H-06

Entrance Examination : M.Sc. Mathematics, 2015 Hall Ticket Number

Time : 2 hours Max. Marks. 100 Part A : 25 marks Part B : 75 marks

Instructions

- 1. Write your Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR answer sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over the OMR answer sheet at the end of the examination.
- 5. The question paper can be taken by the candidate at the end of the examination.
- 6. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 7. Calculators are not allowed.
- 8. There are a total of 50 questions in Part A and Part B together.
- 9. There is a negative marking in Part A. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. Each question in Part A has only one correct option.
- 10. There is no negative marking in Part B. Each correct answer carries 3 marks. In Part B some questions have more than one correct option. All the correct options have to be marked in OMR sheet other wise zero marks will be credited.
- 11. The appropriate answer(s) should be colored with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
- 12. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers and \mathbb{N} the set of natural numbers.
- 13. This book contains 9 pages including this page and excluding page for the rough work, Please check that your paper has all the pages.

Part-A

- 1. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Then which of the following statements is true?
 - (A) $\operatorname{rank}(AB) > \min(\operatorname{rank}(A), \operatorname{rank}(B)).$
 - (B) $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B)).$
 - (C) $\operatorname{rank}(AB) \leq \max(\operatorname{rank}(A), \operatorname{rank}(B)) \min(\operatorname{rank}(A), \operatorname{rank}(B)).$
 - (D) $\operatorname{rank}(AB) > \max(\operatorname{rank}(A), \operatorname{rank}(B)) \min(\operatorname{rank}(A), \operatorname{rank}(B)).$
- 2. Let A be an $n \times n$ nonzero matrix where A is not an identity matrix. If $A^2 = A$, then the eigenvalues of A are given by
 - (A) 1 and -1. (B) 0 and 1. (C) -1 and 0. (D) 0 and n.
- 3. Let A be a 7×5 matrix over \mathbb{R} having at least 5 linearly independent rows. Then the dimension of the null space of A is
 - (A) 0. (B) 1. (C) 2. (D) at least 2.

4. The dimension of the vector subspace W of $M_2(\mathbb{C})$ given by $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{C}, a + b = c, b + c = d, c + a = d \right\}$ is equal to (A) 4. (B) 3. (C) 2. (D) 1.

- 5. If |a b| = |c d|, then
 - (A) a = b + c d. (B) a = b - c + d. (C) a = b + c - d and a = b - c + d. (D) a = b + c - d or a = b - c + d.
- 6. The set of all real numbers x for which there is some positive real number y such that x < y is equal to
 - (A) \mathbb{R} . (B) the set of all negative real numbers.
 - (C) $\{0\}$. (D) the empty set.
- 7. Let \hat{n} be the unit outward normal to the sphere of radius α in \mathbb{R}^3 . Then the value of the integral $\int \vec{r} \cdot \hat{n} \, dS$ evaluated on the sphere is equal to

(A)
$$\frac{4}{3}\pi\alpha^3$$
. (B) $4\pi\alpha^2$. (C) $\frac{4}{3}\pi\alpha^2$. (D) $4\pi\alpha^3$.

8. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = \sqrt{x^2 + y^2 + z^2}$ and $n \in \mathbb{N}$ then $\forall r^n$ is equal to (A) $nr^{n-1}\vec{r}$. (B) $(n-1)r^{n-2}\vec{r}$. (C) $nr^{n-2}\vec{r}$. (D) $(n-1)r^n\vec{r}$.

H - 06

- 9. The value of the integral $\int_C \left(\frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy\right)$ where C is the circle with radius α centered at the origin is equal to
 - (A) 0. (B) $\frac{\pi}{2}$. (C) 2π . (D) $2\pi\alpha$.
- 10. The volume of the cube whose two faces lie on the planes 6x 3y + 2z + 1 = 0 and 6x 3y + 2z + 4 = 0 is equal to
 - (A) 27. (B) $\frac{27}{343}$. (C) $\frac{3}{7}$. (D) 10.
- 11. The number of common tangent planes to the spheres $(x + 2)^2 + y^2 + z^2 = 1$, $(x - 2)^2 + y^2 + z^2 = 1$ passing through the origin is equal to
 - (A) 0. (B) 1. (C) 2. (D) none of these.
- 12. Let c be an arbitrary nonzero constant. Then the orthogonal family of curves to the family y(1 cx) = 1 + cx is
 - (A) $3y y^3 + 3x^2 = \text{constant.}$ (B) $3y + y^3 3x^2 = \text{constant.}$ (C) $3y - y^3 - 3x^2 = \text{constant.}$ (D) $3y + y^3 + 3x^2 = \text{constant.}$
- 13. Consider the following two statements.

