

Invigilators Signature

ENTRANCE EXAMINATION – 2011 M. Sc. Chemistry

TIME: 2 HOURS	MAXIMUM MARKS: 100		
HALL TICKET NUMBER:			
BOOKLET CODE:]		

INSTRUCTIONS

- Write your HALL TICKET NUMBER and the BOOKLET CODE in the space provided above and also in the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1-18 are present (excluding pages assigned for rough work).
- 3. There are 100 questions in this paper. All questions carry equal marks.
- 4. There is negative marking. Each wrong answer carries 0.33 mark
- Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- Hand over both the question paper booklet and OMR answer sheet at the end of the examination.
- 7. In case of a tie, the marks obtained in the first 25 questions (PART-A) will be used to determine the order of merit.
- 8. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 9. Only non-programmable calculators are allowed.
- 10. Useful constants are provided on top of PART-A in the question paper.

Useful Constants:

Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J s}$; Speed of light = $2.998 \times 10^8 \text{ m s}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J K}^{-1}$; Gas constant = $8.314 \text{ J K}^{-1} \text{mol}^{-1}$; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Chargé of electron = $1.6 \times 10^{-19} \text{ C}$; 1 D = $3.336 \times 10^{-30} \text{ C m}$; 1 bar = 10^5 N m^{-2} ; RT/F = 0.059 V

PART - A

- 1. Which of the following is not a crystalline substance?
 - (A) Charcoal
- (B) Graphite
- (C) Diamond
- (D) C_{60}
- 2. The major product expected from the following reaction is

$$= \underbrace{\begin{array}{c} H_2O \\ H_2SO_4 \\ HgSO_4 \\ \end{array}}_{(A)}$$

$$= \underbrace{\begin{array}{c} OH OH OH \\ CH_3 \\ \end{array}}_{(C)}$$

$$(C) H_3C \underbrace{\begin{array}{c} OOH OH \\ CH_3 \\ \end{array}}_{(C)}$$

$$(D) H_3C \underbrace{\begin{array}{c} OOH OH \\ CH_3 \\ \end{array}}_{(C)}$$

- Consider the equilibrium X == 2Y with equilibrium constant, K_C = 3.6 M at 25°C. If the initial concentrations are [X]₀ = 1.0 M and [Y]₀ = 0.0 M, the equilibrium concentration of X at 25°C, [X]_{eq} is
 - (A) 0.33 M
- (B) 0.36 M
- (C) 0.40 M
- (D) 0.60 M
- 4. The sides of a triangle are of length 3.0, 4.0 and 5.0 cm. If the side with length 5.0 cm is the base, what is the height of the triangle?
 - (A) 2.4 cm
- (B) 2.8 cm
- (C) 3.4 cm
- (D) 4.0 cm
- 5. Which one among the following chlorides is dissociated to the least extent in aqueous solution?
 - (A) ZnCl₂
- (B) HgCl₂
- (C) BaCl₂
- (D) AlCl₃

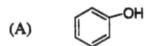
6. The IUPAC name for the following compound is

(A) 4-vinyl-2-pentyne

- 4-methylhex-2-yn-5-ene (B)
- 3-methylhex-4-yn-1-ene (C)
- 3-methylhex-1-en-4-yne (D)

7. X-ray diffraction study of a crystal with a simple cubic lattice structure shows diffraction from the (110) plane appearing at the Bragg angle $\theta = 20^{\circ}$. The angle at which the diffraction from the (220) plane will appear is

- $(A) 9.8^{\circ}$
- (B) 10°
- (C) 40°
- (D) 43°


8. Consider the plot of the function y = 1/x. The tangent to this curve drawn at the point (1, 1), will cut the x- axis at:

- (A)(1,0)
- (B) $(\sqrt{2}, 0)$ (C) $(1, \sqrt{2})$
- (D)(2,0)

9. A sample of water contains 200 ppm of Ca²⁺. What is the molality of the solution with respect to Ca²⁺? Atomic weight of Ca is 40.

