Sturm-Liouville problems : theory and numerical implementation / Ronald B. Guenther, John W. Lee (Department of Mathematics, Oregon State University, Corvallis).
Guenther, Ronald B.| Call Number | 515/.352 |
| Author | Guenther, Ronald B., author. |
| Title | Sturm-Liouville problems : theory and numerical implementation / Ronald B. Guenther, John W. Lee (Department of Mathematics, Oregon State University, Corvallis). |
| Physical Description | 1 online resource (xiii, 406 pages). |
| Series | Monographs and research notes in mathematics |
| Contents | Cover; Half Title; Title Page; Copyright Page; Contents; Preface; 1. Setting the Stage; 1.1 Euler Buckling; 1.2 Hanging Chain; 1.3 Separation of Variables; 1.4 Vibration Problems; 1.4.1 Vibrations of a String; 1.4.2 Vibrations of a Circular Membrane; 1.4.3 Spherically Symmetric Vibrations in a Ball; 1.5 Diffusion Problems; 1.5.1 Chemical Transport; 1.5.2 Heat Conduction in a Rod; 1.5.3 Heat Conduction in a Disk; 1.6 Steady State Regimes; 1.6.1 Heat Conduction in a Rectangular Plate; 1.6.2 Heat Conduction in a Circular Plate; 1.7 On Models; 1.8 Sturm-Liouville Boundary Value Problems 1.9 Calculus of Variations1.10 Green's Functions; 1.11 The Path Ahead; 1.11.1 Thread I; 1.11.2 Thread II; 1.11.3 Finding Eigenvalues and Eigenfunctions; 1.12 Intrinsic Interest of Eigenvalues; 1.13 Real Versus Complex Solutions; 2. Preliminaries; 2.1 Euclidean Spaces; 2.1.1 Real Euclidean Spaces; 2.1.2 Complex Euclidean Spaces; 2.1.3 Elements of Convergence; 2.1.4 Upper Bounds and Sups; 2.1.5 Closed and Compact Sets; 2.2 Calculus and Analysis; 2.2.1 Continuity; 2.2.2 Differential Calculus; 2.2.3 Integral Calculus; 2.2.4 Sequences and Series of Functions; 2.3 Matrix and Linear Algebra 2.3.1 Determinants2.3.2 Systems of Linear Algebraic Equations; 2.3.3 Linear Dependence and Linear Independence; 2.3.4 Eigenvalues and Eigenvectors; 2.3.5 Self-Adjoint and Symmetric Matrices; 2.3.6 Principal Axis Theorem; 2.3.7 Matrices as Linear Transformations; 2.4 Interpolation and Approximation; 2.4.1 Tchebycheff Systems; 2.4.2 Total Positivity; 2.5 Linear Spaces and Function Spaces; 2.5.1 Linear Spaces; 2.5.2 Normed Linear Spaces; 2.5.3 Inner Product Spaces; 2.5.3.1 Gram-Schmidt Process; 2.6 Completeness and Completion; 2.7 Compact Sets in C[a, b]; 2.8 Contraction Mapping Theorem 2.9 Bisection and Newton-Raphson Methods2.9.1 Bisection Method; 2.9.2 Newton-Raphson Method; 2.10 Maximum Principle; 3. Integral Equations; 3.1 Integral Operators; 3.2 More General Domains; 3.3 Eigenvalues of Operators and Kernels; 3.4 Self-Adjoint Operators and Kernels; 3.4.1 Hilbert-Schmidt Theorem; 3.4.2 Mercer's Theorem; 3.5 Nonnegative Kernels; 3.5.1 Positive Kernels; 3.5.2 Kernels Positive on the Open Diagonal; 3.5.3 Summary of Results; 3.6 Kellogg Kernels and Total Positivity; 3.6.1 Compound Kernels; 3.6.2 Spectral Properties of Compound Kernels 3.6.3 Spectral Properties