 S_1 : If (a_n) is any real sequence, then $\left(\frac{a_n}{1+|a_n|}\right)$ has a convergent subsequence.

 S_2 : If every subsequence of (a_n) has a convergent subsequence, then (a_n) is bounded.

Which of the following statements is true?

- (A) Both S_1 and S_2 are true. (B) Both S_1 and S_2 are false.
- (C) S_1 is false but S_2 is true. (D) S_1 is true but S_2 is false.

14. The largest interval I such that the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ converges whenever $x \in I$ is equal to

(A) [-1,1]. (B) [-1,1). (C) (-1,1]. (D) (-1,1).

15. Let $\sum a_n$ be a convergent series. Let $b_n = a_{n+1} - a_n$ for all $n \in \mathbb{N}$. Then

- (A) $\sum b_n$ should also be convergent and $(b_n) \to 0$ as $n \to \infty$.
- (B) $\sum b_n$ need not be convergent but $(b_n) \to 0$ as $n \to \infty$.
- (C) $\sum b_n$ is convergent but (b_n) need not tend to zero as $n \to \infty$.
- (D) none of the above statements is true.

- 16. Consider the real sequences (a_n) and (b_n) such that $\sum a_n b_n$ converges. Which of the following statements is true?
 - (A) If $\sum a_n$ converges, then (b_n) is bounded.
 - (B) If $\sum b_n$ converges, then (a_n) is bounded.
 - (C) If (a_n) is bounded, then (b_n) converges.
 - (D) If (a_n) is unbounded, then (b_n) bounded.

17. If
$$f: \mathbb{R} \to \mathbb{R}$$
 and $\lim_{h \to 0} (f(x+h) - f(x-h)) = 0$ for all $x \in \mathbb{R}$, then

- (A) f need not be continuous.
- (B) f is continuous but not differentiable.
- (C) f is differentiable but f' need not be continuous.
- (D) f is differentiable and f' is continuous.

18. If $f : [0, 1] \to \mathbb{R}$ is continuous and f(1) < f(0), then

- (A) $f([0,1]) \subseteq [f(1), f(0)].$ (B) $f([0,1]) \supseteq [f(1), f(0)].$
- (C) f([0,1]) = [f(1), f(0)].

(D)
$$f([0, 1]) \supseteq [f(1), f(0)]$$
.
(D) $f([0, 1])$ need not be a closed interval.

19. Consider $f: [-1,2] \to \mathbb{R}$ defined by $f(x) = \begin{cases} -x, & \text{if } -1 \le x \le 0\\ 2x^3 - 4x^2 + 2x, & \text{if } 0 < x \le 2. \end{cases}$ Then the maximum value of f(x) is equal to

- (A) 0. (B) 2. (C) 4. (D) 10.
- 20. The function e^x from \mathbb{R} to \mathbb{R} is
 - (A) both one-one and onto. (B) one-one but not onto.
 - (C) onto but not one-one. (D) neither one-one nor onto.
- 21. The number of elements of order 6 in a cyclic group of order 36 is equal to
 - (A) 2. (B) 3. (C) 4. (D) 6.
- 22. Consider the following two statements.

 S_1 : There cannot exist an infinite group in which every element has a finite order. S_2 : In a group G if $a \in G$, $a^7 = e$ and $a^9 = e$, then a = e.

Which of the following statements is true?

- (A) Both S_1 and S_2 are true.
- (B) Both S_1 and S_2 are false.
- (C) S_1 is false but S_2 is true.
- (D) S_1 is true but S_2 is false.

- 23. Let R be a commutative ring with unity and $1 \neq 0$. Let a be a nilpotent element, x be a unit. Then
 - (A) 1 + a is not a unit. (B) a x is a nilpotent element.
 - (C) x + a is a unit. (D) none of the above statements is true.
- 24. Let R be a commutative ring with unity. Consider the following two statements.
 - S_1 : If for any $a \in R$, $a^2 = 0$ implies a = 0 then R does not have nonzero nilpotent elements.
 - S_2 : If A and B are two ideals of R with A + B = R then $A \cap B = AB$.

Then which of the following statements is true?

- (A) Both S_1 and S_2 are true. (B) Both S_1 and S_2 are false.
- (C) S_1 is false but S_2 is true. (D) S_1 is true but S_2 is false.
- 25. In how many ways can one place 8 identical balls in 3 different boxes so that no box is empty?
 - (A) 8. (B) 28. (C) 36. (D) 21.