- (A) 0.2 m
- (B) 2 m
- (C) 5×10^{-3} m
- (D) 0.05 m

10. The strongest Brønsted acid among the following is

(B)

(D)

11. Which of the following is necessary for a process to be spontaneous (ΔS = change in entropy)?

(A) $\Delta S_{\text{system}} > 0$

(B) $\Delta S_{\text{system}} < 0$

(C) $\Delta S_{universe} > 0$

(D) $\Delta S_{\text{surroundings}} < 0$

- 12. If two vertices of a cube chosen randomly are painted black and the remaining are painted white, what is the probability that the black vertices are adjacent i.e. connected by an edge?
 - (A) $\frac{1}{2}$
- (B) $\frac{3}{7}$
- $(C)\frac{2}{7}$
- (D) $\frac{3}{28}$

- 13. CuI₂ is unstable and it readily decomposes to
 - (A) Cu and □
- (B) Cu and I2
- (C) CuI and l2
- (D) CuI and Γ

14. The major product of the following reaction is

15. The nickel-cadmium cell has a standard potential of + 1.20 V. The cell reaction is 2 NiO(OH) (s) + Cd (s) + 2H₂O (l) \rightarrow 2 Ni(OH)₂ (s) + Cd(OH)₂ (s)

What is the standard free energy change for this reaction?

- (A) 116 kJ
- (B) 38.7 kJ
- (C) 232 kJ
- (D) 46.3 kJ

- 16. If CosA = x; then Cos4A =
 - (A) 4 x
- (B) $8 x^4 8 x^2 + 1$ (C) $4 x^4 4 x^2 + 1$
- (D) $2 x^2 + 1$
- 17. The packing efficiency in the hcp, bcc and simple cubic (sc) lattices are in the order
 - (A) bcc > hcp > sc

(B) hcp > bcc > sc

(C) hcp > sc > bcc

(D) sc > hcp > bcc

18. The rate of decarboxylation of isomeric carboxylic acids is

(A)
$$\bigcirc$$
 COOH $>$ \bigcirc COOH $>$ \bigcirc COOH

- 19. Doubling all the coefficients in the equation for a cell reaction
 - (A) doubles E^0 , but does not change ΔG^0
 - (B) doubles ΔG^0 , but does not change E^0
 - (C) does not change E^0 or ΔG^0
 - (D) doubles both E^0 and ΔG^0
- 20. The value of $(1)^i$ is

$$(A) - 1$$

$$(C) e^{-\pi}$$

(D)
$$e^{-2\pi}$$

- 21. The compounds ZnO and FeO show
 - (A) stoichiometric and metal excess defects, respectively.
 - (B) metal excess and metal deficiency defects, respectively.
 - (C) metal deficiency and metal excess defects, respectively.
 - (D) metal excess and stoichiometric defects, respectively.

22. An intermediate in racemization of (R)-3-phenyl-2-butanone is

(A)
$$Ph-C$$
 CH_2 (B) Ph CH_3 CH_3 CH_3

(C)
$$Ph$$
 CH_3 (D) H_3C OH $Ph-C$ OEt H CH_3

23. Predict the sign of ΔS for both of the following processes

I.
$$2 \text{ C (graphite)} + O_2(g) \rightarrow 2 \text{ CO}_2(g)$$

II.
$$C_4H_{10}(g) \rightarrow C_4H_{10}(l)$$

- (A) ΔS should be negative for I and positive for II
- (B) ΔS should be negative for I and negative for II
- (C) ΔS should be positive for I and positive for II
- (D) ΔS should be positive for I and negative for II

24. The remainder of $\frac{x^4 + x^3 + x^2 + x + 1}{x - 1}$ is

- (A) 1
- (B)3
- (C) 5
- (D) 7

25. Which two colors of light cause the highest rate of photosynthesis?

- (A) Red and green
- (B) Blue and green
- (C) Red and blue
- (D) Green and yellow

PART - B

- 26. Assuming the additivity of covalent radii [C 0.77 Å, Br 1.14 Å], and assuming the distance between adjacent carbon atoms in the ring as 1.40 Å, the distance between the centres of bromine atoms in 1,2-dibromobenzene is
 - (A) 3.31 Å
- (B) 3.42 Å
- (C) 4.20 Å
- (D) 2.28 Å
- 27. The number of stereoisomers for CHD=CH-CH=CHD is
 - (A)4
- (B) 8
- (C) 2

- (D) 6
- 28. The entropy change associated with the expansion of one mole of an ideal gas from an initial volume of V to a final volume of 2.50 V at constant temperature is (R = gas)constant)
 - (A) $\Delta S = -R \ln 2.50$
- (B) $\Delta S = -2.50 \text{ R ln } (V_f/V_i)$
- (C) $\Delta S = 2.50 \text{ R ln } (V_f/V_i)$
- (D) $\Delta S = R \ln 2.50$
- 29. The smallest among the following integrals is

