ENTRANCE EXAMINATIONS – 2023

(Ph.D. Admissions - January 2024 Session)

Ph.D. Chemistry

C - 10

TIME: 2 HOURS HALL TICKET NUMBER:

ĩ.

27

MAXIMUM MARKS: 70

- Write your HALL TICKET NUMBER in the space provided above and also on the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1 25 are present (excluding 5 pages assigned for rough work).
- 3. There are eighty (80) multiple-choice questions in this paper (20 in Part-A and 60 in Part-B). You are required to answer all questions of Part-A and a maximum of 20 questions of Part-B. If more than the required number of questions are answered in Part-B, only the first 20 questions will be evaluated.
- 4. Each question in Part-A and Part-B carries 1.75 marks.
- 5. There is no negative marking for both Part-A and Part-B.
- 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
- 7. Handover the OMR answer sheet to the invigilator at the end of the examination.
- 8. In case of a tie, the marks obtained in the first 20 questions (**Part-A**) will be used to determine the order of merit.
- 9. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 10. Calculators are allowed. Cell phones are not allowed.
- 11. Useful constants are provided just above Part-A in the question paper.
- 12. OMR without hall ticket number will not be evaluated and University shall not be held responsible.

Useful Constants:

Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J}$ s; Speed of light = $2.998 \times 10^8 \text{ m s}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J} \text{ K}^{-1}$; Gas constant = $8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} = 0.082 \text{ L}$ atm K⁻¹ mol⁻¹ = $1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Charge of electron = $1.6 \times 10^{-19} \text{ C}$; 1 bar = $10^5 \text{ N} \text{ m}^{-2}$; RT/F (at 298.15 K) = 0.0257 V; Avogadro number = 6.022×10^{23}

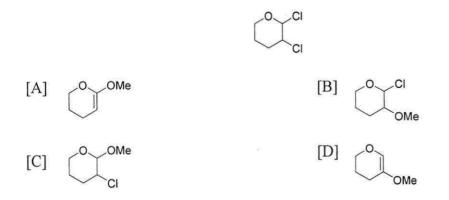
PART-A

- 1. Which of the following changes in a ¹H NMR spectrum of a molecule would indicate weakening of intramolecular hydrogen bonding?
 - [A] Upfield chemical shift
 - [B] Line broadening
 - [C] Downfield chemical shift
 - [D] Appearance of dispersive lineshape
- 2. Which of the following is **not** an example of a state function?
 - [A] Change in Gibbs free energy
 - [B] Change in entropy
 - [C] Change in enthalpy
 - [D] Work done
- 3. A solid state property that does not change with temperature is
 - [A] Energy gap of a superconductor
- [B] Paramagnetic susceptibility
- [C] Diamagnetic susceptibility
- [D] Thermal conductivity
- 4. Light emission from a LED arises due to
 - [A] a chemical reaction in the device
 - [C] photo-excitation of electrons
- [B] heating of the solid element
- [D] electron-hole recombination

5. The limiting molar conductivity of NaOH, NaF and NH₄F are 24.8, 10.5 and 12.5 mS m² mol⁻¹ respectively. The limiting molar conductivity of NH₄OH would be close to (in unit of mS m² mol⁻¹)

[A]	29.1	[B]	26.8
[C]	10.7	[D]	15.9

Cr1


6. Molecules of two gases, A and B are adsorbed on a solid at adjoining sites react. If A is adsorbed very strongly compared to B, the reaction rate is proportional to: (p_A and p_B are the partial pressure of A and B, respectively)

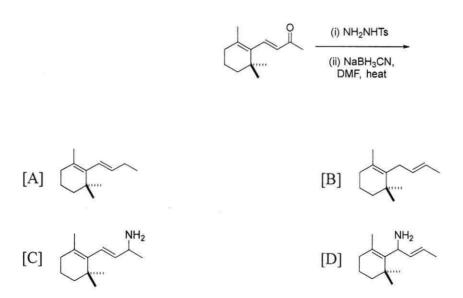
[A]	p_A	[B]	$\frac{p_B}{p_A}$
			p_A
[C]	$\underline{p_A}$	[D]	$p_A p_B$
	p_B		

