Integrated M.Sc. Entrance Examination - 2011 | Maximum Mark | s : 7 | 5 | | | | Ti | me : | 2 | hrs. | |-----------------|-------|---|--|--|--|----|------|---|------| | | | | | | | | | | | | Hall Ticket No. | | | | | | | | | | ## Instructions for students - Please enter your Hall Ticket Number on this page and on the OMR sheet without fail. - Read the following instructions carefully. - 1. Questions 1-25 are in Biology, 26-50 in Chemistry, 51-75 in Physics and 76-100 are in Mathematics. - 2. Answer as many questions as you can. Each question carries 1 mark. Each wrong answer will be awarded -0.33. The maximum marks for the paper is 75. - 3. Answers are to be marked on the OMR sheet following the instructions given there. - Hand over both the question paper and the OMR sheet at the end of examination. - 5. Non-programmable calculators are allowed. Log tables and programmable calculators are not allowed. - 6. Rough work can be done anywhere on the question paper but not on the OMR sheet. - 7. This book contains 18 pages including this page and pages for the rough work. Please check that your question paper has all the pages. | 1. | Eukaryotic organisms that include protozoa and filamentous algae, such as Amoel Plasmodium, Euglena etc, belong to the kingdom | | | | |-----|--|--|---|-------------------------------| | | (A) Protista. | (B) Plantae. | (C) Fungi. | (D) Eubacteria. | | 2. | (B) a group of linl
(C) a protein, a su | a six-carbon sugar, and a sect amino acids. gar, and a phosphate. ive-carbon sugar, and a n | , | | | 3. | A haploid (n) set of | f chromosomes is present | in | | | | (A) Carpel. | (B) Style. | (C) Pollen. | (D) Petal. | | 4. | (A) 3' TCA GTT | a DNA strand is 5' ATG
and in 5' → 3' direction is
CCA ACG CAT 5'
AGT TGC GTA 3' | s:
(B) 5' TCA GTT | TCA ACG CAT 3' ACT TTG ACT 3' | | 5. | Crabs, Prawns, Sco | rpions, Spiders, Milliped | es and Centipedes be | long to the phylum | | | (A) Porifera. | (B) Echinodermata. | (C) Arthropoda. | (D) Cnidaria. | | 6. | Wuchereria bancro | fti causes | | | | | (A) Elephantiasis. | (B) Malaria. | (C) Diptheria. | (D) Typhoid. | | 7. | In chloroplasts, ligh | t-dependent reactions of | photosynthesis take r | place in | | | (A) stroma. | (B) nucleus. (C) thy | lakoid membranes. | (D) cytoplasm. | | 8. | (A) columnar epith | iciency Virus (HIV) attached all cells of small intest of white blood cell). | ine. (B) liver c | ells.
c cells of stomach. | | 9 | Given below are m
INCORRECT pair | nicrobes paired with theirs: | ir commercially impo | ortant products. The | | | (A) Saccharomyce
(C) Acetobacter ac | s cerevisiae: saccharine.
