Kernel methods and machine learning / S.Y. Kung, Princeton University.

Kung, S. Y. (Sun Yuan)
Call Number
006.3/10151252
Author
Kung, S. Y. author.
Title
Kernel methods and machine learning / S.Y. Kung, Princeton University.
Kernel Methods & Machine Learning
Physical Description
1 online resource (xxiv, 591 pages) : digital, PDF file(s).
Notes
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Contents
Machine generated contents note: Part I. Machine Learning and Kernel Vector Spaces: 1. Fundamentals of machine learning; 2. Kernel-induced vector spaces; Part II. Dimension-Reduction: Feature Selection and PCA/KPCA: 3. Feature selection; 4. PCA and Kernel-PCA; Part III. Unsupervised Learning Models for Cluster Analysis: 5. Unsupervised learning for cluster discovery; 6. Kernel methods for cluster discovery; Part IV. Kernel Ridge Regressors and Variants: 7. Kernel-based regression and regularization analysis; 8. Linear regression and discriminant analysis for supervised classification; 9. Kernel ridge regression for supervised classification; Part V. Support Vector Machines and Variants: 10. Support vector machines; 11. Support vector learning models for outlier detection; 12. Ridge-SVM learning models; Part VI. Kernel Methods for Green Machine Learning Technologies: 13. Efficient kernel methods for learning and classifcation; Part VII. Kernel Methods and Statistical Estimation Theory: 14. Statistical regression analysis and errors-in-variables models; 15: Kernel methods for estimation, prediction, and system identification; Part VIII. Appendices: Appendix A. Validation and test of learning models; Appendix B. kNN, PNN, and Bayes classifiers; References; Index.
Summary
Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.
Subject
Support Vector Machines.
MACHINE LEARNING.
KERNEL FUNCTIONS.
Multimedia
Total Ratings: 0
No records found to display.
 
 
 
03714nam a22003858i 4500
001
 
 
vtls001584546
003
 
 
VRT
005
 
 
20200921121900.0
006
 
 
m|||||o||d||||||||
007
 
 
cr||||||||||||
008
 
 
200921s2014||||enk     o     ||1 0|eng|d
020
$a 9781139176224 (ebook)
020
$z 9781107024960 (hardback)
035
$a (UkCbUP)CR9781139176224
039
9
$y 202009211219 $z santha
040
$a UkCbUP $b eng $e rda $c UkCbUP
050
0
0
$a Q325.5 $b .K86 2014
082
0
0
$a 006.3/10151252 $2 23
100
1
$a Kung, S. Y. $q (Sun Yuan), $e author.
245
1
0
$a Kernel methods and machine learning / $c S.Y. Kung, Princeton University.
246
3
$a Kernel Methods & Machine Learning
264
1
$a Cambridge : $b Cambridge University Press, $c 2014.
300
$a 1 online resource (xxiv, 591 pages) : $b digital, PDF file(s).
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
500
$a Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
8
$a Machine generated contents note: Part I. Machine Learning and Kernel Vector Spaces: 1. Fundamentals of machine learning; 2. Kernel-induced vector spaces; Part II. Dimension-Reduction: Feature Selection and PCA/KPCA: 3. Feature selection; 4. PCA and Kernel-PCA; Part III. Unsupervised Learning Models for Cluster Analysis: 5. Unsupervised learning for cluster discovery; 6. Kernel methods for cluster discovery; Part IV. Kernel Ridge Regressors and Variants: 7. Kernel-based regression and regularization analysis; 8. Linear regression and discriminant analysis for supervised classification; 9. Kernel ridge regression for supervised classification; Part V. Support Vector Machines and Variants: 10. Support vector machines; 11. Support vector learning models for outlier detection; 12. Ridge-SVM learning models; Part VI. Kernel Methods for Green Machine Learning Technologies: 13. Efficient kernel methods for learning and classifcation; Part VII. Kernel Methods and Statistical Estimation Theory: 14. Statistical regression analysis and errors-in-variables models; 15: Kernel methods for estimation, prediction, and system identification; Part VIII. Appendices: Appendix A. Validation and test of learning models; Appendix B. kNN, PNN, and Bayes classifiers; References; Index.
520
$a Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.
650
0
$a Support Vector Machines.
650
0
$a MACHINE LEARNING.
650
0
$a KERNEL FUNCTIONS.
776
0
8
$i Print version: $z 9781107024960
856
4
0
$u https://doi.org/10.1017/CBO9781139176224
999
$a VIRTUA               
No Reviews to Display
Summary
Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.
Notes
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Contents
Machine generated contents note: Part I. Machine Learning and Kernel Vector Spaces: 1. Fundamentals of machine learning; 2. Kernel-induced vector spaces; Part II. Dimension-Reduction: Feature Selection and PCA/KPCA: 3. Feature selection; 4. PCA and Kernel-PCA; Part III. Unsupervised Learning Models for Cluster Analysis: 5. Unsupervised learning for cluster discovery; 6. Kernel methods for cluster discovery; Part IV. Kernel Ridge Regressors and Variants: 7. Kernel-based regression and regularization analysis; 8. Linear regression and discriminant analysis for supervised classification; 9. Kernel ridge regression for supervised classification; Part V. Support Vector Machines and Variants: 10. Support vector machines; 11. Support vector learning models for outlier detection; 12. Ridge-SVM learning models; Part VI. Kernel Methods for Green Machine Learning Technologies: 13. Efficient kernel methods for learning and classifcation; Part VII. Kernel Methods and Statistical Estimation Theory: 14. Statistical regression analysis and errors-in-variables models; 15: Kernel methods for estimation, prediction, and system identification; Part VIII. Appendices: Appendix A. Validation and test of learning models; Appendix B. kNN, PNN, and Bayes classifiers; References; Index.
Subject
Support Vector Machines.
MACHINE LEARNING.
KERNEL FUNCTIONS.
Multimedia