 If the critical volume of a van der Waals gas is 148 cm³ mol⁻¹, the radius (in Å) of the gas molecule is

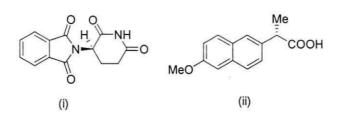
[A]	1.94	[B]	3.88
[C]	0.97	[D]	4

8. The product obtained from the methanolysis of the below compound is

9. The best reagents for synthesis of indole-3-carboxaldehyde and further its conversion into 3-(2-nitrovinyl)indole, respectively are


· · · · · ·

- [A] CHCl₃, NaOH, ethanol and CH₃NO₂/NH₄OAc
- [B] DMF/POCl₃ and CH₃NO₂/NH₄OAc
- [C] CHCl₃, NaOH, ethanol and HOOCCH₂NO₂/pyridine
- [D] CO+HCl, ZnCl₂ and HOOCCH₂NO₂/pyridine


10. The biosynthetic precursors for the hormone, serotonin and natural camphor respectively are

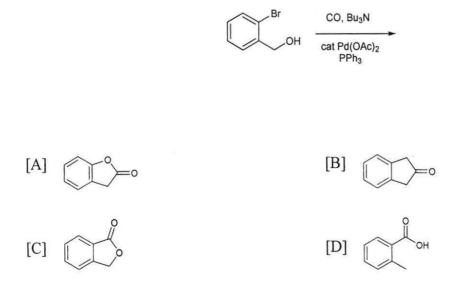
[A]	Tryptophan and linaloyl pyrophosphate.
[B]	Phenylalanine and neryl pyrophosphate.
[C]	Glycine and chrysanthemyl pyrophosphate.
[D]	Dopamine and farnesyl pyrophosphate.

11. The major product obtained in the following reaction is

12. Identify the absolute stereochemistry (IUPAC) of (i) and (ii), respectively


[A] i-(R); ii-(S)
[B] i-(S); ii-(R)
[C] i-(R); ii-(R)

- 1


× 50 ...

[D] i-(S); ii-(S)

13. The compound having a higher barrier for rotation about the marked bond is:

14. Predict the product in the following reaction.

C-10

15. Magnetic moment of Dy³⁺ ion would be

[A] 10.63 BM[B] 9.72 BM[C] 9.59 BM

a la

[D] 7.94 BM

16. The number of triangular faces in square pyramid and trigonal bipyramid are, respectively

- [A] 6 and 4
- [B] 5 and 5
- [C] 4 and 6
- [D] 6 and 5

17. Choose the correct statement for BF₃ and CO_3^{2-} .

[A] Both are isoelectronic and isostructural.

[B] Both are isoelectronic but not isostructural.

[C] Both are not isoelectronic but isostructural.

[D] Both are neither isoelectronic nor isostructural.

18. The correct set of biologically essential element is

- [A] Fe, Mo, Cu, Zn.
- [B] Fe, Cu, Co, Ru.
- [C] Cu, Mn, Zn, Ag.
- [D] Fe, Ru, Zn, Mg.

19. Starting with an initial quantity of 0.070 mole for 222 Rn₈₆ (half-life = 3.8 days), how much of it is present after 16 days?

[A]	0.0038.
[B]	0.0056.
[C]	0.0092.
[D]	0.0380.

20. Identify the option in which both electron transfer and energy transfer occur (i) ferredoxin (ii) chlorophyll (iii) cytochromes and (iv) photosystem

[A]	(ii) and (iii)	[B]	(iv)
[C]	(i), (ii), (iii) and (iv)	[D]	(i) and (iv)

PART-B

C -10

21. If the ¹H resonance frequency in a 1T magnetic field is 42.577 MHz, the resonance frequency (MHz) for ³¹P nucleus in the same magnetic field is closest to: (Gyromagnetic ratio γ for ¹H and ³¹P nuclei are 26.752×10⁷ and 10.841×10⁷ rad T⁻¹ s⁻¹, respectively)

[A]	10.644	[B]	14.192
[C]	17.258	[D]	21.288

22. Neon gas (assumed to be ideal) at an initial temperature of 250 K is expanded reversibly and adiabatically from a volume of 100 L to 500 L. The final temperature (in K) is