of Kellogg Kernels3.7 Singular Kellogg Kernels; 3.7.1 Compound Kernels; 3.7.2 Spectral Properties of Compound Kernels; 3.7.3 Spectral Properties of Kellogg Kernels; 4. Regular Sturm-Liouville Problems; 4.1 Sturm-Liouville Form; 4.2 Sturm-Liouville Differential Equations; 4.3 Initial Value Problems; 4.3.1 Basis of Solutions; 4.3.2 Variation of Parameters; 4.3.3 Continuous Dependence; 4.4 BVPs and EVPs -- Examples; 4.5 BVPs and EVPs -- Notation; 4.6 Green's Functions; 4.6.1 Separated Boundary Conditions; 4.6.2 Mixed Boundary Conditions; 4.7 Adjoint Operators and Problems |
| Summary | Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems. |
| Added Author | Lee, John W., 1942- author. |
| Subject | Sturm-Liouville equation. DIFFERENTIAL EQUATIONS. EIGENVALUES. MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis MATHEMATICS / Applied MATHEMATICS / Differential Equations MATHEMATICS / Geometry / General |
| Multimedia |
Total Ratings:
0
05999cam a2200697Ii 4500
001
vtls001592423
003
VRT
005
20220808223000.0
006
m o d
007
cr cnu---unuuu
008
220808s2019 flua ob 001 0 eng d
020
$a 9780429437878 $q electronic book
020
$a 0429437870 $q electronic book
020
$a 9780429795343 $q electronic book
020
$a 0429795343 $q electronic book
020
$a 9780429795350 $q electronic book
020
$a 0429795351 $q electronic book
020
$a 9780429795336 $q (electronic bk. : Mobipocket)
020
$a 0429795335 $q (electronic bk. : Mobipocket)
020
$z 9781138345430
020
$z 1138345431
035
$a (OCoLC)1060524545
035
$a (OCoLC-P)1060524545
035
$a (FlBoTFG)9780429437878
039
9
$a 202208082230 $b santha $y 202206301324 $z santha
040
$a OCoLC-P $b eng $e rda $e pn $c OCoLC-P
050
4
$a QA372 $b .G84 2019
072
7
$a MAT $x 005000 $2 bisacsh
072
7
$a MAT $x 034000 $2 bisacsh
072
7
$a MAT $x 003000 $2 bisacsh
072
7
$a MAT $x 007000 $2 bisacsh
072
7
$a MAT $x 012000 $2 bisacsh
072
7
$a PB $2 bicssc
082
0
4
$a 515/.352 $2 23
100
1
$a Guenther, Ronald B., $e author.
245
1
0
$a Sturm-Liouville problems : $b theory and numerical implementation / $c Ronald B. Guenther, John W. Lee (Department of Mathematics, Oregon State University, Corvallis).
264
1
$a Boca Raton, FL : $b CRC Press, Taylor & Francis Group, $c [2019]
300
$a 1 online resource (xiii, 406 pages).
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
490
1
$a Monographs and research notes in mathematics
505
0
$a Cover; Half Title; Title Page; Copyright Page; Contents; Preface; 1. Setting the Stage; 1.1 Euler Buckling; 1.2 Hanging Chain; 1.3 Separation of Variables; 1.4 Vibration Problems; 1.4.1 Vibrations of a String; 1.4.2 Vibrations of a Circular Membrane; 1.4.3 Spherically Symmetric Vibrations in a Ball; 1.5 Diffusion Problems; 1.5.1 Chemical Transport; 1.5.2 Heat Conduction in a Rod; 1.5.3 Heat Conduction in a Disk; 1.6 Steady State Regimes; 1.6.1 Heat Conduction in a Rectangular Plate; 1.6.2 Heat Conduction in a Circular Plate; 1.7 On Models; 1.8 Sturm-Liouville Boundary Value Problems
