S-07

Entrance Examination : M.Sc. Mathematics, 2010

Hall Ticket Number

Time : 2 hours Max. Marks. 75 Part A : 25 marks Part B : 50 marks

Instructions

- 1. Write your Hall Ticket Number in the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. There is negative marking. Do not gamble.
- 3. Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- 4. Hand over the question paper booklet and the OMR answer sheet at the end of the examination.
- 5. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 50 questions in Part A and Part B together.
- 8. The appropriate answer should be coloured in either a blue or black ball point or sketch pen. DO NOT USE A PENCIL.

Part-A

Each question carries 1 mark. 0:33 marks will be deducted for each wrong answer. There will be no penalty if the question is left unan-swered.

The set of real numbers is denoted by \mathbb{R} , the set of complex numbers by \mathbb{C} , the set of rational numbers by \mathbb{Q} , the set of integers by \mathbb{Z} , and the set of natural numbers by \mathbb{N} .

1. Let $f(x) = \cos |x|$ and $g(x) = \sin |x|$ then

- (A.) both f and g are even functions.
- (B.) both f and g are odd functions.
- (C.) f is an even function and g is an odd function.
- (D.) f is an odd function and g is an even function.
- 2. The sequence $\left\{ (-1)^n \left(1 + \frac{1}{n} \right) \right\}$ is
 - (A.) bounded below but not bounded above.
 - (B.) bounded above but not bounded below.
 - (C.) bounded.
 - (D.) not bounded.

3. If
$$f(x) = \begin{cases} \exp(x) - 1 - x, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 then $f'(0)$ is

- (A.) 0.
- (B.) 1.
- (C.) 1/2
- (D.) none of these.
- 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix with integer entries such that $b \neq 0$. If $A^2 + A + I_2 = 0$ then
 - (A.) $a^2 a bc = 1$.
 - (B.) $a^2 a bd = 1$.
 - (C.) $a^2 + a + bc = -1$.
 - (D.) $a^2 + a bc = -1$.
- 5. The number of points at which the function f(x) = f(x) + f(x

 $f(x) = |(|x| - 3)\sin(\pi x)| + |(x^2 - 1)(x^3 - 27)|$ takes zero value is

- (A.) 1.
- (B.) 2.

S-07

- (C.) 3.
- (D.) 4.

6. Let $f(x) = \begin{cases} 2x, & \text{if } x \text{ is irrational,} \\ x+3, & \text{if } x \text{ is rational,} \\ \text{from } \mathbb{R} \text{ to } \mathbb{R}. \end{cases}$ be a function defined

- (A.) all rational numbers.
- (B.) all irrational numbers.
- (C.) $\mathbb{R} \setminus \{2\}$.
- (D.) $\mathbb{R} \setminus \{3\}.$
- 7. Consider the system of equations AX = 0, BX = 0 where A and B are $n \times n$ matrices and X is a $n \times 1$ matrix. Which of the following statements are true.
 - (i) det(A) = det(B) implies that the two systems have the same solutions.
 - (ii) The two systems have the same solutions implies det(A) = det(B).
 - (iii) $det(A) = 0 \neq det(B)$ implies that the two systems can have different solutions.
 - (A.) All are true.
 - (B.) (i) is true.
 - (C.) (iii) is true.
 - (D.) (i) and (ii) are true.
- 8. $\int \frac{(x+1)\exp(x)}{\cos^2(x\exp(x))} dx$ is equal to
 - (A.) $-\cot(x\exp(x)) + C$.
 - (B.) $\tan(x \exp(x)) + C$.
 - (C.) $\log(\sec(x \exp(x))) + C$.
 - (D.) $\csc(x \exp(x)) + C$.
- 9. If $f(x) = x^3 2x^2$ in (0,5) then the value of c to satisfy the Mean Value theorem is
 - (A.) 2.
 - (B.) 3.
 - (C.) 4.
 - (D.) None of these.

- 10. A random variable X takes the values -1, 0 and 1 with probabilities 1/3 each. Then the mean value of X is
 - (A.) 0.
 - (B.) 1.
 - (C.) 0.5
 - (D.) 0.25.
- 11. Two numbers are drawn without replacement from $1, 2, \dots, 10$. The probability that their sum is an even number strictly lies in
 - (A.) (0, 1/3].
 - (B.) (1/3, 1/2].
 - (C.) (1/2, 3/4].
 - (D.) (3/4, 1].

