THE ALGEBRA
OF
INVARIANTS

BY

J. H. GRACE, M.A.
FELLOW OF PETERHOUSE

AND

A. YOUNG, M.A.
LECTURER IN MATHEMATICS AT SELWYN COLLEGE,
LATE SCHOLAR OF CLARE COLLEGE

CHELSEA PUBLISHING COMPANY
BRONX, NEW YORK
THE ALGEBRA
OF
INVARIANTS

BY

J. H. GRACE, M.A.
FELLOW OF PETERHOUSE

AND

A. YOUNG, M.A.
LECTURER IN MATHEMATICS AT SELWYN COLLEGE,
LATE SCHOLAR OF CLARE COLLEGE

CHELSEA PUBLISHING COMPANY
BRONX, NEW YORK
THE ALGEBRA OF INVARIANTS

BY

J. H. GRACE, M.A.
FELLOW OF PETERHOUSE

AND

A. YOUNG, M.A.
LECTURER IN MATHEMATICS AT SELWYN COLLEGE,
LATE SCHOLAR OF CLARE COLLEGE

CHELSEA PUBLISHING COMPANY
BRONX, NEW YORK
THE PRESENT WORK IS A REPRINT
OF THE ORIGINAL EDITION OF 1903

LIBRARY OF CONGRESS CATALOG CARD NO. 65-11860

REPRINTED WITH THE PERMISSION OF
THE CAMBRIDGE UNIVERSITY PRESS

PRINTED IN THE UNITED STATES OF AMERICA
PREFACE.

The object of this book is to provide an English introduction to the symbolical method in the theory of Invariants. It was started as an attempt to meet the need expressed by Elliott in the preface to *The Algebra of Quantics*—'a whole book which shall present to the English reader in his own language a worthy exposition of the method of the great German masters remains a desideratum.' Since then the need has been partly met by the article 'Algebra' by MacMahon in the Supplement to the *Encyclopaedia Britannica*. The subject has been treated from the commencement in order that readers unacquainted with Elliott's treatise or any presentation of the elements may be able to understand the argument. Such readers should bear in mind that this treatise is only concerned with one part of a very extensive subject. The modern theory of Partitions will be found in the first part of the article by MacMahon mentioned above.

The first six chapters—a great portion of which, we hope, will be found easy reading—may be said to lead step by step to Gordan's wonderful proof of the finiteness of the system for a single binary form. The sixth chapter is, in fact, devoted to an exposition of Gordan's third proof, but here, as throughout the book, we have allowed ourselves a free hand in dealing with the memoirs and treatises quoted. For example, we have made much use of Jordan's great memoirs on Invariants in proving Gordan's theorem: in a later chapter on Types of Covariants the development of Jordan's method has led us to some results which we believe
PREFACE.

THE object of this book is to provide an English introduction to the symbolical method in the theory of Invariants. It was started as an attempt to meet the need expressed by Elliott in the preface to *The Algebra of Quantics*—"a whole book which shall present to the English reader in his own language a worthy exposition of the method of the great German masters remains a desideratum." Since then the need has been partly met by the article 'Algebra' by MacMahon in the Supplement to the *Encyclopaedia Britannica*. The subject has been treated from the commencement in order that readers unacquainted with Elliott's treatise or any presentation of the elements may be able to understand the argument. Such readers should bear in mind that this treatise is only concerned with one part of a very extensive subject. The modern theory of Partitions will be found in the first part of the article by MacMahon mentioned above.

The first six chapters—a great portion of which, we hope, will be found easy reading—may be said to lead step by step to Gordan's wonderful proof of the finiteness of the system for a single binary form. The sixth chapter is, in fact, devoted to an exposition of Gordan's third proof, but here, as throughout the book, we have allowed ourselves a free hand in dealing with the memoirs and treatises quoted. For example, we have made much use of Jordan's great memoirs on Invariants in proving Gordan's theorem: in a later chapter on Types of Covariants the development of Jordan's method has led us to some results which we believe
to be important as well as novel, notably to an exact formula for
the maximum order of an irreducible covariant of a system of
binary forms.

The remainder of the book is mainly of geometrical interest:
much space is devoted to Apolarity and Rational Curves, and the
treatment of ternary forms is from the geometrical rather than
the analytical point of view. The only complete system of
ternary forms given is that for two Quadratics: it may be felt
that more should have been said on this subject, but we think that
with the methods known up to the present the treatment of
ternary forms is too tedious for a text-book.

The number of references to Mathematical Journals etc. will
perhaps be found unusually small: for this there is no need to
apologise since the admirable Bericht über den gegenwärtigen
Stand der Invariantentheorie* of Meyer gives references up to
the last few years and in a more complete fashion than is
desirable in a book which makes no pretensions to being exhaustive.