- (A) $\int_{0}^{1} e^{-x} dx$ (B) $\int_{0}^{1} e^{-x^{2}} dx$ (C) $\int_{0}^{1} e^{-x^{3}} dx$ (D) $\int_{0}^{1} e^{-x^{4}} dx$
- 30. The quaternary structure of human hemoglobin is a
 - (A) dimer of two myoglobin dimers.
 - (B) tetramer of identical subunits.
 - (C) tetramer of four different subunits.
 - (D) tetramer of two different subunits.
- 31. The number of isomers having non-zero dipole moment for PCl₂F₃ in the trigonal bipyramidal geometry is
 - (A) 2
- (B) 3
- (C) 1
- (D) 0

32. The most appropriate reagent for the conversion of RCOOMe into RCH ₂ OH is					
(A) NaBH ₄	(B) LiBH ₄	(C) NaH	(D) Pd/C and H ₂		
33. Which of the following statements must be true for the entropy of a pure solid to be zero?					
	The temperature must be (
(II)	The solid must be crystalli	ne, not amorphous.			
	The solid must be perfectl	-			
(IV)	The solid must be an elen	nent.			
(A) I, II and I	II (B) I and II	(C) I	(D) I, II, III and IV		
34. The function with exactly two minima and one maximum, among the following is (A) $x^4 - x^2 - x$ (B) $x + x^2 - x^4$ (C) $x^3 - x^2 - x$ (D) $x + x^2 - x^3$					
$(A) x^{2} - x^{2} -$	$x \qquad (B) x + x^2 - x^3$	$(C) x^3 - x^2 - x$	$(D) \cdot x + x^2 - x^3$		
35. Collagen is					
(A) an α-	helical structural protein.				
(B) a coil	ed-coil protein found in ha	air.			
(C) a cros	ss-linked globular protein.				
(D) a trip	le-helical fibrous protein.				
36. Given that ¹⁸ F undergoes 90 % radioactive decay in 366 min., the half life (t _{1/2}) for ¹⁸ F is					
(A) 220 min.	(B) 3473 min.	(C) 154 min.	(D) 110 min.		
37. The phenolic	compound among the foll	owing is:			
(A) Ibubrufen	(B) Paracetamol	(C) Penicillin	(D) Camphor		
38. What is the hydroxide ion concentration of a solution that has a pH of 11.20?					
(A) 6.31×10^{-1}	² M (B) 11.20 M	(C) 1.58×10^{-3} M	(D) 2.80 M		
39. For all values of x which determinant among the following is zero?					
$(A)\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix}$	$(\mathbf{B})\begin{vmatrix} 1 & x \\ x & x^2 \end{vmatrix}$	(C) $\begin{vmatrix} 1 & x \\ x & 1 \end{vmatrix}$	(D) $\begin{vmatrix} 1 & x^2 \\ x & 1 \end{vmatrix}$		

40. The conductivity o	f sodium dodecyl su	alfate (SDS) solution e	xhibits a sharp transition				
around 8 mM concentration. This is because:							
(A) SDS precipitates beyond 8 mM concentration.							
(B) SDS forms micelles above 8 mM concentration.							
(C) SDS form	(C) SDS forms a gel above 8 mM concentration.						
(D) SDS unde	ergoes hydrolysis abo	ove 8 mM concentration	ı .				
		_	٠.				
		$I_2 + 2 \text{ Fe}^2$					
how many grams of	of iodine can be produ	uced by reacting 7.4 mo	ols of Fe ³⁺ and 7.0 mols				
of Γ ? [At. Wt. of							
$(A) 8.9 \times 10^2 g$	(B) 9.1×10^2 g	(C) 9.4×10^2 g	(D) 17.8×10^{2} g				
		the identification of a n	itrila group is				
		the identification of a n					
(A) IR	(B) ¹ H NMR	(C) UV	(D) ESR				
42 If the units for re	te are Me ⁻¹ what a	re the units for the rate	constant, k, for a zeroth-				
order reaction?	ic are ivi s , while in		, ,				
(A) s ⁻¹	(B) M ⁻¹ s ⁻¹	(C) M s ⁻¹	(D) M ⁻¹				
(A) S	(D) W 3	(6) 1.2 5	(-,				
44. The function with	a finite range is						
(A) e ^x	(B) e^{x^2}	(C) e^{x^3}	(D) e^{-x^2}				
	-		of a surface to added to				
			of aluminium is added to				
excess cupric sulp		vts.; Al = 27, Cu = 63.5					
(A) 63.50	(B) 90.50	(C) 95.25	(D) 122.25				
46. The two strands	of double helical I	NA are associated by	hydrogen bonds between				
46. The two strands of double helical DNA are associated by hydrogen bonds between adenine (A) and thymine (T), and between guanine (G) and cytosine (C). The numbers							
of hydrogen bonds between A-T and G-C pairs, respectively are:							
or injuration borness out in a mine of principal princip							

