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ABSTRACT

The production and properties of nonclassical states continues to be of great interest.

Nonclassical properties like antibunching, sub-Poissonian photon counting statistics and

squeezing have been studied and experimentally observed in many systems. Central to

these concepts is the quantum harmonic oscillator. In the second quantisation formalism

of the electromagnetic field, it is seen that the electromagnetic field is a collection of

harmonic oscillators. The main aim of this thesis is to study the generation of nonclassical

states and their properties in the generic system of a quantum harmonic oscillator. A

harmonic oscillator whose frequency is time dependent is considered which is then shown

to manifest nonclassical properties. The results are then applied to specific quantum

systems for which the harmonic oscillator forms a representative. Two specific systems

are studied: (a) the quantised motion of an ion in a Paul trap and (b) production of

photons in a one-dimensional cavity, one boundary of which executes an "in-out" motion.

Another fundamental system of great current interest and activity is that of a mi-

cromaser. The micromaser field exhibits many novel features which are not seen in

conventional masers and lasers. The micromaser field is also rich in exhibiting nonclas-

sical features. An extensive study of these properties of the micromaser field is carried

out.

The outline of the thesis is as follows:

To begin with in the first chapter, the meanings of classicality and nonclassicality are

defined, following which an introduction and overview of the nonclassical properties of

radiation like antibunching, sub-Poissonian photon-counting statistics and squeezing is

provided.

In the second chapter, a linear system with externally controllable parameters is

considered. The system consists of a quantum harmonic oscillator Hamiltonian with

its frequency being time dependent. The time dependence of the frequency is achieved

through the restoring force being time dependent. The Heisenberg equations of motion

for the quadrature operators X and P are solved and the exact analytical solutions for the



time dependence of the operators are obtained. The time dependence of the annihilation
and creation operators defined interms of the quadratures X and P is then determined.
It is found that the time dependence of the annihilation and creation operators defines
a Bogoliubov transformation, the co-efficients of which are functions of time. Using this
Bogoliubov transformation, the time evolution operator and the time dependence of the
density matrix are obtained. The probability of the system to make a transition to the
state |n> at time i given that at time t = 0 the system was in state |m) is calculated from
the time evolution operator.

The quantum statistical characteristics of a system are also studied by quasiprobabil-
ity distributions. A very large class of states of the harmonic oscillator have a Gaussian

form for the Wigner function. The time evolution of the Wigner function of the system is
obtained by using the Bogoliubov transformation. It is found that the Gaussian nature of
the Wigner function remains intact even if the frequency of the oscillator is changed. The

major finding of this study is that the system exhibits strong nonclassical nature when
the frequency of the oscillator is changed suddenly, whereas, for adiabatic changes of the
frequency there is no appreciable nonclassical nature. A linear sweep of the restoring
force is considered and is solved as an example.

In the third chapter, as an application of the above generic system to a specific
situation, the quantised motion of an ion in a Paul trap is considered. Paul trap is a

device to trap ions in an effective attrative potential that is formed with a combination of
a high frequency rf field and a dc field. The quantised motion of the ion in a Paul trap
is described by an equation that is classically a Mathieu equation. By an exact solution
of the Heisenberg equations of motion for the position and momentum of the ion, the
time evolution operator, the density matrix and the Wigner function are determined.
Explict forms of the wave functions for the ground and excited harmonic oscillator states
in the co-ordinate representation are also obtained. It is found that various initial states,
as they evolve in time, show nonclassical properties like squeezing of fluctuations in the
quadratures. It is shown that this approach is also useful in determining the strengths of



the sidebands in the fluorescence spectrum of the trapped ion. They are calculated from

the consideration of Raman transitions in which the centre of mass motion is excited to

a higher level by an external electromagnetic field.

Another related problem that is considered is that of the production of particles in

the vicinity of a moving mirror. This problem has received considerable attention in the
recent past in the context of particle creation. The present aim is to study the quantum

statistical properties of the field so produced due to accelerated mirror motion and to

look for nonclassical nature of the field. Thus in the fourth chapter, a simple model which

consists of a quantised scalar field in a region bounded by two mirrors, one of which has

an "in-out" motion is considered. Nonclassical properties of the field so produced inside

such a cavity are studied. The field so produced shows squeezing and the modes inside

the cavity are found to be correlated.
In the fifth chapter, a simple but extremely important and practically viable quantum

system — a micromaser is considered. The micromaser is a practical realisation of the

simplest model in Quantum Optics, viz., the Jaynes-Cummings Model (JCM). The field

produced in a micromaser is highly nonclassical. The sub-Poissonian nature of the field

was theoretically predicted and was later experimentally verified. The experimental ob-

servation of collapse and revival phenomena has also been reported. The phase sensitive

properties of the micromaser field also shows very many interesting features. Recently a

proposal has been made regarding the measurement of the linewidth of the micromaser

field. In this chapter the intensity-intensity correlations of the micromaser field are calcu-

lated. Two types of intensity-intensity correlation functions are defined and then using

the steady state photon statistics of the micromaser field and the quantum regression

theorem these funtions are calculated. These functions are also obtained numerically by

using the standard continued-fraction method and by an equivalent eigenvalue approach.

It is found that the two-photon linewidth increases as a function of the pump parameter

and after a certain value starts decreasing. It also shows resonances which are associ-

ated with the existence of trapping states for those pump parameter values. From the



eigenvalue approach it is found that various eigenvalues contribute to the linewidth. In
particular, the multi-exponential character of the correlation function and the antibunch-
iiig character of the micromaser field are demonstrated. Finally, a proposal as to how one
can probe such intensity-intensity correlations in a typical micromaser setup is given.

In the sixth and final chapter, a short description of quasiprobability distributions is
given. Quasiprobability distributions, in addition to being computational tools, also pro-
vide insight into the quantum statistical aspects of a system. Two of the most important
quasiprobability distributions, viz., the Q-function and the Wigner function are calcu-
lated for the micromaser field. Contrary to the equally important Glauber-Sudarshan
P-function, these two distributions always exist as ordinary functions for any state of the
system. Further, the Q-function has the property that it is strictly positive definite for
any state. The Wigner function does not, however, share this property. Since the micro-
maser field density matrix remains diagonal the off-diagonal density matrix elements are

zero. Hence the Q- and the Wigner functions are phase independent.
The micromaser has an unique feature unlike conventional masers and lasers. In

addition to the initial maser transition the micromaser shows many abrupt jumps at
approximately integer multiples of 2p of the pump parameter. The initial maser tran-
sition shows the characteristics of a continuous (second-order) phase transition whereas
the subsequent transitions have the characteristics of a first-order phase transition. In

these regimes the micromaser has very interesting bistable and hysteritic nature. The
quasiprobability distributions are studied for the first order phase transition regimes of
the micromaser. The very low temperature behaviour of the micromaser exhibits very
sharp resonances due to the occurrence of trapping states. Following a brief descrip-
tion on traping states the quasiprobability functions are studied for the pump parameter
values corresponding to these trapping states.



Chapter 1

Introduction

The invention of the laser in the early sixties has spawned the birth of new fields such as

nonlinear optics, laser spectroscopy and quantum optics- In a parallel development, the

concept of coherence has evolved quite a bit and considerable effort has been expended

to evolve a complete statistical description of any optical field. The theory of optical
coherence basically deals with the statistical description of fluctuations, which are an

inherent part of any field. Initially by coherence of a radiation only correlations between

the electric field amplitude at two space-time points was implied. The classical theory

of optical coherence based on the two-point correlations or the correlation measurements

between field quantities which depend linearly on the field was sufficient to explain all

interference and diffraction phenomena known at that time.

The importance of the study of higher-order correlation effects was realised after the

experiments performed by R. Hanbury Brown and R.Q. Twiss [1], Light from a narrow-

band thermal source was split by a beam-splitter and the split beams were made to be

incident on two photomultiplier detectors. The coincidence rate in the detection of light

in the two photomultipliers was then plotted as a function of the time delay introduced

in one of the detector. If the light from the source was a stable wave with no intensity

fluctuations, then one expects the coincidence rate to be independent of the time delay

introduced. But it was found that there was an enhancement of correlated photocounts

around zero time delay. This observation was explained by considering quantities which

depend quadratically on the field variables. A general theory of coherence was then

developed, applying the theory of stochastic processes and by considering higher-order
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correlation functions [2-4].
Eventhough the importance of higher-order coherence functions was realised, the en-

tire theory was done only in the classical footing, viz., by giving a classical description of

the field. In 1963, Glauber introduced the quantum theory of optical coherence [5-7]. In

the quantised picture of the electromagnetic field, the field is no longer a c-number, but

is an operator satisfying certain commutation relations. In such a system, in addition to

the conventional sources of noise, there is the unavoidable quantum noise arising basically

due to the non-commutativity of the field operators. Glauber showed that, in addition to

correct description of all classical phenomena, like Young's interference experiment and

higher-order effects like the Hanbury Brown-Twiss experiment, new phenomena which

cannot be described by classical description of fields can manifest.

In the second quantisation formalism, free electromagnetic field can be represented

as a collection of uncoupled quantum harmonic oscillators, and the field Hamiltonian is

H = ̂ h»k(aiak + \). (1.1)
fc z

Here the operators fifc and ak are the annihilation and creation operators for the kth

mode of the field. Thus the Hamiltonian for a single mode of angular frequency ω is

H = hic(tfa + ±). (1.2)

The connection between the annihilation and creation operators and the position and

momentum operators of the oscillator is

AUT. , • n~*
0 = V^' + 'V^

at = yi*-''&       (1.3)

where the Hamiltonian interms of the 'position', x and 'momentum', P> operators is

*-C + ̂                (1.4)
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The mass m of the oscillator is taken to be unity. The operators a and at satisfy the
Bosonic commutation relation

[a,at] = i. (1.5)

From elementary quantum mechanics we know that the operator a • a corresponds to the
number operator and the eigen states of which are the number states or the Fock states,
|»). Thus,

H\n) = hu(ah + ~)\n)=E\n)
£

= M« + |)l»>)- (1-6)

The Fock states form a complete set of states and any state of the Hilbert space of
states of the oscillator can be represented in terms of the Fock states. The action of the
annihilation (or lowering) operator is to lower the state |n.) to |n — 1} and that of the
creation (or raising) operator is to raise the state |n) to |n + 1). Thus,

a|n> = >/»!»-!) (1.7)

atjn) = ATT|n+l) (1.8)

a|0> = 0. (1.9)

The states |») are obtainable from |0) by the action of the creation operator, a':

|»)-ffj£|0). (1.10)
ynl

In the Heisenberg picture the operators a and a + satisfy the equations of motion

«22l - W0.4

"^ - *>'<"• *!• (1.11)
which have as solutions

a(t) = e-^a(O)

at(<) = c^at(o). (1.12)
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Consider a quantised electromagnetic field of a single (angular) frequency, ω. The
electric field operator, E, can be represented in terms of the positive and negative fre-
quency parts as

E(t) = A(ae'^ + a^e'^}, (1.13)

where A is a constant (containing spatial dependence). We can define quadrature oper-
A A

ators, X and P such that

x = |(a + at)
P = i(at-a). (1.14)

These operators satisfy the commutation relation

[*,p] = i. (1.15)

In terms of the quadrature operators, (1.13) can be expressed as

E = 2A(Xcos(ut) + PsinM)). (1.16)

For a quantised system, the measurable quantities like the electric field correlation

between two space-time points are averages of relevant operators. This averaging is done

with respect to a particular statistical state of the field. The state of the field is given

by the density operator p and the average of a field quantity represented by the field

operator O is given by

{6(«,at)) = Tr{p6}, (1.17)

where the symbol (• • •) represents the expectation value in the state p and "Tr" represents

the tracing operation. The density operator approach facilitates the cases when the state
is not pure, but is mixed. When the field is in a particular state, p, the uncertainty in
the quadrature X is given by the square root of the variance

<(A*)) = J((X - (*))*). (1.18)
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Let A and B be two operators whose commutator is non-zero. Let us define the
deviations A>4 = A — (A) and A5 = B — (I?). The product of the uncertainties in the
two operators, according to Heisenberg uncertainty principle is

<(A,4)2)<(AJ3)')>|i<[A,£])l'. (1.19)

A more general form of this uncertainty product exists, called the Schrodinger uncertainty
relation [8,9]:

<(Ai)2><(AB)2} > ^([A^D^ + ^AAAB + ABAA)2 (1.20)

> l|<[>U]>|2(l + r2), (1.21)

where r = ^^f/ltf A>1' js called the correlation co-efficient. The Schrodinger uncer-
([AyB\)

tainty relation (1.20) is more general in the sense that in addition to non-commutativity
of the operators it also takes into consideration the correlations between the two op-
erators. In the classical limit, when the commutator of the two operators vanishes, the
uncertainty product corresponds to the definition of covariance. On the other hand, when
the two observables are uncorrelated, then the Schrodinger uncertainty relation reduces

to that of the Heisenberg uncertainty relation.

In 1926, Schrodinger studied the conditions in which a quantum state of a system
most closely corresponds to a classical state. In such a state we expect the uncertainties
in x(t) and p(t) to be independent of time and be equally distributed between the position
and momentum of the oscillator. To determine such a state, let us define operators Aa(t)
and Aat(j) as

Aa(f) = a(/)-(a(/)>

Aat(«) = at (0_ (at(f)). (1.22)

They satisfy the same commutation relations as a and a'. If we now determine the
variances in the quadratures X and P, and the correlations between them, then

((AX(0)2) = i{((A«(0))2)e-2^ + ((Aat(0))2)e2^
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+(Aat(0)Afi(0) + Aa(0)Afit(0))}, (1.23)

<(AP(0)2> « -i{((Aa(0))2)e-2^ + ((Aat(0))2)e2^

-(Aat(O)Aa(O) + Aa(0)Aat(0))} (1.24)

and

±(AX(OAP(0 + AP(*)A*(<)> = ^{((Aat(0))a)c2^ - ((Aa(0))2)e-2^}, (1.25)

where the solutions (1.12) are used. If the uncertainties are to be time independent, then
we require that both {(Aa)2) and ((AfiT)2) be zero. The requirement that the dispersions

A A

in the two quadratures X and P be minimal then would demand a minimisation of
the quantity (Aa'Aa + AaAa*}. Since the operators (Aa) and (Aa*) have identical
commutation relations as a and a*, the operator (Aa')(Aa) + (Aa)(AaT) is isospectral
to ata + aaT, having an eigenvalue proportional to (n + |). Thus the quantity (Aa* Aa +
AaAa'} will have its minimum value with n = 0. In this state, which gives the minimum
uncertainty in the quadratures, we thus have

Aa| ) H (4-<«»| > = 0 . (1.26)

If we define the expectation value of the operator a as, (a) = a, then we find that the
state which minimises the quadrature uncertainties is an eigenstate of the annihilation
operator:

a \ ) = a\ ). (1.27)

The eigenstates of the annihilation operator a play a very fundamental role in quan-
tum optics as well as in many other fields [10]. They were first introduced and studied
extensively by Glauber [5,6]. The minimum uncertainty state in (1-27) is written as |a)
and is called coherent state as the wavepacket corresponding to this state 'coheres' or
maintains its shape [11]. Thus,

a|a) = a|a) (1.28)

a = ax + iay, ax, ay € R.
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The coherent states, |a), can be obtained by the action of the displacement operator,

defined as D(a) = exp(o«T — a*a), on the vacuum state, |0)

D(o)\0) = exp(aat-a*a)|0) = |a). (1.29)

Thus, we have

|«> = exp(-i|a|')f; ^L|»>. (1.30)

The coherent states are not orthogonal and they satisfy the completeness relation

1 = - />a|o)(a|, (1.31)
7T J

where cPa = daxdc*y and the integration is over the whole of the a-plane.

One can express these averages of operators in terms of averages of classical functions

by resorting to a particular operator ordering prescription [12,13]. When the operators

are ordered in normal order, all creation operators are arranged to the left of all anni-

hilation operators. Frequently, a set of colons are used to enclose operators to imply

that the enclosed operator should be arranged in normal order. It should be noted that

when this colon symbol is used, creation operators are all arranged to the left of anni-

hilation operators, with complete disregard to the commutation relation between them.