We wish to thank Dr H. F. Baker for help given to us in our
early reading and Professor Forsyth for encouragement while
writing. For reading of proof-sheets we are indebted to Mr J.
E. Wright, B.A., of Trinity College, Mr P. W. Wood, B.A., of
Emmanuel College, and in a still greater degree to the late
Mr A. P. Thompson, B.A., of Pembroke College, whose enthusiasm
for Mathematics and research was most helpful and whose early
death is deplored alike by his teachers and his fellow-workers.
Our thanks are also due to the officials of the University Press
for great help received during the course of printing.

J. H. GRACE.
A. YOUNG.

* Jahresbericht der Deutschen Mathematiker Vereinigung, Vol. 1., 1892. French
translation by Fehr; Gauthier-Villars, Paris, 1897. Italian translation by Vivanti;
Pellerano, Naples, 1899. Article, Invariantentheorie in the Encyclopädie der
mathematischen Wissenschaften.

August 18, 1903.
CONTENTS

<table>
<thead>
<tr>
<th>CHAP.</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>THE FUNDAMENTAL THEOREM</td>
<td>21</td>
</tr>
<tr>
<td>III.</td>
<td>TRANSVECTANTS</td>
<td>36</td>
</tr>
<tr>
<td>IV.</td>
<td>TRANSVECTANTS (continued)</td>
<td>53</td>
</tr>
<tr>
<td>V.</td>
<td>ELEMENTARY COMPLETE SYSTEMS</td>
<td>85</td>
</tr>
<tr>
<td>VI.</td>
<td>GORDAN'S THEOREM</td>
<td>101</td>
</tr>
<tr>
<td>VII.</td>
<td>THE QUINTIC</td>
<td>128</td>
</tr>
<tr>
<td>VIII.</td>
<td>SIMULTANEOUS SYSTEMS</td>
<td>158</td>
</tr>
<tr>
<td>IX.</td>
<td>HILBERT'S THEOREM</td>
<td>169</td>
</tr>
<tr>
<td>X.</td>
<td>GEOMETRY</td>
<td>183</td>
</tr>
<tr>
<td>XI.</td>
<td>APOLARITY AND RATIONAL CURVES</td>
<td>213</td>
</tr>
<tr>
<td>XII.</td>
<td>TERNARY FORMS</td>
<td>246</td>
</tr>
<tr>
<td>XIII.</td>
<td>TERNARY FORMS (continued)</td>
<td>274</td>
</tr>
<tr>
<td>XIV.</td>
<td>APOLARITY (continued)</td>
<td>299</td>
</tr>
<tr>
<td>XV.</td>
<td>TYPES OF COVARIANTS</td>
<td>319</td>
</tr>
<tr>
<td>XVI.</td>
<td>GENERAL THEOREMS ON QUANTICS</td>
<td>339</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>I.</th>
<th>THE SYMBOLICAL NOTATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"</td>
<td>WRONSKI'S THEOREM</td>
<td>370</td>
</tr>
<tr>
<td>"</td>
<td>JORDAN'S LEMMA</td>
<td>375</td>
</tr>
<tr>
<td>"</td>
<td>TYPES OF COVARIANTS</td>
<td>378</td>
</tr>
</tbody>
</table>

INDEX | 381
to be important as well as novel, notably to an exact formula for
the maximum order of an irreducible covariant of a system of
binary forms.

The remainder of the book is mainly of geometrical interest:
much space is devoted to Apolarity and Rational Curves, and the
treatment of ternary forms is from the geometrical rather than
the analytical point of view. The only complete system of
ternary forms given is that for two Quadratics: it may be felt
that more should have been said on this subject, but we think that
with the methods known up to the present the treatment of
ternary forms is too tedious for a text-book.

The number of references to Mathematical Journals etc. will
perhaps be found unusually small: for this there is no need to
apologise since the admirable Bericht über den gegenwärtigen
Stand der Invariantentheorie* of Meyer gives references up to
the last few years and in a more complete fashion than is
desirable in a book which makes no pretensions to being exhaustive.

We wish to thank Dr H. F. Baker for help given to us in our
early reading and Professor Forsyth for encouragement while
writing. For reading of proof-sheets we are indebted to Mr J.
E. Wright, B.A., of Trinity College, Mr P. W. Wood, B.A., of
Emmanuel College, and in a still greater degree to the late
Mr A. P. Thompson, B.A., of Pembroke College, whose enthusiasm
for Mathematics and research was most helpful and whose early
death is deplored alike by his teachers and his fellow-workers.
Our thanks are also due to the officials of the University Press
for great help received during the course of printing.

J. H. GRACE.

A. YOUNG.

* Jahresbericht der Deutschen Mathematiker Vereinigung, Vol. 1., 1892. French
translation by Fehr; Gauthier-Villars, Paris, 1897. Italian translation by Vivanti;
Pellerano, Naples, 1899. Article, Invariantentheorie in the Encyclopädie der
mathematischen Wissenschaften.

