ENTRANCE EXAMINATIONS – 2019

(Ph.D. Admissions - January 2020 Session)

Ph.D. Chemistry

TIME: 2 H	IOURS
-----------	-------

MAXIMUM MARKS: 80

HALL TICKET	NUMBER:
-------------	---------

INSTRUCTIONS

- Write your HALL TICKET NUMBER in the space provided above and also on the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1 26 are present (including 4 pages assigned for rough work).
- 3. There are eighty (80) multiple choice questions in this paper (20 in Part-A and 60 in Part-B). Each question in Part-A and Part-B carries two marks.
- 4. Attempt all questions in Part-A ($20 \times 2 = 40$ marks), and any 20 in Part-B ($20 \times 2 = 40$ marks); if more questions are answered in Part-B, only the first 20 will be considered for grading.
- 5. There is negative marking for both Part-A and Part-B. Each wrong answer carries 0.66 mark.
- 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
- 7. Hand over the OMR answer sheet to the invigilator at the end of the examination.
- 8. In case of a tie, the marks obtained in **Part-A** will be used to determine the order of merit.
- 8. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 9. Non-programmable, Standard Calculators are allowed. Mobile phones and all smart devices are NOT allowed.
- 10. Useful constants are provided at the beginning of Part-A in the question paper.
- 11. OMR without hall ticket number will not be evaluated and University shall not be held responsible.

U-66

Useful Constants:

Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J}$ s; Speed of light = $2.998 \times 10^8 \text{ m s}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J} \text{ K}^{-1}$; Gas constant = $8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} = 0.082 \text{ L}$ atm K $^{-1} \text{ mol}^{-1} = 1.987 \text{ cal K}^{-1} \text{ mol}^{-1}$; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Charge of electron = $1.6 \times 10^{-19} \text{ C}$; $1 \text{ D} = 3.336 \times 10^{-30} \text{ Cm}$; $1 \text{ bar} = 10^5 \text{ N m}^{-2}$; RT/F (at 298.15 K) = 0.0257 V; Avogadro number = 6.022×10^{23} ; Speed of light = $3.0 \times 10^8 \text{ m s}^{-1}$

PART – A

1. For the following sets of reactions, the correct ordering of the rate constants is:

- [A] $k_1 > k_2$ and $k_3 > k_4$ [B] $k_1 > k_2$ and $k_4 > k_3$ [C] $k_2 > k_1$ and $k_4 > k_3$ [D] $k_2 > k_1$ and $k_3 > k_4$
- 2. The rearrangement reaction that does not require an sp² hybridized carbon in the starting material is:
 - [A] Favorskii rearrangement
 - [B] Pinacol rearrangement
 - [C] Wittig-Still rearrangement
 - [D] Oxy-Cope rearrangement

3. The major product A obtained in the following transformation is:

4. The topicity of the benzylic protons (indicated **bold**) in the following structure is:

[A] Homotopic

z

 ∂t

- [B] Enantiotopic
- [C] Diastereotopic
- [D] Do not exhibit topicity
- 5. A set of two compounds, each having (R)-configuration among the following is:

Page 3 of 26

- 6. A set of two most appropriate oxidizing agents for the conversion of a secondary alcohol into a ketone is:
 - [A] i) Al(OiPr)₃/acetone ii) CrO₃
 - [B] i) CrO₃/pyridine ii) *m*-chloroperbenzoic acid
 - [C] i) Al(OiPr)₃/2-propanol ii) CrO₃
 - [D] i) pyridinium chlorochromate ii) SeO₂
- 7. The ketone that gives the following IR spectrum is:

8. The metallochromic indicator used in the estimation of Mg²⁺ with ethylenediamine tetraacetic acid is:

Page 4 of 26

- 9. Hemerythrin and hemocyanin, respectively are:
 - [A] both dinuclear iron metalloproteins
 - [B] dinuclear copper and mononuclear iron-porphyrin metalloproteins
 - [C] dinuclear iron and dinuclear copper metalloproteins
 - [D] multinuclear iron and trinuclear iron metalloproteins
- 10. The deficiencies of the metals, Zn and Cu in human beings, respectively cause:
 - [A] bone deterioration and anemia
 - [B] glucose intolerance and skin disease
 - [C] hair loss and growth retardation
 - [D] growth retardation and brain disease
- 11. Magnetic resonance imaging (MRI) in humans use the coordination complexes of:
 - [A] Cd(II) and Zn(II)
 - [B] Ni(II) and Co(II)
 - [C] Mn(II) and Gd(III)
 - [D] Mo(V) and W(V)