eti: acetic acid. | (B) Aspergillus ni
(D) Lactobacillus | | | 10. | The relationship bet | ween a fungus and cyano | bacteria in Lichens re | epresents | | | (A) Commensalism | n. (B) Symbiosis. | (C) Parasitism. | (D) Predation. | | 11. | (A) to make large r
(B) to identify anti-
(C) to make RNA | merase Chain Reaction (Fourthern of copies of a DN body production in laboratory. The fourth of the control | IA fragment in laboratory. | tory. | | 12. | Genetic alteration of a bacterium by introducing a piece of exogenous DNA is called | | | | | |--------------|---|--------------------------------|--------------------|---------------------------|--| | | (A) Lysogeny. | (B) | Recombination. | | | | | (C) Transformation. | (D) | Translation. | | | | 13. | Four tubes of DNA were analyzed for their nitrogenous base compositions. Based on percentages of adenine (A), guanine (G), thymine (T) and cytosine (C), the tube that contains double-stranded DNA is: | | | | | | | (A) A=32%, G=18%, C=
(B) A=46%, G=28%, C=
(C) A=22%, G=18%, C=3
(D) A=18%, G=18%, C=3 | 10% and T=16%
36% and T=22% | | | | | 14. | The base that is absent in | messenger RNA is | s | | | | | (A) Guanine. | B) Cytosine. | (C) Adenine. | (D) Thymine. | | | 15. | The process whereby the up the food chain through | | | ant increase as it passes | | | | (A) Biodegradation. | • • | Biomagnification. | | | | | (C) Fermentation. | | Biodiversity. | | | | 1 6 . | Tryptophan, Histidine, Va | | - | s of | | | | (A) fatty acids. | . , | nucleic acids. | | | | | (C) amino acids. | (D) | carbohydrates. | | | | 17. | The bond that is absent in | a DNA molecule | is | | | | | (A) Phosphodiester bond | . (B) | Glycosidic bond. | | | | | (C) Hydrogen bond. | (D) | Peptide bond. | | | | 18. | The phylum that is called | the amphibians of | the plant kingdon | n is | | | | (A) Algae. (B) Bryo | ophyta. (C) | Pteridophyta. | (D) Gymnosperms. | | | 19. | Conjoint and open vascula feature of | ar bundles with er | ndarch protoxylem | arranged in a ring are a | | | | (A) Dicot root. | (B) | Monocot root. | | | | | (C) Dicot stem. | (D) | Monocot stem. | | | | 20. | In an eukaryotic cell, the r | nessenger RNAs | are synthesized in | ı | | | | (A) Nucleus. (| B) Cytoplasm. | (C) Goldi apa | ratus. (D) Ribosome. | | | 21. | The end product of glycol | ysis under anaerol | bic conditions is | | | | | (A) Citric acid. | (B) | Lactic acid. | | | | | (C) Oxaloacetic acid. | (D) | Pyruvic acid | | | | 22. | The phenotype for the AB | _ | | | | | | (A) O is dominant over A | , , | B is dominant over | | | | | (C) O is recessive. | (D) | O is dominant ov | er B. | | | 23. | Gibberellins, Auxins, Et
(A) plant growth regula
(C) components of gast | tors. | (B) and | eid are
imal hormones.
oducts of microbial fer | mentation. | | |-----|--|---|---------------------|---|---|--| | 24. | 4. The correct statement for Meiosis cell division is: (A) It takes place within somatic cells. (B) The number of chromosomes per nucleus remains the same after division. (C) The mother cell can either be haploid or diploid. (D) There is at least one crossing-over per homologous pair of chromosomes. | | | | | | | 25. | Given that colour blind individuals having an un (A) 0% | dness is a dor
affected child in
(B) 25% | minant
is: | trait, the probability (C) 50% | of two affected (D) 75% | | | 26. | Which one of the follow | ing will have th | ne large | st number of atoms? | | | | | [At. Wts.: Li = 7, $F = 19$
(A) 1 g Li | $(B) 1 g F_2$ | | (C) 1 g H ₂ O | (D) 1 g PH ₃ | | | 27. | The volume of 0.5 N s
0.25 M sulfuric acid is | sodium hydrox | tide sol | ution required to neu | tralize 50 ml of | | | | (A) 25 ml. | (B) 50 ml. | | (C) 75 ml. | (D) 100 ml. | | | 28. | CaCO ₃ reacts with aque
Cl = 35.5]. The mass of | CaCO ₃ that wi | duce Call react | aCl ₂ , CO ₂ and H ₂ O [A completely with 25 ml (C) 1.0 g. | t. Wts.: Ca = 40,
l of 1 N HCl is
(D) 1.25 g. | | | | (A) 0.25 g. | (B) 0.50 g. | | . , . | , , | | | 29. | The solubility product (A) 1.22 litre. | K _{SP}) of calcium
f water required
(B) 2.45 litre. | d to dis | ate is $9 \times 10^{-6} \text{ M}^2$ [At solve 1 g of calcium su (C) 4.50 litre. | Wt. of S = 32]. Alphate is (D) 6.33 litre. | | | 30. | The atoms of the yet to be in the 5g orbitals. The n | e discovered e
umber of elem | lements
ents exp | s, starting at $Z = 121$ we exceed in the 5g-block | ill have electrons is: | | | | (A) 14 | (B) 18 | | (C) 22 | (D) 26 | | | 31. | The molecule with zero | | among | | (D) CHOI | | | | (A) H ₂ O | (B) NF ₃ | | (C) BF ₃ | (D) CHCl ₃ | | | 32. | The CIF ₃ molecule is (A) T-shaped. (C) trigonal planar. | | ` ' | gonal pyramidal.