August 18, 1903.
CONTENTS

<table>
<thead>
<tr>
<th>CHAP.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THE FUNDAMENTAL THEOREM</td>
<td>21</td>
</tr>
<tr>
<td>III. TRANSVECTANTS</td>
<td>36</td>
</tr>
<tr>
<td>IV. TRANSVECTANTS (continued)</td>
<td>53</td>
</tr>
<tr>
<td>V. ELEMENTARY COMPLETE SYSTEMS</td>
<td>85</td>
</tr>
<tr>
<td>VI. GORDAN'S THEOREM</td>
<td>101</td>
</tr>
<tr>
<td>VII. THE QUINTIC</td>
<td>128</td>
</tr>
<tr>
<td>VIII. SIMULTANEOUS SYSTEMS</td>
<td>158</td>
</tr>
<tr>
<td>IX. HILBERT'S THEOREM</td>
<td>169</td>
</tr>
<tr>
<td>X. GEOMETRY</td>
<td>183</td>
</tr>
<tr>
<td>XI. APOLARITY AND RATIONAL CURVES</td>
<td>213</td>
</tr>
<tr>
<td>XII. TERNARY FORMS</td>
<td>246</td>
</tr>
<tr>
<td>XIII. TERNARY FORMS (continued)</td>
<td>274</td>
</tr>
<tr>
<td>XIV. APOLARITY (continued)</td>
<td>299</td>
</tr>
<tr>
<td>XV. TYPES OF COVARIANTS</td>
<td>319</td>
</tr>
<tr>
<td>XVI. GENERAL THEOREMS ON QUANTICS</td>
<td>339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. THE SYMBOLICAL NOTATION</td>
<td>365</td>
</tr>
<tr>
<td>II. WRONSKI'S THEOREM</td>
<td>370</td>
</tr>
<tr>
<td>III. JORDAN'S LEMMA</td>
<td>375</td>
</tr>
<tr>
<td>IV. TYPES OF COVARIANTS</td>
<td>378</td>
</tr>
</tbody>
</table>

INDEX | 381 |
to be important as well as novel, notably to an exact formula for the maximum order of an irreducible covariant of a system of binary forms.

The remainder of the book is mainly of geometrical interest: much space is devoted to Apolarity and Rational Curves, and the treatment of ternary forms is from the geometrical rather than the analytical point of view. The only complete system of ternary forms given is that for two Quadratics: it may be felt that more should have been said on this subject, but we think that with the methods known up to the present the treatment of ternary forms is too tedious for a text-book.

The number of references to Mathematical Journals etc. will perhaps be found unusually small: for this there is no need to apologise since the admirable Bericht über den gegenwärtigen Stand der Invariantentheorie* of Meyer gives references up to the last few years and in a more complete fashion than is desirable in a book which makes no pretensions to being exhaustive.

We wish to thank Dr H. F. Baker for help given to us in our early reading and Professor Forsyth for encouragement while writing. For reading of proof-sheets we are indebted to Mr J. E. Wright, B.A., of Trinity College, Mr P. W. Wood, B.A., of Emmanuel College, and in a still greater degree to the late Mr A. P. Thompson, B.A., of Pembroke College, whose enthusiasm for Mathematics and research was most helpful and whose early death is deplored alike by his teachers and his fellow-workers. Our thanks are also due to the officials of the University Press for great help received during the course of printing.

J. H. GRACE.
A. YOUNG.

August 18, 1903.
CONTENTS.

<table>
<thead>
<tr>
<th>CHAP.</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>THE FUNDAMENTAL THEOREM</td>
<td>21</td>
</tr>
<tr>
<td>III.</td>
<td>TRANSVECTANTS</td>
<td>36</td>
</tr>
<tr>
<td>IV.</td>
<td>TRANSVECTANTS (continued)</td>
<td>53</td>
</tr>
<tr>
<td>V.</td>
<td>ELEMENTARY COMPLETE SYSTEMS</td>
<td>85</td>
</tr>
<tr>
<td>VI.</td>
<td>Gordan's Theorem</td>
<td>101</td>
</tr>
<tr>
<td>VII.</td>
<td>The Quintic</td>
<td>128</td>
</tr>
<tr>
<td>VIII.</td>
<td>Simultaneous Systems</td>
<td>158</td>
</tr>
<tr>
<td>IX.</td>
<td>Hilbert's Theorem</td>
<td>169</td>
</tr>
<tr>
<td>X.</td>
<td>Geometry</td>
<td>183</td>
</tr>
<tr>
<td>XI.</td>
<td>Apolarity and Rational Curves</td>
<td>213</td>
</tr>
<tr>
<td>XII.</td>
<td>Ternary Forms</td>
<td>246</td>
</tr>
<tr>
<td>XIII.</td>
<td>Ternary Forms (continued)</td>
<td>274</td>
</tr>
<tr>
<td>XIV.</td>
<td>Apolarity (continued)</td>
<td>299</td>
</tr>
<tr>
<td>XV.</td>
<td>Types of Covariants</td>
<td>319</td>
</tr>
<tr>
<td>XVI.</td>
<td>General Theorems on Quantics</td>
<td>339</td>
</tr>
<tr>
<td>APPENDIX I.</td>
<td>THE SYMBOLICAL NOTATION</td>
<td>365</td>
</tr>
<tr>
<td>"</td>
<td>II. Wrorski's Theorem</td>
<td>370</td>
</tr>
<tr>
<td>"</td>
<td>III. Jordan's Lemma</td>
<td>375</td>
</tr>
<tr>
<td>"</td>
<td>IV. Types of Covariants</td>
<td>378</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td>381</td>
</tr>
</tbody>
</table>
CHAPTER I.

