Statistical methods for recommender systems / Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research.
Agarwal, Deepak K., 1973-| Call Number | 006.3/3 |
| Author | Agarwal, Deepak K., 1973- author. |
| Title | Statistical methods for recommender systems / Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research. |
| Physical Description | 1 online resource (xii, 284 pages) : digital, PDF file(s). |
| Notes | Title from publisher's bibliographic system (viewed on 05 Feb 2016). |
| Summary | Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. |
| Added Author | Chung-Chen, Bee, author. |
| Subject | Recommender systems (Information filtering) Statistical methods. Expert systems (Computer science) Statistical methods. |
| Multimedia |
Total Ratings:
0
02409nam a22003618i 4500
001
vtls001584391
003
VRT
005
20200921121800.0
006
m|||||o||d||||||||
007
cr||||||||||||
008
200921s2016||||enk o ||1 0|eng|d
020
$a 9781139565868 (ebook)
020
$z 9781107036079 (hardback)
035
$a (UkCbUP)CR9781139565868
039
9
$y 202009211218 $z santha
040
$a UkCbUP $b eng $e rda $c UkCbUP
050
0
0
$a QA76.76.E95 $b A395 2016
082
0
0
$a 006.3/3 $2 23
100
1
$a Agarwal, Deepak K., $d 1973- $e author.
245
1
0
$a Statistical methods for recommender systems / $c Deepak K. Agarwal, Yahoo! Research, Bee Chung-Chen, Yahoo! Research.
264
1
$a Cambridge : $b Cambridge University Press, $c 2016.
300
$a 1 online resource (xii, 284 pages) : $b digital, PDF file(s).
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
500
$a Title from publisher's bibliographic system (viewed on 05 Feb 2016).
520
$a Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
650
0
$a Recommender systems (Information filtering) $x Statistical methods.
650
0
$a Expert systems (Computer science) $x Statistical methods.
700
1
$a Chung-Chen, Bee, $e author.
776
0
8
$i Print version: $z 9781107036079
856
4
0
$u https://doi.org/10.1017/CBO9781139565868
999
$a VIRTUA
No Reviews to Display
| Summary | Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. |
| Notes | Title from publisher's bibliographic system (viewed on 05 Feb 2016). |
| Subject | Recommender systems (Information filtering) Statistical methods. Expert systems (Computer science) Statistical methods. |
| Multimedia |