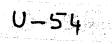


University of Hyderabad,



Entrance Examination, 2010

Ph.D. (Mathematics/Applied Mathematics/OR)

Hall Ticket No.

Time: 2 hours

Max. Marks: 75 Part A: 25 Part B: 50

Instructions

- 1. Calculators are not allowed.
- 2. Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries - 0.33mark. So do not gamble. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
- 3. Part B carries 50 marks. Instructions for answering Part B are given at the beginning of Part B.
- 4. Use a separate booklet for Part B.

Part Answer A by circling the correct letter in the array below:

	_				
	1	a	b	c	d
	2	a b c		d	
	3	a	b	c	d
	4	a	b	c	d
	5	5 a b c		c	d
	6	a	b	c	d
	7	a	b	c	d
	8	a	b	c	d
	9	a	b	c	d
	10	a	b	с	d
ſ	11	a	b	с	d
	12	a	b	è	d
	13	a	b	c	d
Γ	14	a	b	c	d
	15	a	b	c	d
	16	a	b	c	d
	17	a	b	c	d
	18	a	b	с	d
	19	a	b	с	d
	20	a	b	с	d
[21	a	b	с	d
	22	a	b	с	d
	23	a	b	с	d
	24	a	b	c	d
	25	a	b	с	d

PART A

Each question carries 1 mark. 0.33 mark will be deducted for each wrong answer. There will be no penalty if the question is left unanswered. The set of real numbers is denoted by \mathbb{R} , the set of complex numbers by \mathbb{C} , the set of rational numbers by \mathbb{Q} and the set of integers by \mathbb{Z} .

- 1. Let V be a real vector space and $S = \{v_1, v_2, \ldots, v_k\}$ be a linearly independent subset of V. Then
 - (a) dim V = k.
 - (b) dim V < k.
 - (c) dim $V \ge k$.
 - (d) nothing can be said about dim V.

2. The value of
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$
 is
(a) 0. (b) $\frac{1}{2}$. (c) 1. (d) $\frac{3}{2}$.

3. Consider the function f(x) on \mathbb{R} defined by

$$f(x) = \begin{cases} x^3, & \text{if } x^2 \leq 1\\ x, & \text{if } x^2 \geq 1. \end{cases}$$

Then

- (a) f is continuous at each point of \mathbb{R} .
- (b) f is continuous at each point of except at $x = \pm 1$.
- (c) f is differentiable at each point of \mathbb{R} .
- (d) f is not continuous at any point of \mathbb{R} .
- 4. Let f(x, y) be defined on \mathbb{R}^2 by f(x, y) = |x| + |y|. Then
 - (a) the partial derivatives of f at (0,0) exist.
 - (b) f is differentiable at (0,0).
 - (c) f is continuous at (0,0).
 - (d) none of the above hold.

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous taking values in \mathbb{Q} , the set of rational numbers. Then
 - (a) f is strictly monotone.
 - (b) f is unbounded.
 - (c) f is differentiable.
 - (d) the image of f is infinite
- 6. For the set $\left\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\right\}$, the element $\frac{1}{4}$ is
 - (a) both an element in the set and a limit point of the set.
 - (b) neither an element in the set nor a limit point.
 - (c) an element in the set, but not a limit point.
 - (d) a limit point of the set, but not an element in the set.
- 7. If $|\tan z| = 1$, then
 - (a) Re $z = \frac{\pi}{4} + \frac{n\pi}{2}$. (b) Re $z = \frac{\pi}{4} + n\pi$. (c) Re $z = \frac{\pi}{2} + n\pi$. (d) Re $z = \frac{\pi}{2} + \frac{n\pi}{2}$.
- 8. The number of zeroes of $z^9+z^5-8z^3+2z+1$ in the annular region $1\leq |z|\leq 2$ are
 - (a) 3. (b) 6. (c) 9. (d) 14.
- 9. The residue of $f(z) = \cot z$ at any of its poles is

(a) 0. (b) 1. (c)
$$\sqrt{2}$$
. (d) $2\sqrt{3}$.

1-54

- 10. Let (X, d) be a metric space and $A \subset X$. Then A is totally bounded if and only if
 - (a) every sequence in A has a Cauchy subsequence.
 - (b) every sequence in A has a convergent subsequence.
 - (c) every sequence in A has a bounded subsequence.
 - (d) every bounded sequence in A has a convergent subsequence.
- 11. Suppose N is a normal subgroup of G. For an element x in a group, let O(x) denote the order of x. Then
 - (a) O(a) divides O(aN).
 - (b) O(aN) divides O(a).
 - (c) $O(a) \neq O(aN)$.
 - (d) O(a) = O(aN).
- 12. If G is a group such that it has a unique element a of order n. Then
 - (a) n = 2.
 - (b) n is a prime.
 - (c) n is an odd prime.
 - (d) O(G) = n.