trahedral. | | | | 33. | At 27°C and 760 mm Hg
temperature when the p
respectively? | g pressure a ga
ressure and vo | s occup
olume o | f the gas are 570 mm | Hg and 600 ml, | | | | (A) 8°C | (B) 3°C | | (C) -3°C | (D) -8°C | | | 34. | At 50°C and constant pr
equilibrium constant K _p | | | e 50% of N ₂ O ₄ dissoci | ates to NO ₂ . The | | | | (A) 1.02 | (B) 1.33 | | (C) 2.04 | (D) 2.66 | | | B minutes. What will f Al = 27, F = 96500 (D) 3.0 g ectively. | |---| | ectively. | | • | | • | | ectively. | | | | ice 90 g of H ₂ O? | | (D) 3 | | ICl ₃ produces | |) benzaldehyde. | | | | erism. | | omerism. | | | | n. (D) dissociation. | | CH ₂ COCl produces: | | CH ₃ | | OCH ₃ | | | | and 3-nitrophenol. | | and 4-nitrophenol. | | , NO ₂ and OCH ₃ , the | | I > OCH ₃ | | > C1 > H | | n test is | | e. (D) acetone. | | | | l_2 | | d Cl ₂ | | | 47. The molecular formula of an oxide of iron (At. Wt.: 55.8) which has 69.9% iron and 30.1% oxygen is: (A) FeO (B) FeO₂ (C) Fe_2O_3 (D) Fe_3O_4 48. The magnetic moment of the brown compound [Fe(NO)(H₂O)₅]SO₄ formed in the nitrate ring test is 3.87 B.M. What is the valence of iron in this compound? (C) +3(D) +4(A) + 1**(B)** +249. Hybridization of the metal ion in diamagnetic octahedral [Co(NH₃)₆]Cl₃ is: $(A) d^3sp^2$ (B) sp^2d^3 (C) sp^3d^2 (D) d^2sp^3 50. Graphite belongs to which crystal system? (B) Hexagonal (C) Trigonal (D) Tetragonal 51. The height at which the acceleration due to gravity becomes g/9 (g = gravity on surface) in terms of R (radius of earth) is: (A) R√2 (C) $R/\sqrt{2}$ (B) 2R (D) R/2 52. Two moles of helium gas are taken from 300 K to 500 K at constant pressure of 1 N/m². Assuming the gas to be ideal, the work done on the gas is: (A) 500R (B) 200R (C) 300R (D) 400R 53. The integral B.ds for the closed path shown in the following figure is: $(A) -8\pi \times 10^{-7} \text{ Tm}$ (B) $8\pi \times 10^{-7} \text{ Tm}$ (C) $-4\pi \times 10^{-7} \text{ Tm}$ (D) $32\pi \times 10^{-7}$ Tm 3 A 8 1 A 4 A 54. A charge Q is placed at the three corners of a square of side a. The magnitude of the electric field at the center is: (A) $(1/2\pi\epsilon_0)$ O/a² (B) $(1/4\pi\epsilon_0) Q/a^2$ (C) $(1/8\pi\epsilon_0)$ O/a² (D) $(1/16\pi\epsilon_0)$ O/a² 55. A particle has initial velocity 0.3i + 0.4j and an acceleration 0.4i + 0.3j. Its speed after 10s is: 56. The velocity of a particle is $v = v_0 + gt + ft^2$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1) is: (B) 5.5 units (A) $v_0 + 2g + 3f$ (B) $v_0 + g/2 + f/3$ (C) $v_0 + g + f$ (A) 8.5 units (D) $v_0 + g/2 + f$ (C) $7\sqrt{2}$ units (D) 7 units | 57. | interchanged with one respectively, (A) both E and V at certain | kept at the other t
Q charge, and E a
nter change. | wo corners. If one of and V are the electric find (B) only E changes in | the q charges are ield and potential | | |-----|--|--|--|--|--| | | (C) only V changes not | E . | (D) neither changes. | | | | 58. | blocks are at rest, and the
block of mass M to pull | blocks are placed on
the spring unstretched
it. The net force on | on a smooth horizontal p