For example,

<: (ata)2 :) = (at2a2) (1.32)

Anti-normal ordering of operators corresponds to arranging all creation operators to the

right of all annihilation operators. Symmetric ordering of operators corresponds to the

average of all possible ways of ordering operators.

Often it is useful to represent states and operators in terms of coherent stales. If

one represents the density operator of the field, />, in the "diagonal" coherent state

representation (Glauber-Sudarshan P-representation) [6,14],

p = Jp(a)\a)(a\<Pa, (1.33)
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using the "optical equivalence theorem" [14,15] one can then cast the average (1.17) of
an operator O expressed in normal order as

(0) = I>a0(aX)P(a). (1.34)

For example,

(:(ah)m:) = (aHm) (1.35)

= /#aP(a}a*mam

Thus, the operator average of normally ordered products of operators is given by simple
moments of the distribution P(α). Equation (1.34) has a formal resemblance to the

evaluation of averages in classical statistics with P(α) taking the role of a phase space

distribution. By definition, a classical phase space distribution is positive definite and

non-singular. There are fields for which the distribution P(α) is strictly positive and

non-singular. Such fields can be described by a classical description of the field and noise

properties can be described by the application of classical statistics over an ensemble

of classical fields. Such fields are said to have classical analogues. But, for some fields,

the quantity P(α) in the diagonal coherent state representation of the state />, is not

positive or may be highly singular, more singular than a tempered distribution. In such

a situation P(α) will be violating the requirements of classical statitics that the phase
space distribution be positive definite and non-singular, and hence cannot be considered

as a classical phase space distribution. Thus, states of the quantised field for which

P(α) is non-positive or singular, are called non-classical states, as they have no classical

analogues. A host of review articles have appeared on the topics of nonclassical light and

squeezed states [16-26].

There are three ways in which the nonclassical nature of a field manifests, viz.,

1. photon antibunching

2. sub-Poissonian photon counting statistics, and
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Figure 1.1: A typical Hanbury Brown-Twiss type setup

3. squeezing.

Let us now consider them one by one.

1.1 Photon antibunching

The phenomenon of photon antibunching was the first of the manifestations of the non-

classical nature of radiation to be observed experimentally. Consider an experimental

setup essentially similar to the Hanbury Brown-Twiss setup (see Fig. 1.1). Such a setup

measures the quantity

G™(t + r) = (:i(t + T)i(t):) (1.36)

where

/(«) = E-(t)E+(t). (1.37)

Thus,
G^(t + τ) = (E-(t)E-(t + r)E+(i + r)E+(t)). (1.38)

If we have classical fields we can write (1.38) as

G«2>(* + τ) = jdI2I2(t + r) j dhh(t)P(h(t + T)/»(0), (1.39)
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where P(h(t + f)/i(f)) is the probability that a photodetection event for I2 occurs at

t + τ given that a detection of I1 occurs at t. With the application of Cauchy-Schwarz

inequality (l^i^al £ l*i||*2|)» we have

IdI21dhh(t + T^OPC/at* + r)h(t)) < ^}dI2IlP(I2(t + T^fdltfPfrM)

(1.40)

where, P(I(t)) is the marginal distribution. In the steady state, we have

P(I) = lim P(I(t + T)) = Km P(/(<)) (1.41)
I—*OO J—+OO

and

G(2)(r) = lim G(2)(< + t) (1.42)
t—*CO

and hence (1-40) can be written as

G(2)(r) < G(2>(0), (1.43)

where G^ is the steady state correlation function the slope of which is negative. Thus

the photons tend to arrive in bunches and hence this is called bunching. All natural

sources (chaotic) satisfy this inequality and any quantum field exhibiting this property

has a classical analogue.

On the other hand, in the stationary condition if we have a field which violates the

inequality (1-43) and has a positive slope, then

G(2)(r) > G(2)(0); (1.44)

such an inequality will not be satisfied by any classical field and any field which satisfies

(1.44) is genuinely quantum mechanical and does not have a classical analogue. From
(1.44) it is evident that the probability of detecting coincident pair of photons is less

than that from a fully coherent light field with Poissonian distribution of photons. In

other words, the photons tend to arrive seperate from one another and hence this effect

is called antibunching. Thus any field exhibiting antibunching is a nonclasskal field.
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Antibunching is also referred to as violations of the Cauchy-Schwarz inequality in the

literature, as the inequality (1.43) basically follows from the Cauchy-Schwarz inequality.

As an example of the situation where the nonclassicality of the field involved manifests
antibunching, consider the phenomenon of resonance flourescence from a single atom,

which gave the first evidence of nonclassical nature of light. It was first pointed out by
H. Carmichael and D.F. Walls [27,28] that such a field would exhibit strong antibunching
and it was first experimentally demonstrated by H.J. Kimble et al. [29-31] and later by

Cresser et al. [32].
In single-atom resonance flourescence, radiation from an external source excites a

single atom. When the atom has relaxed back to its ground state radiatively, it can

radiate no further. Hence, if we perform a delayed coincidence experiment we would see

the phenomenon of antibunching.

1.2 Sub-Poisson photon statistics

Another manifestation of nonclassical character is sub-Poissonian photon counting statis-
tics. As against the situation for antibunching, instead of measuring the time intervals

between the detection of photons, one can also encounter nonclassical nature in the direct

photon detection experiments.

Consider the probability, p(n), of recording n photocounts in a time interval t and

t -J- T with a detector of small area .4, and quantum efficiency h, [33,34,7]

W"n

p(n) = <: n! £_e- :> (1.45)

where

W = qA £**!(?)& (1.46)

and
7(0 = &->(t)&**(t). (1.47)

For very short counting times τ such that τ is much smaller than the coherence time and
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and for a stationary field, we have

((An)2) = (n) -I- vMV(: (A/)2 :). (1.48)

For the case of a classical field the ordering prescription in the second term is redundant

and hence is always non-negative. Thus for fields which have classical analogues, the

following inequality holds

<(A«)2) > <n). (1.49)

The equality in (1.49) implies that the photon number distribution is Poissoniaii. It holds

for a coherent state, and is called the shot-noise level. Any field whose photon number

distribution is less than the shot-noise level, then necessarily violates the inequality (1.49).

This would mean that <: (A/)2 :> < 0 which inturn can happen only if P(α) is negative.

Thus any field which exhibits sub-Poissonian photon number statistics is a nonclassical

state.

In order to quantify the amount of deviation from Poissonian distribution, the fol-

lowing quantity, called Mandel's Q-parameter has been introduced [35]:

«?-<•'>-$'-<*> ,..»,
A value of Q = 0 means that the distribution is Poissonian ((n2) — (n)2 = (£)). The

Q-parameter vanishes when evaluated for a coherent state. A thermal state has Q > 0,

and hence its distribution is larger than that of a Poissonian (super-Poissonian). If the

Q-parameter takes negative values, then it is a signature of nonclassical nature and the

width of the distribution is less than that of a Poissonian (sub-Poissonian).

The phenomenon of resonance flourescence from a single atom, in addition to mani-

festing antibunching, also shows sub-Poissonian statistics. It was first observed by Short

and Mandel [36]. This phenomenon has also been observed in a space-charge-limited

Franck-Hertz setup by Teich and Saleh [37]. Constant-current-driven semiconductor

laser [38] and light emitting diodes [39] have also shown sub-Poissonian statistics. In the
process of parametric downconversion in a KD*P crystal also sub-Poisson statistics is
observed [40,41].



Chapter 1. Introduction

1.3 Squeezing

If we calculate the variance in the quadratures of the field in the vacuum or the coherent
state, we find that the fluctuations in the two quadratures are equal and the Heisenberg
uncertainty product between the quadrature operators is minimal. Thus,

<(AX)2)C = 1/4= <(AP)2)C                                   (1.51)

States for which the uncertainty product is minimal:

{(Ai)2)c((AP)2)c = 1/16                           (1.52)

are called Minimum Uncertainty States (MUS). This minimal fluctuations in the quadra-
tures is called the Standard Quantum Limit (SQL). These quantum fluctuations are
randomly distributed in phase. However, there are states of the field for which the fluctu-
ations in one quadrature are less than the SQL and correspondingly the other quadrature
has increased fluctuations than the standard quantum limit. For these states the fluctu-
ations are phase dependent. Such states are called squeezed states. The requirement for

A

squeezing in the quadrature X is then

<(AA')2). < {(AA')2)C, (1.53)

where the subscript V refers to the squeezed state average and the subscript 'c' refers
to either coherent state or vaccum expectation values. Expressed in terms of normalised
variance the squeezing condition (1.53) becomes

<: (AX)2 :), < 0. (1.54)

Correspondingly, the fluctuations in the other quadrature, P, are larger than the SQL

((AP)2). > «AP)2)C. (1.55)

In terms of the operators a and a < , the variance in the quadrature X is

<(A*)2) = {(*-{*))»)

= <[(«-<«)) + («t-<«t»]2). 0.56)
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Figure 1.2: The family of minimum uncertainty states

Using the P-representation for the density operator, (1.56) can be written as

((AA-)2) = i{l+|rf^ .57)

The condition (1.53) or (1.54) for squeezing of fluctuations in the X-quadrature, would
then require that

J<faP(o)[(a + a*) - ((a) + (a*))]2 < 0. (1.58)

The quantity in the square brackets of the integrand cannot be negative, which only

leaves the distribution P(α) to be negative. Thus squeezed states are nonclassical states,
having no classical analogues.

If the squeezed states satisfy the condition (1.52) for minimum uncertainty, then such

states are called squeezed coherent states. There exists a family of such squeezed coherent

states (see Fig. 1.2). Coherent states are a special case of MUS for which the dispersions
in both the quadratures are equal (phase independent).

Squeezed coherent states are generated by the action of a unitary squeezing operator
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Chapter 2

Generation of nonclassical states by time-dependent

perturbations on oscillator

In this chapter1, the generation and dynamics of nonclassical states in a quantum harmon-

ic oscillator whose frequency is time dependent is studied. The interest in this problem

arises from the fact that many physical systems, especially electromagnetic radiation, can

be successfully modelled by harmonic oscillators and the results for this generic system

can be Carried over to various specific systems. For example, as will be shown in the next

chapter, the model can be applied to the motion of a trapped ion in a Paul trap.

The plan of this chapter is as follows. In section 2.1, some general results, which are

independent of the explicit time dependence of the frequency are given. In section 2.2, a

specific time dependence, namely a linear sweep of ω2 is considered, and the Heisenberg

equations of motion for the position and momentum of the quantum oscillator are solved
A

exactly. In section 2.3 it is then shown that the fluctuations in the quadratures X and

X show squeezing and the photon number statistics is shown to display sub-Poissoaian

nature. Thus, the quantum harmonic oscillator with a time dependent frequency is

shown to generate nonclassical states. Two limits, sudden and adiabatic, also manifest.

It is shown that the nonclassical nature is maximal for sudden changes in the frequency,

whereas for adiabatic changes it is minimal.

----------------------------------------------------------
1 Results of this chapter were presented at the International Conference on Quantum Optics, Hyder-

abad, January 5-10, 1991, the proceedings of which were published in Recent Developments in Quantum
Optics edited by Ramarao Inguva, (Plenum, New York, 1993); published in Phys. Rev. Lett. 26. 3665
(1991) and presented at LAMP seminar at ICTP, Trieste, Italy in February 1992.
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2.1 Exact analytical approach

Consider a harmonic oscillator Hamiltonian [1]

£ = y + |(l + /WV2*2 (2-1)

where we have set m = 1. The operators x and p satisfy the commutation relation

[*,/>] = ; (ft = l). (2.2)

The explicit time dependence of the frequency u> appears through the /?-lerm in (2.1). In

what follows, the exact form of the time dependence of the frequency is of no consequence.

For convenience, let us define dimensionless quadrature operators -Y and P, as follows:

-v = ,/f *
p = & (2-3)

and they satisfy the commutation relation

I-V,P1 = £. (2.4)

It is also convenient to work with a dimensionless time r = ωt. Now, for a given form

of the time dependence, let us assume that the solutions are known for the Heisenberg
A A

equations of motion for the quadratures X and P, the equations of motion being:

^ - P
dr ~

^ = -(l+P(r))X. (2.5)

Let U(r) and V(r) be two functions which are the independent solutions of (2.5) or

equivalently of the second order differential equation

^ = ~(l + /?(r))^ (2.6)
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Tims U' and V form the fundamental system of solutions. Then, the general solution of

this homogeneous system (2.5) can be written as

( A'M \  / U(r) V(r) \ f A'(0) \ (JJ)

^ P(r) J ^ (>(r) V(r) j \, /•(O) /

From (2.7) it is natural to choose the initial conditions for the functions U and V as

C/(0) = V(0) = 1,

U(0) = V(0) = 0. (2.8)

Let us now consider a matrix Y defined for the functions U, V and their derivatives

(u v\
Y=\  (2.9)

UVJ

The determinant of this matrix is called the Wronskian of the functions U and V. A

sufficient condition for the two functions U and V to be linearly independent is that the

Wronskian be non-vanishing. Since U and V are independent, the Wronskian will have

a non-zero value.

To show that the value of the Wronskian is invariant, we consider the following matrix

differential equation

^ = A(r)Y (2.10)

where, the co-efficient matrix is given by (2.5)

( o 0A(r) = . (2.11)
\-(l+/?(r)) QJ

Using Abel's identity for the Wronskian from the theory of differentia] equations [2,3],

we have

dety(r) = detF(0)exp f TraceA^rfr!. (2.12)
Jo

Since Trace>l(T) = 0,

detr(r) = detY(O). (2.13)
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Thus, the Wronskian remains invariant. This implies that

UV-UV = I (2.14)

holds true for all times.
We now define lowering and raising operators as

a = X + iP

a+ = A' - iP (2.15)

which at t = 0 satisfy the Bosonic commutation relation

[a,at] = l. (2.16)

Using the definition (2.15) and the solution (2.7), a(T) and «*(T) become:

«(T) = «(T)«(O) + t>(r)at(0)

fit(T) = v*(r)5(0) + «*(T)at(0) (2.17)

where, u(T) and v ( T ) are given in terms of the solution (2.7) as

«(r) = \[(U + V) + i(U-V)}

v(r) = \[(U-V) + i(U + V)]. (2.18)

It then follows from the invariance of the Wronskian (condition (2.14)), that

|u|2 - |v|2 = 1 (2.19)

for all times. Condition (2.19) also follows from requiring that the Bosonic commutation
relation (2.16) holds true for the transformed operators a(r) and a'(r), i.e.,

[a(r),at(T)] = L (2.20)

This implies that the transformation (2.17) is a canonical transformation. Thus, we have
a Bogoliubov transformation of the lowering and raising operators as a result of the time
dependent frequency and the co-efficients of the transformation depend explicitly on time.
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Every canonical transformation can be represented as an unitary transformation [4],

and hence we have

a(r) =S-1(r)a(0)S(t).  (2.21)

The explicit form of the time evolution operator S(r) can be obtained as follows. One

can rewrite (2.17) as

a(r) = c"« [|ti(r)|a + |t>(r)|e''<fc-W<|t] . (2.22)

The term in the square brackets can be obtained by the action of a "squeeze" operator

[5-9]. Thus if T = exp(f (sat2 - h.c.)), where z = \z\ei&, then

T-laT = cosh \z\a + eie sinh \z\tf (2.23)

where, the operator identity ( [10], pi36)

e**&e** = B + i[A, B] + |[i, (A, B}} + '" (2-24)

has been used. If one identifies

|z| = cosh"1 |u| and 0 = Ov - 0U, (2.25)

then (2.23) yields,

f-laf = |u|a + |t>|e''<»--fl-)At. (2.26)

Again using the identity (2.24), we can show that

exp(-j'0uato)aexp(»'0uata) =* aeie". (2.27)

Hence we have,

a(r) = «(T)O + v(r)a'

= eifl- [|«(r)|a+ |v(r)|ef(«^f>)at]

= S~laS (2.28)
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where $(T) is

5(r) = exp(i^ata)exp (^ ^fl**-*** cosh'1 \u\rf* - A.c.|) . (2.29)

As a result of the time dependent frequency, one expects transition to occur between

the levels of the oscillator. The probability of finding the oscillator in the state \n) at
time r given that at r = 0 it was in the state \m) is

P»m(r) = |{n|5(r)|m}|2 (2,30)

The evaluation of these matrix elements can be done if one expresses S in a normally

ordered form. This is done using the disentangling theorem for the SU (1,1) group [11-13].
The transition probability then becomes

*- - (j^s) ssfiwi+=*»«»» - £«no>i'. (2.3D
The actual steps involved obtaining (2.31) are provided in the Appendix 2A. As an

example, let m = 0 and n = 2. Then

|(2|5(r)|0)|2 = y!|(0|(« + V)*|o)|*

- *2«. (2.32)

Quasiprobability distributions (a resume is given in chapter 6), like the Glauber-

Sudarshan P-function, Q-iunction and Wigner function are very useful in gaining insight

into the quantum statistical aspects of a problem. Many states which are highly nonclas-

sical have simple and rather well behaved representations in terms of the Wigner function.