13. Consider the ring \mathbb{Z} . Then

- (a) all its ideals are prime.
- (b) all its non-zero ideals are maximal.
- (c) \mathbb{Z}/I is an integral domain for any ideal I of Z.
- (d) any generator of a maximal ideal in \mathbb{Z} is prime.
- 14. F_n denotes the finite field with *n* elements. Then
 - (a) $F_4 \subset F_8$.
 - (b) $F_4 \subset F_{12}$.
 - (c) $F_4 \subset F_{16}$.
 - (d) $F_4 \subset F_{32}$.

15. Let A be an $n \times n$ matrix which is both Hermitian and unitary. Then

- (a) $A^2 = I$.
- (b) A is real.
- (c) The eigenvalues of A are 0, 1, -1.
- (d) The minimal and characteristic polynomials are same.

16. For $0 < \theta < \pi$, the matrix

$$\left(\begin{array}{cc}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{array}\right)$$

- (a) has real eigenvalues.
- (b) is symmetric.
- (c) is skew-symmetric.
- (d) is orthogonal.
- 17. Let $\{u, v\} \subset \mathbb{R}^3$ be a linearly independent set and let $A = \{w \in \mathbb{R}^3 : ||w|| = 1 \text{ and } \{nu, v, w\}$ is linearly independent for some $n \in \mathbb{N}\}$. Then
 - (a) A is a singleton.
 - (b) A is finite but not a singleton.
 - (c) A is countably finite.
 - (d) A is uncountable.
- 18. A : A is a 5×5 complex matrix of finite order, that is, $A^k = I$ for some $k \in \mathbb{N}$, must be diagonalizable.

B:A diagonalizable 5×5 matrix must be of finite order. Then

- (a) A and B are both true.
- (b) A is true but B is false.
- (c) B is true but A is false.
- (d) Both A and B are false.

- 19. Let V = C[0, 1] be the vector space of continuous functions on [0, 1]. Let $||f||_1 := \int_0^1 |f(t)| dt$ and $||f||_{\infty} := \sup\{|f(t)| : 0 \le t \le 1\}$. Then
 - (a) $(V, || ||_1)$ and $(V, || ||_{\infty})$ are Banach spaces.
 - (b) $(V, || ||_{\infty})$ is complete but $(V, || ||_1)$ is not.
 - (c) $(V, || ||_1)$ is complete but $(V, || ||_{\infty})$ is not.
 - (d) Neither of the spaces $(V, || ||_1), (V, || ||_{\infty})$ are complete.
- 20. The space l_p is a Hilbert space if and only if (a) p > 1. (b) p is even. (c) $p = \infty$. (d) p = 2.
- 21. Which of the following statements is correct?
 - (a) On every vector space V over \mathbb{R} or \mathbb{C} , there is a norm with respect to which V is a Banach space.
 - (b) If (X, ||.||) is a normed space and Y is a subspace of X, then every bounded linear functional f_0 on Y has a unique bounded linear extension f to X such that $||f|| = ||f_0||$.
 - (c) Dual of a separable Banach space is separable.
 - (d) A finite dimensional vector space is a Banach space with respect to any norm on it.

22. The critical point (0,0) for the system $\frac{dx}{dt} = 2x, \frac{dy}{dt} = 3y$ is

- (a) a stable node
- (b) an unstable node.
- (c) a stable spiral.
- (d) an unstable spiral.

23. The set of linearly independent solutions of $\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 0$ is

- (a) $\{1, x, e^x, e^{-x}\}.$
- (b) $\{1, x, e^{-x}, xe^{-x}\}.$
- (c) $\{1, x, e^x, xe^x\}$.
- (d) $\{1, x, e^x, xe^{-x}\}.$

24. The set of all eigenvalues of the Sturm-Liouville problem

$$y'' + \lambda y = 0, \ y'(0) = 0, \ y'(\frac{\pi}{2}) = 0$$

is given by

- (a) $\lambda \neq 0, \lambda = 2n, n = 1, 2, 3, ...$
- (b) $\lambda \neq 0, \lambda = 4n^2, n = 1, 2, 3, ...$
- (c) $\lambda = 2n, n = 0, 1, 2, 3, \dots$
- (d) $\lambda = 4n^2, n = 0, 1, 2, 3, \dots$

25. A complete integral of $zpq = p^2q(x+q) + pq^2(y+p)$ is

- (a) z = ax + by 2ab.
- (b) xz = ax by + 2ab.
- (c) xz = by ax + 2ab.
- (d) xz = ax + by + 2ab.