Part-B

- 26. The projection of the point (11, -1, 6) onto the plane 3x + 2y 7z 51 = 0 is equal to
 - (A) (14, 1, -1). (B) (4, 2, -5). (C) (18, 2, 1). (D) none of these.
- 27. The projection of the straight line x y z = 0 and 2x + 3y + z = 5 onto the yzplane is
 - (A) 5y = -3z + 5 and x = 0. (B) y = 3z + 5 and x = 0.
 - (C) y = z + 5 and x = 0. (D) y = -z + 5 and x = 0.
- 28. The number of spheres of radii $\sqrt{2}$ such that the area of each circle of intersection with the three coordinate planes is π is equal to
 - (A) 1. (B) 3. (C) 4. (D) 8.

29. If all blind horses are white then it follows that

- (A) no blind horse is black. (B) no brown horse is blind.
 - (C) all white horses are blind. (D) all horses are blind and white.

H-06

30. The set of all real roots of the polynomial $P(x) = x^4 - x$ is

- (A) $\{0, 1\}$. (B) the set of roots of $(x^2 x)$.
- (C) a set having four elements. (D) an infinite set.
- 31. Let $f, g : \mathbb{R} \to \mathbb{R}$ be polynomials. Then which of the following are <u>false</u>?
 - (A) If f(x) = g(x) for all $x \in [0, 1]$ then f = g. (B) If $f\left(\frac{1}{n}\right) = g\left(\frac{1}{n}\right)$ for all $n \in \mathbb{N}$ then f = g. (C) If $f(x) \le g(x)$ for all $x \in \mathbb{R}$ then degree $(f) \le$ degree(g).
 - (D) If $\{x \in \mathbb{R} : f(x) = 0\} = \{x \in \mathbb{R} : g(x) = 0\}$ then f = g.

32. If the graph of the function y = f(x) is symmetrical about the line x = a, then

(A) f(x) = f(-x). (B) f(x+a) = f(-x-a). (C) f(x+a) = f(a-x). (D) f(2a-x) = f(x).

33. Consider the following two statements.

- S_1 : There exists a linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^2$ such that T is onto and $\operatorname{Ker}(T) = \{(x_1, x_2, x_3, x_4, x_5) : x_1 + x_2 + x_3 = 0\}.$
- S_2 : For every linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ there exists $\mu \in \mathbb{R}$ such that $T \mu I$ is invertible.

Which of the following statements are true?

- (A) Both S_1 and S_2 are true. (B) Both S_1 and S_2 are false.
- (C) S_1 is false but S_2 is true. (D) S_1 is true but S_2 is false.

34. The set $S = \{-1, 1\}$ is the set of eigenvalues of the square matrix A, if

- (A) $A \pm I \neq 0$, A is a real, orthogonal and symmetric matrix.
- (B) $A \pm I \neq 0$, A is a symmetric matrix.
- (C) $A \pm I \neq 0, A^2 = I.$
- (D) $A \pm I \neq 0$, A is a Hermitian matrix.

35. If $A \neq 0$ is a 2 × 2 real matrix and suppose $A^2 \vec{v} = -\vec{v}$ for all vectors $\vec{v} \in \mathbb{R}^2$, then

- (A) -1 is an eigenvalue of A.
- (B) the characteristic polynomial of A is $\lambda^2 + 1$.
- (C) the map from $\mathbb{R}^2 \to \mathbb{R}^2$ given by $\vec{v} \mapsto A\vec{v}$ is surjective.
- (D) det A = 1.

H- 06

- 36. Consider a linear system of equations $A\vec{x} = \vec{b}$ where A is a 3×3 matrix and $\vec{b} \neq 0$. Suppose the rank of the matrix of coefficients $A = (a_{ij})$ is equal to 2 then
 - (A) there definitely exists a solution to the system of equations.
 - (B) there exists a non-zero column vector \vec{v} in \mathbb{R}^3 such that $A\vec{v} = \vec{0}$.
 - (C) if there exists a solution to the system of equations $A\vec{x} = \vec{b}$ then at least one equation is a linear combination of the other two equations.
 - (D) $\det A = 0$.
- 37. Which of the following sets are closed and bounded?
 - (A) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 3\}.$ (B) $\{(x, y) \in \mathbb{R}^2 : x + y = 3\}.$ (C) $\{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 3\}.$ (D) $\{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} \le 3\}.$
- 38. Let $\ell \in \mathbb{R}$, and (a_n) be a real sequence. Then which of the following conditions is equivalent to $(a_n) \to \ell$ as $n \to \infty'$?
 - (A) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that $|a_n \ell| < 2\epsilon$ whenever $n \ge n_0$.
 - (B) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that $|a_n \ell| < \epsilon$ whenever $n \ge 2n_0$.
 - (C) $\forall \epsilon > 0, \exists n_0 \in 3\mathbb{N}$ such that $|a_n a_m| < 2\epsilon$ whenever $m, n \ge n_0$.
 - (D) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that $|a_n a_m| < 2\epsilon$ whenever $m, n \ge n_0$.
- 39. Which of the following series converge?
 - (A) $\sum_{n=1}^{\infty} \left(\frac{\log n}{n^{1+2\epsilon}}\right)$. (B) $\sum_{n=1}^{\infty} \left(\frac{(\log n)^2}{n^{1+2\epsilon}}\right)$. (C) $\sum_{n=1}^{\infty} \left(\frac{n^2+1}{n^3+n}\right)$. (D) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^n$.