The Wigner function is defined as the Fourier transform of the quantum characteristic
function Xw: [10] and [14] (section 4.4)

*(a) = i|^exp(r« - *cf)xirfcn, (2-33)

where

\w(t,C) = Tr{pexp[^ - ?a}} (2.34)
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and $(n) satisfies the normalisation condition fd?a$(a) = L
What is the effect of the transformation that arises due to the time dependent fre-

quency on the Wigner function? To see that, we substitute the transformation (2.17)
into (2.33) and we have,

$(a, a*, r) = -^J<Pt exp(f <* - (a')Tr{pexp[£(«-«t + »,•«) - h.c.]}. (2.35)

On changing the integration variable £ to A = (£«* — £*t>), and noting that the Jacobian

of the transformation is unity, we have

*(a,c»V) = -^ />Aexp{A>*a - »a*) - A(«a* - v*a)} Tr{^exp(Aat _ A*«)}.
Tt J

(2.36)

Comparing the equation (2.36) and (2.33) we can express the Wigner function at time
rt in terms of the function at t = 0 [1]:

$(o, a*, r) = * ([«*(r)a - V(T)a*], (u(r)a* - r*(r)a], 0), (2.37)

The Wigner function thus evolves along the classical trajectories. This is expected
A. A ^^

as the Hamiltonian is quadratic in A' and P. The time evolution is especially simple

if the Wigner function associated with the initial state is a Gaussian [15]. According

to the moment theorem for Gaussian processes [16], all moments of order higher than

two are expressible in terms of those of order one and two. Thus, the Gaussian nature

of the Wigner function simplifies the calculation of higher order moments. The Wigner

function for a very large class of harmonic oscillator states has the following general

Gaussian structure, [15]

*,„)= . ' , , exp (-'"" -»>' +"•',"• -"f^l"-^) (2.38,
*J(1*-*W)  Tr2-4|H2 

where the parameters in (2.38) have the following meaning in terms of the mean values

and variances

(«) = *o
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(a2)-(a)2 = -2/i* (2.40)

{i(ata + «at))-(at)(a} = 7. (2.41)

The function (2.38) corresponds to the Wigner function for (a) coherent states when
// = 0 and γ = 5; (b) squeezed states when ft ^ 0, QQ ̂  0 and 72~4|//|2 = j; (c) thermal
states when /i = 0, a0 = 0 and γ >1/2 and (d) also to mixtures of thermal and coherent
states.

As an example of the use of the Gaussian nature of Wigner function, let us evaluate the

Mandel's Q-parameter, which involves the evaluation of second moments. The Mandel's
Q-parameter as defined in chapter 1 gives a quantitative measure of how much the photon

number distribution deviates from a Poissonian distribution. In order to determine Q,
we need to evaluate (n2) = {(aTa)2} and (n) = (a'a). The mean value of (a*a)2 in terms
of the Wigner function is

{atoata) = / $(<*)(H4 - MV*- (2.42)

According to the moment theorem for Gaussian processes [16], all higher order moments

(> 2) can be expressed in terms of the second and first moments. In particular, if the

first moment is zero, then all odd order moments are zero and the even order moments
are given by

(2N)\
(XiXjXk ...)= jyj2;V [ViiVklVmn * - -}*yim (2.43)

where the subscript 'sym' means symmetric form of the product of the variance matrices
a and 2N is the order of the moment. Since, in (2.42), (a) = ao ^ 0, in general, we
can define a such that a = a + »0l so that we can apply the result (2.43) for the barred
variables. Then (2.42) becomes,

(ataata) = y$(a)(|a + a0|4-|o + «0|2)^ (2.44)

= (|* + a0|4>H|a + a0|2). (2.45)

Expanding the quantities |a + a0|4 and |d + a0|2 and noting that for the barred variables

<|*|4) = 2{|a|2)2 + (a'}{a-2), (2.46)
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(d3) = <d} = 0, (2.47)

we have

<(«U)2) = 2(|6f)2 + K|4 + 4|a0|2{|o|2) - |a0|2 - (|a|2) + <a2K2 + (d'2)a2 + (62){d*2>.

(2.48)

Using the definitions (2.39) to (2.41), we have

{(at«)2) = 27
2 + |a0|4 - |ao|2 - 7 - 2/<X2 - 2,(a2 + 4|/i|2 + 4|«0|27 (2.49)

and {«'«) is given by

(at«} = 7-i+|a0|2. (2.50)

Combining (2.49) and (2.50), we have the final expression for Mandel's Q-parameter

g = »vw-w; (2.51)
/72 + 2|ao|2T - 1 - 2(oS)V - 2og// + 4|;f \

~ V 7 + M'-i J~L (2.52)

It is clear from (2.37) and (2.38) that the Wigner function will remain Gaussian with

time dependent parameters c*o,7 and /z:

Qo(r) = ti(T)a0 + r(r)aS (2.53)

/i(r) = u*
2

 + t,*y - u*v*γ (2.54)

^(r) = (ti^ti + v*r)7 - 2/iti*v - 2/i-uti*, (2.55)

where w(r) and r(r) are the time dependent co-efficients of the Bogoliubov transforma-

tion (2.17). Thus, if the initial Wigner function of a state was Gaussian, as a result

of the Bogoliubov transformation (2.17) the Gaussian nature remains intact after the

transformation, but for a redefinition of the parameters.
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Figure 2.1: Form of the function /3(t). The sudden limit corresponds to lim^o and the
adiabatic limit to limj^oo.

2.2 Linear sweep of w2, a specific case

In this section, we consider as an example, a specific form of the time dependent frequency.

Let 0(t) in (2.1) be of the following form (see Fig.2.1):

0 for -oo < t < 0 (Region I)

0(t) = | #4 for 0 < t < T (Region II) (2.55)

β0 for T <t < oo. (Region III)

With this form of the time dependence one has to solve the Heisenberg equations of
motion (2.5) for the dimensionless operators X and P. In region I, we have just an

oscillatory solution at the oscillation frequency 'u;':

X ( I ) ( r ) = A'(0)cos(r) + P(0)sin(r) (2.56)

p(*)(T) = -A'(0)rin(r) + P(0)coB(r). (2.57)
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To find the solution in the region II, we make the following transformation for the di-

mensionless time variable, T —> r',

r' = r + ?f (2.58)
Po

and we define a new variable, z

••l&i-                                                                                                                                                                                                                                                                                                                                                                               (2.59)
Then, the Heisenberg equations of motion (2.5) get transformed to

*. t
dr'
I A /

i - -<*£»*           (2.60)
A A

or equivalently, X and P are solutions of the second-order differential equation

0 + <Aw = o. (2.61)

The exact solution for the Heisenberg equation of motion for the operators X and P in

the region II can be written in terms of Bessel functions of order |: [17]

A'<7V) = Ci V^JiU) + C^Yi(z) (2.62)

f*">(T') = C3V^Ji(z) + C^\\(z). (2.63)

The co-efficients d to C4 are fixed by requiring Ar</7)(r') -» X(r}(r = 0) = A'(0) and

P ( I I } ( T ' ) -> P(/)(r = 0) = P(0). In region III, the solution is again oscillatory, but with

a frequency of oscillation \/l + /?ou;. Thus,

A'< / /7>(r) = C5 cos(^/l + /V) + C6sin(v/l + AT) (2.64)

/><'">(r) = C7 cos(^l + AT) + C8 Bin(/l + AT). (2.65)

As before the constants C5 to C8 are determined by requiring the continuity of X and

P at r = T. Thus the entire solution is obtained. The variances in the quadratures can

then be calculated in a straight forward manner.
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Following our results [1] various authors have extended the results obtained by us2.

Other forms of specific time dependences can also be considered. For example, in the

case of quantised motion of an ion in a Paul trap, the time dependence is sinusoidal.

This case is discussed in detail in the next chapter.

2.3 Numerical approach

In the previous two sections, the exact analytical solution for the Heisenberg equations of

motion (2.5) was considered. The previous section described a specific example where an

analytical solution is possible. But there are problems where such an analytical solution

is not possible. To handle such situations, in this section a numerical approach to the

problem is given.

We rewrite (2.5) in terms of the mean values of the operators X and P: [21]

<f>l = ^2

9?2 = -(1 + flr))^ (2.66)

where

•Pi = (X)

W = (P). (2.67)

Also, let

*i = <A'2>

*2 H <*P + PX)

*3 = (J52)- (2.68)
2Janszky et al [18,19], based on [1] have shown that a series of well-timed frequency jumps leads

to more pronounced squeezing. In a later publication [20], Aliaga et al have obtained our results by a
completly equivalent method using a maximum entropy principle procedure.
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Then, we have,

*, = 2*2

*2 = _(i+£(,-))*,+ *3

*3 = -2(l + /?(r))*2. (2.69)

The initial conditions for (2.66) and (2.69) are determined from (2.67) and (2.68) evaluat-
ed at τ = 0 for a given initial state. Systems (2.66) and (2.69) are numerically integrated
using standard Runge-Kutta algorithm and the fluctuations in the quadratures A" and

P at time r are directly obtained as

((AX)2} = *,-„;
{(AP)2} = *3-*£ (2.70)

The time dependence of the Mandel's Q-paremeter is obtained directly from (2.51) sub-
stituting for the time dependent parameters given by (2.52) to (2.54).

2.4 Demonstration of nonclassical properties

In this section, a discussion of the results for the case of /?(T), given by (2.55) in sec-
tion 2.2, is given to demonstrate nonclassical effects like, squeezing of fluctuations and
sub-Poissonian statistics. One could use either the exact analytical approach of sec-
tion 2.2 or the numerical approach of section 2.3. We use the exact solutions for the
regions II and III (see Fig.2.1) with proper boundary conditions. One can then use this

A A A A A A

solution to evaluate A , P and XP+PX and evaluate the expectation values for various
initial states. Alternatively, one could determine these quantities by a direct numerical
integration of the equations of motion for the expectation values [21].

We next present the numerical results for the non-classical properties like, squeezing
and sub-Poissonian statistics of the oscillator. In Fig.2.2 we show the squeezing in the
component -Y when initially the oscillator is in the ground state. We observe that a
linear sweep produces a significant amount of squeezing. The squeezing properties are
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much more prononunced for the case of a sudden jump [22]. As expected the adiabatic

changes [23] do not produce any noticeable squeezing. From the calculation of the phases
A A

Ou and 0V, we also find that the two quadratures X and P are in general correlated for

most of the time (see Fig.2.3). Note that for fast sweeping, the variance exhibits periodic

behaviour. For the parameters of the Fig.2.2 this period is found to he ^ which follows

from (2.6) and (2.55) as 1 + $> —> 2. In Fig.2.4, we show the squeezing characteristics if

initially the oscillator state is squeezed in the quadrature P. The quadrature X exhibits

quite a significant amount of squeezing which in turn depends on the rate of the frequency

sweep. For the initial vacuum state the Wigner function is Gaussian (2.38) with equal

noise in the two quadratures (/* = 0 and γ = |). In Fig.2.5, we show the time evolution

of the Wigner function (2.38). We show the behaviour at a time when the system shows

maximum amount of squeezing in the X quadrature.

Finally, in Fig.2.6, we show the generation of sub-Poissonian statistics when initially

the state is a coherent state. The time dependent behaviour of the Q parameter was

calculated from (2.51) using (2.52) to (2.54). It is similar to that shown in Fig.2.2. In

general this is not expected, except when the mean value of the field is so large, that a

linearisation around the mean value can be done. For Fig.2.2, the mean value is zero,

but this is not so for Fig.2.6. The linear sweep of the restoring force can produce large

amounts of sub-Poissonian statistics. Several possibilities for realising the present model

exist; for example, one can use a cavity with a material whose dielectric constant is varied

with time.
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Figure 2.2: The variance of the quadrature X versus time, τ for an oscillator initially in
the ground state. The parameters are: β0 = 1 and uT = (a)10~3, (b)1, (c)3 and (rf)103.
The cases (a) and (d) correspond, respectively, to sudden and adiabatic limits.
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Figure 2.3: Same as Fig.2.2, but with the oscillator initially in a squeezed coherent state
|a,C) with a = 1 and ζ = 0.5e~tV.
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Figure 2.4: The phases of u (curve (a)), v (curve (b)) and /i (curve (c)) versus time, τ
corresponding curve (b) of Fig.2.2. As the phases are non-zero for most of the time, the
quadratures X and P are correlated most of the time.
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Figure 2.5: Wigner function $(a,a*,r) with a = (X) + i(P) for the system initially in
vacuum state for uT = lO"3, & = 1 and τ = 1.1 which corresponds to the minimum in
Fig.2.2. Squeezing in the quadrature X can be seen in the inset which shows contours of
constant values of the Wigner function.
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Figure 2.6: Mandel's Q-parameter as a function of τ for the case of an oscillator initially
in a coherent state |a),o = 1. The parameter u>T has been chosen as (a)10~3, (b)1, (c)3
and (d)103.



Appendix 2A

Calculation of the matrix element (n|5|m)

In this appendix we give the intermediary steps involved in the calculation of the matrix
element in (2.30). In calculating such matrix elements the following operator identities
are useful [12,13]:

e*ABme-xA = [f^{A",£}| , (2A.1)
-  n=0 n' 

e^eV^ = expff^SB}), (2A.2)
\n=0 n" /

eA+e = eVe^e^..., (2A.3)

where

{A°,B} = B (2A.4)

{An+l,B} = IA,{A*,B}]. (2A.5)

Equation (2A.3) is called Zassenhaus formula and is a dual of the BCH formula (Baker-
Campbell-IIausdorff formula). The quantities C* are

C*2 = -\\A,B] (2A.6)

C; = \[B,[A,B]} + ±[At[A,B]] (2A.7)

and so on. If C^ commutes with A and /?, then all higher terms vanish. Equation (2.29)
can be written as:

S = e^fi> exp (^e"«t* - ̂ e~^\ , (2A.8)
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where

X = #. (2A.9)

0 = 00-0U (2A.10)

ICl = coslT'M. (2A.11)

Recalling that the state |n> can be obtained from the vacuum by the action of at (see
1.10), we have

(,,|S|m) = l^oj^iti)^ (Kic"at* _ Kie-v) at-|0). (2A.12)
 *«•»**» \ /

The second exponential operator in (2A.12) can then be disentangled using the disentan-

gling theorem for the 5(^(1,1) group- The 5C'(1,1) group generators, A'_,A'+ and K3

satisfy the following commutation relations

[A'~,A'+] = 2A'3 (2A.13)

and

[As,A'±] = ±A'±, (2A.14)

where the generators are

AV * ^ (2A.15)
A 2

A'_ = j (2A.16)

A'3 = j(^« + \)' (2A.14)

According to the disentangling theorem [11]

exp (7+A'+ + 7. A'_ + 73A'3) = exp (F+ A"+) exp (ln(r3)A'3) exp (F_ A'_), (2A.18)

where

& = \ll~W- (2A.19)

IV = 27Ariuh(^)
* 2^coSh(^)-738inh(^) (2A.20)

r* = (co6h(^)-^8inh(^))»' (2A.21)
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Tims we get,

(,i|5|m) = -^(Olatte^ati'^t2eAitae-^2at-|0>, (2A.22)
Vnbn!

where

C = £ (2A.23)

A = -ln(M). (2A.24)

Using the operator identities (2A.1) and (2A.2) we can reorder these terms. After re-

ordering, we get

en\+(m-2)\ . ,

(itplm) = • (0|(a + 2^«t)«(at - 2Ta)-|0>. (2A.25)
y\u\nlrnl

Substituting the definitions (2A.9) to (2A.11) and (2A.23) and (2A.24), we have

/ ***** \ 1 « i i f,*

("15|m> = (H%|) ^n<0|(°+« r( ~ ̂ m (2A'2C)

and hence

*- - (pps) Hibi'0|(a+;at)"(it - ?ari°>ij- <2A-27>
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Chapter 3

Quantised motion of an ion in a Paul trap

In the recent years, rapid progress has been made in the field of high-resolution spec-

troscopy. One of the main concerns of high-resolution spectroscopy is to minimise the

energy of atomic motion and to confine atoms in a very small volume of phase space

so that line broadening due to the motion of the emitting atoms is reduced consider-

ably. Although one can have good Doppler-free spectroscopy done, say, by detecting

the light emitted by atoms in a direction perpendicular to the motion of the particles,

due to second-order (or transverse) Doppler effect one still has transit-time broadening

(proportional to u 2 ) . Therefore one has to resort to "cooling", which involves reduction

of velocities as well as suppression of spread in the distribution of velocities. In addition

to cooling, one is interested in the trapping of a single atom, ion or a charged particle

in a localised position for a long time so that very accurate measurements can be done.

