions</P><P><LI>In-situ X-ray and Neutron Analysis Techniques on Lithium/Sodium ion batteries</LI><P></P><P>9.1 Introduction</P><P>9.2 Methodology for in-situ X-ray and neutron scattering experiments</P><P>9.3 In-situ X-ray analysis on synergistic effects of Si anode materials</P><P>9.4 In-operando X-ray diffraction -- a quantitative analysis on Si-graphite negative electrode</P><P>9.5 In-situ X-ray diffraction analysis of lithiation-induced crystal restructuring of Sn/TiO2 nanocrystallites</P><P>9.6 In-operando neutron diffraction analysis on low temperature lithium diffusion behaviors in 18650 Li-ion battery</P><P>9.7 In-operando neutron diffraction Studies on P2-Na2/3Fe1/3Mn2/3O2 cathode in a sodium ion battery</P><P>9.8 Summary</P><P><LI>Micro-Phase Separated poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Gel Polymer Electrolytes for Lithium-Ion Batteries</LI><P></P><P>10.1 Introduction</P><P>10.2 Experimental</P><P>10.3 Results and discussion</P><P>10.4 Conclusion</P><P><LI>Gel and solid electrolytes for Lithium ion batteries</LI><P></P><P>11.1 Introduction</P><P>11.2 Solid-state electrolytes (SSEs)</P><P>11.3 Gel Polymer Electrolytes (GPEs)</P><P>11.4 Summary</P><P><LI>Silicon-Nanowire Based Hybrid Solar Cells</LI><P></P><P>12.1 Introduction</P><P>12.2 Silicon nanowires fabrication</P><P>12.3 PEDOT: PSS polymer as the p-type layer of hybrid solar cell application</P><P>12.4 Silicon Nanowire based Hybrid Solar Cells</P><P>12.5 Conclusion</P><P><LI>Characterization and Performance of Li-ZnO Nanofiber and Nanoforest Photoanodes for Dye-sensitized Solar Cell</LI><P></P><P>13.1 Introduction</P><P>13.2 Experimental</P><P>13.3 Results and discussion</P><P>13.4 Conclusion</P><P><LI>Review of monolithic dye-sensitized solar cells and perovskite solar cells</LI><P></P></OL><P>14.1 Introduction</P><P>14.2 Monolithic dye-sensitized solar cells</P><OL><OL><P><LI>Mesoporous electrode for monolithic perovskite solar cells</LI><P></P><P><LI>Conclusion</LI></OL></OL><P>15. High-Performance Quasi-Solid-State Polymer Electrolytes for Dye-Sensitized Solar Cell Applications</P><P>16. Concluding Remarks </P><P>17. Perspective on Battery Research </P><P>Index</P> |
| Summary | Green Energy Materials Handbook gives a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering mainstream computational and experimental studies as well as comprehensive literature on green energy materials, computational methods, experimental fabrication and characterization techniques, and recent progress in the field. This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials. This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences. |
| Added Author | Hsu, Wen-Dung, author. |
| Subject | Electric batteries Materials. Solar cells Materials. GREEN CHEMISTRY. SCIENCE / Chemistry / Industrial & Technical TECHNOLOGY / Engineering / Chemical & Biochemical TECHNOLOGY / Material Science |
| Multimedia |
Total Ratings:
0
07659cam a2200613Ii 4500
001
vtls001592447
003
VRT
005
20220808223100.0
006
m o d
007
cr cnu---unuuu
008
220808s2019 flu ob 001 0 eng d
020
$a 9780429466281 $q (electronic bk.)
020
$a 0429466285 $q (electronic bk.)
020
$a 9780429881169 $q (electronic bk. : EPUB)
020
$a 0429881169 $q (electronic bk. : EPUB)
020
$a 9780429881176 $q (electronic bk. : PDF)
020
$a 0429881177 $q (electronic bk. : PDF)
020
$a 9780429881152 $q (electronic bk. : Mobipocket)
020
$a 0429881150 $q (electronic bk. : Mobipocket)
020
$z 9781138605916
020
$z 1138605913
024
8
$a 10.1201/9780429466281 $2 doi
035
$a (OCoLC)1105989343
035
$a (OCoLC-P)1105989343
035
$a (FlBoTFG)9780429466281
039
9
$a 202208082231 $b santha $y 202206301324 $z santha
040
$a OCoLC-P $b eng $e rda $e pn $c OCoLC-P
050
4
$a TK2896 $b .L56 2019eb
072
7
$a SCI $x 013060 $2 bisacsh
072
7
$a TEC $x 009010 $2 bisacsh
072
7
$a TEC $x 021000 $2 bisacsh
072
7
$a TJFN $2 bicssc
082
0
4
$a 621.3028/6 $2 23
100
1
$a Lin, Ming-Fa, $e author.