INTRODUCTION. SYMBOLICAL NOTATION.

1. If in the expression

\[a_0 x_1^2 + 2a_1 x_1 x_2 + a_2 x_2^2, \]

we write

\[x_1 = \xi_1 X_1 + \eta_1 X_2, \]
\[x_2 = \xi_2 X_1 + \eta_2 X_2, \]

we obtain a new expression, viz.

\[A_0 X_1^2 + 2A_1 X_1 X_2 + A_2 X_2^2, \]

where

\[A_0 = a_0 \xi_1^2 + 2a_1 \xi_1 \xi_2 + a_2 \xi_2^2, \]
\[A_1 = a_0 \xi_1 \eta_1 + a_1 (\xi_1 \eta_2 + \xi_2 \eta_1) + a_2 \xi_2 \eta_2, \]
\[A_2 = a_0 \eta_1^2 + 2a_1 \eta_1 \eta_2 + a_2 \eta_2^2. \]

It is easy to verify the identity

\[A_0 A_2 - A_1^2 = (a_0 a_2 - a_1^2) (\xi_1 \eta_2 - \xi_2 \eta_1)^2, \]

which shews that the function \(A_0 A_2 - A_1^2 \) of the coefficients of the transformed expression differs from the same function \(a_0 a_2 - a_1^2 \) of the coefficients of the original expression by a factor involving only the coefficients contained in the transformation.

2. In the present work we shall give an account of the theory and structure of functions of the coefficients possessing properties analogous to that described above; but before proceeding to generalities we shall give some further examples.

If we transform the two expressions

\[a_0 x_1^2 + 2a_1 x_1 x_2 + a_2 x_2^2, \]
\[a'_0 x_1^2 + 2a'_1 x_1 x_2 + a'_2 x_2^2, \]
The mere consideration of the transformation of the binary form
\[a_0 x_1^2 + 2a_1 x_1 x_3 + a_3 x_3^2 \]
will be sufficient to convince the reader of the advantage of the introduction of binomial coefficients.

Passing now to the case of any number of variables, we call the quantic a \(p \)-ary \(q \)-ic when it is homogeneous and of degree \(q \) in \(p \) variables.

Thus the most general ternary quadratic is written
\[a_{000} x_1^2 + a_{002} x_2^2 + a_{020} x_3^2 + 2a_{110} x_1 x_2 + 2a_{101} x_1 x_3 + 2a_{011} x_2 x_3, \]
and in general the ternary \(n \)-ic is written
\[\sum_{p+q+r=n} \frac{n!}{p! q! r!} a_{pqr} x_1^p x_2^q x_3^r, \]
where the summation is extended to all values of \(p, q, r \) satisfying the equality \(p + q + r = n \).

It will be noticed that here we have prefixed multinomial coefficients to the \(a \)'s.

5. **Linear Transformations.** The equations
\[x_1 = \xi_1 X_1 + \eta_1 X_2 \]
\[x_2 = \xi_2 X_1 + \eta_2 X_2 \]
are said to constitute a linear transformation from the variables \(x_1, x_2 \) to the variables \(X_1, X_2 \)—it is of course implied that the coefficients on the right do not involve either set of variables.

The determinant
\[D = \begin{vmatrix} \xi_1 & \eta_1 \\ \xi_2 & \eta_2 \end{vmatrix} \]
is called the determinant of the transformation.

If \(D \) vanishes it is evident that \(x_1 \) and \(x_2 \) are virtually identical, for their ratio is constant, and hence, as the variables are always supposed to be independent, we shall throughout only deal with transformations which have a non-vanishing determinant.

On solving for \(X_1, X_2 \) we find
\[X_1 = (\eta_2 x_1 - \eta_1 x_2)/D \]
\[X_2 = (-\xi_2 x_1 + \xi_1 x_2)/D \]
so that the passage back from the new variables to the old is
effected by a linear transformation. This is called the inverse
of the original transformation; it is evident at once that its
determinant is equal to $\frac{1}{D}$.

6. Let us now regard a linear transformation as an operator,
which acting on x_1, x_2 changes them to X_1, X_2, and let us consider
the effect of two such operators acting successively.