Thus for example, the g-factor of an electron has been measured in a Penning trap to an

accuracy of ±2 parts in 1012 [1]. There are also various other reasons for the interest in

trapping — (a) improvement of precision in atomic clocks due to the possibility of long

measurement times and hence less uncertainty in energy measurements [2], (b) obtaining

unique states of condensed matter, (c) possibility of the observation of Bose condensa-

tion, (d) traps form an ideal testing ground for testing quantum mechanics, for example,

experiments have been made to test the predictions made by certain theories of nonlin-

ear quantum mechanics [3], to observe quantum Zeno effect [4], for direct observation of

quantum jumps [5-7] and a host of other possibilities.
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In this chapter1, the generic model studied in the previous chapter is applied to a
material oscillator, namely a single ion trapped in a Paul trap. A Paul trap is a device
which is used to trap ions and charged particles in a quadrupole confining potential. To
describe the motion of the trapped ion one has to solve the equations of motion of the
trapped particle. Eventhough the solution to the equations of motion can be obtained
classically, if the energy of motion of the ion has to be minimised, one has to resort to a
quantum mechanical treatment. That a fully quantum mechanical treatment is necessary
was demonstrated by Diedrich et al. [8] who placed a single ion in the ground state of
its motion. In section 3.1 of this chapter, following a short description of a Paul trap,
the solution to the equation of motion of the trapped particle in the classical context
is considered. A description of the secular approximation, first introduced by Kapitza
[9], for the time-dependent potential is given. In section 3.2 and the subsequent sections
the motion is described in a fully quantum mechanical description. Time evolution of
the position and momentum operators for the quantum oscillator are obtained. Explicit

forms of the non-stationary wave functions in the Schrodinger picture for various oscillator
states and the time evolution of the Wigner distribution are obtained in section 3.3. In the
later part of the section numerical results are presented. A plot showing the uncertainties
in the position of the ion are shown to be squeezed. A plot of the Wigner distribution is
also provided. In section 3.4, a utility of this approach to understand the occurence and
to calculate the strength of sidebands in the flourescence spectrum of an ion in a Paul
trap is demonstrated.

3.1 Paul trap

A Paul trap is a device used to confine ions and charged particles into a small region of

space inside a potential well formed due to a combination of r/     nd static fields. Due

to Earnsliaw's theorem [10-12] it is impossible to have a stable confinement of charged
1 Results of this chapter were presented at the National Laser Symposium held at the I IT, Madras,

February 17-19, 1993 and at a workshop titled Coherent States: New Developments and Perspectives
held at the University of Hyderabad, Hyderabad, October 29-31, 1993.
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particles in an entirely electrostatic assembly. Hence, the problem is circumvented by

creating a dynamic potential well by the application of a rapidly oscillating and a static

field.

In Fig.3.1, the essential features of a Paul trap are shown [13,14]. It consists of
two electrodes — a ring electrode, the radius of which is given by          two endcap

electrodes seperated by a distance of 2z0 from each other. The typical dimensions of the

trap are between 1 and 40 mm. The potential is quadratic in each of the three rectangular

coordinates of the ion. Thus,

«w)-*fc+.*-!?nV+»'-a'). (31)
r0 "T &ZQ

where <t>dc and <f>ac are the dc and ac components of the potential and ft is the frequency

of the r/ potential. The equation of motion of a charge e of mass m is then given by

three uncoupled equations. So, without loss of generality, let us consider motion in one

dimension only. The equation of motion is then

m~3Z + 2 _/o 2 (fa + facos(n*))* = o. (3.2)«* ro T ^^o

Equation (3.2) can be rewritten in the form

<Px
—dτ

2+ [a - 29 cos(2r)]x = 0, (3.3)

where,

r - £ (3.4)

%€fa j (3.5)
a = 02, 2 . 0 2 \ > andnin2(rg + 2^)

4C^ttC9 = mfl»(^ + 2*8)- (3.6)

The classical equation (3.3) is just the canonical form of the Mathieu equation whose

solution has been studied in detail [15-19].
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Figure 3.1: A schematic of a Paul trap.
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3.1.1 Secular approximation

Let us study an approximation to the solution of the equation of motion of a particle under
the influence of a high frequency force, first introduced by Kapitza [9,20-23]. Consider
the motion in one dimension of a particle under the influence of a time independent

potential G(x ) and an oscillatory force of high frequency f ( x , t ) = ^j^cos(flt). The

frequency ft is large with respect to the frequency of motion due to the potential G(x).

The equation of motion of the particle is

•4=-£+<!»     (3.7)

An approximate solution to (3.7) consists in resolving the function x(t) into a slowly

varying part, X ( t ) and a rapidly varying part, £(£) oscillating at the same frequency as

the applied force. Thus,

*(*) = X(t) + ««). (3.8)

It is assumed that the amplitude of £ is much smaller than X and its time average over

a period ~ vanishes.

Substituting (3.8) in (3.7) and expanding in powers of £ to first order, we have

-£+-*~£-<£+/™+<&
Equating the rapidly varying parts seperately, we have

d*f
m^i = /(AV), (3.10)

integrating which, we get

«—^- (3.11)
If we take the time average of (3.9), using (3.11) and the fact that average of cos2(ftt) = i,

we get
fp\ AQ (£H)2-£-§-£&•        (3.12)
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Thus, the time averaged motion of the particle is under the influence of An effective time

independent potential, given by

*-fiW + 4§?- (3.13)

For the case of an ion in a Paul trap, the oscillatory force is 2g^cos(n<) where, v(r) is

•M-frST    (3.14)

Thus, the time averaged or the secular motion of the ion is given by

/Pr O2 1
^ + T<°+5'°>* = °> (3.15)

which is a harmonic motion with frequency, u>5, given by

». = "/»+§«*• (3.16)

This analysis holds in the limit of small a and q (large fl). Fig.3.2 shows the stability

regions for the Mathieu equation (3.3) in the (a, q) plane. The motion of the ion is stable

and thus confinable only for certain ranges of a and q values [16]. The regions marked I

and II in Fig.3.2 represent the stable regions. For most of the experimental arrangements

the a and q values lie in the first stable region (I) near the origin of the coordinates a and

q. The higher stable regions are difficult to maintain experimentally as they correspond

to few orders of magnitude larger values for the dc and r/potentials. Moreover, the above

approximation cannot be done and perturbative approaches are no longer valid in these

regions.

3.1.2 Floquet solution

According to Floquet's theorem, the solutions to (3.3) are of the form

T(T) = Q(r)P(r), (3.17)
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where Q ( r ) = cwf represents the slow motion or secular motion and P(r) is a TT— periodic

function representing the micromotion. Any solution which satisfies the condition

x(τ + Jhr) = Ckx(r) (3.18)

where

C = e'w (3.19)

is called a Floquet solution. The quantity v is called the characteristic exponent. For the

unstable regions the characteristic exponent, v takes on complex values with a negative

imaginary part, thereby leading to unstable motion of the ion. For real values of the

exponent, the motion is quasiperiodic and therefore stable.

Let U(r) and V(τ) be the two linearly independent solutions to (3.3) satisfying the

initial conditions

{'(0) =V(0)= 1 and (3.20)

[7(0) =V(0)= 0. (3.21)

Since for stable trapping of ions in a Paul trap, the characteristic exponent should be

real, we have the following general solution to (3.3) ( [18], pp 64)

x ( r ) = A f; c2kcos((2k + v)r) + B f) c2*sin((2fc + v)r). (3.22)
k=—oo fc=—co

Thus we can identify the solutions U and V as

U(r) = £ c2kcos((2k + v)T) (3,23)
Jt=-00

V(T) = r™ c\(2k + i,} ^ ^sill((2^ + ̂ )'      (3.24)2-rA:=-oo C2k(M + V) *=_<»

where the co-efficients c2k are normalised such that ££-oo CM = 1 so that the initial

conditions (3.20) and (3.21) are satisfied by U and V. The approximate value of the

characteristic exponent v is determined from the conditions

cos(iri/)-tf(jr) = 0 (3.25)
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or
cos(ffi^) - 1 - 2U(x/2)V(x/2) = 0 (3.26)

by direct integration of (3.3). More accurate value of v is obtained as follows. Substituting

(3.22) in (3.3), we get the following recursion relation

V2*c2* = (c2*-2 + c2*+2), (3.27)

where
v2k = «-(2* + *p _00<k< ̂        (3.28)

?
Rearranging (3.27), we have

V °2*-2 i C2*+2
V2* = h • (3.29)

cik CM

Defining the ratios,

Gm = - ,̂ (3.30)
Cjn-2

we have from (3.29)

gTO = v
 1  (3.31)
"m   vm+2- ...

Similarly, by defining the ratios

H_m = fz^zi, (3.32)
C-m

we have

tf-m = r}
 !

 t . (3.33)
^-m-2 - V_m_4-...

Using continued fractions, the ratios G'm and //-m can be obtained for some large m.

Once Gm and #_m are determined, then the rest of the terms from G'm_2 to G'0 and

//-m+2 to //o are obtained as

G/_2 = 1 , m > I > 2 (3.34)
Vl-2 - G/

and

//-/+2 = V. -J/.r^ m ^ ' ^ 2 - (3.35)
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If the characteristic exponent is correct, then the quantities Go and //0 should verify the
identity

G'o#0 = 1. (3.36)

The exact characteristic exponential is then obtained from (3.28), Thus

V0 = ^—^-, (3.37)
9

or

v = Ja - Vof, (3.38)

where VQ is obtained from (3.29) using the previously determined ratios G2 and H0. The

definitions (3.30) and (3.32) can then be used to obtain the co-efficients c2k's in terms

c0. The term C0 can then be fixed by requiring that ££=-oo c2* = 1, as demanded by the

initial condition U(0) = 1.

3.2 Quantum dynamics

The motion described by (3.3) corresponds to the quantum Hamiltonian

H = |̂  + \mJ(t)x\ (3.39)

where

J*(t) = —[a - 2q cos(ftt)]- (3.40)

Thus, the motion of the ion is that of an oscillator whose frequency is time dependent in

a sinusoidal manner. The equations of motion for the position and momentum are given

by
dx p
dt m

^ = -n^2(0x. (3.41)

The Schroclinger equation now involves a potential periodic in time. For large periodicity

one can do a time average to obtain the secular motion.
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In what follows we consider the quantum case And the general solution of the Heisen-

berg equation (3.41). We will also find the time evolution of the wave function of the

system or equivalently, we will obtain the time dependent density matrix without us-

ing the approximations used in arriving at (3.16). We will further show that the state

corresponding to the centre of mass motion is a nonclassical state.

We redefine the variables x and p so that

*=\/l^Md'=\£&     - (3.42)

where <*>o is the intrinsic frequency of the time independent oscillator given by setting

q = 0 in (3.3). We thus get

«i-2p (3.43)

Once the parameter a and the frequency fi are chosen, the natural frequency u>0 gets fixed.

Thus varying the ratio ^ for a fixed a value corresponds to sweeping of the frequency

of the oscillator, The new position and momentum operators satisfy the commutation

relation

\X,P}=1-. (3.44)

In the Heisenberg picture, the equations of motion for the operators A' and P are

^=u*A 4£ = -5-(«-2gc«(n*)>.t (3.45)
at at 4

or, in terms of the scaled time r — y, we have,

dX_ _ 2wd£
dT ~~ ft '

A

^ = -^(a-2qcoS(T))X. (3.46)

We can also define the lowering and raising operators a and «' J>y the relations

a = X + iP, (3.47)

«t = X-iP (3.48)
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with

[«,«*] = !. (3.49)

The solution of (3.46) can be expressed as

A'(r) = t/(T)A'(0) + (^)V'(r)/>(0)

P(r) = U(T)(^)-*X(0) + V(T)P(V) (3.50)

where U(T) and V(r) are given by (3.23) and (3.24). Note that the solutions V(r) and
V(r) satisfy the property

C/(r)l>(r)-l/(r)t>(r) = l, (3.51)

so that equal time Heisenberg commutation relations hold, viz.,

[A'(r),P(r)] = l (3.,52)

The time dependent variances of the operators X and P can be obtained from (3.50) for

various oscillator initial states.

Using (3.50) we obtain the time dependence of the lowering and raising operators as

a(r) =s ti(r)a(0) + v(T)at(0), (3.53)

ot(r) = r*(r)a(0) + w*(r)«t(0), (3.54)

where the co-efficients u(r) and t>(r) are given in terms of the solutions of (3.3) as

«M - 5 (("+ *) + ••«§;)-(*r))).   (3.56)

„(,) = |(,t; _v ) + ,x,^, + (5^),).     (3.56)

We have thus a Bogoliubov transformation of operators with time dependent coefficients.
As was done in chapter 2 the equation (3.53) can be expressed as a unitary transfor-

mation. We rewrite (3.53) as

a(r) = exp(i0uah) (\u\a(0) + |v|exp(t[0tf - *J)fi(0)). (3.57)
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and therefore,
a(r) = S^(r)aS(T), (3.58)

where

S ( T ) = exp(i fata)exp 2(-2eW*-'*} cosh(|«|)«t - h.c.} . (3.59)

The equation (3.58) relates the Heisenberg operator at time r to the operator at time
τ = 0. It should be borne in mind that all the parameters 0u^v^ \u\ and jt>| depend on

time r. The Fourier series decomposition of the functions ti(r) and r(r) can be obtained
by using the definition of the functions U and V from (3.23) and (3.24). We thus have

"(') = 5 |E ^os((*+£)ftO + -~ E ^k(k+^)cos((h+^t)\
2 L*=-oo 2 ^ D Jfc»-oo ^ 2 J

-5|(T) £ ^(*+?)«n((*+ ?)«)+
2 [ ̂  te-oo ^ 2

1 £ c^rin((*+y)W)|, (3.60)
^ Jt=-oc- Z J

i f 0 0 / / n i °° £/ / / I
»(0 = o E c2icos((A^-)m)-~- £ C2*(*+-)cos((*+-)ta)

z L*=-oo ^ UQlJ k=-*> L J

-5|(^) £ ^(* + £)sin((*+£)flO-
2 [ W« te-oo 2 2

t oo 1

- j; ctorin((*+J)n*)L (3.61)
17 Ar=-oo Z J

where D is given by

D = 2 f) c2,(Ar+^). (3.62)
Ar=-oo Z

3.3 Dynamics in the Schrodinger picture

Explicit wave functions corresponding to different states of the time dependent oscillator
can be obtained by going into the Schrodinger picture. The time evolution of the density
matrix can be obtained from the evolution operator, S(r)

p(r) = 5'(r)^(0)5-1(r). (3.63)
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Therefore, if |V'(0)) is the initial state, then the state of the oscillator at time r will be

IV'(r)) - $(r)|V»(0)>. (3.64)

Let the initial state be the ground state, |V'o), °f ̂ e oscillator. Thus,

a|V'o) = 0. (3.65)

In the Schrodinger picture, after a time r, the ground state evolves to |V'o(?"))- Since the

evolution operator, 5, is unitary,

5-15 = 55"1 = l, (3.66)

introducing S~1S between a and |^0) in (3.65) and multiplying by S from the left, we

are left with

SaS~lS\fo) = 0. (3.67)

But,

S|V'o(0)} = |V>o(r)} (3.68)

and

SaS'1 = u*(r)a(0) - v(r)at(0) = fc(r). (3.69)

This state |V'o(7")) would then be the ground state with respect to the transformed oper-

ator b(r):

[u-(r)a(0) - v(T)at(0)]|V'o(r)} = 0. (3.70)

Let us now determine the coordinate representation of this ground state. So we have

to determine the quantity

{*|S|0o>. (3.71)
A

Using the definition of the unitary evolution operator S and the disentangling theorem

for the 5tr(l,l) group (cf. Appendix 2A) we arrive at the following expression

/ i A i i \ Jmu} 1 ^ (2n — 1)!! /|r|\n
 t - r - .* * ry ^7*0? v / Tmo;! 0\wshw-v^^SWrlRJe '•"1^(xr'^(-yi2)-

(3.72)
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The above infinite series can be summed by considering arguments concerning scaling of

Gaussians (see Appendix 3A) and thus determining the wave function with correct phase

factor and the result is

/ I C I / \ 4/™^ 1 / W* / / U* \f"M\ 2\
HS'lVo) = πh V^exp(~(^} ( afV x >'     (3.73)

At time / = 0, (3.73) is just the wave function for a simple harmonic oscillator, as

expected.