12.
$$\lim_{x \to -1} \frac{\sqrt{2x+3}-1}{\sqrt{5+x}-2}$$
 is equal to

- (A.) 4.
- (B.) 3.
- (C.) 2.
- (D.) None of these.
- 13. For $X, Y \subset \mathbb{R}$, define $X+Y = \{x + y \mid x \in X, y \in Y\}$. An example where $X + Y \neq \mathbb{R}$ is
 - (A.) $X = \mathbb{Q}, Y = \mathbb{R} \setminus \mathbb{Q}.$
 - (B.) $X = \mathbb{Z}, Y = [1/2, 1/2].$
 - (C.) $X = (-\infty, 100], Y = \{p \in \mathbb{N} \mid p \text{ is prime}\}.$
 - (D.) $X = (-\infty, 100], Y = \mathbb{Z}.$
- 14. Let $f:[0,5] \to \mathbb{R}$ be continuous function with a maximum at x=2 then
 - (A.) the derivative of f at 2 may not exist.
 - (B.) the derivative of f at 2 must not exist and be nonzero.
 - (C.) the derivative of f at 2 must not exist and be zero.
 - (D.) the derivative of f at 2 can not exist.

15. The perimeter of the Cardiod $r = a(1 + \cos \theta)$ is

- (A.) 2a.
- (B.) 4a.
- (C.) 8a.
- (D.) none of these.

16. If $P(x) = x^3 + 7x^2 + 6x + 5$ then

- (A.) P has no real root.
- (B.) P has three real roots.
- (C.) P has exactly one negative real root.
- (D.) P has exactly two complex roots.
- 17. The number of diagonal 3×3 complex matrices A such that $A^3 = I$ is
 - (A.) 1.
 - (B.) 3.
 - (C.) 9.
 - (D.) 27.
- 18. The number of subgroups of order 4 in a cyclic group of order 12 is
 - (A.) 0.
 - (B.) 1.
 - (C.) 2.
 - (D.) 3.
- 19. Let G be an abelian group and let $f(x) = x^2$ be an automorphism of G if G is
 - (A.) finite.
 - (B.) finite cyclic.
 - (C.) prime order.
 - (D.) prime order ≥ 7 .

20. The series
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

- (A.) converges to 1.
- (B.) converges to 1/2.
- (C.) converges to 3/4.
- (D.) does not converge.

21. The sequence
$$\left\{1 + \sum_{j=1}^{n} \frac{(-1)^j}{2j+1}\right\}$$
 is

.

- (A.) unbounded and divergent.
- (B.) bounded and divergent.
- (C.) unbounded and convergent.
- (D.) bounded and convergent.

22. The function
$$f : \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \begin{cases} \frac{1}{|1-x|}, & |x| < 1, \\ x^2, & |x| > 1 \end{cases}$ is

- (A.) continuous at all points.
- (B.) not continuous at $x = \pm 1$.
- (C.) differentiable at all points.
- (D.) none of the these.
- 23. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1)$. Then an eigenvalue for T is
 - (A.) 0.
 - (B.) 1.
 - (C.) 2.
 - (D.) 3.

24. The solutions of $x^2y'' + xy' + 4y = 0$, $x \neq 0$ are

- (A.) $\cos(\log x)$, and $\sin(\log x)$.
- (B.) $\cos(\log x)$, and $\sin(\log x^2)$.
- (C.) $\cos(\log x^2)$, and $\sin(\log x)$.
- (D.) $\cos(2\log x)$, and $\sin(2\log x)$.

S-07

25. The series
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$$

(A.) converges in (-1, 1).

(B.) converges in [-1, 1].

(C.) converges in [-1, 1).

(D.) converges in (-1, 1].

Part-B

Each question carries 2 marks. 0.66 marks will be deducted for a wrong answer. There will be no penalty if a question is unanswered.

- 26. The integrating factor of the differential equation $(y^2 x^2y)dx + x^3dy = 0$ is
 - (A.) $(xy)^{-1}$.
 - (B.) $(xy)^{-2}$.
 - (C.) xy.
 - (D.) x^3y^3 .
- 27. An example of an infinite group in which every element has finite order is
 - (A.) non singular 2×2 matrices with integer entries.
 - (B.) $(\mathbb{Q}/\mathbb{Z}, +)$.
 - (C.) the invertible elements in $\mathbb Z$ under multiplication.
 - (D.) the Quarternion group.