If the coefficients of the first are
\[\xi_1, \eta_1; \xi_2, \eta_2, \]
and those of the second
\[\xi'_1, \eta'_1; \xi'_2, \eta'_2, \]
then we have
\[
\begin{align*}
x_1 &= \xi_1 X_1 + \eta_1 X_2, \\
x_2 &= \xi_2 X_1 + \eta_2 X_2, \\
X_1' &= \xi'_1 X'_1 + \eta'_1 X'_2, \\
X_2' &= \xi'_2 X'_1 + \eta'_2 X'_2,
\end{align*}
\]
and the effect of the two operators acting successively is to change
from the variables x_1, x_2 to X_1', X_2'.

Now on elimination of X_1, X_2 we find
\[
\begin{align*}
x_1 &= (\xi_1 \xi'_1 + \eta_1 \xi'_2) X'_1 + (\xi_1 \eta'_1 + \eta_1 \eta'_2) X'_2, \\
x_2 &= (\xi_2 \xi'_1 + \eta_2 \xi'_2) X'_1 + (\xi_2 \eta'_1 + \eta_2 \eta'_2) X'_2.
\end{align*}
\]
And accordingly we can pass directly from the original to the
final variables by means of a single linear transformation which
we shall call Σ.

If we call the two preceding operators S and S' we may write
\[\Sigma = SS' \]
and Σ is called the product or the resultant of S and S'.

It must be carefully noticed that the order of the factors
S and S' is essential in considering their product. In our
example we supposed that S acted first and then S'. If S' had
acted first and then S we should have
\[\Sigma' = S'S \]
and it is manifest that Σ and Σ' are not in general the same.
Since the resultant of two or any number of linear transformations is another such transformation, the whole set of linear transformations obtained by varying the coefficients is said to form a group—a continuous group because the coefficients ξ and η may be supposed to vary continuously.

The determinant of Σ is equal to the product of the determinants of S and S', as follows from the multiplication theorem for determinants.

The product of a transformation and its inverse is a transformation which does not affect the variables, i.e. it is

$$
\begin{align*}
 x_1 &= X_1 \\
 x_2 &= X_2
\end{align*}
$$

which is called the identical operator. The determinant of this is unity, and, as we have pointed out, the product of the determinants of a transformation and its inverse is also unity.

7. The idea of a linear transformation admits of immediate extension to any number of variables $x_1, x_2, \ldots x_p$ and now the transformation consists of n equations

$$
a_r = \xi_{r1} X_1 + \xi_{r2} X_2 + \ldots + \xi_{rp} X_p, \quad r = 1, 2, \ldots p.
$$

The determinant D formed with the ξ's for elements is called the determinant of the transformation, and inasmuch as when D vanishes there is a linear homogeneous relation between the x's, we exclude as before all transformations having a vanishing determinant.

If $D \neq 0$ we can solve for the X's in terms of the x's and, as can be easily seen, each X is a linear function of $x_1, x_2, \ldots x_p$, so that we have

$$
X_r = \eta_{r1} x_1 + \eta_{r2} x_2 + \ldots + \eta_{rp} x_p,
$$

a linear transformation which is the inverse of the preceding one.

As in the case of two variables, the resultant of two linear transformations S and T is a third linear transformation

$$
\Sigma = ST,
$$

and on examining the coefficients in Σ it will be seen at once by the multiplication theorem that the determinant of Σ is the product of the determinants of S and T.
8. In the earlier portion of this work we shall deal almost entirely with binary forms, and although we shall be constantly considering linear transformations and their effects, yet the fact that they form a group will not be explicitly used. Our only object, in introducing these elementary properties of groups, is to point out that the connection between invariants and groups is intimate and universal—in other words, that every group has its accompanying invariants and, conversely, every set of invariants belongs to a group.

9. **Invariants of Binary Forms.** If a binary form \(f \) be changed by a linear transformation into a new form \(F \), and a function \(I \) of the coefficients of \(F \) be equal to the same function of the coefficients of \(f \) multiplied by a factor depending solely on the transformation, then \(I \) is called an invariant of the binary form \(f \).

Thus for example in § 1 the identity

\[
(A_0 A_2 - A_1^2) = (a_0 a_2 - a_1^2)(\xi_1 \eta_2 - \xi_2 \eta_1)^2
\]

shews that \(a_0 a_2 - a_1^2 \) is an invariant of the binary quadratic

\[
a_0 x_1^2 + 2a_1 x_1 x_2 + a_2 x_2^2.
\]

An exactly similar definition applies to a joint invariant of several binary forms, e.g.

\[
a_0 a_2' - 2a_1 a_1' + a_0' a_2
\]

is an invariant of the two binary forms

\[
a_0 x_1^2 + 2a_1 x_1 x_2 + a_2 x_2^2,
\]

and

\[
a_0' x_1^2 + 2a_1' x_1 x_2 + a_2' x_2^2.
\]

10. For the present we shall confine our attention to invariants which are rational integral functions of the coefficients. It is easy to see that there is no further loss of generality if we suppose the invariants to be homogeneous in each set of coefficients that they contain.