245
1
0
$a Green energy materials handbook / $c Ming-Fa Lin and Wen-Dung Hsu.
264
1
$a Boca Raton : $b CRC Press, $c [2019]
264
4
$c ©2019
300
$a 1 online resource.
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
505
0
$a <OL><LI>Introduction</LI><P><LI>Molecular effects of functional polymer binders on Li<SUP>+</SUP> transport on the cathode surface within lithium ion battery</LI><P></P><P>2.1 Introduction</P><P>2.2 Molecular dynamics simulation details</P><P>2.3 Results and discussion</P><P>2.4 Summary and future perspectives</P><P><LI>Essential properties of Li/Li<SUP>+</SUP> graphite intercalation compounds</LI><P></P><P>3.1 Introduction</P><P>3.2 The theoretical model</P><P>3.3 Rich geometric structures of graphites and graphite intercalation compounds</P><P>3.4 Unusual band structures of graphite-related systems</P><P>3.5 van Hove singularities in density of states</P><P>3.6 Chemical bondings and charge distributions</P><P>3.7 Summary</P><P><LI>Defective and amorphous graphene as anode materials for Li-ion batteries: a first-principles study</LI><P></P><P>4.1 Introduction</P><P>4.2 Computational methods</P><P>4.3 Results and discussions</P><P>4.4 Conclusion</P><P><LI>Rich Essential Properties of Si-Doped Graphene</LI><P></P><P>5.1 Introduction</P><P>5.2 Computational methods</P><P>5.3 Geometric structures of Si-adsorbed and Si-substituted graphene</P><P>5.4 Rich electronic structures</P><P>5.5 Spatial charge densities</P><P>5.6 The diverse density of states</P><P>5.7 Summary</P><P><LI>Diversified essential properties in transition metals adsorbed Graphene</LI><P></P><P>6.1 Introduction</P><P>6.2 The theoretical model</P><P>6.3 Results and discussions</P><P>6.4 Summary</P><P><LI>Combining neural network with first-principles calculations for computational screening of electrolyte additives in lithium ion batteries</LI><P></P><P>7.1 Introduction</P><P>7.2 Materials and methods</P><P>7.3 Results and disscussions</P><P>7.4 Conclusion</P><P><LI>Metal oxide-reduced graphene oxide (MO-RGO) nanocomposite as high performance anode materials in Lithium ion batteries </LI><P></P><P>8.1 Introduction</P><P>8.2 Potential binary metal oxides asanode materials in LIBs</P><P>8.3 Complex metal oxides as anode materials in LIBs</P><P>8.4 Metal oxide-graphene/reduced graphene oxide nanocomposite as anode materials in LIBs</P><P>8.5 Our research contribution toward LIB</P><P>8.6 Conclusions</P><P><LI>In-situ X-ray and Neutron Analysis Techniques on Lithium/Sodium ion batteries</LI><P></P><P>9.1 Introduction</P><P>9.2 Methodology for in-situ X-ray and neutron scattering experiments</P><P>9.3 In-situ X-ray analysis on synergistic effects of Si anode materials</P><P>9.4 In-operando X-ray diffraction -- a quantitative analysis on Si-graphite negative electrode</P><P>9.5 In-situ X-ray diffraction analysis of lithiation-induced crystal restructuring of Sn/TiO2 nanocrystallites</P><P>9.6 In-operando neutron diffraction analysis on low temperature lithium diffusion behaviors in 18650 Li-ion battery</P><P>9.7 In-operando neutron diffraction Studies on P2-Na2/3Fe1/3Mn2/3O2 cathode in a sodium ion battery</P><P>9.8 Summary</P><P><LI>Micro-Phase Separated poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Gel Polymer Electrolytes for Lithium-Ion Batteries</LI><P></P><P>10.1 Introduction</P><P>10.2 Experimental</P><P>10.3 Results and discussion</P><P>10.4 Conclusion</P><P><LI>Gel and solid electrolytes for Lithium ion batteries</LI><P></P><P>11.1 Introduction</P><P>11.2 Solid-state electrolytes (SSEs)</P><P>11.3 Gel Polymer Electrolytes (GPEs)</P><P>11.4 Summary</P><P><LI>Silicon-Nanowire Based Hybrid Solar Cells</LI><P></P><P>12.1 Introduction</P><P>12.2 Silicon nanowires fabrication</P><P>12.3 PEDOT: PSS polymer as the p-type layer of hybrid solar cell application</P><P>12.4 Silicon Nanowire based Hybrid Solar Cells</P><P>12.5 Conclusion</P><P><LI>Characterization and Performance of Li-ZnO Nanofiber and Nanoforest Photoanodes for Dye-sensitized Solar Cell</LI><P></P><P>13.1 Introduction</P><P>13.2 Experimental</P><P>13.3 Results and discussion</P><P>13.4 Conclusion</P><P><LI>Review of monolithic dye-sensitized solar cells and perovskite solar cells</LI><P></P></OL><P>14.1 Introduction</P><P>14.2 Monolithic dye-sensitized solar cells</P><OL><OL><P><LI>Mesoporous electrode for monolithic perovskite solar cells</LI><P></P><P><LI>Conclusion</LI></OL></OL><P>15. High-Performance Quasi-Solid-State Polymer Electrolytes for Dye-Sensitized Solar Cell Applications</P><P>16. Concluding Remarks </P><P>17. Perspective on Battery Research </P><P>Index</P>
520
$a Green Energy Materials Handbook gives a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering mainstream computational and experimental studies as well as comprehensive literature on green energy materials, computational methods, experimental fabrication and characterization techniques, and recent progress in the field. This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials. This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences.
588
$a OCLC-licensed vendor bibliographic record.
650
0
$a Electric batteries $x Materials.
650
0
$a Solar cells $x Materials.
650
0
$a GREEN CHEMISTRY.
650
7
$a SCIENCE / Chemistry / Industrial & Technical $2 bisacsh
650
7
$a TECHNOLOGY / Engineering / Chemical & Biochemical $2 bisacsh
650
7
$a TECHNOLOGY / Material Science $2 bisacsh
700
1
$a Hsu, Wen-Dung, $e author.
856
4
0
$3 Taylor & Francis $u https://www.taylorfrancis.com/books/9780429466281
856
4
2
$3 OCLC metadata license agreement $u http://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999
$a VIRTUA
No Reviews to Display
| Summary | Green Energy Materials Handbook gives a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering mainstream computational and experimental studies as well as comprehensive literature on green energy materials, computational methods, experimental fabrication and characterization techniques, and recent progress in the field. This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials. This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences. |
| Contents | <OL><LI>Introduction</LI><P><LI>Molecular effects of functional polymer binders on Li<SUP>+</SUP> transport on the cathode surface within lithium ion battery</LI><P></P><P>2.1 Introduction</P><P>2.2 Molecular dynamics simulation details</P><P>2.3 Results and discussion</P><P>2.4 Summary and future perspectives</P><P><LI>Essential properties of Li/Li<SUP>+</SUP> graphite intercalation compounds</LI><P></P><P>3.1 Introduction</P><P>3.2 The theoretical model</P><P>3.3 Rich geometric structures of graphites and graphite intercalation compounds</P><P>3.4 Unusual band structures of graphite-related systems</P><P>3.5 van Hove singularities in density of states</P><P>3.6 Chemical bondings and charge distributions</P><P>3.7 Summary</P><P><LI>Defective and amorphous graphene as anode materials for Li-ion batteries: a first-principles study</LI><P></P><P>4.1 Introduction</P><P>4.2 Computational methods</P><P>4.3 Results and discussions</P><P>4.4 Conclusion</P><P><LI>Rich Essential Properties of Si-Doped Graphene</LI><P></P><P>5.1 