	$ 1^2 $	2^{2}	3^{2}	4^{2}	
28. The value of the determinant	2^{2}	3^2	4^2	5^2	is
	32	4^2	5^2	6^2	
	4^{2}	5^2	6^2	7^2	

- (A.) 0.
- (B.) 1.
- (C.) 2.
- (D.) none of these.

- 29. Three girls G_1 , G_2 , G_3 and 3 boys B_1 , B_2 , B_3 are made to sit in a row randomly. The probability that at least two girls are next to each other is
 - (A.) 0.
 - (B.) 1/10.
 - (C.) 1/20.
 - (D.) 9/10.
- 30. 3 red balls (all alike), 4 blue balls (all alike) and 3 green balls (all alike) are arranged in a row. Then the probability that all 3 red balls are together is
 - (A.) 1/15.
 - (B.) 1/10!.
 - (C.) 8!/10!.
 - (D.) 3/10!.

31. The equation $|x - 1| + |x| + |x + 1| = x + 2, x \in \mathbb{R}$ has

- (A.) no solution.
- (B.) only one solution.
- (C.) only two solutions.
- (D.) infinitely many solutions.
- 32. A natural number 'n' is said to be "petty" if all its prime divisors are $<\sqrt{n}$. A natural number is square free if the square of a prime can not divide it. Then
 - (A.) Every square free number is petty.
 - (B.) All even numbers are petty.
 - (C.) There exists an infinite numbers which are pretty.
 - (D.) Square of a prime number is petty.

33. For the sequence $\left\{\sqrt{n} + \frac{(-1)^n}{\sqrt{n}}\right\}$ of real numbers

- (A.) the greatest lower bound and least upper bound exist.
- (B.) the greatest lower bound exists but not least upper bound.
- (C.) the least upper bound exists but not the greatest lower bound.
- (D.) neither the greatest lower bound nor the least upper bound exist.
- 34. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and consider the following

(i)
$$|f(x) - f(y)| \le 1, \forall x, y \in \mathbb{R} \text{ with } |x - y| \le 1.$$

S-07

(ii) $|f'(x)| \leq 1, \forall x \in \mathbb{R}.$

Then we have

- (A.) (i) implies (ii) but (ii) does not imply (i).
- (B.) (ii) implies (i) but (i) does not imply (ii).
- (C.) (i) implies (ii) and (ii) implies (i).
- (D.) (i) does not imply (ii) and (ii) does not imply (i).
- 35. Let $U = \{(a, b, c, d) / a + b = c + d\}$, $V = \{(a, b, c, d) / a = b, c = d\}$ be subspaces of \mathbb{R}^4 . Then the dimensions U and V are
 - (A.) 1 and 2 respectively.
 - (B.) 2 and 3 respectively.
 - (C.) 3 and 2 respectively.
 - (D.) 3 and 4 respectively.
- 36. Let $f:[0,1] \to \mathbb{R}$ be continuous function and define $g:[0,1] \to \mathbb{R}$ as $g(x) = (f(x))^2$. Then

(A.)
$$\int_0^1 f dx = 0 \Rightarrow \int_0^1 g dx = 0.$$

(B.)
$$\int_0^1 g dx = 0 \Rightarrow \int_0^1 f dx = 0.$$

(C.)
$$\int_0^1 g dx = \left(\int_0^1 f dx\right)^2.$$

(D.)
$$\int_0^1 f dx \le \int_0^1 g dx.$$

37. Let X be a set, $\{A_{\alpha} \mid \alpha \in I\}$ be a collection of subsets of X and

$$f: X \to X$$
 be a function. Then we have $f\left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} f(A_{\alpha})$

- (A.) X is finite.
- (B.) I is finite.
- (C.) f is one-one.
- (D.) f is onto.

38. The value of the integral $\int_0^1 \log(\sqrt{1+x} + \sqrt{1-x}) dx$ is

- (A.) $\log \sqrt{2} 1$.
- (B.) $1 \log \sqrt{2}$.
- (C.) $\log \sqrt{2} + 1/2 + \pi/4$.
- (D.) $\log \sqrt{2} 1/2 + \pi/4$.