Thus for example if \(I \) be an invariant of a single binary form \(f \) which is not homogeneous in the coefficients \(a \) we can write \(I \) in the form

\[
I_1 + I_2 + \ldots + I_s,
\]

where each element in this sum is homogeneous.
Now by definition we have
\[I(A) = M \times I(a), \]
and therefore
\[I_1(A) + I_2(A) + \ldots + I_s(A) = M \{ I_1(a) + I_2(a) + \ldots + I_s(a) \}. \]

But the \(A \)'s are linear functions of the \(a \)'s and \(M \) is independent of both, and therefore the only part on the left-hand side which is of the same degree as \(I_1(a) \) on the right-hand side is \(I_1(A) \);
\[\therefore \quad I_1(A) = M I_1(a), \]
that is to say \(I_1 \) is an invariant. Hence a non-homogeneous invariant is the sum of several homogeneous invariants.

This result can be at once extended to any number of binary forms.

As an example
\[a_0 a_2 - a_1^2 + a_0 a_2' - 2a_1 a_1' + a_0 a_0' \]
is an invariant of the two binary quadratics
\[(a_0, a_1, a_2 \xi x_1, x_2)^2 \text{ and } (a_0', a_1', a_2' \xi x_1', x_2')^2, \]
but it is the sum of two expressions
\[a_0 a_2 - a_1^2, \]
and
\[a_0 a_2' - 2a_1 a_1' + a_2 a_0' \]
each of which is homogeneous in the two sets of coefficients.

11. Covariants of Binary Forms. If a binary form \(f \) is changed into a form \(F \) by a linear transformation, and a function \(C \) of the coefficients of \(F \) and the new variables \(X_1, X_2 \) be equal to the same function of the coefficients of \(f \) and the old variables \(x_1, x_2 \) multiplied by a factor depending only on the transformation, then \(C \) is called a covariant of the binary form.

Thus from what we have seen
\[\frac{\partial^2 f}{\partial x_1 \partial x_2} \frac{\partial^2 f}{\partial x_1' \partial x_2'} - \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 \]
is a covariant of the binary cubic \(f \) and in fact of any binary form.

An exactly similar definition applies to a joint covariant of several binary forms—as an example the reader will have no difficulty in shewing that the Jacobian
\[\frac{\partial f}{\partial x_1} \frac{\partial \Phi}{\partial x_2} - \frac{\partial f}{\partial x_2} \frac{\partial \Phi}{\partial x_1} \]
of any two forms \(f \) and \(\phi \) is a covariant of those forms, the multiplier being \((\xi_1 \eta_2 - \xi_2 \eta_1)\) the determinant of the transformation.

We shall confine our attention to covariants which are rational integral functions both of the coefficients and the variables, and, as in the case of invariants, there is no difficulty in seeing that there is no further loss of generality in supposing such covariants to be homogeneous in the variables and in each set of coefficients involved. In fact if a covariant be not homogeneous it is the sum of several parts each of which is a covariant and homogeneous.

12. **Degree and Order of a Covariant.** The degree of a covariant of a single form is its degree in the coefficients of that form—the order is the degree in the variables.

The covariant \(\frac{\partial^2 f}{\partial x_1^2 \partial x_2^2} - \left(\frac{\partial f}{\partial x_1^2 \partial x_2} \right)^2 \) of a binary form of order \(n \) is of degree two and order \(2n - 4 \).

A covariant of several binary forms has a definite partial degree in each set of coefficients involved and the order is as before the degree in the variables.

The Jacobian of \(f \) and \(\phi \) is of degree one in the coefficients of each of the two forms, and its order is the sum of the orders of \(f \) and \(\phi \) diminished by two.

13. **Symbolical Notation.** In our investigations we shall find it of the utmost value to write the binary quantic

\[
a_0 x_1^n + n a_1 x_1^{n-1} x_2 + \ldots + \binom{n}{r} a_r x_1^{n-r} x_2^r + \ldots + a_n x_2^n
\]

in the symbolical form

\[(a_1 x_1 + a_2 x_2)^n,
\]

so that

\[a_1^n = a_0, \quad a_1^{n-1} a_2 = a_1, \ldots, a_1^{n-r} a_2^r = a_r, \ldots, a_2^n = a_n.
\]

This representation is startling at first sight, but consider how the use of it would introduce errors into calculation. They would arise because relations of the type

\[a_0 a_2 = a_1 a_2^{2n-2} = a_1^2
\]

between the coefficients prevent our binary form from being a general one. Now in representing a function of the coefficients
symbolically we allow no symbol such as α to occur more than n times in any one term, so that the possibility of relations giving rise to

$$a_0a_2 = a_3^2$$

is entirely precluded. In fact to obtain this relation there must be $2n$ α's multiplied together in the representation of the function a_0a_2 or a_3^2, whereas, when we allow no more than n α's to occur in any one term, the $(n + 1)$ expressions

$$\alpha_1^n, \alpha_1^{n-1}a_2, \ldots \alpha_1^{n-r}a_2^r, \ldots a_2^n$$

are independent quantities, i.e. with these restrictions on the use of our symbols the $(n + 1)$ coefficients of the original quantic are not necessarily connected by any relation, and therefore the most general quantic can be represented in the form indicated.