505
8
$a 1.9 Calculus of Variations1.10 Green's Functions; 1.11 The Path Ahead; 1.11.1 Thread I; 1.11.2 Thread II; 1.11.3 Finding Eigenvalues and Eigenfunctions; 1.12 Intrinsic Interest of Eigenvalues; 1.13 Real Versus Complex Solutions; 2. Preliminaries; 2.1 Euclidean Spaces; 2.1.1 Real Euclidean Spaces; 2.1.2 Complex Euclidean Spaces; 2.1.3 Elements of Convergence; 2.1.4 Upper Bounds and Sups; 2.1.5 Closed and Compact Sets; 2.2 Calculus and Analysis; 2.2.1 Continuity; 2.2.2 Differential Calculus; 2.2.3 Integral Calculus; 2.2.4 Sequences and Series of Functions; 2.3 Matrix and Linear Algebra
505
8
$a 2.3.1 Determinants2.3.2 Systems of Linear Algebraic Equations; 2.3.3 Linear Dependence and Linear Independence; 2.3.4 Eigenvalues and Eigenvectors; 2.3.5 Self-Adjoint and Symmetric Matrices; 2.3.6 Principal Axis Theorem; 2.3.7 Matrices as Linear Transformations; 2.4 Interpolation and Approximation; 2.4.1 Tchebycheff Systems; 2.4.2 Total Positivity; 2.5 Linear Spaces and Function Spaces; 2.5.1 Linear Spaces; 2.5.2 Normed Linear Spaces; 2.5.3 Inner Product Spaces; 2.5.3.1 Gram-Schmidt Process; 2.6 Completeness and Completion; 2.7 Compact Sets in C[a, b]; 2.8 Contraction Mapping Theorem
505
8
$a 2.9 Bisection and Newton-Raphson Methods2.9.1 Bisection Method; 2.9.2 Newton-Raphson Method; 2.10 Maximum Principle; 3. Integral Equations; 3.1 Integral Operators; 3.2 More General Domains; 3.3 Eigenvalues of Operators and Kernels; 3.4 Self-Adjoint Operators and Kernels; 3.4.1 Hilbert-Schmidt Theorem; 3.4.2 Mercer's Theorem; 3.5 Nonnegative Kernels; 3.5.1 Positive Kernels; 3.5.2 Kernels Positive on the Open Diagonal; 3.5.3 Summary of Results; 3.6 Kellogg Kernels and Total Positivity; 3.6.1 Compound Kernels; 3.6.2 Spectral Properties of Compound Kernels
505
8
$a 3.6.3 Spectral Properties of Kellogg Kernels3.7 Singular Kellogg Kernels; 3.7.1 Compound Kernels; 3.7.2 Spectral Properties of Compound Kernels; 3.7.3 Spectral Properties of Kellogg Kernels; 4. Regular Sturm-Liouville Problems; 4.1 Sturm-Liouville Form; 4.2 Sturm-Liouville Differential Equations; 4.3 Initial Value Problems; 4.3.1 Basis of Solutions; 4.3.2 Variation of Parameters; 4.3.3 Continuous Dependence; 4.4 BVPs and EVPs -- Examples; 4.5 BVPs and EVPs -- Notation; 4.6 Green's Functions; 4.6.1 Separated Boundary Conditions; 4.6.2 Mixed Boundary Conditions; 4.7 Adjoint Operators and Problems
520
$a Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.
588
$a OCLC-licensed vendor bibliographic record.
650
0
$a Sturm-Liouville equation.
650
0
$a DIFFERENTIAL EQUATIONS.
650
0
$a EIGENVALUES.
650
7
$a MATHEMATICS / Calculus $2 bisacsh
650
7
$a MATHEMATICS / Mathematical Analysis $2 bisacsh
650
7
$a MATHEMATICS / Applied $2 bisacsh
650
7
$a MATHEMATICS / Differential Equations $2 bisacsh
650
7
$a MATHEMATICS / Geometry / General $2 bisacsh
700
1
$a Lee, John W., $d 1942- $e author.