The transformation (3.53) and (3.54) can be used to investigate the time evolution of

the Wigner function which is defined by

$(cvX) = ^S/<PPb (/5exp(/?at - /Ta)j exp(-/?a* + fa). (3.74)

We showed in the previous chapter ((2.33) to (2.55)) that whatever be the time depen-

dence of the frequency of the oscillator, a Gaussian Wigner function retains its Gaussian

nature and that the Wigner function evolves along the classical orbits.
A A

For numerical purposes, in order to obtain the variances in A' and P, the Floquet

solutions were determined as described in section 3.1.2. First by a direct numerical

integration of (3.3), the characteristic exponent was obtained. Then using continued

fractions the co-efficients c2k's were obtained. The variances were then directly obtained

for specific initial states of the oscillator. Alternatively, one could also calculate the

variances by a direct integration of the equations for the meanvalues as given in the

previous chapter. In Fig.3.3 the uncertainty in the position the ion for various values

of u>o/fi is plotted against time. We see that there is strong squeezing in the position

uncertainty. Similar results were also reported in [24-28]. In Fig.3.4 we plot the Wigner

function at a time when the variance in the position goes to a minimum. It is a Gaussian

with the width along A" squeezed.
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3.4 External perturbations and the transitions caused by the electromag-
netic field

Consider a two-level optical transition in an electromagnetic field. The total Hamiltonian

describing a particle in a trap in the presence of electromagnetic field is
. . -# -*

// = tiu>J* + 11- + irnw^)*2 ) - ̂ r^ (S+ «cp(ifor - tw,/) + A.c.) (3.75)
\2m 2 / "

where the internal degrees of freedom are described by the spin operators. The centre of

mass motion in the trap is described by the time dependent oscillator. Both ground and

excited electronic states have a periodic potential associated with them. The ions' initial

state is | — ,0), where | —} labels the ground state of the electronic state and | 0} labels

the ground state of the motion of the centre of mass of the ion. The final state is | —,1}

i.e., we are basically considering Raman transitions in which the centre of mass motion

is excited to the state | 1). In the interaction picture (3.75) becomes
-# -*

H^t) = -(^) (S'+ exp[i(u;B - ui)t + ikx(t)] + h.c.) (3.76)

where }(t) denotes the quantised motion of the centre of mass. Let us first calculate the

excitation probability i.e., we calculate the probability of finding the ion in the state | +)

and we sum over all states associated with the centre of mass motion. Using (3.76) the

state at time t is

|*(0) = |*(0)> - £ /'/M'lM'i W)> (3.77)n Jo
and hence the probability of finding the ion in the excited state | +} is

P = ^Trcmjfijf<(+|tf1(Ti)|*(0))(*(0)|^1(r2)|+)c/r1</r2

-» —»

= l^^l2 f c/r, /'^{OlexpHK -WI)T! -ifcr(Ti))n Jo Jo
exp (+i(ua -w»)r2 + ikxfa)) |0), (3.78)

where |0) is the ground state of the centre of motion of the ion. The transition rate is

then

R = limt^ |f = l^-^l2 lim -^ /' Jn f Jr2(0| exp (-t(w. - W»)T, - ikx(Ti))
h <-*oo at Jo Jo
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«cp (+»'(«•;• - u>,)ra + tkr(ra)) |0). (3.79)

|<lLli|'*> Ijm j|V{(i + 4(«MV))«P(-»'(<* - u*)(« - r'))

+c.c.}. (3.80)

Note that the operator ;r can be written as

x(t) = A(t)a(Q) + A(t)a*(Q) (3.81)

where the amplitude A(t) is given by

A(t) = a £ c2fce'>+2fc^ +/? £ c2fce-'("+2fe>^, (3.82)
Jb=-oo fc=—oo

with a and f3 as given by

0 " \E(1-M> (3.83)

/» s J?-(1 + M>' (3.84)V 0771CJQ ^/'t

and D as defined in (3.62). On substituting (3.82) in (3.80) and retaining only the time

independent contributions, we get
-* -* -# —*

R = 2^|^I^|^(a;0-u;i) + 27ra2A;
2|^i|2X:|c2n|2

ffi
£(u;a - w, - — - nfi) (3.85)

&

—» —* •

+2^2P|^TS|2 j; |c2n|25(a;a - «» + ̂  + nD) (3.86)
* V 2

Here the quantity ak is roughly the ratio of the ion's excursion to optical wavelength.

Thus, the excitation probability shows resonances at

u\ = u;a u>i = u;a ± vΩ— ± ??.fi. (3.87)
z

For n = 0, we get the familiar side bands obtained from the secular motion of the ion.

The strength of these side bands is proportional to |co|2. The following is a table of the

co-efficients |c2n|2 obtained with a = 0.04 and q = 0.2 corresponding to the Ref. [31]
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In conclusion, in this chapter, we have considered a material oscillator (quantised

motion of the centre of mass of the ion) and applied the results of the previous chapter to

show that an even more restriction of the motion of the ion in the confined environment

of a Paul trap is possible. We have obtained explicit form of the ground state wave

function in coordinate space. Further, by considerations of transitions induced by the

interaction between the ion and external electromagnetic fields, we have also studied the

occurance and strength of the side-bands in the fluorescence spectrum of the ion in a

Paul trap.
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Figure 3.2: Stability regions for the Mathieu equation.
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Figure 3.3: The uncertainty in the position of the ion as a function of time. The corre-
sponding parameters are a = 0.04,q = 0.2<m<f** = (a) 1, (b) 0.5, (c) 0.1, (d) 0.01. The
initial state is the vacuum.
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Figure 3.4: Wigner function at a later time when the initial state (at t = 0) is a cohere
state with a• = 1, a = 0.04, q = 0.2 and u?0/0 = 0.1.



Appendix 3A

Scaling of Gaussians

In this appendix, the steps involved in obtaining (3.73) from (3.72) are given. We notice

that in obtaining (3.73) from (3.72), there is a scale transformation involved in changing

the Gaussian e~p to e~cp2, where p = (I^.T) and e, in general, is complex. So, we are

interested in expanding a scaled Gaussian in terms of unsealed functions. First, we note

the fact that the scaled exponential that we are interested in is an even function and

hence we infer that the expansion should not contain any odd valued terms. Moreover,

(3.72) already has only even terms in it. Let

exp(-e/>2) = f] d2kH,k(p)e-p2 (3A.1)
fc=0

where e € C'. We will show that if the co-efficients d^k are determined, then essentially we

would have determined the scaled Gaussian in terms of unsealed functions and thereby

also sum the infinite series (3.72). Multiplying by H^n(p) from both the sides of (3A.1)

and integrating over the whole real line, we have

/

oo _°° roc
exv(-fp*)H2n(p)dp = £ dM I HMHM exp(V)d/>. (3A.2)

-oo fc=Q «J~OO

Using the orthogonality relation for Hermite polynomials f^^Hk(p)Un(p)dp =

2n(n)\y/w8km we have

*-f£jysrf*'aM»-       (3A.3)
Now one has to determine the integral ill the above equation to determine J2n. From [32]

(§7.376, Eqn(2), p838) we have the following relation

/- .-VIM** = (-irg-^W+i^-.. =iii I i) <3A.4,
JT=Q y^ra 2 ^ * 2, la
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with R«'(tt) > 0 «iid IM") > -!• 1" llie "'teg"*! '" (3A.3), He(<) > 0 and Re(i>) = 0.

Therefore,

rV"'#*.(/>)'//»= (-l)n22"-*-i7r4)r(ti + ̂ (-'44'7)« (3A.5)
yp=o ^Tf 2 2 2 2 e

Noting that ([32], §9.121(1), P1040)

F(-n,/?;/?,-*) = (! + *)" (3A.6)

and

r(n + l) = !̂ ^ (3A.7)

for arbitrary values of ft and substituting (3A.7) and (3A.6) into (3A.5), we have

^-'rp^K)'*-^-
Thus, (3A.I) can be written as (3A.8)

«P(-/) = £(-1)"^^ (l - i)"*.</*-. (3A.9)

Now, let

c = V + l, (3A.10)

with

-fe)=(g)^+M-  (3A.11)
                   Then (3A.9) can be written as

VJTTexp(-fo + IV2) = EC-ir^-^ (-^-rV ̂ (^e-"2. (3A.12)
n=0 Z lZnJ* \7/ T" 1/

On comparing the corresponding terms in (3.72) and (3A.12), we finally have

(T|5|o> = tf^-4=,fiTl™p(-(>l + DP2)- (3A.13)v T't |̂«|

Substituting the value for Jj in the above equation yields the desired result:

. .«,,.. ./niu; 1 / «* / / tt* ^ /wuj\ ,v
<IU1 °» = V^7H^«P(-(^rT' (w)' >• '3A-14>
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Chapter 4

Nonclassical light generation in a cavity of variable length

In this chapter1, a simple model consisting of a cavity with a movable mirror in one

dimension is considered. This problem has received considerable attention in the recent

past in the context of particle creation [1-5]. The radiation that is produced due to the

mirror motion is a purely quantum mechanical effect having no classical analogues. Hence

we expect nonclassical features to manifest in the fields so produced. This radiation arises

due to the interaction of the mirror with the vacuum fluctuations of a quantised field.

The mirror need not be a physical one but a sudden change in the refractive index of

medium can also produce real photons from an initial vacuum state [6-8]. In this chapter,

we study the quantum statistical properties of the field so produced due to accelerated

mirror motion and study the nonclassical nature of the field. We restrict to only one

dimension. In four dimensions the problem was studied by Candelas et al [9]. The

problem of a spherical mirror expanding with uniform acceleration was considered by

Frolov et al [10]. By making a conformal transformation, the nonstationary problem is

mapped onto that of a stationary one and the field solution inside the cavity is obtained.

Then by the application of a canonical quantisation procedure [1,3,11], a quantised version

of the solution is derived. It then follows 4hat the "tin-out" mirror motion corresponds

to a Rogolhibov transformation of the annihilation and creation operators. Then, by

a calculation of the variances in the field quadratures, it is shown that if initiallly, the
1 Results of this chapter were presented as invited talk at the "Discussion Meeting on Non-classical

Aspects of Radiation", held at the Indian Institute of Science, Bangalore, 10-12 January, 1994 and at
the "National Workshop on Recent Advances in Quantum Optics", held at the Centre for Advanced
Technology, Indore, 7-10, March, 1994.
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state of the field is vacuum or a coherent state, then, the motion of the mirror produces

squeezing of fluctuations in the field quadratures. It is also shown that the various modes

of the cavity get correlated as a result of the mirror motion.

4.1 The model

Consider a scalar electromagnetic field within a region bounded by two mirrors, one of

which executes an "in-out" motion. The requirement that the motion q(ct) of the mirror

starts at some finite past and stops at some finite future, at least asymptotically, is what

is classified as an uin-out" motion (see Fig.4.1). We restrict the mirror motion to only

one dimension.

Let us consider the wave equation for an electromagnetic field in the region bounded

by the two mirrors
02fl*,d) = 0V(s,rf)

dx* d(cty ' (4.1)
where, ^(.r,r/) is the scalar electromagnetic field and c is the velocity of light in vacuum.

The usual boundary conditions demand that the field vanishes at the boundaries x = 0

and x = q(ct). So we have the boundary condition,

<t>(x = 0, ct) = <j>(x = q(ct), ct) = 0 Vet, (4.2)

The solution of (4.1) with boundary condition (4.2) is simple for the case of stationary

mirrors:
• ,n7ra\ / .rarrfun ~ sin(-j—)exp(-t—^—), (4.3)

when the mirrors are located at x = 0 and or = L. The basic idea in solving the non-

stationary problem is to do a conformal transformation [1,3,11], such that it, reduces to

that of a stationary problem in the transformed coordinates.

To that end we make the following transformation [1,11]

iv+ s = R(ct + x)

w-s = R(ct-x) (4.4)
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Figure 4.1: An "in-out" motion.

where R is a function that has to be determined. The function R can be determined

by requiring that the transformation (4.4), map the boundary at x = 0 to s = 0 and

x = q (c t ) to s = 1. Thus from the transformation (4.4) it immediately follows that, R

must satisfy
R(ct + q(ct)) - R(ct - q(ct)) = 2. (4.5)

Furthermore, there is another condition on the function R arising due to a physical

restriction on the mirror motion — that its velocity should be strictly less than that of
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light:

|fld)| < 1. (4.6)

Differentiating (4.5) with respect to time, we have,

R'(ζ)(1+q) = R'(ζ)(1 - q)                                  (4.7)

where £ = ct + ?M) and £ = d — g(d). Solving for </(d), we have

., n = *Xrf-g(fO)-g(rt + g(rf))
*l ' tf'(d - 9(d)) + Rf(d + g(cf))' (4.8)

On comparing (4.6) and (4.8), we find that

\ff(<* ~ q(d)) - R'(ct + q(ct))| < \tf(ct - q(ct)) + K(ct + q(ct))|. (4.9)

It thus follows that, R should be such that R' should not change its sign if condition

(4.6) is to be satisfied.

As a result of the transformation (4.4), the wave equation gets transplanted to

/?urV+*))#<^>-»))p^-^^) =o,    (4.9)

and the boundary condition becomes

</>(s = 0,u?) = <t>(s = l,w) = 0 Vu;. (4,11)

The solution for (4.10) with initial conditions (4.11) is, in the transformed (s,w) co-

ordinate system

tin - Mr*n™sin(n7T5)
p-t'nff(u>-*) _ f-inx(w+s)

- N- 2T ' (4.12)

where N is a normalisation constant.

The basis of solutions {««,*£} *s orthogonal in the inner product defined as

/ v • fl r dun *^M*IJ
(Un,Uk}^tJjUk—-un—}<is. (4.13)
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Since (un, un) = — nπ the normalisation constant is Jnx. The inner product has the
following properties:

(n,ujt> = ~6nj,

{«„,«;) = o

(«;,«;> = 6nje. (4.14)

Thus,
t,n(s, w) = —L=[e-'»'r("'-) - e-»«<-H")]. (4.15)

2? y W7T

To get the solution in the original (x, ct) co-ordinate system, we use the transformation

(4.4) in (4.15):
«»(*,<*) = l [e-innR(ct-r) _ ^-m^ct+r)] (4.16)

Thus, for a given trajectory, q(ct) of the mirror, the solution to the wave function (4.1)

with boundary condition (4.2) is obtained when the function R is determined. Alter-

natively, one could specify the function R subject to the condition (4.9), so that q(ct)

satisfies (4.6). Solving (4.5) the trajectory corresponding to the function R can be ob-

tained.