Accordingly in addition to the symbol α we introduce a number of equivalent symbols β, γ, \ldots so that

$$f = (\alpha_1x_1 + \alpha_2x_2)^n = (\beta_1x_1 + \beta_2x_2)^n = (\gamma_1x_1 + \gamma_2x_2)^n = \ldots$$

or as it will invariably be written

$$f = \alpha_x^n = \beta_x^n = \gamma_x^n \ldots$$

The symbolical equivalent of a_0a_2 is not

$$a_1^{2n+2}a_3^2,$$

because here there are more than n α's multiplied together.

To represent a_0a_2 we must use two different symbols α, β and then

$$a_0a_2 = a_3^n\beta_1^{n-2}\beta_2^2,$$

which is of course equivalent to

$$\beta_1^na_1^{n-2}a_2^2,$$

whereas in the same symbols a_3^2 is represented by $a_1^{n-1}a_3\beta_1^{n-1}\beta_2$.

In general to represent an expression of degree m in the coefficients, we have to use m different symbols of the type $\alpha, \beta, \gamma, \ldots$.

We have said that not more than n α's must be multiplied together in a given term—on the other hand if the expression has an actual as well as a symbolical significance not less than n of these symbols must occur together because only the expressions

$$\alpha_1^n, \alpha_1^{n-1}a_2, \ldots a_2^n$$

have an actual meaning.
14. A function of the coefficients can generally be represented symbolically in different ways as we have seen in the case of $a_0 a_2$ for example, which is equivalent to both

$$a_1^n \beta_1 n a_2^2 \text{ and } \beta_1^n a_1 n a_2^2.$$

There is one method of determining the symbolical representation which is very convenient because it often leads to the expression most suitable for our purpose.

Suppose, in fact, that P is a homogeneous function of the mth degree in $a_0, a_1, \ldots a_n$, then

$$P_1 = \left(b_0 \frac{\partial}{\partial a_0} + b_1 \frac{\partial}{\partial a_1} + \ldots + b_n \frac{\partial}{\partial a_n} \right) P,$$

is only of degree $m - 1$ in $a_0, a_1, \ldots a_n$. If in P_1 we replace each b by the corresponding a we obtain mP, as follows from Euler's Theorem relating to homogeneous functions.

In like manner if in

$$P_2 = \left(c_0 \frac{\partial}{\partial a_0} + c_1 \frac{\partial}{\partial a_1} + \ldots + c_n \frac{\partial}{\partial a_n} \right) \left(b_0 \frac{\partial}{\partial a_0} + b_1 \frac{\partial}{\partial a_1} + \ldots + b_n \frac{\partial}{\partial a_n} \right) P,$$

we replace each c and each b by the corresponding a we get $m(m - 1) P$ and P_2 is of degree $m - 2$ in the a's.

Proceeding in this way we can find an expression P_{m-1} which is linear in each of m sets of symbols

$$a, b, c, \ldots k,$$

and which becomes equal to $P \times m!$ when each $b, c, \ldots k$ is replaced by the corresponding a.

Now having formed the expression P_{m-1} we replace each a by the symbol a, each b by the symbol β, each c by the symbol γ and so on. Since the expression is linear in each set of letters, each symbol will occur exactly n times in every term, and then, regarding the symbols as referring to the same quantic, we have the required symbolical expression.

Thus for example

$$a_0 a_2 - a_1^2 = \frac{1}{2} \left(b_0 \frac{\partial}{\partial a_0} + b_1 \frac{\partial}{\partial a_1} + b_2 \frac{\partial}{\partial a_2} \right) (a_0 a_2 - a_1^2)_{b=a}$$

$$= \frac{1}{2} (b_0 a_2 + b_2 a_0 - 2a_1 b_1)_{b=a}$$

$$= \frac{1}{2} (\beta_1 a^2 + \beta_2 a_1^2 - 2a_1 \alpha_2 \beta_1 \beta_2) a_1 n - 2 \beta_1 n - 2$$

$$= \frac{1}{2} (\alpha_1 \beta_2 - \alpha_2 \beta_1)^2 a_1 n - 2 \beta_1 n - 2.$$
and the convenience of this expression in terms of \(\alpha, \beta \) will be abundantly evident in the sequel.