d. Then a constant force of
the block of mass m is: | lane. Initially the | | | 59. | 2. A block of mass m is connected to a spring of force constant k, and is oscillating with frequency f. If the spring is made 4 times stiffer (i.e., force constant 4k) the new frequency of oscillation is: | | | | | | | (A) 4f | (B) 2f | (C) f/2 | (D) f/4 | | | 60. | | gin. There is a char | is S_1 with radius a and S_2 rege +q at the origin, and the flux Φ_2 through S_2 is:
(C) $\Phi_1 = \Phi_2$ | no other charges. | | | | (11) 1 1 1 1 1 2 | $(\mathbf{D}) \mathbf{\Psi}_1 - 2\mathbf{\Psi}_2$ | $(\mathbf{c})\mathbf{v}_1 - \mathbf{v}_2$ | $(D) \Phi_1 - \Phi_{2}/2$ | | | 61. | A man 2 m tall, whose vertical mirror. The mir able to see the whole of | nimum vertical leng | above the ground, looks
th of the mirror required | | | | | (A) 1 m | (B) 2 m | (C) 0.75 m | (D) 1.25 m | | | 62. | A point charge of $3\mu C$ i $6\mu C$. The ratio of the m | | ce 1 m away from anoth | | | | | (A) 1/2 | (B) 1 | (C) 2 | (D) 18 | | | 63. | A body of mass 1 Kg is instant, its speed is 5 m/between the particles ve | s and the speed is in | creasing at the rate of 2. | | | | | $(A) 0^{\circ}$ | (B) 30° | (C) 90° | (D) 45° | | | 64. | The ratio of the radius of the electron orbit in the ground state $(n = 1)$ of helium ion He^+ to the $n = 2$ orbit of the hydrogen atom is given by: | | | | | | | (A) 2 | (B) ½ | (C) 4 | (D) 1 | | | 65. | The work done in increa an isothermal process is | | f n moles of an ideal gas | from P ₁ to P ₂ by | | | | (A) nRT $ln(P_1/P_2)$ | (B) | $nRT ln(P_2/P_1)$ | | | | | (C) nRT (lnP_1/lnP_2) | (D) | $nRT(lnP_2/lnP_1)$ | | | | 66. | The momentum of a pho | oton of frequency v | is: | | | | | (A) w/a | (B) hyc | $(C) hy/c^2$ | (D) hy/c | | | 67. | Suppose an electron is attracted towards the origin by a force $'k/r'$ where $'k'$ is a constant and 'r' is the distance of the electron from the origin. By applying Bohr model to this system, the kinetic energy of the electron is found to be $'T_n'$ in the n-th orbit. Then which of the following is true? | | | | | |-----|--|---|--------------------|---|--| | | (A) $T_n \propto 1/n$ | | (B) T _n | αn | | | | (C) $T_n \alpha 1/n^2$ | | (D) T _n | is independent of n | | | 68. | A planet is 10 times mother escape velocity from (A) 10v | ore massive than
the earth is v, t
(B) v/10 | the esca | arth and its radius is 10 ape velocity from the p (C) v/100 | times larger. If
lanet surface is:
(D) v | | 69. | Consider an oscillation amplitude A and angula the period T later than to the first one is: | r frequency ω re | eaches | the end of its oscillation | ns a fraction β of | | | $(A) -2\pi\beta$ | (B) $2\pi\beta$ | | (C) -πβ | (D) πβ | | 70. | A solid ball of volume ρ_2 ($\rho_2 < \rho_1$). Assume proportional to the speed is: | that the liquid | d appli | es a viscous force on | the ball that is | | | (A) $\sqrt{(V\rho_1g/k)}$ | | (B) V ₂ | $g(\rho_1 - \rho_2)/k$ | | | | (C) $\sqrt{(Vg(\rho_1-\rho_2)/k)}$ | | (D) V ₂ | | | | 71. | The non-zero vectors a between a and c is: | , b and c are | related | by $a = 8b$, $c = -7b$. | Then the angle | | | (A) $\pi/2$ | (B) π | | (C) 0 | (D) $\pi/4$ | | 72. | Two capacitors have newhen connected in serie | | | | allel, and 7.5 µF | | | (A) 20 μF | (B) 40 μF | | (C) 30 µF | (D) 300µF | | 73. | If two wires carrying cu
