A first course in the numerical analysis of differential equations / Arieh Iserles.
Iserles, A.| Call Number | 518/.6 |
| Author | Iserles, A., author. |
| Title | A first course in the numerical analysis of differential equations / Arieh Iserles. |
| Edition | Second edition. |
| Physical Description | 1 online resource (xviii, 459 pages) : digital, PDF file(s). |
| Series | Cambridge texts in applied mathematics ; 44 |
| Notes | Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
| Contents | Preface to the first edition; Preface to the second edition; Flowchart of contents; Part I. Ordinary differential equations: 1. Euler's method and beyond; 2. Multistep methods; 3. Runge-Kutta methods; 4. Stiff equations; 5. Geometric numerical integration; 6. Error control; 7. Nonlinear algebraic systems; Part II. The Poisson equation: 8. Finite difference schemes; 9. The finite element method; 10. Spectral methods; 11. Gaussian elimination for sparse linear equations; 12. Classical iterative methods for sparse linear equations; 13. Multigrid techniques; 14. Conjugate gradients; 15. Fast Poisson solvers; Part III. Partial differential equations of evolution: 16. The diffusion equation; 17. Hyperbolic equations; Appendix. Bluffer's guide to useful mathematics: A.1. Linear algebra; A.2. Analysis; Bibliography; Index. |
| Summary | Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This second edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems. |
| Subject | Differential equations Numerical solutions. |
| Multimedia |
Total Ratings:
0
03242nam a22003858i 4500
001
vtls001584459
003
VRT
005
20200921121900.0
006
m|||||o||d||||||||
007
cr||||||||||||
008
200921s2009||||enk o ||1 0|eng|d
020
$a 9780511995569 (ebook)
020
$z 9780521734905 (paperback)
035
$a (UkCbUP)CR9780511995569
039
9
$y 202009211219 $z santha
040
$a UkCbUP $b eng $e rda $c UkCbUP
050
0
0
$a QA371 $b .I813 2009
082
0
0
$a 518/.6 $2 22
100
1
$a Iserles, A., $e author.
245
1
2
$a A first course in the numerical analysis of differential equations / $c Arieh Iserles.
250
$a Second edition.
264
1
$a Cambridge : $b Cambridge University Press, $c 2009.
300
$a 1 online resource (xviii, 459 pages) : $b digital, PDF file(s).
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
490
1
$a Cambridge texts in applied mathematics ; $v 44
500
$a Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a Preface to the first edition; Preface to the second edition; Flowchart of contents; Part I. Ordinary differential equations: 1. Euler's method and beyond; 2. Multistep methods; 3. Runge-Kutta methods; 4. Stiff equations; 5. Geometric numerical integration; 6. Error control; 7. Nonlinear algebraic systems; Part II. The Poisson equation: 8. Finite difference schemes; 9. The finite element method; 10. Spectral methods; 11. Gaussian elimination for sparse linear equations; 12. Classical iterative methods for sparse linear equations; 13. Multigrid techniques; 14. Conjugate gradients; 15. Fast Poisson solvers; Part III. Partial differential equations of evolution: 16. The diffusion equation; 17. Hyperbolic equations; Appendix. Bluffer's guide to useful mathematics: A.1. Linear algebra; A.2. Analysis; Bibliography; Index.
520
$a Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This second edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems.
650
0
$a Differential equations $x Numerical solutions.
776
0
8
$i Print version: $z 9780521734905
830
0
$a Cambridge texts in applied mathematics ; $v 44.
856
4
0
$u https://doi.org/10.1017/CBO9780511995569
999
$a VIRTUA
No Reviews to Display
| Summary | Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This second edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems. |
| Notes | Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
| Contents | Preface to the first edition; Preface to the second edition; Flowchart of contents; Part I. Ordinary differential equations: 1. Euler's method and beyond; 2. Multistep methods; 3. Runge-Kutta methods; 4. Stiff equations; 5. Geometric numerical integration; 6. Error control; 7. Nonlinear algebraic systems; Part II. The Poisson equation: 8. Finite difference schemes; 9. The finite element method; 10. Spectral methods; 11. Gaussian elimination for sparse linear equations; 12. Classical iterative methods for sparse linear equations; 13. Multigrid techniques; 14. Conjugate gradients; 15. Fast Poisson solvers; Part III. Partial differential equations of evolution: 16. The diffusion equation; 17. Hyperbolic equations; Appendix. Bluffer's guide to useful mathematics: A.1. Linear algebra; A.2. Analysis; Bibliography; Index. |
| Subject | Differential equations Numerical solutions. |
| Multimedia |