Let us now quantise the field inside the resonator [1,11]. The field inside the cavity

is now an operator. Consider a time in the remote past, when the movable mirror was

stationary at q(ct) = D. The field inside the cavity can then be written in terms of the

complete set {un, u*n} of solutions as

$(x,ct) = ^un(x,ct)an + n*n(x,ct)al (4.17)
n

The lowering and raising operators an and «i satisfy the bosonic commutation relation

[an,«t] = Snj, [a^aj] = [«J,"J] = 0. (4.18)

After the mirror starts moving, the field inside the cavity is

&r,d) = 52vk(*ict)ak + v*k(x,ct)al (4.19)
k
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*twhore, {uk, u*k} are (he solutions (4.15) and fa and 6j[ are the raising and lowering oper-

ators for the non-stationary problem. Since the set {vk, v*k} forms an orthonormal basis,

we can express (un, v*n ) in terms of (uk, u*k)

un(x,ct) = Y,<*nkVk(*,ct) + pnkv;(x,ct), (4.20)
k

where the expansion coefficients ank and βnk are determined from the definition of the

inner product (4.13)

On* = -(«n,ffc),

/U = KX). (4-21)

Substituting (4.20) in (4.17), we have

*(•*,<*) = X) (Ea«*l>*(*»rf) + /9-*»*(*,rf)] «„ + fee&rjtod) + /?>fc(;r,cO) «J.
n \ fc / \ fc /

(4.22)

Rearranging the order of summation,

^^sSti^ctjSft + vJ^djiJ, (4.23)
k

where

^ = ZX*a» + /*n*4>
n

*1 = E<fc«l + ̂ «« (4-24)
n

*f
and the operators 6j. and 6^ satisfy the commutation relations

[6*, *J] = *«, [*fc, y = [& *f ] = 0. (4.25)

Thus the mirror motion corresponds to a Bogoliubov transformation of the annihilation

and creation operators.
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Let us now assume that before the mirror motion starts, the state of the field inside
the cavity was the vacuum field. Thus, to begin with there are no photons in any of the
modes of the cavity

a*|0*;m) = 0, (4.26)

where Ok in |0*;tn} refers to the vacuum of the k-th mode and 'in' refers to the remote
past. After the mirror starts moving, the operators a* and aj get transformed to new
operators 6* and fcj. With respect to these new operators, the state |0*; in) will no longer

be a vacuum state, but will be a squeezed vacuum state. Similarly, if the initial state was
a coherent state, with respect to the new operators, it will no longer be coherent state,

but will be a squeezed state.

4.2 Specific case: demonstration of squeezing

Let us consider a specific example. There are two approaches: (1) either one can specify

a specific trajectory q(ct) of the mirror and from that determine the function 7? or (2)

one can specify a function R and then work out a trajectory corresponding to it. Here we

choose the second approach. In [11], it was shown that the criterion for particle (photon)
creation in the infinite future, due to the mirror motion is that if Rfa(£) satisfies

3to(f) *™ 4 + constant, (4.27)

then, /?in(£) should not satisfy,

RM e^° I + constant7 (4.28)

On the contrary, if it satisfies (4.28), then there is no particle creation and the states
|0jk;in) are the same as |0*;<w/f). So, based on this criterion, consider the function R of
the following form [11] (see Fig.4.2):

{ £ i f £ < 0
f i "" (4-29)

i + Asin(£} i f e > 0 .
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where

A = ̂ -l. (4.30)

The requirement demanded by the condition (4.6) or (4.9) is guaranteed by

|λ| < 1. (4.31)

For this functional form of R,

<*nk = y-Jn_*(-nA)

Ik
fa = -y-Jn+*(-ttA), (4.32)

where Jn is a Bessel function of order n. The steps involved in the evaluation of ank and

fink are provided in the Appendix 4A.

Now, the number of photons created in the mode 'k' which had no photons to begin

with (i.e., the mode is in the state |0*; in}), as a result of the mirror motion is [5]

{0;m|6l6,|0;m) = f;|^j2, (4.33)
n=l

where, /?n* is given by (4.21) and (4.32) corresponding to R given in (4.29). In Fig.4.3

we plot the number of photons created in each mode of the cavity. It shows that only

low frequency modes get any excitation as q(ct) has only low frequency components in

it. Since the frequency u; is given by

«-=P.   (4..31)

where L is the cavity dimension, the frequency of light corresponding to the low-order

modes (n) would then correspond to optical frequencies (ω   ~ 1015) if L is of the order

of a micrometer. Thus, in a micron-sized cavity, one can hope to detect photons in the

optical domain.

We can now calculate the variance S(θ) in the field quadrature defined as

S(θ) = (A'n2(0)} - (Xn(&))\ (4.35)



Chapter 4, Nonclassical light generation in a cavity of variable length 76

where

Xn(0) = e-iebn + ci9i>l (4.36)

To determine if there is squeezing, we differentiate S(q) with respect to 0 to obtain Smin.

If Smin < 1 for a particular mode, then it implies that the state of the radiation in that

mode is squeezed. In Fig.4.4 we plot Smin versus A for various modes of the cavity. Curves

4.4(a) through (d) correspond to the modes k = 1,5,10 and 20 respectively. We see that

there is considerable amount of squeezing of fluctuations in all the modes of the cavity.
A t "From (4.24), if we calculate the expectation value of b}nbn taken with respect to the

initial vacuum state, we have

(0; in\btbn\Q- in) = £>*«#»• (4-37)
k

We thus see that the correlation between the nth and the mth mode is nonzero

<*U.)-<*!)&> *0 . (4.38)

a,s (bn) = 0 for initial vacuum state. Thus, in addition to squeezing, the mirror motion

also introduces correlations between the various modes of the cavity.

In this chapter, we have shown that an "in-out" motion of a mirror satisfying con-

ditions for particle creation, i.e., satisfying (4.27) and not (4.28), in a one dimensional

cavity creates particles (photons) and that the state of this field is nonclassical as it

manifests squeezing of fluctuations in one of its quadratures. We have also shown that

the mirror motion also introduces correlations between the various modes of the cavity.
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Figure 4.2: Trajectory of the mirror corresponding to R i n ( £ ) given by (4.29).
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Figure 4.3: Spectrum of photons created due to the mirror motion.
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Figure 4.4: Demonstration of squeezing in the cavity.



Appendix 4A

Derivation of αnk and βnk

In this appendix the quantities ank and bnk corresponding to the function Rin given by

(4.29) are derived. From (4.21), αnk and βnk are defined as

On* = -<«n,t'*)i

&* = (tt»,t£). (4A.1)

Let us consider the evaluation of βnk. We need to evaluate

βnk = {«n,t'*)> (4A.2)

- f ' W . t *fan .&'fci

= *Jt ^if-^UT1' (4A.3)

Since the inner product (4.13) is independent of time [11], let us choose t = 2d. Then,

ft* = --4- /dcfesin(^)[m,r(I + ̂ cos(^
2vvnkJo a a a d d J

(4A.4)
On substituting the functional form of J%n(()» we have

/o — 1 /rf i • tk*x^i(n — A-)TT in^rA /^a?x1 / ^ .x . /"TT/ irj- \
^* = T"7=T / ^«n~r) ,i +—p<^(^) -20«p(^H-nAsin(^)),2irynk ^o rf a « a \ d rf /

(4A.5)
Upon redefining ̂  as .r, we have

βnk = j= I dx sin(kx)[(n - k) + n\cos(x)]sin(nx+ v\s\n(*\\ /4A $\
nynk -Jo / / • \ • /

Using the properties of trignometric identities, we then obtain

βnk = -^^j[*^-[(n-^ + «A^(a-)]{co8[(n-
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- co$[(?> + k)x + nA Bin(j-)], (4A.7)
1 /*= •= I dx{(n — k -fnAcos(r))cos((n — fr)?+ ttAsin(?))

ZnViikJo
—(11 + A- + t?Acos(;r))cos((?? + k)x + nAsin(x))

+2fccos[(n + k)x + nAsiu(x)]}. (4A.8)

Defining δ = (?? - k)x + n\sm(x) and 6 = (n - k)x + nAsin(^)

1 fk r*
8nk = \- dxcos[(n + k)x + n\shi(x)]

7T V 7? JO

1 r(-i)n~* r(-i)n+fe .
i—[/ dScos(6)- dScos(6)] (4A.9)

27rV»Jt vo Jo

= -Ii/- r^r[cos((77 + A:)a-) + nAsm(a-)]. (4A.10)
TT V n Jo

Using the integral representation of Bessel functions ( [13], §8.411, Eqn (1), p 952), we

thus have

βnk  * = -yfJn+fc(-nA), (4A.11)

where Jv is Bessel function of the first kind of order v. Along similar lines, we obtain for

αnk

ank - \fcjn_k(-n\). (4A.12)
V n
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Chapter 5

Intensity-Intensity Correlations for Micromaser

In this and the next chapter, the nonclassical properties of the field generated in a

micromaser are discussed. A micromaser is a device which is a practical realisation of

the Jaynes-Cummings Model (JCM) [1] in Quantum Optics. The JCM consists of a

single two-level atom in interaction with a single mode of a quantised radiation field.

The intensity-intensity correlation functions of light beams have occupied a promi-

nent place in physics since the discovery of the Hanbury Brown-Twiss effect [2,3]. Such

correlations not only provide information on the photon statistical aspects but also pro-

vide lot of information on the dynamical processes leading to the production of light

beams. The intensity-intensity correlations of thermal light beams, a single mode laser

oscillating near threshold [4,5], radiation produced by a coherently driven atom [6,7],

optical parametric oscillators [9,10] have been extensively studied. In some cases such as

resonance fluorescence these type of correlations exhibit strong non-classical properties,

like antibunching and squeezing [6-8]. In this chapter1, results on a study of the intensity-

intensity correlations, which is a higher-order correlation effect, of the field produced by

a micromaser are given.

Micromaser is known to exhibit very unusual non-classical properties [11,12]. The

field generated in a micromaser has many features which are niarkedly different from the

fields generated in conventional masers and lasers [13,14]. In conventional lasers, because

of the random Poissonian pumping process, whatever nonclassical effects that could have

been there, get masked and we get a purely Poissonian photocount. On the other hand
1 Results of this chapter are published in Phys. Rev. A 50, 680 (1994).
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in a micromaser, essentially there is a single atom interacting with the cavity field and

its nonclassical effects are not lost as in usual lasers. But in a micromaser, since the

frequency of the field is in the microwave region and since there are no sensitive photon

detectors in the microwave region, one is forced to infer about the field only through

a study of the emerging atomic beam. For example, the sub-Poissonian character of

the field in the micromaser has been established by studies involving the statistics of

the atoms leaving the cavity [11,12]. Calculations have been done to measure the field

amplitude correlation functions and thus obtain the spectrum of the field [15-20]. In this

chapter, we calculate the two-photon intensity-intensity correlations for the micromaser

field and study its spectral properties [21].

The outline of this chapter is as follows: In Sec. 5.1 the construction of a micromaser

is described and a discussion of the salient features of the micromaser field are given. In

Sec. 5.2 the procedure for the calculation of different types of two-photon correlations is

outlined. These two-time correlations are calculated using the master equation for the

micromaser field. Detailed results on the behaviour of the eigenvalues of the Liouville op-

erator for a range of excitation conditions and cavity parameters are presented. From the

intensity-intensity correlations the antibunching property and the multiple-exponential

decay of the micromaser field are demonstrated. In Sec. 5.3 results of a detailed numerical

study pertaining to these correlation functions are given. In Sec. 5.4 proposals as to how

these two-photon correlations for the micromaser field can be probed in experimental

setups are presented.

5.1 Micromaser

The most fundamental problem in Quantum Optics is the problem of describing radiation-

matter interaction between a two-level atom and a single-mode of quantised electromag-

netic radiation. This is the famous Jaynes-Cummings Model after it was first studied

by Jaynes and Cummings [1]. Lot of subsequent work has been done on this problem,

like the discovery of collapse [22] and revival phenomena [23]. Initially, this was just a



Chapter 5. Intensity-Intensity Correlations tot Micromaser 85

toy model as it was very difficult to detect and isolate a single atom and the atom-field

coupling co-efficient was extremely small to be measured. But with the recent studies on

the Rydberg atoms, it is now possible to excite atoms to very high principal quantum

number states (Rydberg states). The Rydberg states are very strongly coupled to the

fields in the microwave region of the electromagnetic spectrum. Since microwaves have

wavelengths of the order of millimeter, it is possible to construct cavities which are reso-

nant, to very low order modes. These states have an additional advantage that they have

very long life-times (from 10-3 to 1 second). In any cavity used to contain radiation,

there is an unavoidable loss of radiation due to leakage from the cavity. A quantitative

measure of how good a cavity can hold radiation without much losses is given by its

quality factor or Q-value, a low-value corresponding to a leaky cavity and a high one to

a good cavity. The micromaser device consists of a high-Q microwave cavity made of

superconducting Niobium and cooled to sub-Kelvin temperatures. Q-values as high as

10l0 have been achieved in such cavities. These tecnological advances have made possible

the development of the micromaser [24,25].

A typical micromaser setup consists of the following. A low-velocity beam of atoms

prepared by an atomic beam oven and velocity selected by a Fizeau velocity selector is

made to enter the high-Q maser cavity (see figure 5.1). Prior to their entry into the cavity

they are excited to the maser transition by a properly tuned laser. They are injected into

the cavity at such a low rate that at most only one atom is present inside the cavity at any

given time. Moreover, the velocity of the atoms in the beam is such that the interaction

time τ of the atom with the cavity field is much smaller than the cavity field damping

time γ-1. Thus, while an atom is inside the cavity, neglecting the cavity field damping

rate, the coupled atom-field system is described by the Jaynes-Cummings Hamiltonian

HJCM = ^~S, + faah + ~(S+a + 5-«t) (5.1)
£ Zi

where /iu>o is the atomic level seperation, LJ is the frequency of the cavity mode, g is the

dipole coupling constant and S2, S* are the atomic spin operators. If initially the density

operator of the cavity field is /5/(*i)i the moment an atom enters the cavity the density
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operator /J('i) of the combined atom-field system is given by

p(ti) = P/(*i)QP«(ti). (5.2)

After the JC interaction, the field density matrix is given by

pf(tt + T) = Tr^ ((>(r)#*,)£>f(r)) ,

= F(T)p(tf). (5.3)

where U(τ) is the time-evolution operator corresponding to the Jaynes-Cummings Hamil-

tonian,
/ * V

TTf \ (—iHjCMr\U(r) = exp I 1. (5.4)

Between the time the ith atom exits the cavity and the (i + l)th one enters, the evolution

of the field is governed by the master equation of an harmonic oscillator interacting with
a thermal bath

A / / | - | \ / O A A A T A T A A A A f A \ . / /O A T A A A A T A A A A T »

Pf = 2^H l)(2«7)/«' -« '«/>/-/»/«'a)+ -i?6(2a'/7/a -««'/)/-pyo«'),

= Lpf. (5.5)

where nb is the mean thermal photon number in the cavity, L is the Liouvillian operator

describing the coupling between an oscillator and the thermal bath. Thus, the field

density matrix at time ti+1 is given by

pt(tw) = exp(I<p)F(r)^(<.), (5.6)

where tp (= ti+1 — ti — r c± /,-+1 — # t) is the time interval between the ith atom leaving the

cavity and the (i + l)th one entering it. After many interactions with successive atoms

injected into the cavity, the field density operator reaches a stedy state. Thus, at steady

state

Pj(ti+i) = pf(ti) = p.i. (5.7)

Now, we rewrite (5.6) as follows

M'»i) = t1 + [«ptf'») - l])d + W ~ 1])^(<«)> (5.8)
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Since the cavity decay time is very large, the decrease in photon number in time interval

tp is very small. Thus , we can make the approximation

y^-e (5.9)

where e is a smallness parameter. We can further approximate that

gr ~ t (5.10)

since the interaction time T is very small compared to the cavity damping time. This

implies that there is only a very small amount of Rabi oscillation during the time interval

r. Therefore, in these limits we can make the following approximations

exp(lg - 1 - 7*P, (5.11)

F(r) - 1 - (gr)2. (5.12)

We thus have, from (5.6)

p(tw) ~ {1 + Ltp + (F(r) - !)}#<,•) (5.13)

Using the steady state condition (5.7), we have

(1 - Ltp)psi = F(r)psi. (5.14)

Thus before this steady state is reached, the change in field density operator in the time

interval between the injection of the ith atom and the (i + l)th atom is

W^-M = l(ti) + r[F(r) - l]Kt& (5.15)
lp

where r = f"1 is the injection rate of the atoms into the cavity. This equation gives the

"coarse-grained" rate of change of the density operator. Replacing the left hand side by

the derivative p and in the photon number representation, we have the master equation

for the micromaser field

Pn,m = -r {l - [cos(0v/Jr+7r)] [cos(gVm + IT)] } pn,m
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+r [sin(fif>/»r)] (sin(0>/mr)] />n-i,m-i

™(«6 + 1) [(» + mKm - 2^(11+ l)(m + lK+,,m+,]

-|"6 [(» + 1 + m + l)pn,m - 2v/5m/fc-iim-i]. (5.16)

Due to the nonavailability of good detectors in the microwave regime, one is forced

to infer about the micromaser field only by probing the atoms which exit from the cavity

after interacting with the cavity field. At some distance from the exit point of the cavity,

field ionisation detectors detect the excited Rydberg atoms. If the atoms are detected to

be in the excited state, it implies that energy was not transfered to the cavity field. But

on the other hand, if they are not in the excited state, then it implies that an energy

transfer has taken place inside the cavity (assuming no energy loss in-between the exit

point and the detectors).