Introduction</P><P>5.2 Computational methods</P><P>5.3 Geometric structures of Si-adsorbed and Si-substituted graphene</P><P>5.4 Rich electronic structures</P><P>5.5 Spatial charge densities</P><P>5.6 The diverse density of states</P><P>5.7 Summary</P><P><LI>Diversified essential properties in transition metals adsorbed Graphene</LI><P></P><P>6.1 Introduction</P><P>6.2 The theoretical model</P><P>6.3 Results and discussions</P><P>6.4 Summary</P><P><LI>Combining neural network with first-principles calculations for computational screening of electrolyte additives in lithium ion batteries</LI><P></P><P>7.1 Introduction</P><P>7.2 Materials and methods</P><P>7.3 Results and disscussions</P><P>7.4 Conclusion</P><P><LI>Metal oxide-reduced graphene oxide (MO-RGO) nanocomposite as high performance anode materials in Lithium ion batteries </LI><P></P><P>8.1 Introduction</P><P>8.2 Potential binary metal oxides asanode materials in LIBs</P><P>8.3 Complex metal oxides as anode materials in LIBs</P><P>8.4 Metal oxide-graphene/reduced graphene oxide nanocomposite as anode materials in LIBs</P><P>8.5 Our research contribution toward LIB</P><P>8.6 Conclusions</P><P><LI>In-situ X-ray and Neutron Analysis Techniques on Lithium/Sodium ion batteries</LI><P></P><P>9.1 Introduction</P><P>9.2 Methodology for in-situ X-ray and neutron scattering experiments</P><P>9.3 In-situ X-ray analysis on synergistic effects of Si anode materials</P><P>9.4 In-operando X-ray diffraction -- a quantitative analysis on Si-graphite negative electrode</P><P>9.5 In-situ X-ray diffraction analysis of lithiation-induced crystal restructuring of Sn/TiO2 nanocrystallites</P><P>9.6 In-operando neutron diffraction analysis on low temperature lithium diffusion behaviors in 18650 Li-ion battery</P><P>9.7 In-operando neutron diffraction Studies on P2-Na2/3Fe1/3Mn2/3O2 cathode in a sodium ion battery</P><P>9.8 Summary</P><P><LI>Micro-Phase Separated poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Gel Polymer Electrolytes for Lithium-Ion Batteries</LI><P></P><P>10.1 Introduction</P><P>10.2 Experimental</P><P>10.3 Results and discussion</P><P>10.4 Conclusion</P><P><LI>Gel and solid electrolytes for Lithium ion batteries</LI><P></P><P>11.1 Introduction</P><P>11.2 Solid-state electrolytes (SSEs)</P><P>11.3 Gel Polymer Electrolytes (GPEs)</P><P>11.4 Summary</P><P><LI>Silicon-Nanowire Based Hybrid Solar Cells</LI><P></P><P>12.1 Introduction</P><P>12.2 Silicon nanowires fabrication</P><P>12.3 PEDOT: PSS polymer as the p-type layer of hybrid solar cell application</P><P>12.4 Silicon Nanowire based Hybrid Solar Cells</P><P>12.5 Conclusion</P><P><LI>Characterization and Performance of Li-ZnO Nanofiber and Nanoforest Photoanodes for Dye-sensitized Solar Cell</LI><P></P><P>13.1 Introduction</P><P>13.2 Experimental</P><P>13.3 Results and discussion</P><P>13.4 Conclusion</P><P><LI>Review of monolithic dye-sensitized solar cells and perovskite solar cells</LI><P></P></OL><P>14.1 Introduction</P><P>14.2 Monolithic dye-sensitized solar cells</P><OL><OL><P><LI>Mesoporous electrode for monolithic perovskite solar cells</LI><P></P><P><LI>Conclusion</LI></OL></OL><P>15. High-Performance Quasi-Solid-State Polymer Electrolytes for Dye-Sensitized Solar Cell Applications</P><P>16. Concluding Remarks </P><P>17. Perspective on Battery Research </P><P>Index</P> |
| Subject | Electric batteries Materials. Solar cells Materials. GREEN CHEMISTRY. SCIENCE / Chemistry / Industrial & Technical TECHNOLOGY / Engineering / Chemical & Biochemical TECHNOLOGY / Material Science |
| Multimedia |