(B) two, two

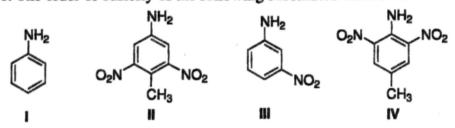
(A) one, two

(C) two, three

(D) three, two

47.	The intermediate in	volved in Curtius rearr	angement is				
(A) carbenium ion		(B) carbanion					
(C) nitrene		(D) carbene					
48.	An organic compou	und on decomposition	at 500°C and 1 atm.	pressure released 2 mL			
	each of carbon monoxide, nitrogen and water vapour. The empirical formula of the						
	molecule is						
	(A) CHNO	(B) CH ₂ NO	(C) CH ₂ N ₂ O	(D) $CH_2N_2O_2$			
49.	$\frac{d}{dt}\exp[t^2] =$						
	(A) $1/t^2$		(B) $\exp(t^2)$				
	(C) $2t\exp(t^2)$	²)	(D) $(1/2t)exp(t^2)$				
			CYT - 14	-1			
50.			solution of K1 with a s	solution of 'X' and then			
	adding KOH solution						
	(A) ZnCl ₂	(B) HgCl ₂	(C) AlCl ₃	(D) TiCL ₄			
51.	The intermediate ac	id involved in the follo	owing reaction is				
		△ NH ₂ CONH ₂					
	NH ₄ (CNO) —	NH ₂ CONH ₂					
	(A) uric acid	(B) cyanuric acid	(C) thiocyanic acid	(D) cyanic acid			
52.	52. 50 mL of 0.04 M HCl solution was mixed with 50 mL of 0.02 M AgNO ₃ solution,						
	stirred and filtered.	The pH of the filtered					
	(A) 1	(B) 2	(C) 3	(D) 4			
53.	$(1 + 2i)^{-1}$ is equal to	,					
(A) $1 - 2i$		(B) (1/5) – (2/5)i					
	(C) (1/3) –	(2/3)i	(D) $-(1/3) + (2/3)i$				

- 54. Which of the following fluorides is angular?
 - (A) BeF₂
- (B) ZnF₂
- (C) SnF₂
- (D) XeF₂
- 55. The more reactive dienophile among the following for the reaction with cyclopentadiene is
 - (A) CO₂E


(B) CO₂Ei

(c) to

- (D) EtO₂C
- 56. The magnetic quantum number of the last electron in the atom with atomic number 21 is
 - (A) 4
- (B) 3
- (C)2
- (D) 1
- 57. If the number e⁹ⁱ is marked as a point on the complex plane, what is the distance of the point from the origin?
 - (A) 1
- (B) 3
- (C) 9
- (D) tan-1 9

- 58. What is the electronic configuration of V^{3+} ?
 - $(A) [Ar] 3d^2$
- (B) $[Kr]3d^2$
- (C) $[Ar]3d^3$
- (D) $[Kr] 3d^3$
- 59. The hybridization that is common for at least one of the carbon atoms in hydrogen cyanide, carbon disulfide, allene and carbon monoxide is
 - (A) sp
- (B) sp²
- (C) sp^3
- (D) dsp³
- 60. Which one among the given functions has the smallest slope at x = 1?
 - (A) $2x^2 3$
- (B) $2x^2 1$
- (C) $2x^2 2x$
- (D) $2x^2 x$

61. The order of basicity of the following substituted anilines is

- (A) I > II > III > IV
- (B) IV > I > III > II
- (C) IV > II > I > III
- (D) IV > III > I > II

62. According to crystal field theory, the 9th electron of the metal centre in square planar [Cu(NH₃)₄]²⁺ resides in

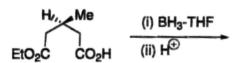
- $(A) d_{xy}$
- (B) $d_{x^2-y^2}$
- (C) d_{z2}
- (D) d_{xz}

63. The rotation of pure R(+)-Limonene is $+123.0^{\circ}$. Calculate the % of the (+) isomer in a sample showing a rotation of $+109^{\circ}$?