5.2 Two-photon intensity-intensity correlations for the micromaser field

We now start from the standard master equation describing the dynamical evolution of

the micromaser field. Let pffl(t) be the off-diagonal element of the density matrix of the

radiation field

pW(t) = (n\p(t)\n + k). (5.17)

The dynamics for the field is given by [13,14]

pi*J(0 = 4?/£!, +*i*)/£)+4*}/>S., (5.18)
where

A1^ = rsiii(0Tv/n)sm(<77Vtt + k) + ~(nby/n(n + k), (5.19)

B(
n

k> = -r[l - cos(<77Vn + 1) cos(grVn + I + k)]

-7(»» + 1) (» + ̂ \ - 7»* f » + 1 + ^ J , (5.20)

C(
n
k} = *f(nb + l)J(n + l)(n + 1 + Jfc). (5.21)
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It is to be noticed that in the dynamics of the micromaser field, the index k is

consented. The steady state solution of Eq. (5.18) is

PPM = Wt.;

- = "Jd^TSsW-
Here Po is determined from normalisation and N(= r/γ) is equal to the number of Atoms

passing through the cavity in time interval 7"1. The properties of the distribution (5.22)

are well documented [13,14].

We now examine the following steady state two-photon correlations of the micromaser

field

0(0 = Iim(at2(f0 + 0a2(<o)); (5.23)
to—^oo

I(t) = Km {at(t0)flt(f0 + t)a(ta + *)«(*„)). (5.24)
<o~*Qo

Note that
lira I(t) = (ata)2 (5.25)
t—*00

and

1(0) = 6(0). (5.26)

The above correlations carry useful information on the field and both can be probed by

suitable methods as discussed in Sec. 5.4. We will compute these correlations from the

solution of Eq. (5.18) and the quantum regression theorem.

5.2.1 Calculation of Q

We write (a'2(/0 + /)) in terms of the mean values at time f = /0 as follows:

(atyo + o) = E>AB + i)<» + 2)/»La)('o + «)
n

= i;>/(» + l)(n + 2)G£i(l)/fi»(<o)
n,m

= £lAB + 1)(» + 2K!£iC) ( |m + 2)(m| ), (5.27)
n,m
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where we have defined the Green's function G'W from the time dependent solution of

Eq. (5.18)

P(
n
k](to +0 = £ GSSlW^Co)- (5.28)

771

Using the quantum regression theorem, we get from Eq. (5.27)

(«t>«0 + 0«*(<o)) = £^(n + l)(n + 2)G™(0 ( |m + 2)(m|a2)
n,m

= £xA» + l)(n + 2)(m+l)(m + 2) Gffi(0
n,m

/>m+2,m+2(*o) (5.29)

and hence in the steady state

0(0 = £ ^(n + l)(n + 2)(m + l)(m + 2)G™(t)pm+t (5.30)
n,m

Note that

02(0) = ̂ . (5.31)

For certain applications one needs the Fourier transform of Q(t}

/

+oo
^(Oe^ '̂̂ 'Vt, (5.32)

•oo

which can be expressed as

(?(a;-Wc) = 2Re f°° g(t)e-i(^^]tdt (5.33)
JO

= 2Re ^(5 = +7>-u;c)). (5.34)

Here G(s) is the Laplace transform of £(0-
There are two approaches to solving for the spectrum — (a) an eigenvalue approach

and (b) Green's function approach. In the eigenvalue method we note that for a fixed k,

pj^'s form an infinite dimensional column vector and Eq. (5.18) can be solved by finding

the eigenvalues X{^ and the eigenfunctions <&£J of the corresponding matrix defined by

the right hand side of Eq. (5.18). Then G^(t) can be expressed as

^(0 = E^%— (5.35)
a
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In Appendix 5A, the details regarding the eigenvalue method are given.

In the Green's function approach we note that the Laplace transform of the Green's

function obeys the equation

*C2 - ̂ m = A?Gi\m + fl^Gg, + Cpc%lft. (5.36)

The 6'J^ can be computed by using the standard continued fraction methods [26,27].

The steps involved in solving (5.36) are provided in Appendix 5B.

5.2.2 Calculation of J

Using the same procedure which led to Eq. (5.30) we can show that

KO = E G£i('M»» + IJjWi- (5.37)
n,m

In view of the property Eq. (5.25) it is expected that

GfiUO^A- (5.38)

Clearly the matrix in Eq. (5.18) for k = 0 must have a zero eigenvalue and thus we can

consider the fluctuation from the mean value

I = J(f) - (aU)2 = £G£l(/)n(m + l)/>m+1, (5,39)
n,m

where G^(t) is obtained from G^(t) by dropping the term corresponding to the zero

eigenvalue.

5.3 Numerical results for different types of two-photon correlations

We first present results for the correlation function Q(t) and its Fourier transform (5.32).

The normalised spectrum is shown in Fig.5.2 for different values of the transit times.

This has been calculated using the continued fraction method [26,27]. For small transit

times the spectrum is very narrow. The spectrum broadens with increase 111 the transit
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Figure 5.2: Normalised spectrum &(u-u>c)/G(Q) as a function of (u;-u;c)/7 for AT = 20,
nb = 1 and for (a)#r = 0.3, (fe)flfr = 1 and (c}gr = 3.
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Figure 5.3: Exact numerical linewidth D/~f as a function of the pump parameter
$ = y/Ngr for N = 20 and nb = 1.
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time. In figure 5.3 we show the behaviour of the linewidth of the spectrum Q(& — u?f) as

a function of the pump parameter 0 = \/Ngr. The linewidth increases with increase in

0 over a very wide range. For large 0, it exhibits oscillatory character which is associated

with the existence of the trapping states [28]. The behaviour of the spectrum and the

linewidth is determined by the eigenvalues A^2) (Eq. (5.35)) and their weight factors. In

Fig.5.4 we show the behaviour of some of the eigenvalues as a function of the transit

time and the excitation rate. For the chosen parameters, the eigenvalues are real in the

range of 6 values displayed in Fig.5.4. In Fig.5.5 we show the weight factors contributing

to the spectrum for different values of gr. Clearly, the intensity-intensity correlation, in

genera], has contributions from many different eigenvalues depending on the magnitude

of gr. For small gr only the lowest eigenvalue contributes [29]. In Fig.5.6 we show the

time domain behaviour of the intensity correlation G(t). The time dependent behaviour

is determined from (5.35) directly. Multi-exponential character of such correlations is

evident which may be compared with the corresponding behaviour reported in Ref. [4,5].

Following the method of Ref. [16,17], we can derive an approximate expression for the

linewidth D for large mean photon numbers:

D = 2MS,-B£»-C«'))

„ <«n'(^)) + 2<lM,. (5.40)

In Fig.5.7 we give a comparison of approximate and exact linewidths. The general features

are the same.

We next examine the correlation I(t). A typical behaviour is shown in Fig.5.8. This

figure shows that for gr = 1, there are intervals such that 2(t) — 2(0) > 0, i.e.,

(**(0)at(0*(0*(0)) > (o*2(0)aa(0)). (5.41)

Thus the intensity correlation 2(1} for the micromaser field exhibits antibunching prop-

erty. This is because for a classical system the Cauchy-Schwarz inequality would imply

that

|(/(0/(0))l < U2(0)>. (5.42)
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Figure 5.4: Real part of the first five eigenvalues of (5.18) corresponding to the correlation
function G(t) (5.23) as a function of the pump parameter θ = VWgr for N = 2Q and
nb = 1.
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Figure 5.5: Weights (|Wα|) of the eigenvalues contributing to the spectrum Q(u — u;c) for
N = 20, tu = 1, (<0<7T = °-3' (b^T = 1, (c)9T = 3 and (d)gr = 7.
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Figure 5.6: Time dependence of the logarithm of the correlation function Q(t) for
N = 20, nb = 1 and gτ = 1. The dashed curves correspond to the two eigenvalues
(cf Fig. 5.5(b)).
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Figure 5.7: Comparison between the exact linewidth D/i (solid curve) and the approxi-
mate analytical expression (5.40) (dashed curve), for N = 50 and nb = 10-4.
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Figure 5.8: Time dependence of the quantity [I(t)/I(0)] - 1 for N = 200, nb = 0.1 and
θ = 1.5p. Inset shows the Mandel's Q-parameter, Q = ((at*a2) - {a^a)2)/{ata}, plotted
as function of the pump parameter θ for the same parameters N and nb.
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For long times, 1(1) —+ (tfa)* and hence (J(/)/I(0)) - 1 will be positive if the θ value

were to correspond to sub-Poissonian statistics of the micromaser field. For complete-

ness the inset in figure 5.8 shows the sub-Poissonian property of the field for the same

parameters. In Fig.5.9 we also display the behaviour of the eigenvalues which determine

the correlation J(0; the eigenvalues are real in the range shown. On a comparison of the

figures 5.4 and 5.9 it is clear that the eigenvalues that determine the dynamical behaviour

of T(t) are different from the ones which determine G(t).

5.4 Probe of the intensity correlations for the microniaser field

We next consider the question of how the correlations like Q(t) and I(t) for the micro-

maser field can be probed. As mentioned before the field characteristics can only be

probed by examining the dynamical properties of the atoms [11,12]. The correlation

function T(i) can be, in principle, probed by examining the probability of finding two

consecutive atoms in excited state in an interval t.

To probe Q(t) we consider the following situation—we use a probe beam of atoms such

that the frequency of the micromaser field can cause a resonant two-photon transition.

We will now show how the two-photon absorption rate of the probe atoms is related

to Q(t). Consider the interaction Hamiltonian for a two-level atom interacting with a

quantised radiation field in the dipole approximation (neglecting the term proportional

to A'2),

//iut(0 = — p(t)A(t), (5.43)
me

where p ( t ) is the momentum of the atom and A(t) is the vector potential of the field at

the location of the atom. The modal expansion of the vector potential A is given by

*) = ̂ E-p=«*(aK-**' + *Je-**'), (5.44)
' ^* k V4^*

where e^^k and «* are the polarisation vector, frequency and the annihilation operator

corresponding to the k-th mode of the field. The time evolution operator in the interaction
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Figure 5.9: Same as Fig.5.4, but corresponding to the correlation function X ( τ ) (5.24).
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picture is given by

0(0 = 1 + 4 /'*'/*nl(O ~ i /YWl - <2)#int(/l)#int('2)<//l<ft2. (5.45)
in Jo h JoJ

where the definition of the theta function

f 1 if r > 0
0(r) = { ~ (5.46)

I D if r < 0

has been used. Let initially the atom be in the ground state \g) and the field be in an

arbitrary pure state |y). The probability at time t, of the atom to be excited as result

of the interaction is

P(t) = ^M(e\U(t)\gm\\ (5.47)
4>

where the summation runs over all possible field states \<f>). We are interested only in

transitions caused by two-photon processes. We assume that the transition frequencies

of the probe atoms are far detuned from the frequency of the micromaser field so that

the probe atoms do not perturb the micromaser field appreciably. The analysis gets

complicated if the probe atoms have a resonance with some other mode of the cavity. In

this case one has the possibility of transfer of energy through probe atoms to another

mode of the cavity. Such a situation should ideally be avoided. We now allow the

summation to extend over all the field states and retain only terms which are to second

order in the expansion (5.45). Introducing a function £, which is entirely dependent on

the probe atoms and not the field

r(*,,<2) = 0(*i-<2)(jr^)2(e|p(*,);>(*2)|0> (5.48)

= 0(i,-h)(-^f^pejPjaf-^-^ »+***», (5.49)

the probability of two-photon absorption, AC) becomes

^(0    = ffff tdWtdtifit^WWji^Wt^), (5.50)
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where G(t\J'/Ji,ti) *s the second-order field correlation function. Expressing the prob-

ability in terms of the Fourier components, we have

W) = //^^^^{(^////^i^^i^

c-'("e-^K-^+'̂ ^ (5.51)

where ^•(i^'sw^+fa- (U2)
The probability of two photon absorption by the atom can be expressed in terms of the

second-order spectral correlation function

004, u4; u;,. wa) = y^/ rf^A, ̂ - '̂l-^*1'̂ *'*1*'*

0(*i,<'2;*i,fa) (5.53)

as

P2 z= f f <Lj'<L}g*(uf)Q(u€ - o/,u/;u;e - a;,o;)ir(a;). (5.54)

The steady state field in a micromaser is a stationary field. A stationary field is

one whose statistical properties are independent of the choice of the origin of time. The

second-order field correlation function thus satisfies

0(<i,*2;M2) = 0(*i+Mi + '-;<i,<2), Vr (5.55)

For a stationary field, the two photon transition rate has been derived by Mollow [30] to

be

U = 20*(wc)[ r d/e-|(a>'-2u*)'-r|"]<7(u.v) (5.56)
J—00

= r a(0e~iv+2l'wef"r|'l<ft, (5.57)
*/—CO

where u?p and F are respectively the frequency and linewidth of the two-photon transition.

We can write (5.57) as

7£ = 2Re £(F + *-(u;p-2u;c)). (5.58)
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Thus the spectrum calculated in Sec. 5.2 can be studied by examining two-photon ab-

sorption by a probe atomic beam.

In conclusion, we have shown the unusual properties of the micromaser field as reflect-

ed in higher-order correlation functions of the field. We have provided evidence for the

antibunching characteristics of such a field. We have further shown how the two-photon

correlations can be probed by using atomic characteristics.
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Eigenvalue method

In this appendix the eigenvalue method is described. The equation of motion of the

off-diagonal density matrix elements /0n,n+2 can be written in matrix form

P = Ap, (5A.1)

where the column vector p is

(5A.2)

(5A.3)

(5A.4)

AW AOI

AIO An AH

A2\ A?? AK

The matrix A is of tridiagonal form, given by

where the non-zero matrix elements are
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Antn = -r[cos(0iVn + l)cos(gT\/H + 3)J,

-it1** + !)(» + 1) - T»*(K + 2), (5A.5)

X,n+i = 7(»6 + l)^/(« + l)(n + 3) (5A.6)

The solution to (5A.1) can be formally written down as

00 A/V«+2(<o +1) = £ (eA%m/>m,m+2(<0). (5A.7)
m=0

The matrix A can be diagonalised as

A = PAP~\ (5A.8)

where yl (= diag(Ao, AI,. . .)) is a diagonal matrix of eigenvalues of the matrix A and P

is the matrix of eigenvectors of the matrix A. Thus, (e )nm can 1>e written as

(eAt)nm = (PeAiP-*)um (5A.9)

- E^e'W^J. (5A.10)
*=o

On comparing (5.29), (5A.7) and (5A.10), we have

{fit»(«0 + 0«W> = Z Vf(w + 1)(w+2)(W i + l)(m + 2) ff P»*eA*'P^) /^^(/o).
n,m Vjt^ /

(5A.11)
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Green's function approach

In this appendix the steps involved in the computation of G(s) (equation (5.34)) are

given. We have to evaluate the quantity G($), defined as

(5B.1)£(*) = £ £ \A» + !)(» + 2)(m + l)(m + 2)G'g(*K+2.
n=0 m=0

The problem is to obtain the elements of the matrix G^(s):

(5B.2)

Eventhough the dimension of this matrix is infinite, for numerical purposes we restrict

its dimension to be decided by the distribution pn. It is typically around 250 to 300.