39. The derivative of the function $y = \sin^{-1}\left(\sqrt{\frac{x-1}{x+1}}\right) + \sec^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right)$

is

- (A.) -1.
- (B.) 0.
- (C.) 1.
- (D.) none of these.

40. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3, x_4)) = c(x_1 - x_2, x_2 - x_3, x_3 - x_4)$. Then, which of the following statements are true?

- (i) dimKer(T) = 1 if $c \neq 0$.
- (ii) dimKer(T) = 4 if c = 0.
- (iii) dimKer(T) = 1 if T is onto.
- (A.) (i) and (ii).
- (B.) (ii) alone.
- (C.) (ii) and (iii).
- (D.) (i), (ii), (iii).

41. Let S_1 and S_2 be two series defined for $x \in (-1,1)$ as $S_1 = \sum_{n=0}^{\infty} (\sin n) x^n$ and $S_2 = \sum_{n=0}^{\infty} (\sin n + \cos n) x^n$ then

(A.) S_1 and S_2 are convergent.

(B.) S_1 and S_2 are bounded but are not convergent.

(C.) S_1 is convergent. S_1 but S_2 is only bounded.

(D.) S_1 and S_2 are divergent.

42. If
$$P = \begin{bmatrix} 3 & -3 & 3 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 then P is invertible and P^{-1} is equal to
(A.) $(P^2 + P + I)/3$.
(B.) $(P^2 + P - I)/3$.
(C.) $(P^2 - P + I)/3$.

- (D.) $(P^2 P I)/3$.
- 43. Let $\{x_n\}$, $\{y_n\}$ be two convergent real sequences and let $z_n = \max\{x_n, y_n\}$ for each $n \in \mathbb{N}$. Then
 - (A.) $\{z_n\}$ is convergent.
 - (B.) $\{z_n\}$ is bounded but may not be convergent.
 - (C.) $\{z_n\}$ may not be convergent but $\{z_n\}$ has a convergent subsequence.
 - (D.) $\{z_n\}$ is convergent if and only if $\exists n_0 \in \mathbb{N} \ni x_n = y_n \forall n \ge n_0$.
- 44. The solution of the differential equation $y' y = xy^5$ is
 - (A.) $y = (-x + c \exp(-4x) + 1/4)^4$. (B.) $y = (-x + c \exp(-4x) + 1/4)^{-4}$. (C.) $y = (-x + c \exp(-4x) + 1/4)^{-1/4}$. (D.) $y = (-x + c \exp(-4x) + 1/4)^{1/4}$.
- 45. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(n) = n, $\forall n \in \mathbb{Z}$. Then
 - (A.) f is identity.
 - (B.) $|f(x)| \leq x, \forall x \in \mathbb{R}.$
 - (C.) $f(x) > 0, \forall x \in (0, \infty).$
 - (D.) none of these.
- 46. Let $\{u, v, w\}$ be a linearly independent set in the vector space \mathbb{R}^3 and let $X = \operatorname{span}\{u, v + w\}$ and $Y = \operatorname{span}\{w, u + v\}$. Then the the dimension of $X \cap Y$ is
 - (A.) 0.
 - (B.) 1.
 - (C.) 2.
 - (D.) can not be found from the information.
- 47. Let f(x) = x|x| and $g(x) = \sin |x|$ then
 - (A.) both f and g are differentiable functions.
 - (B.) f is differentiable function but g is not.
 - (C.) g is differentiable function but f is not.

(D.) both f and g are not differentiable functions.

48. Let u = x + ct, v = x - ct and $z = \log u + \sin v^2$ then $\frac{\partial^2 z}{\partial t^2} - c^2 \frac{\partial^2 z}{\partial x^2}$ is equal to

- (A.) -c.
- (B.) −1.
- (C.) -2c.
- (D.) 0.
- 49. If α , β and γ are the roots of the equation $15x^3 + 7x 11 = 0$ then the value of $\alpha^3 + \beta^3 + \gamma^3$ is
 - (A.) 3/5.
 - (B.) 7/5.
 - (C.) 9/5.
 - (D.) 11/5.
- 50. Area of the region enclosed by the curves $y = x^2 x 2$ and y = 0 is
 - (A.) 7/2.
 - (B.) -7/2.
 - (C.) 9/2.
 - (D.) -9/2.