856
4
0
$3 Taylor & Francis $u https://www.taylorfrancis.com/books/9780429437878
856
4
2
$3 OCLC metadata license agreement $u http://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999
$a VIRTUA
No Reviews to Display
| Summary | Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems. |
| Contents | Cover; Half Title; Title Page; Copyright Page; Contents; Preface; 1. Setting the Stage; 1.1 Euler Buckling; 1.2 Hanging Chain; 1.3 Separation of Variables; 1.4 Vibration Problems; 1.4.1 Vibrations of a String; 1.4.2 Vibrations of a Circular Membrane; 1.4.3 Spherically Symmetric Vibrations in a Ball; 1.5 Diffusion Problems; 1.5.1 Chemical Transport; 1.5.2 Heat Conduction in a Rod; 1.5.3 Heat Conduction in a Disk; 1.6 Steady State Regimes; 1.6.1 Heat Conduction in a Rectangular Plate; 1.6.2 Heat Conduction in a Circular Plate; 1.7 On Models; 1.8 Sturm-Liouville Boundary Value Problems 1.9 Calculus of Variations1.10 Green's Functions; 1.11 The Path Ahead; 1.11.1 Thread I; 1.11.2 Thread II; 1.11.3 Finding Eigenvalues and Eigenfunctions; 1.12 Intrinsic Interest of Eigenvalues; 1.13 Real Versus Complex Solutions; 2. Preliminaries; 2.1 Euclidean Spaces; 2.1.1 Real Euclidean Spaces; 2.1.2 Complex Euclidean Spaces; 2.1.3 Elements of Convergence; 2.1.4 Upper Bounds and Sups; 2.1.5 Closed and Compact Sets; 2.2 Calculus and Analysis; 2.2.1 Continuity; 2.2.2 Differential Calculus; 2.2.3 Integral Calculus; 2.2.4 Sequences and Series of Functions; 2.3 Matrix and Linear Algebra 2.3.1 Determinants2.3.2 Systems of Linear Algebraic Equations; 2.3.3 Linear Dependence and Linear Independence; 2.3.4 Eigenvalues and Eigenvectors; 2.3.5 Self-Adjoint and Symmetric Matrices; 2.3.6 Principal Axis Theorem; 2.3.7 Matrices as Linear Transformations; 2.4 Interpolation and Approximation; 2.4.1 Tchebycheff Systems; 2.4.2 Total Positivity; 2.5 Linear Spaces and Function Spaces; 2.5.1 Linear Spaces; 2.5.2 Normed Linear Spaces; 2.5.3 Inner Product Spaces; 2.5.3.1 Gram-Schmidt Process; 2.6 Completeness and Completion; 2.7 Compact Sets in C[a, b]; 2.8 Contraction Mapping Theorem 2.9 Bisection and Newton-Raphson Methods2.9.1 Bisection Method; 2.9.2 Newton-Raphson Method; 2.10 Maximum Principle; 3. Integral Equations; 3.1 Integral Operators; 3.2 More General Domains; 3.3 Eigenvalues of Operators and Kernels; 3.4 Self-Adjoint Operators and Kernels; 3.4.1 Hilbert-Schmidt Theorem; 3.4.2 Mercer's Theorem; 3.5 Nonnegative Kernels; 3.5.1 Positive Kernels; 3.5.2 Kernels Positive on the Open Diagonal; 3.5.3 Summary of Results; 3.6 Kellogg Kernels and Total Positivity; 3.6.1 Compound Kernels; 3.6.2 Spectral Properties of Compound Kernels 3.6.3 Spectral Properties of Kellogg Kernels3.7 Singular Kellogg Kernels; 3.7.1 Compound Kernels; 3.7.2 Spectral Properties of Compound Kernels; 3.7.3 Spectral Properties of Kellogg Kernels; 4. Regular Sturm-Liouville Problems; 4.1 Sturm-Liouville Form; 4.2 Sturm-Liouville Differential Equations; 4.3 Initial Value Problems; 4.3.1 Basis of Solutions; 4.3.2 Variation of Parameters; 4.3.3 Continuous Dependence; 4.4 BVPs and EVPs -- Examples; 4.5 BVPs and EVPs -- Notation; 4.6 Green's Functions; 4.6.1 Separated Boundary Conditions; 4.6.2 Mixed Boundary Conditions; 4.7 Adjoint Operators and Problems |
| Subject | Sturm-Liouville equation. DIFFERENTIAL EQUATIONS. EIGENVALUES. MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis MATHEMATICS / Applied MATHEMATICS / Differential Equations MATHEMATICS / Geometry / General |
| Multimedia |