one wire on the other wi | | ed perp | endicular to each other | , the force due to | | | (A) 0. | | (B) di | ected perpendicular to | both wires. | | | (C) directed along the | wires. | (D) di | rected at 45° between t | he wires. | | 74. | A certain charge Q is to relation of Q to q if to maximum Coulomb rep | he two parts, p | | | | | | (A) Q = q | (B) Q = 2q | | (C) Q = q/2 | (D) $Q = 4q$ | | 75. | Two submarines travell
The first submarine sen
5470 Km/h. What frequ | ds out a sonar | signal | at 1030 Hz, travelling | | (C) 1050 Hz (D) 515 Hz (B) 1030 Hz (A) 2060 Hz - 76. Define a relation S in the set \mathbb{R} of real numbers defined as $S = \{(x, y)/xy = 1\}$ then S is - (A) an equivalence relation - (B) symmetric and transitive but not reflexive - (C) symmetric and reflexive but not transitive - (D) symmetric neither reflexive nor transitive - 77. Let $f: \mathbb{R} \to (-1,1)$ be a function defined by $f(x) = \frac{x}{1+|x|}$, then f is - (A) one one but not onto - (B) onto but not one one - (C) neither one one nor onto (D) both one one and onto - 78. If a+b+c < 0 then $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is - (A) always negative (B) always positive (C) equal to $a^2+b^2-c^2$ (D) equal to $(a+b+c)^2-(a^2+b^2+c^2)$ - 79. The matrix $\begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix}$ is invertible if and only if - (A) $b \neq 0$ (B) $|a| \neq |c|$ (C) $b \neq 0$ and $|a| + |c| \neq 0$ (D) $b \neq 0$ and $|a| \neq |c|$ - 80. Let $f: \mathbb{R} \{0\} \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x}$, then f is - (A) continuous but not differentiable(B) discontinuous - - (C) continuous and differentiable - (D) integrable - 81. $\lim_{x\to 0} \frac{\exp(-1/x^2)}{x} =$ - $(A) \infty \qquad (B) 0$ - (C) 1 - (D) ∞ 82. $$\frac{d}{dx} \int_0^{x^2} \frac{\tan \sqrt{y}}{\sqrt{y}} dy =$$ (A) $2 \tan x$ (B) $\frac{1}{2} \tan x$ (C) $2 \tan \sqrt{x}$ (D) $\frac{1}{2} \tan \sqrt{x}$ 83. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2 \sin(\frac{1}{x})$ when $x \neq 0$ and f is continuous. Then f'(0) = ``` (A) \frac{1}{2} (B) 0 (C) 1 (D) 2 ``` 84. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Then the correct statement form the following is (A) If f'(0) = 0 then f has local maximum or local minimum at 0 (B) If f has maximum or minimum at 0 then f'(0) = 0 (C) If f'(0) = 0, f''(0) = 0 then f has maximum or minimum at 0 (D) If f has maximum or minimum at 0 then f'(0) = 0, f''(0) = 0 85. The area of the region bounded by the curve |x| + |y| = 1 is 86. If $\tan \theta = \frac{b}{a}$ then $a \cos 2\theta + b \sin 2\theta =$ (A) a (B) b (C) $$a+b$$ (D) $\frac{a^2-b^2}{a^2+b^2}$ 87. Two sides of a triangle are $\sqrt{3} + 1$, $\sqrt{3} - 1$ and