40. Let $f(x) = \begin{cases} x^{3/2}(1-x)^{5/4}, & x \in (0,1), \\ 0, & x \in \mathbb{R} \setminus (0,1). \end{cases}$ Then

- (A) f is discontinuous at 0 and 1.
- (B) f is continuous but not differentiable at 0 and 1.
- (C) f is differentiable at 0 and 1 but f' is not continuous at 0 and 1.
- (D) none of the above.

41. The value of the integral
$$\int_0^2 (x - [x^2]) dx$$
 is equal to
(A) $\sqrt{2} + \sqrt{3} + 3$. (B) $\sqrt{2} + \sqrt{3} - 3$. (C) $\sqrt{2} - \sqrt{3} + 3$. (D) $\sqrt{2} - \sqrt{3} - 3$.

42. Let f and g be real valued functions on [0,1] which are Riemann integrable. Let $f(x) \leq g(x)$ for all $x \in [0,1]$ and $f\left(\frac{1}{2}\right) < g\left(\frac{1}{2}\right)$. The inequality $\int f dx < \int g dx$ holds if

- (A) f and g are continuous in [0, 1].
- (B) f is continuous.
- (C) g is continuous.
- (D) f and g are continuous in a neighbourhood containing $\frac{1}{2}$.
- 43. The general solution of y''' 4y'' + y' = 0 is
 - (A) $c_1 \sinh^2 x + c_2 \cosh^2 x + c_3$. (B) $c_1 \sinh 2x + c_2 \cosh 2x + c_3$.
 - (C) $c_1 \sin 2x + c_2 \cos 2x + c_3$. (D) $c_1 e^{2x} + c_2 e^{-2x} + c_3$.

44. Which of the following are solutions of the differential equation $yy'' - (y')^2 + 1 = 0$?

- (A) x.
- (B) $\sin(x+c)$ where c is an arbitrary constant.
- (C) $\sinh(x+c)$ where c is an arbitrary constant.
- (D) none of the above.

45. Which of the following statements are true?

- (A) In a cyclic group of order n, if m divides n, then there exists a unique subgroup of order m.
- (B) A cyclic group of order n will have (n-1) elements of order n.
- (C) In a cyclic group of order 24 there is a unique element of order 2.
- (D) In the group $(\mathbb{Z}_{12}, +)$ of integers modulo 12 the order of $\overline{5}$ is 12.
- 46. Let G be a finite group with no nontrivial proper subgroups. Then which of the following statements are true?
 - (A) G is cyclic.

- (B) G is abelian.
- (C) G is of prime order. (D) G is non-abelian.
- 47. The equation $5X = 7 \pmod{12}$ has
 - (A) a unique solution in \mathbb{Z} .
 - (B) a unique solution in the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$.
 - (C) a unique solution in the set $\{n, n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8, n + 9, n + 10, n + 11\}$.
 - (D) no solution in \mathbb{Z} .

48. Which of the following maps are ring homomorphisms?

- (A) $f : \mathbb{Z}_4 \to \mathbb{Z}_{10}, f(x) = 5x.$
- (B) $f : \mathbb{Z}_5 \to \mathbb{Z}_{10}, f(x) = 5x.$
- (C) $f: \mathbb{Z}_4 \to \mathbb{Z}_{12}, f(x) = 3x.$
- (D) $f: \mathbb{Z}_4 \to R, f(x) = xe$ where R is a ring with unity e.

49. Let R be a finite commutative ring with no zero divisors then

(A) R is a field.

(B) R has a unity.

- (C) characteristic of R is a prime number.
- (D) none of the above.
- 50. Each question in a text has 4 options of which only one is correct. Ashok does not know which of the options are correct or wrong in 3 questions. He decides to select randomly the options for these 3 questions independently. The probability that he will choose at least 2 correctly is
 - (A) more than 0.25.

(B) in the interval (0.2, 0.25].(D) less than 1/6.

(C) in the interval (1/6, 0.2].