) - 54

PART B

Answer any ten questions. Each question carries 5 marks.

- 1. List all possible Jordan Canonical forms of a 7×7 real matrix whose minimal polynomial is $(x-1)^2(x-2)(x+3)$ and characteristic polynomial is $(x-1)^2(x-2)^2(x+3)^3$.
- 2. A is an $m \times n$ matrix and B is an $n \times m$ matrix, n < m, then prove that AB is never invertible.
- 3. Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function with the point at infinity as a pole. Show that f is a polynomial.
- 4. Show that $L^2([0,1]) \subseteq L^1([0,1])$ and the inclusion map $f \to f$ from $L^2[0,1]$ to $L^1[0,1]$ is a bounded linear operator.
- 5. Let $f : \mathbb{C} \to \mathbb{C}$ be a complex analytic function such that f(f(z)) for all $z \in \mathbb{C}$ with |z| = 1. Show that f is either constant or identity.
- 6. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial whose co-efficients satisfy $\sum_{i=0}^{n} \frac{a_i}{i+1} = 0$. Then p(x) has a real root between 0 and 1.
- 7. Give an example of a decreasing sequence $\{f_n\}$ of measurable functions defined on a measurable set E of \mathbb{R} such that $f_n \to f$ pointwise a.e. on E but $\int_E f \neq \lim_{n\to\infty} \int_E f_n$.
- 8. Show that all 3-Sylow subgroups in S_4 are conjugate.
- 9. Let α be algebraic over a field K such that the degree $[K(\alpha) : K]$ is odd. Show that $K(\alpha) = K(\alpha^2)$.
- 10. Let *E* be the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, *H* be the hyperbola xy = 1 and *P* be the parabola $y = x^2$. Show that no two of these are homeomorphic.
- 11. Verify whether

$$Q_1 = q_1 q_2, \quad Q_2 = q_1 + q_2,$$
$$P_1 = \frac{p_1 - p_2}{q_1 - q_2} + 1, \quad P_2 = \frac{q_2 p_2 - q_1 p_1}{q_2 - q_1} - (q_2 + q_1)$$

is a canonical transformation for a system having two degrees of freedom. 12. Determine the Green's function for the boundary value problem

$$egin{aligned} xy''+y'&=-f(x), & 1< x<\infty \ y(1)&=0, \ && \lim_{x o\infty}|y(x)|<\infty \end{aligned}$$

13. Find the critical point of the system

$$\frac{dx}{dt} = x + y - 2xy, \quad \frac{dy}{dt} = -2x + y + 3y^2,$$

and discuss its nature and stability.

14. Reduce the following partial differential equation to a canonical form and solve, if possible.

$$x^2u_{xx} + 2xu_{xy} + u_{yy} = u_y.$$

- 15. Determine the two solutions of the equation pq = 1 passing through the straight line $C: x_0 = 2s, y_0 = 2s, z_0 = 5s$.
- 16. Let \hat{x} denote the optimal solution to the following linear programming problem P1 :

$$\begin{array}{rcl}
\min & c^T x \\
s.t. & Ax & \geq & b \\
& x & \geq & 0,
\end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c, x \in \mathbb{R}^n$. Now, a new constraint $\alpha^T x \ge \beta$, where $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$, is added to the feasible region and we get the following linear programming problem P2:

Discuss about the optimality of \hat{x} for the two cases (a) \hat{x} is feasible to the new LP (P2) and (b) \hat{x} is not feasible to the new LP (P2).

8

0-54

17. Consider the following linear programming problem

$$\begin{array}{rcl} \min & x_1 + x_2 \\ s.t. & sx_1 + tx_2 & \geq & 1 \\ & & x_1 & \geq & 0 \\ & & & x_2 & \text{unrestricted} \end{array}$$

Find conditions on s and t to make the linear programming problem have (a) multiple optimal solutions and (b) an unbounded solution.

18. Five employees are available for four jobs in a firm. The time (in minutes) taken by each employee to complete each job is given in the table below.

$Person \downarrow Job \rightarrow$	1	2	3	4
1	24	18	32	18
2	20	-	29	24
3	28	22	30	30
4	18	24	-	16
5	23	-	27	29

The objective of the firm is to assign employees to jobs so as to minimize the total time taken to perform the four jobs. Dashes indicate a person cannot do a particular job.

- (a) Formulate the above problem as a linear programming problem and state the Dual of the problem.
- (b) What is the optimal assignment to the problem?