- (A) 8.6
- (B) 77.2
- (C) 94.3
- (D) 82.9

64. An ideal gas undergoes isothermal and reversible expansion from its initial volume to some final volume at 300 K drawing in 90 kJ of heat. The change in the Gibbs free energy of the gas is

- (A) 300 J
- (B) 150 J
- (C) 0 J
- (D) -300 J


65. For $0 \le x \le 1$, $\lim_{n \to \infty} \int_{0}^{1} nx e^{-nx^{2}} dx =$

- (A) 0
- **(B)** ∞
- (C) $\frac{1}{2}$
- (D) 2

66. An extensive property of a thermodynamic system among the following is

- (A) Pressure
- (B) Temperature
- (C) Volume
- (D) Concentration

67. The product obtained in the following transformation is

68. The number of unpaired electrons in the complex ion is in the order

(B)
$$ZnCl_4^{2-} < CuCl_4^{2-} < CoCl_4^{2-} < NiCl_4^{2-}$$

- 69. If $F(x) = x^{1/x}$ then $\lim_{x \to \infty} F(x) =$
 - (A) 0
- **(B)** 1
- (C) ∞
- (D) e
- 70. The metal ion involved in the water oxidation process at the active site of photosystem II is
 - (A) Mn
- (B) Mg
- (C) Mo
- (D) Fe
- 71. The oxidation number of carbon in dimethyl ether is
 - (A) 2
- (B) 1
- (C) 1
- (D) 2
- 72. The complex number $-2 2\sqrt{3}i$ in polar form is given by
 - (A) $2e^{i2\pi/3}$
- (B) $4e^{i2\pi/3}$
- (C) $4e^{i3\pi/2}$
- (D) $4e^{i4\pi/3}$

- 73. Compound I gives a strong infrared absorption at 1730 cm⁻¹. ¹H NMR spectrum indicates that it has two types of hydrogen atoms; one H atom appearing as singlet at δ = 9.7 ppm and 9 H atoms appearing as a singlet at δ = 1.2 ppm. The structure of **I** is
 - (A)

(B)

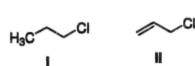
CH₃ H₃C CHO (C)

- (D)
- 74. In a titration experiment, the end point indicates
 - (A) neutralization point

- (B) completion of precipitation
- (C) apparent equivalence point
- (D) exact equivalence point
- 75. The structures I and II, shown below, correspond to:

- (A) S-lactic acid and S-alanine
- (B) R-lactic acid and R-alanine
- (C) R-lactic acid and S-alanine
- (D) S-lactic acid and R-alanine
- 76. The heat of reaction of both the reactions 2 KOH + $H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$ and $Mg(OH)_2 + H_2SO_4 \rightarrow MgSO_4 + 2 H_2O$ is -27.2 kcal/mol. Hence the heat of reaction of 3 $Ca(OH)_2 + 2 H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6 H_2O$ would be
 - (A) -13.6 kcal/mol

(B) -27.2 kcal/mol


(C) -81.6 kcal/mol

- (D) -68.0 kcal/mol
- 77. The standard equation of a circle passing through the points u(3, 8), v(9, 6) and w(13, -2) is
 - (A) $(x-3)^2 + (y+2)^2 = 100$ (B) $(x+3)^2 + (y+2)^2 = 100$

 - (C) $(x-2)^2 + (y+3)^2 = 100$ (D) $(x-2)^2 + (y-3)^2 = 100$

- 78. Acid is used in the standardization titration of KMnO₄ against sodium oxalate because
 - (A) it helps in dissolving KMnO₄.
 - (B) it stabilizes permanganate ion.
 - (C) it facilitates the reduction of Mn⁷⁺ to Mn²⁺.
 - (D) it helps in dissolving the MnO₂ formed during titration.
- 79. Which of the following covalent compounds does not have any formally charged atom?
 - (A) (CH₃)₃NO
- (B) CH_2N_2
- (C) CH₃ONO
- (D) CH₃CNO
- 80. The two radial nodes in the 3s radial function of H atom occur at the distances R1 and R2 from the nucleus. The three radial nodes in the 4s orbital occur at R3, R4 and R5. The order of these distances is given by
 - (A) R3 < R1 < R4 < R2 < R5
- (B) R1 < R3 < R4 < R2 < R5
- (C) R3 < R1 < R2 < R4 < R5
- (D) R3 < R1 < R4 < R5 < R2
- 81. The graph of the equation $4(x^2 4x) 9(y^2 2y) 29 = 0$ represents a
 - (A) parabola
- (B) ellipse
- (C) circle
- (D) hyperbola