the included angle is $\pi/3$. The other side is (A) $$\sqrt{6}$$ (B) $2\sqrt{3}$ (C) 1 (D) $\sqrt{3}/2$ 88. $\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} =$ (A) $$\frac{3}{2}$$ (B) 2 (C) $\frac{1}{2}$ (D) 0 89. $$\sin^{-1}(\sin(\frac{2\pi}{3})) =$$ (A) $$\frac{4\pi}{3}$$ (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{3}$ (B) $$\frac{2\pi}{3}$$ (C) $$\frac{\pi}{3}$$ 90. $$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) =$$ (A) $$\frac{x}{2}$$ (B) $$\frac{\pi + x}{2}$$ (C) $$\frac{\pi + x}{4}$$ (A) $$\frac{x}{2}$$ (B) $\frac{\pi + x}{2}$ (C) $\frac{\pi + x}{4}$ (D) $\frac{\pi + 2x}{4}$ 91. If $$x + iy = \sqrt{\frac{a + ib}{c + id}}$$, then $(x^2 + y^2)^2 =$ (A) $$\sqrt{\frac{a^2+ib^2}{c^2+id^2}}$$ (B) $\frac{(a^2+b^2)^2}{(c^2+d^2)^2}$ (C) $\sqrt{\frac{a^2+b^2}{c^2+d^2}}$ (D) $\frac{a^2+b^2}{c^2+d^2}$ (B) $$\frac{(a^2+b^2)^2}{(c^2+d^2)^2}$$ (C) $$\sqrt{\frac{a^2+b^2}{c^2+d^2}}$$ (D) $$\frac{a^2+b^2}{c^2+d^2}$$ 92. The equation $$\frac{(x-3)^2}{9} + \frac{(y+2)^2}{25} = 1$$ represents an ellipse with foci at (C) $$(3,-6)$$, $(3,2)$ (D) $$(3,6)$$, $(3,-2)$ 93. The hypotenuse of a right angled triangle has its ends at the points $$(1,3)$$ and $(-4,1)$. The equations of its other two sides are (A) $$x = 1, y = 1$$ (B) $$x = 1$$. $y = -1$ (C) $$x = -1$$, $y = 1$ (D) $$x = -1$$, $y = -1$ 94. The equation of the hyperbola whose foci are $$(0, 12)$$, $(0, -12)$ and the length of the latus rectum is 36 is (A) $$\frac{x^2}{36} - \frac{y^2}{108} = 1$$ (B) $\frac{-x^2}{36} + \frac{y^2}{108} = 1$ (C) $\frac{x^2}{108} - \frac{y^2}{36} = 1$ (D) $\frac{y^2}{36} - \frac{x^2}{108} = 1$ (B) $$\frac{-x^2}{36} + \frac{y^2}{108} = 1$$ (C) $$\frac{x^2}{108} - \frac{y^2}{36} = 1$$ (D) $$\frac{y^2}{36} - \frac{x^2}{108} = 1$$ | 95. | The number of common tangents to the circles $x^2+y^2+2x-10y-38=0$, $x^2+y^2-4x-2y-4=0$ is | | | | | |------|--|----------------------------------|--------------------------|--|--| | | (A) 1 | (B) 2 | (C) 3 | (D) 4 | | | 96. | angle between \mathbf{b} , | c is $\pi/4$, then | | he plane P and the | | | | (A) the angle between (B) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is (C) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is (D) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 1/2$ | normal to the p on the plane P | | | | | 97. | The number of vec $i + j$, $-j + k$ is | ctors whose magn | itude is $2\sqrt{3}$ and | orthogonal to both | | | | (A) 0 | (B) 1 | (C) 2 | (D) infinite | | | 98. | selects one ball fro
same number is | om each box then | the probability o | led 1 to 100. If one of getting balls with | | | | (A) $\frac{1}{10}$ | (B) $\frac{1}{100}$ | (C) $\frac{1}{1000}$ | (D) $\frac{1}{10000}$ | | | 99. | then replaced alor | ng with another | ball of same color | ball is drawn and
ir before drawing a
in the second draw | | | | (A) $\frac{1}{2}$ | (B) $\frac{1}{3}$ | (C) $\frac{1}{4}$ | (D) $\frac{1}{5}$ | | | 100. | _ | | | er of ways one can
contains more than | | | | (A) 15 | (B) 180 | (C) 360 | (D) 720 | | V-01 ## FOR ROUGH USE ONLY