Let us now make the following definitions

V'n = GgL(«) (5B.3)

V'n-1 = G<,221>m(5) (5B.4)

Vwi = GjJi^M (5B.5)

(5B.C)

(5B.7)

Equation (5.36) can then be written as

(* - A)V'« - B»V'n-l - CnVWl = *«m-

In the above equation, we have used the fact that

G™(t = 0) = *„.
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For rotational simplicity the superscript (2) is not written for An,Bn and Cn. For n > m

let us define the following ratios:

(5B.8)

(5B.9)

(5B.10)

(5B.11)

(5B.12)

(5B.13)

(5B.14)

(5B.15)

(5B.16)

(5B.17)

and for n < m,

Let us consider the first column in the matrix (5B.5), i.e., m = 0. Then for n > m, we
have

Solving for Sn, we have

Similarly, we have

Combining the above equations, we thus have a continued fraction for the quantity Sn

Consider the following continued fraction
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The n-th convergent of this continued fraction is given by the ratio pn/q** where the
numerator and denominator are obtained from the recursion formula

(5B.18)

(5B.19)

with p-1 = l,po = bo, q-1 = 0 and qo = 1. Thus given the dimension, n, of the matrix
(5B.2), one can determine the ratio Sn by evaluating the continued fraction (5B.1G) to

the required accuracy. From the knowledge of Sn the ladder of ratios Sn-1 to Si can be

obtained using the relation

(5B.20)

Now consider the element m = 0,n = 0. Equation (5B.6) then yields

(5B.21)

All the other terms in the column can then be obtained by using the definitions of the

ratios Sn (5B.8) or (5B.9).

Consider the second column, i.e., m = 1. For n = 0, we have

(5B.22)

where

(5B.23)

For n = m = 1, equation (5B.6) then yields,

(5B.21)

Using (5B.10) or (5B.11) one can then determine V\> and using (5B.8) or (5B.9) one can
determine V'2 *° Vv This procedure can now be generalised to any column. First we
must determine both the ratios S1 and T1.. Then, from the diagonal element we must
determine V'i- Once Vi is obtained we can use one of the equations from ((5B.8) to
(5B.11)) to obtain the remaining matrix elements.
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Chapter 6

Quasiprobability distributions for the micromaser field

In this chapter, we continue the study of nonclassical features of the micromaser field. In

section 6.1 a general introduction to quasi-probability distributions is given. In section

6.2, a discussion about the trapping states, which characterise the very low temperature

behaviour of a micromaser and results on the study of quasiprobability distributions for

the micromaser field are presented.

6.1 Quasiprobability distributions

Quasiprobability distributions were the result of an effort to obtain distributions anal-

ogous to classical phase space distributions. They are useful for evaluating expectation

values of operators in a form similar to classical averages over a phase space [1]. In ad-

dition to being useful as computational tools they also provide insights into the relation

between quantum and classical physics. But unlike classical probability distributions,

these may not be positive definite or may not exist as simple functions. Many quasiprob-

ability distributions have been described and used in the literature [1]. Each of these

different types of quasiprobability functions map averages of operators ordered according

to specific prescriptions to classical-like averages over phase space. The most common

ones among these distributions are the Q-function [2-4], the Wigner function [5] and the

Glauber-Sudarshan P-function [6,7].
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6.1.1 Q-function

The Q-function is defined as the diagonal coherent state expectation value of the density

operator [2-4],

Q(a) = ±(a\p\a) (6.1)

where jo) represents a coherent state and p the density operator. It satisfies the property

that

y>aQ(a,tt*) = l, (6.2)

This is so since the density operator is normalised:

Tr{p} = 1 (6.3)

= Trji/d'aloXal/;} (6.4)

= i I>a(aH«>. (6.5)

Alternatively, it is also defined as the Fourier transform of the quantum characteristic

function as [8,9]

Q(a) = -^JcQ(X,\*)exp(a\*-a*X)(l2X, (6.6)

where

CQ( A, A*) = Tr ipc-™e^ \. (6.7)

Here a and a' are the annihilation and creation operators of the field, respectively. The

quantum characteristic function C<j(A,A*) has the property that the normal ordered

moments of operators are obtained from its derivatives evaluated at A = 0. Thus,

. Qm+*
(fit-a-) = (_ir-^__.r<3{A,A-)|Vrf (6.8)

The Q-function is used to calculate expectation values of anti-normally ordered operators.

It is unique among the quasi-probability distributions in that it always exists for any state

of the field and is strictly positive definite and hence is truly a probability distribution.
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6.1.2 Wigner function

Wigner first introduced the idea of qnasiprobability distributions by constructing a func-

tion which is now called the Wigner distribution function [5]. He constructed a joint

distribution which would resemble a classical probability for the two conjugate variables

x and p. He had originally developed it to study quantum corrections to classical statis-

tical mechanics. In the quantum domain the Wigner function plays the role of a phase

space distribution and hence serves as a bridge between classical and quantum physics.

The only way it differs from classical phase space distribution is that it can assume neg-

ative values for some states. In terms of the quantum characteristic function Cn*(A, A*),

it is defined as [8,9]

ir(o) = 4 /CW(A, A*)exp(aA* - a-AJ^A, (6.9)
n J

where

CW(A, A*) = Tr |^exp(Aat - A*o) j. (6.10)

The following is a summary of the properties of the Wigner function. The Wigner

function always exists for any given state. Its value is restricted to between —2 and

+2. The averages of symmetrically ordered products of a and fit are calculated from

the moments of the Wigner function. Symmetrical ordering (or Weyl order) of operators

consists of the average of all possible ways of arranging the operators involved. Thus,

(6.11)
4

6.1.3 Glauber-Sudarshan P-function

In chapter 1 the Glauber-Sudarshan P-function was introduced. The moments of this

function are related to normally ordered combinations of a and a*. These normally

ordered operator averages are the ones which are measured in photodetectors. For non-

classical states this function may become highly singular and it can be understood only
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in the sense of generalised functions. Bnt precisely this property is used as an indicator

of purely nonclassical states (cf. chapter 1). Various other types of distributions, like

the Drummond-Gardiner positive-P distribution, have also been defined over the years

in order to overcome the non-positive nature of the P-function [10]. A unified approach

to quasi-probability distributions corresponding to various operator orderings was given

by Agarwal and Wolf [11-13] and by Cahill and Glauber [14,15].

6.2 Trapping states and quasiprobability distributions for the micromaser

field

Consider a single-mode cavity through which an atomic beam passes such that at the

most only one atom exists within the cavity at a given time. The very low temperature

behaviour of the micromaser field shows numerous resonances which are a signature of

trapping states [16,17]. The trapping condition is achieved whenever \/n + Igr = gjr,

for some integer q. These are the states of the micromaser field for which the atoms

execute 2</7T Rabi oscillations during their interaction with the cavity field. At higher

temperatures, these resonances get washed out due to thermal fluctuations.

In this section we present the results of a numerical study of quasiprobability distri-

butions for the micromaser field. In particular, we concentrate on the first order phase

transition and the very low temperature trapping regimes of the micromaser field. The

Wigner function becomes negative and shows oscillations for a wide range of the pump

parameter.

The field associated with the micromaser is known to manifest important nouclassical

properties. Several manifestations of these strictly quantum properties have been studied

both theoretically [18,19] and experimentally [20-22]. The most important among these

characteristics is the prediction and verification of the sub-Poissonian nature of the field

[21,22]. The antibunchiug property of the field has also been studied [23]. As discussed in

chapter 1, these properties refer to expectation values of the two-time correlation function
involving the number operator of the field [24]. Even the phase sensitive correlation
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properties are very different compared to the usual laser systems [25,26].
It is then clear that one should examine the nonclassical properties in their totality.

As mentioned in section 6.1 the quasiprobability distributions like the Wigner function
and the Q-function can provide quite useful information on the statistical character of
the quantum field.

The standard model of the micromaser has shown that in the steady state the off-
diagonal elements of the density matrix of the field are zero [18]. The diagonal elements
are given by

A / "& Ar sin^r v<7)\*-*SOjTT+-s+iyv- U2)
where nb is the mean thermal photon number in the cavity, N is the average number of
Rydberg atoms passing through the cavity during the cavity life time, r is the interaction
time (time of flight) of the Rydberg atoms with the cavity field and g is the coupling
strength of the atoms with the cavity field. The quantity po is fixed by normalisation
requirements. Since the steady state micromaser field density matrix is diagonal, (6.1)
yields,

<?(«) = 7£exP(-M')^n, (6.13)
TT n n.

where pn is given by (6.12).
A micromaser field does not evolve into a coherent state, unlike conventional masers

and lasers. Moreover, for increasing values of the pump parameter (0 = \fNgr), the
micromaser shows many abrupt transitions in addition to the initial maser transition
[18] (see Fig.6.1). Around 0=1, there is the first maser transition and there is a sharp
rise in the mean photon number. Following this transition, the mean photon number
falls gradually and reaches a minimum around 0 = 2r. At approximately 0 = 2* and
multiples thereof, the field shows further abrupt rise in the mean photon number. These
transitions, unlike the one occuring at 0 = I which has the characteristics of a continuous
phase transition, are first order phase transitions [18]. The photon number distribution
splits and shows a double peaked structure in the first order phase transition regions (see
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Figure 6.1: Mean photon number (n) versus the pump parameter θ in units of p for
nb

 = 0.1 and N = 200. Inset shows the photon number distribution, pn for values of the
pump parameter corresponding to the labels a (θ = 2.14) and b (θ = 3.88) in the main
figure.
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the inset in Fig.6.1). This is doe to the fact that the excited atoms after executing integer

number of Rabi oscillations may or may not get de-excited as they leave the cavity.

Filipowicz et al [18] and Guzman et al [30] have constructed a semi-classical theory

of the micromaser. For large values of N and nb not too small, this approach reproduces

almost all the results provided by the exact microscopic theory. They introduced a

Fokker-Planck equation for the photon statistics

(6.14)

where

(6.15)

(6.16)

(6.17)

Here, the terms j£ have been dropped, for if this approximation is to be valid, N —> oo.

Under steady state conditions, we have

(6.18)

The semi-classical rate equation is given by

(6.19)

(6.20)

For steady state conditions, we have

(6.21)

Solving for the roots of this equation we obtain the semiclassical steady state mean

photon number.
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In the Fokker-Planck approach the abrupt rise in the mean photon number in the

cavity at multiples of 2p for the value of the pump parameter can be understood as due

to the occurance of two attractive minima for the effective potential V(v), where

(6.22)

The photon number distribution tends to accumulate near the minima of the effective

potential V ( v ) . In these transition regions the global minimum of the effective potential

gets replaced by the next minimum. Because of this increased number fluctuations the

statistics is super-Poissonian as is shown by the Maudel's Q-parameter, defined as (cf

chapter 1)

(6.23)

(see Fig.6.2, solid curve). Eventhough the Mandel's Q-parameter is positive for those

values of the pump parameter q, it does not imply that the field is not nonclassical.

Agarwal and Tara [27,28] have generalised the criterion for nonclassicality by constructing

the matrix

(6.24)

where mn = ((<i*)nan). For i? = 2, the determinant of 7??(2) is just (o*2<i2) — (A'«)2, which

by dividing with {«'«) one gets the definition of Mandel's Q-parameter. Note that for

a classical state, the determinant of the matrix m(n) is positive definite. If for any state

the determinant is negative, then the state is a nonclassical state. In particular, for a

coherent state, det m(n) = 0, whereas for a Fock state, which is a highly nonclassical

state, it is negative. By defining a matrix m(n) with the terms /in = ((^h)n) replacing
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Figure 6.2: Mandel's Q-parameter (solid curve) and the A3 parameter (dashed curve) as
functions of the pump parameter 0 with nb = 1 and N = 100.
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the terms mn in (6.21) and defining a parameter An

(6.25)

we have a general criterion for nonclassicality — a state is nonclassical if An < 0 for

some n. The nonclassicality of the micromaser field is shown by the parameter A3 (see

Fig.6.2, dashed curve) in the regions where the Mandel's Q-parameter fails to show any.
In the regions following the first order transitions the photon number distribution is
single-peaked, narrow and shows sub-Poissonian statistics.

The time development of the field in the first-order transition regions also shows many
interesting features. In a recent work [29], it has been experimentally shown that in these
regions spontaneous jumps or slow transitions between the two metastable states occur
depending on the parameter values. Hysteretic behaviour of the field was also observed.

In Fig.6.3 we plot the normalised mean photon number (v) versus the pump parameter
6 (the pump parameter is varied, with N,g and T remaining fixed) corresponding to the
experiment [29]. The solid curve corresponds to the micromaser theory and the dashed
one to semi-classical theory. In Fig.6.4, the Q and the Wigner functions for the second
first-order transition regime for the points marked in Fig.6.3 are plotted. The Wigner
function, besides being a doublet, exhibits oscillations quite characteristic of states like

Fock states.
In Fig.6.5 we plot mean value of the photon number versus the pump parameter for

a range which shows the trapping states. As in [17], the resonances have been labeled
as (n + I, q), where n indicates the trapping state and q represents the number of 2p
oscillations that the atoms execute in the cavity. In Fig.6.6, we show the photon number
distribution, the Q-function and the Wigner function for the various points indicated by
the labels in Fig.6.5. Corresponding to the points b, d. f and h of Fig.6.5, the number
distribution is bistable and it is reflected in the Q- and the Wigner functions. The points
a, c, e, g and i correspond to the trapping states. The distributions are narrow and
single peaked with the exception of a and i. This is due to the fact that there are two
trapping states corresponding to q = 1 and q = 2 for these pump parameter values. It
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is seen from Fig.6.6. that the average behaviour of the Wigner function is very similar 1

Pn.

In conclusion, we have studied the quasiprobability distributions of the micromaser

field which manifests many nonclassical features. The Q- and the Wigner functioi

show a double peaked structure for the phase transition regimes of the micromaser. The

Q-function is much broader than the Wigner function and the Wigner function take

on negative values for certain ranges of the argument and has oscillatory behaviour for

lower values of θ. For the low-temperature trapping regime also the Q- and the Wigne

functions show double peaked structures.
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Figure 6.3: Normalised mean value of the photon number versus the pump parameter.
The pump parameter is varied through N. The dashed curve is from the semi-classical
theory and the solid curve is from the micromaser theory calculated for g == 18 KHz and
τ = 35//S.
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Figure 6.4: The Q-function (dashed curve) and the Wigner function (solid curve) corre-
sponding to the three points (marked a, b. c) of Fig.6.3.
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Figure 6.5: Normalised mean value of the photon number versus the pump parameter
for a range which shows the trapping states (nb = 10-7, N = 100). Inset shows the phase
transition region, a magnification of the boxed portion of which is shown in the main
figure. The dashed curves are calculated from the semi-classical theory.
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Figure 6.6: The Q-function (dashed curve) and the Wigner function (solid curve) as
functions of |α|2, and pn as a function of n (dotted curve) for various points indicated
by the labels (a-i) in the Fig.6.4. To highlight the peaks corresponding to the trapping
state with 9 = 1, five times the value of the photon number distribution, pn is plotted in
plots (a) and (i).

n, |α|2
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