- 82. Using Wade's rule predict the structure of B₅H₉
 - (A) closo
- (B) nido
- (C) arachno
- (D) scorpionato
- 83. In the S_N1 solvolysis of the following primary alkyl chlorides in aqueous ethanol, the order of decreasing reactivity is

H3C CI

(A) I > II > III > IV

(B) II > I > III > IV

(C) IV > III > II > I

(D) III > II > IV

- 84. A solution of sulfuric acid contains 86 g of H₂SO₄ per liter of solution. The normality of the solution is
 - (A) 1.8 N
- (B) 0.9 N
- (C) 2.0 N
- (D) 1.0 N
- 85. The equation of the normal line to $y = x^3 2x^2 + 4$ at (2, 4) is
 - (A) $y = -\frac{1}{4}x + \frac{9}{2}$

(B) y = 9x + 4

(C) $y = -4x + \frac{9}{2}$

- (D) $y = -9x + \frac{1}{4}$
- 86. Which one of the following statements do not apply to interhalogen compounds?
 - (A) Could be neutral
- (B) Could be cationic
- (C) Could be anionic
- (D) Always obey octet rule.
- 87. The product obtained by the reaction of one equivalent of 1-bromo-3-chlorocyclobutane and two equivalents of Na is:
 - (A)

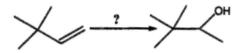
(B)

(C)

- (D)
- 88. Which of the following pair has the lowest interfacial tension?
 - (A) n-decane/water

(B) n-butane/water

(C) air/water

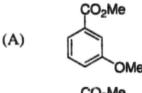

- (D) n-octyl alcohol/water
- 89. The gas pressure in an aerosol container is 1.5 atm at 25°C. Assuming an ideal behavior of the gas, if the container is heated to 450°C, the pressure would be close to
 - (A) 1.023 atm
- (B) 1.234 atm
- (C) 3.639 atm
- (D) 2.639 atm

- 90. The order of increasing dipole moment among H₂S, H₂O and BF₃ is
 - (A) $BF_3 < H_2S < H_2O$

(B) $H_2O < H_2S < BF_3$

(C) $H_2S < H_2O < BF_3$

- (D) $BF_3 < H_2O < H_2S$
- 91. The best method for the following transformation is



- (A) acid mediated hydration
- (B) hydroboration-oxidation
- (C) oxymercuration-demercuration
- (D) ozonolysis-reduction
- 92. The concentration of Ba^{2+} in saturated $BaSO_4$ solution at $27^{\circ}C$ is 1.04×10^{-5} M. What is the solubility product (K_{sp}) for $BaSO_4$ at this temperature?
 - (A) 1.04×10^{-10} M

(B) $1.08 \times 10^{-10} \text{ M}$

(C) 0.52×10^{-10} M

- (D) 2.08×10^{-5} M
- 93. What is the hybridization of sulfur in SF₄?
 - (A) sp²
- (B) sp^3
- (C) sp^3d
- (D) sp^2d^2
- 94. The ester that undergoes acid hydrolysis most readily is

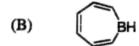
(B)

(C)

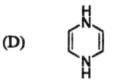
(D)

- 95. If the half-life of a reaction is independent of its initial concentration, then the reaction may be categorized as
 - (A) zeroth order

(B) first order


(C) second order

(D) bimolecular


- 96. How many milliliters of 2 M NaCl solution are required to make one litre of 0.4 M NaCl solution by adding water?
 - (A) 5000 ml
- (B) 800 ml
- (C) 200 ml
- (D) 20 ml

97. Which of the following compounds is aromatic?

- 98. A 0.01 M solution of a compound transmits 20 % of visible light when the absorbing path length is 1.5 cm. What is the molar extinction co-efficient of the substance? Solvent is assumed to be completely transparent.
 - (A) $46.6 \,\mathrm{M}^{-1}\mathrm{cm}^{-1}$
- (B) 50.3 M⁻¹cm⁻¹
- (C) $22.3 \text{ M}^{-1}\text{cm}^{-1}$ (D) $43.6 \text{ M}^{-1}\text{cm}^{-1}$
- 99. Which of the following atoms has the highest number of unpaired electrons in its ground state?
 - (A) C
- (B) N
- (C) O
- (D) F
- 100. Which of the following compounds has the highest boiling point?
 - (A) Mesitylene
- (B) Benzene

(C) Toluene

(D) Cyclohexane