Ex. (i). For the binary quartic shew that
\[
\alpha_2 x_4 - 4 \alpha_1 x_3 + 3 \alpha_2^2 = \frac{1}{2} (\alpha_1 \beta_2 - \alpha_2 \beta_1)^4,
\]
and
\[
\begin{vmatrix}
\alpha_0 & \alpha_1 & \alpha_2 \\
\alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_2 & \alpha_3 & \alpha_4 \\
\end{vmatrix} = \frac{1}{2} (\alpha_1 \beta_2 - \alpha_2 \beta_1)^3 (\beta_1 \gamma_2 - \beta_2 \gamma_1)^3 (\gamma_1 \alpha_2 - \gamma_2 \alpha_1)^2.
\]

Ex. (ii). By the same method shew that for any binary form
\[
\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 f}{\partial x_2^2} - \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 = 2 \left(\frac{n}{2} \right) (\alpha_1 \beta_2 - \alpha_2 \beta_1)^2 \alpha_x^{n-2} \beta_x^{n-2}.
\]

Ex. (iii). Shew that for a binary form of odd order \((\alpha_1 \beta_2 - \alpha_2 \beta_1)^n\) is zero and write down its value for a form of even order in terms of the coefficients.

15. Polar Forms. The expression
\[
\frac{(n-r)!}{n!} \left(y_1 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial x_2} \right)^r f,
\]
where
\[
f = \alpha_x^n = \beta_x^n = \text{etc.}
\]
is a binary form of order \(n\), is called the \(r\)th polar of \(f\) with respect to \(y\).

The operator \((y_1 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial x_2})\), which is frequently written \((y \frac{\partial}{\partial x})\), is called a polarizing operator and the expression
\[
\left(y_1 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial x_2} \right)^r f
\]
is said to be derived from \(f\) by polarizing \(r\) times with respect to \(y\). The numerical factor \(\frac{(n-r)!}{n!}\) is only introduced for convenience.

These polar forms admit of very simple representation in our symbols, for
\[
\left(y_1 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial x_2} \right) \alpha_x^n = n \alpha_x^{n-1} \alpha_y,
\]
\[
\left(y_1 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial x_2} \right)^2 \alpha_x^n = n (n-1) \alpha_x^{n-2} \alpha_y^2,
\]
and so on.

Hence the \(r\)th polar of \(f\) with respect to \(y\) is
\[
\frac{(n-r)!}{n!} (n(n-1) \ldots (n-r+1)) \alpha_x^{n-r} \alpha_y^r,
\]
that is
\[
\alpha_x^{n-r} \alpha_y^r.
\]
The differential coefficients of \(f \) with respect to the variables are particular cases of polar forms.

For if \(y_1 = 1, \ y_2 = 0 \), the \(r \)th polar is

\[
\frac{\partial^r f}{\partial x_1^r}
\]

and if \(y_1 = 0, \ y_2 = 1 \), the \(r \)th polar is

\[
\frac{\partial^r f}{\partial x_2^r}.
\]

In general we have

\[
\frac{\partial^{p+q} f}{\partial x_1^p \partial x_2^q} = \frac{n!}{(n-p-q)!} \alpha_x^{n-p-q} \alpha_y^p \alpha_z^q.
\]

The form \(\frac{(n-p-q)!}{n!} \left(y \frac{\partial}{\partial x_1} \right)^p \left(z \frac{\partial}{\partial x_2} \right)^q f \) is called a mixed polar with respect to \(y \) and \(z \); its symbolical expression is

\[
\alpha_x^{n-p-q} \alpha_y^p \alpha_z^q.
\]

16. **Effect of a Linear Transformation.** If we write

\[
x_1 = \xi_1^1 X_1 + \eta_1 X_2
\]

\[
x_2 = \xi_2 X_1 + \eta_2 X_2,
\]

then \(\alpha_x \) becomes

\[
(\alpha_1 \xi_1 + \alpha_2 \xi_2) X_1 + (\alpha_1 \eta_1 + \alpha_2 \eta_2) X_2
\]

or

\[
\alpha_\xi X_1 + \alpha_\eta X_2,
\]

and hence the binary form \(\alpha_x^n \) becomes

\[
(\alpha_\xi X_1 + \alpha_\eta X_2)^n
\]

or

\[
\alpha_\xi^n X_1^n + n\alpha_\xi^{n-1} \alpha_\eta X_1^{n-1} X_2 + \ldots + \alpha_\eta^n X_2^n.
\]

Accordingly in the transformed expression the coefficient of \(X_1^n \) is found by replacing \(x \) by \(\xi \) in the original form, and the coefficients of \(X_1^{n-1} X_2, \ X_1^{n-2} X_2^2 \ldots \) are found by polarizing the coefficient of \(X_1^n \) with respect to \(\eta \) once, twice \ldots \ Of course suitable numerical multipliers must be introduced.

The reader will easily illustrate this result by reference to the transformation of a binary quadratic in § 1.