Handbook of tilting theory / edited by Lidia Angeleri Hügel, Dieter Happel, Henning Krause.

Call Number
512/.46
Title
Handbook of tilting theory / edited by Lidia Angeleri Hügel, Dieter Happel, Henning Krause.
Physical Description
1 online resource (viii, 472 pages) : digital, PDF file(s).
Series
London Mathematical Society lecture note series ; 332
Notes
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Contents
Classification of representation-finite algebras and their modules / T. Brüstle -- A spectral sequence analysis of classical tilting functors / S. Brenner and M.C.R. Butler -- Derived categories and tilting / B. Keller -- Hereditary categories / H. Lenzing -- Fourier-Mukai transforms / L. Hille and M. Van den Bergh -- Tilting theory and homologically finite subcategories with applications to quasihereditary algebras / I. Reiten -- Tilting modules for algebraic groups and finite dimensional algebras / S. Donkin -- Combinatorial aspects of the set of tilting modules / L. Unger -- Infinite dimensional tilting modules and cotorsion pairs / J. Trlifaj -- Infinite dimensional tilting modules over finite dimensional algebras / Ø. Solberg -- Cotilting dualities / R. Colpi and K.R. Fuller -- Representations of finite groups and tilting / J. Chuang and J. Rickard -- Morita theory in stable homotopy theory / B. Shipley -- Some remarks concerning tilting modules and tilted algebras, origin, relevance, future / C.M. Ringel.
Summary
Tilting theory originates in the representation theory of finite dimensional algebras. Today the subject is of much interest in various areas of mathematics, such as finite and algebraic group theory, commutative and non-commutative algebraic geometry, and algebraic topology. The aim of this book is to present the basic concepts of tilting theory as well as the variety of applications. It contains a collection of key articles, which together form a handbook of the subject, and provide both an introduction and reference for newcomers and experts alike.
Added Author
Angeleri Hügel, Lidia, editor.
Happel, Dieter, 1953- editor.
Krause, Henning, 1962- editor.
Subject
ASSOCIATIVE ALGEBRAS.
REPRESENTATIONS OF ALGEBRAS.
Dimension theory (Algebra)
FINITE GROUPS.
MODULES (ALGEBRA)
Multimedia
Total Ratings: 0
No records found to display.
 
 
 
03172nam a22004458i 4500
001
 
 
vtls001584416
003
 
 
VRT
005
 
 
20200921121800.0
006
 
 
m|||||o||d||||||||
007
 
 
cr||||||||||||
008
 
 
200921s2007||||enk     o     ||1 0|eng|d
020
$a 9780511735134 (ebook)
020
$z 9780521680455 (paperback)
035
$a (UkCbUP)CR9780511735134
039
9
$y 202009211218 $z santha
040
$a UkCbUP $b eng $e rda $c UkCbUP
050
0
0
$a QA251.5 $b .H36 2007
082
0
0
$a 512/.46 $2 22
245
0
0
$a Handbook of tilting theory / $c edited by Lidia Angeleri Hügel, Dieter Happel, Henning Krause.
264
1
$a Cambridge : $b Cambridge University Press, $c 2007.
300
$a 1 online resource (viii, 472 pages) : $b digital, PDF file(s).
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
490
1
$a London Mathematical Society lecture note series ; $v 332
500
$a Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a Classification of representation-finite algebras and their modules / T. Brüstle -- A spectral sequence analysis of classical tilting functors / S. Brenner and M.C.R. Butler -- Derived categories and tilting / B. Keller -- Hereditary categories / H. Lenzing -- Fourier-Mukai transforms / L. Hille and M. Van den Bergh -- Tilting theory and homologically finite subcategories with applications to quasihereditary algebras / I. Reiten -- Tilting modules for algebraic groups and finite dimensional algebras / S. Donkin -- Combinatorial aspects of the set of tilting modules / L. Unger -- Infinite dimensional tilting modules and cotorsion pairs / J. Trlifaj -- Infinite dimensional tilting modules over finite dimensional algebras / Ø. Solberg -- Cotilting dualities / R. Colpi and K.R. Fuller -- Representations of finite groups and tilting / J. Chuang and J. Rickard -- Morita theory in stable homotopy theory / B. Shipley -- Some remarks concerning tilting modules and tilted algebras, origin, relevance, future / C.M. Ringel.
520
$a Tilting theory originates in the representation theory of finite dimensional algebras. Today the subject is of much interest in various areas of mathematics, such as finite and algebraic group theory, commutative and non-commutative algebraic geometry, and algebraic topology. The aim of this book is to present the basic concepts of tilting theory as well as the variety of applications. It contains a collection of key articles, which together form a handbook of the subject, and provide both an introduction and reference for newcomers and experts alike.
650
0
$a ASSOCIATIVE ALGEBRAS.
650
0
$a REPRESENTATIONS OF ALGEBRAS.
650
0
$a Dimension theory (Algebra)
650
0
$a FINITE GROUPS.
650
0
$a MODULES (ALGEBRA)
700
1
$a Angeleri Hügel, Lidia, $e editor.
700
1
$a Happel, Dieter, $d 1953- $e editor.
700
1
$a Krause, Henning, $d 1962- $e editor.
776
0
8
$i Print version: $z 9780521680455
830
0
$a London Mathematical Society lecture note series ; $v 332.
856
4
0
$u https://doi.org/10.1017/CBO9780511735134
999
$a VIRTUA               
No Reviews to Display
Summary
Tilting theory originates in the representation theory of finite dimensional algebras. Today the subject is of much interest in various areas of mathematics, such as finite and algebraic group theory, commutative and non-commutative algebraic geometry, and algebraic topology. The aim of this book is to present the basic concepts of tilting theory as well as the variety of applications. It contains a collection of key articles, which together form a handbook of the subject, and provide both an introduction and reference for newcomers and experts alike.
Notes
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Contents
Classification of representation-finite algebras and their modules / T. Brüstle -- A spectral sequence analysis of classical tilting functors / S. Brenner and M.C.R. Butler -- Derived categories and tilting / B. Keller -- Hereditary categories / H. Lenzing -- Fourier-Mukai transforms / L. Hille and M. Van den Bergh -- Tilting theory and homologically finite subcategories with applications to quasihereditary algebras / I. Reiten -- Tilting modules for algebraic groups and finite dimensional algebras / S. Donkin -- Combinatorial aspects of the set of tilting modules / L. Unger -- Infinite dimensional tilting modules and cotorsion pairs / J. Trlifaj -- Infinite dimensional tilting modules over finite dimensional algebras / Ø. Solberg -- Cotilting dualities / R. Colpi and K.R. Fuller -- Representations of finite groups and tilting / J. Chuang and J. Rickard -- Morita theory in stable homotopy theory / B. Shipley -- Some remarks concerning tilting modules and tilted algebras, origin, relevance, future / C.M. Ringel.
Subject
ASSOCIATIVE ALGEBRAS.
REPRESENTATIONS OF ALGEBRAS.
Dimension theory (Algebra)
FINITE GROUPS.
MODULES (ALGEBRA)
Multimedia