12. The primary role of chlorophyll in photosynthesis is:

- [A] absorption of light
- [B] absorption of water
- [C] storage of energy
- [D] production of chemical energy and its storage
- 13. The decomposition temperature of carbonates of Group II elements vary in the order:

[4]	BeCO ₃ < MgCO ₃ < CaCO ₃ < SrCO ₃	[B]	$BeCO_3 > MgCO_3 > CaCO_3 > SrCO_3$
[1 1]	2001 - 0 -		

[C] $BeCO_3 < MgCO_3 > CaCO_3 > SrCO_3$ [D] $BeCO_3 > MgCO_3 < CaCO_3 < SrCO_3$

4

Page 5 of 26

1-66

14. The boiling point of hydrides of group IV elements vary in the order:

[A]	$CH_4 < SiH_4 < GeH_4 < SnH_4$	[B]	$CH_4 < SiH_4 > GeH_4 < SnH_4$
[C]	$CH_4 > SiH_4 > GeH_4 > SnH_4$	[D]	$\mathrm{CH}_4 < \mathrm{SiH}_4 < \mathrm{GeH}_4 > \mathrm{SnH}_4$

15. The electronic ground state of nitric oxide is:

[A]	$^{1}\Sigma$	[B]	$^{2}\Sigma$
[C]	$^{1}\Pi$	[D]	$^{2}\Pi$

16. The highest symmetry element of allene $(H_2C=C=CH_2)$ is:

[A]	C_2	[B]	C_4
[C]		[D]	S_4

17. In the process of nucleation and crystal growth, formation of the nucleus (homogeneous nucleation) is controlled by its:

- [A] surface free energy
- [B] bulk free energy
- [C] surface and bulk free energies
- [D] only surface tension

18. Work function of a solid has the units of:

- [A] entropy
- [B] energy
- [C] potential
- [D] force

19. The rate constant of a reaction decreases with increase in temperature. This indicates that the:

- [A] reaction is exothermic
- [B] frequency factor of the reaction is low
- [C] reaction proceeds in multiple steps
- [D] reaction occurs by a tunneling mechanism

20. The correct unit of gyromagnetic ratio of a nucleus is:

[A] radian s⁻¹
[B] radian M⁻¹ s⁻¹
[C] MHz T⁻²
[D] radian T⁻¹ s⁻¹

PART - B

21. The product of the following reactions is:

22. Products \mathbf{A} and \mathbf{B} in the following reaction sequence are:

 $\begin{array}{c} O \\ \hline \\ \hline \\ \hline \\ O \end{array} \end{array} \xrightarrow{\text{i. NaOH, Mel}} A \xrightarrow{\text{LDA, THF, Mel}}$

в

Page 7 of 26

23. Reagents used in the Cadogan and Schmidt reaction, respectively are:

- [A] triethyl phosphite, N_3H [B] triethyl orthoformate, NH_2OH/H^+
- [C] triethyl borate, TsOH [D] Et₂Zn, NBS

24. The heterocyclic ring present in the amino acid histidine is:

- [A] isoquinoline[B] indole[C] pyrrole[D] imidazole
- 25. Quercetin is a flavonoid widely distributed in nature. The biosynthetic precursor for guercetin in plants is:

[A] phenylalanine [B]	tryptophan
-----------------------	------------

[C] methionine [D] proline

26. The major product formed in the following reaction is:

27. The major product obtained in the following transformation is:

Page 8 of 26

28. The predicted absorption maxima of compounds X and Y, are:

- 29. A compound with the molecular formula $C_5H_{10}O_2$ gives the following ¹H-NMR spectrum. The resonances at 1.4 δ , 2.25 δ and 3.9 δ are in the intensity ratio, 6:3:1. The most likely structure of the compound is:
 - [A] 1-hydroxy-3-methylbutan-2-one
 - [C] 1-hydroxypentane-3-one
- [B] 3-hydroxy-3-methylbutan-2-one

[D] 2-hydroxypentan-3-one

- $C_5H_{10}O_2$
- 30. The reagent needed for the following transformation is:

31. The most appropriate product in the following reaction is:

32. The most likely product in the following transformation is:

33. The major product in the following transformation is:

t

34. The product obtained in the following transformation is:

*

35. The major product formed in the following asymmetric induction is:

36. The oxepin **X** undergoes valence tautomerism followed by acid-catalyzed ring opening to give:

[A]

[C]

он но

[D]

[B]

Page 12 of 26

1-66

37. The products X and Y in the following reaction sequence are:

38. The products \mathbf{X} and \mathbf{Y} in the following reaction sequence are:

Page 13 of 26

V-66

39. The products X and Y in the following reaction sequence are:

40. The products X and Y in the following reaction sequence are:

Page 14 of 26

41. Nickel can be determined by the addition of excess cyanide ion and back titration with silver ion. A solution of a 0.4 g sample of a nickel ore is made basic with ammonia, and 50.0 mL of 0.09 M KCN solution is added. Titration of the excess cyanide ion requires 20.34 mL of 0.05 M AgNO₃. The reactions are shown below.

 $Ni^{2+} + 4CN^{-} \Leftrightarrow Ni(CN)_4^{2-} \text{ and } Ag^+ + 2CN^{-} \Leftrightarrow Ag(CN)_2^{-}$ The percentage of nickel (atomic weight = 58.69) in the ore is:

[A]	9 %	[B]	14 %
[C]	36 %	[D]	51 %

42. A pair of 'T-shaped' and 'See saw-shaped' molecules, respectively is:

[A]	SF_4 and H_2O	[B]	NH_3 and CIF_3
[C]	SO_2 and PCl_5	[D]	ClF ₃ and SF ₄

43. The pH of 0.1 M solution of CH₃COOH ($K_a = 1.75 \times 10^{-5}$) is:

[A]	3.97	[B] 4.50
[C]	2.88	[D] 5.54

44. Red color of HgS is due to:

sition	[B]	f-f transitio	n
smon	[D]	1-1 u a)	ismoi

- [C] metal to ligand charge transfer
- [D] ligand to metal charge transfer

45. Among the following, the macrocycle with the greatest affinity towards potassium ion is:

Page 15 of 26

11-66

- 46. The octahedral dⁿ configuration which has a contribution from the orbital part to the value of the effective magnetic moment is:
 - [A] $t_{2g}^{5}e_{g}^{2}$ [B] $t_{2g}^{3}e_{g}^{3}$ (high spin) [C] $t_{2g}^{6}e_{g}^{3}$ [D] $t_{2g}^{3}e_{g}^{0}$

47. The number of improper axis of rotation (S_4) in a tetrahedral AX₄ molecule is:

[A]	2	20	[B]	4
[C]	3		[D]	1

48. The total number of microstates for a d^3 ion and the ¹D term respectively are:

[A]	120 and 5	[B]	120 and 0
	45 and 0	[D]	0 and 45

49. Using Pauling's rules, the pK_a values of $RAsO_3H_2$ are:

- [A] 3.0 and 8.0[B] 2.3 and 7.3[C] 4.0 and 7.0
- [D] 2.3 and 3.4
- 50. For the stoichiometric dissociative mechanism for substitution in octahedral complexes with the equations given below, the correct rate expression for the overall reaction is:

$$L_5MX \xrightarrow{k_1} L_5M + X; L_5M + Y' \xrightarrow{k_2} L_5MY$$

[A]	k ₁ k ₂ [L ₅ MX][Y]	k ₁ k ₋₁ [L ₅ MX][Y]
	$k_{-1}[X] + k_2[Y]$	[B] $\frac{1}{k_{-1}[X] + k_{2}[Y]}$
		k ₁ k ₂ [L ₅ MX][Y]
[C]	$k_{-1}[X] + k_{2}[Y]$	$[D] \overline{k_{-1}[X] + k_2[Y] + k_1[L_5MX]}$
	k ₁ k ₋₁ [L ₅ MX][Y]	

Page 16 of 26

- 51. The increasing order of *trans*-labilizing effect in the substitution reactions of square planar platinum complexes is:
 - [A] pyridine $< NH_3 < NO_2^- < H^- < CO$
 - [B] NH₃ <pyridine< NO₂⁻ < H⁻ < CO
 - [C] NO_2 < NH_3 < pyridine < H < CO
 - [D] $NH_3 < pyridine < NO_2^- < CO < H^-$
- 52. The number of lines expected in the X-band ESR spectrum of VO(acac)₂ complex in a solution state at 25°C is:

[A]	6	[B] 8	3
[C]		[D] 4	1

53. The spectroscopic technique useful to distinguish the spin state and oxidation state of iron is:

[A]	IR	43	[B]	NMR
[C]	Mössbauer		[D]	UV-Vis

54. The number of lone electron pairs on the central atom and the shapes of the species ClO_3^- and IF₅ are respectively:

4

- [A] (1, pyramidal); (1, trigonal bipyramidal)
- [B] (0, planar); (1, square pyramidal)
- [C] (1, pyramidal); (1, square pyramidal)
- [D] (0, planar); (1, trigonal bipyramidal)

55. The correct statement with respect to XeF_5 and/or TeF_7 is:

- [A] both have at least one bond angle as 90°
- [B] both have at least one bond angle as 72°
- [C] in XeF_5 , there are 90° and 120° bond angles
- [D] TeF7 has a monocapped octahedral shape

1-66

56. The dipole moment of the compounds CH₃Cl, CClF₃ and PF₂Cl₃ are in the order:

- $[A] CH_3Cl > PF_2Cl_3 > CClF_3$
- $[C] PF_2Cl_3 > CH_3Cl > CClF_3$
- $[D] CH_3Cl > CClF_3 > PF_2Cl_3$

[B] $CClF_3 > PF_2Cl_3 > CH_3Cl$

 $_{2}Cl_{3} > CH_{3}Cl > CCll_{3}$

57. C₂B₄H₈ is:

- [A] nido carborane
- [C] hypo carborane
- [B] arachno carborane[D] closo carborane
- 58. CaMg(SiO₃)₂ is an example of:
 - [A] chain silicate[B] orthosilicate[C] cyclic silicates[D] pyrosilicate

59. The bond order of $[\text{Re}_2\text{Cl}_4(\text{PMe}_2\text{Ph})_4]^+$ and $[\text{Re}_2\text{Cl}_4(\text{PMe}_2\text{Ph})_4]^{+2}$ are respectively:

[A]	4 and 3	[B]	3.5 and 4
	2 and 3	[D]	3 and 2

60. Requirement for an alkene complex to form a metallocyclopropane structure is:

[A] electron rich metal and electron withdrawing substituents on the alkene carbon

- [B] electron donating substituents on the alkene carbon
- [C] trans effect
- [D] perpendicular orientation of alkene towards the complex plane

61. A molecule with C_3 and σ_h symmetry elements is:

[A]	PF5	[B]	BrF5
[C]	CH ₄	[D]	NH_3

62. The bond order of O₂ molecule, when it is in its first ${}^{1}\Delta_{g}$ state is:

[A]	1	[B]	•2
[C]		[D]	4

63. The ground state wave function of LiH would be dominated by the configuration $(2s_{Li})$ and $1s_H$ are the 2s orbital of Li and 1s orbital of H, respectively):

 $\begin{array}{cccc} [A] & 2{s_{Li}}^2 & [B] & 1{s_H}^2 \\ [C] & 2{s_{Li}}^1 . 1{s_H}^1 & [D] & All the equation is the equation of the e$

D] All three configurations with equal weight

- 64. In the X-ray diffraction experiment on a crystal, the peaks due to the Miller planes (h₁ k₁ l₁) and (h₂ k₂ l₂) appear at 2θ values, 20° and 30° respectively. Ratio of the corresponding interplanar spacings d₁/d₂ is:
 - [A] 1.49
 - [B] 0.67
 - [C] 0.51
 - [D] 0.15

65. Silicon is a semiconductor that absorbs visible light. Its band gap (eV) is approximately:

- [A] 100
- [B] 50
- [C] 10
- [D] 1
- 66. The magnetic exchange interaction between nearest neighbor spin sites in a ferrimagnetic material is:
 - [A] ferromagnetic
 - [B] antiferromagnetic
 - [C] Pauli paramagnetic
 - [D] metamagnetic

67. The packing fraction of a hexagonal 2-dimensional lattice is:

- [A] 0.52
- [B] 0.68
- [C] 0.74
- [D] 0.91

- 68. A reaction which proceeds through the mechanism, $A + B \xrightarrow{k_d} X \xrightarrow{k_1} products$, is diffusion controlled, when:
 - $[A] k_1 \le k_{-d}$
 - [B] $k_1 \ll k_{-d}$
 - $[C] k_1 \ll k_d$
 - [D] $k_1 >> k_{.d}$
- 69. Among the following molecules, H₂, HCl, CH₄ and H₂O, those which show a rotational Raman spectrum are:

[A]	H ₂ and HCl only	[B]	H_2 and CH_4 only
[C]	HCl and H ₂ O only	[D]	H_2 , HCl and H_2O only

70. The vibrational temperature of F_2 molecule ($\tilde{\nu} = 917 \text{ cm}^{-1}$) is nearly equal to (in absolute scale of temperature):

[A]	132	[B]	123
[C]	1320	[D]	1230

71. The rate of a chemical reaction was found to triple when the temperature is raised from 24 °C to 49 °C. The activation energy of the reaction is nearly equal to (in kJ mol⁻¹):

[A]	8.0	[B]	17.0
[C]	35.0	[D]	70.0

72. Sum of the infinite series, $1 + x + x^2 + x^3 + \cdots$ is:

- [A] x [B] x^{-1}
- [C] $(1+x)^{-1}$ [D] $(1-x)^{-1}$

73. If $\hat{H} = \frac{p^2}{2m} + V(x)$, then $[\hat{x}, \hat{H}]$ equation is given as:

 $\begin{bmatrix} A \end{bmatrix} \quad \frac{\hbar \hat{p}}{m} \\ \begin{bmatrix} C \end{bmatrix} \quad \frac{i\hbar \hat{p}}{m} \\ \begin{bmatrix} D \end{bmatrix} \quad \frac{-\hbar \hat{p}}{im} \\ \begin{bmatrix} D \end{bmatrix} \quad \frac{-\hbar \hat{p}}{m} \\ \end{bmatrix}$

Page 20 of 26

V-66

74. The mean free path of carbon dioxide molecule ($\sigma = 0.52 \text{ nm}^2$) at 25°C and 15 atm is nearly equal to (in nm):

[A]	3.73	[B]	5.22
[C]	2.97	[D]	6.56

75. The activities of Cl⁻, F⁻, Na⁺ and K⁺ ions in an aqueous solution containing 0.01 mol kg⁻¹ of NaCl and 0.05 mol kg⁻¹ of KF are respectively:

[A]	0.044, 0.088, 0.044 and 0.088	[B]	0.075, 0,0375, 0.075 and 0.0375
[C]	0.044, 0.044, 0.088 and 0.088	[D]	0.0375, 0.0375, 0.075 and 0.075

76. The work done when 20 g of CO₂ undergoes a reversible adiabatic expansion from 200 cm³ to 2 dm³ at 298 K [C_{p,m} (CO₂) = 37.11 kJ mol⁻¹; assume ideal gas behavior] is:

[A]	– 1.71 kJ	[B]	– 0.86 kJ
[C]	– 0.46 kJ	[D]	– 1.9 kJ

77. 2 V is applied on a cell with KCl solution as the electrolyte and the two electrodes, 4 cm apart. The distance moved by K^+ ion in one hour [conductance of KCl at infinite dilution = 150 Ohm⁻¹cm²; consider that K^+ and Cl⁻¹ have equal ionic mobility] is:

[A]	1.4 cm	[B]	2.8 cm
[C]	0.57 cm	[D]	2.4 cm

78. Oxidation of oxalic acid was carried out by acidic MnO_4^- in a reversible cell. Given, $E_{MnO_4^-/Mn^{+2}}^0 = 1.51 V$ and $E_{CO_2/oxalate}^0 = -0.49 V$, the equilibrium constant of the cell reaction at 25°C is close to:

4

[A]	10^{339}	[B]	10^{170}
[C]	10 ⁶⁸	[D]	10^{38}

Page 21 of 26

- 79. The distance from the nucleus, at which the probability of finding the electron in the *ls* orbital of H atom is maximum, is (a_0 = Bohr radius):
 - [A] 0 [B] a_0 [C] $\frac{a_0}{2}$ [D] $2a_0$

80. The spin wave function $\frac{1}{\sqrt{2}} [\alpha(1)\beta(2) - \beta(1)\alpha(2)]$ of the electrons in H₂ molecule is:

- [A] not an eigen function of the \hat{S}^2 operator
- [B] an eigen function of the \hat{S}^2 operator with eigen value $+\frac{3}{4}\hbar^2$
- [C] an eigen function of the \hat{S}^2 operator with eigen value 0
- [D] an eigen function of the \hat{S}^2 operator with eigen value $-\frac{3}{4}\hbar^2$