[A]	85	[B]	100
[C]	147	[D]	735

- 23. When 6 g of a substance is dissolved in 500 g of benzene at 298 K, the boiling point rises by 0.65 K, the freezing point depression (in K) is: ($K_f = 5 \text{ K kg mol}^{-1}$, $K_b = 2.5 \text{ K kg mol}^{-1}$)
 - [A] -0.33 [B] -1.3 [C] 0.33 [D] 1.3
- 24. The vibrational frequency of a diatomic molecule A-B is v. If a molecule C-D has the same force constant as A-B and the mass of C and D are respectively twice that of A and B, the vibrational frequency of C-D is

[A]	2ν	[B]	$\sqrt{2}\nu$
[C]	$v/\sqrt{2}$	[D]	4ν

25. In a first order reaction, the concentration of the reactant decreased to 25% of the initial value in 375 s; the rate constant (in s⁻¹) is

[A]	3.696×10^{-3}	[B]	2.93×10^{-3}
[C]	1.848×10^{-3}	[D]	1.465×10^{-3}

26. Which of the following relationship is correct for a particle in one-dimensional box of length a

[A]	$\frac{\langle E \rangle}{\langle E \rangle} = \frac{1}{2}$	[B] $\langle E \rangle$ _ 1	L
	$\langle p^2 \rangle 2m$	$\overline{\langle p \rangle} = \frac{1}{2\pi}$	
[C]	$\langle E \rangle \ h^2$	[D] $\langle E \rangle = \frac{h}{h}$	
	$\overline{\langle p^2 \rangle} = \overline{2m}$	$\frac{\langle p \rangle}{\langle p \rangle} = \frac{1}{2\pi}$	m

27. The rate constant of a reaction at 30 °C is exactly twice the value at 20 °C. The activation energy of the reaction (in kJ mol⁻¹) is closest to

[A]	35.2	[B]	42.3
[C]	51.2	[D]	72.1

[A] A₁

[C] *B*₁

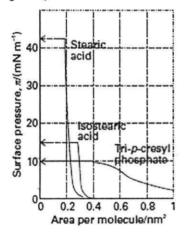
28. The ground state of a ClO₂ molecule (C_{2v} point group) trapped in a solid is known to be of B₁ symmetry. Light polarized parallel to the Y-axis excites the molecule to an upper electronic state; the symmetry of the excited state is: (the character table of the C_{2v} point group is given below)

C_{2v}	E	C ₂	$\sigma_v(xz)$	$\sigma_v(yz)$	
<i>A</i> ₁	1	1	1	1	Z
A ₂	1	1	-1	-1	
<i>B</i> ₁	1	-1	1	-1	X
<i>B</i> ₂	1	-1	-1	1	У

29. For a set of two parallel first order reactions, A → P and A → Q with rate constants, k₁ and k₂, respectively, the concentration of P at time t, (P(t)), is related to the rate constants and initial concentration, [A]₀ as (where, k = k₁ + k₂)

[A]
$$P(t) = k_1[A]_0(1 - e^{-k_1 t})$$
 [B] $P(t) = k_1[A]_0(1 - e^{-kt})$

[C] $P(t) = k_1[A]_0(1 - e^{-k_1 t})/k_2$ [D] $P(t) = k_1[A]_0(1 - e^{-kt})/k$


30. A crystal with a body-centred cubic lattice is made up of atoms having a radius of 2.0 Å. The free volume in the unit cell of this crystal (in $Å^3$) is

[A]	8	[B]	31.5
[C]	32.3	[D]	65.0

31. A non-stoichiometric compound is formed by replacing 10% of Zr⁴⁺ ions in ZrO₂ by Ca²⁺ ions, maintaining charge neutrality of the solid. The percentage of O²⁻ defects created is

[A]	5	[B]	10
[C]	15	[D]	20

32. The variation of surface pressure with area occupied by three different surfactant molecules is shown below. Among the three surfactants (stearic acid, isostearic acid and tri-*p*-cresyl phosphate) the molecule with the highest collapse pressure is

- [A] Tri-p-cresyl phosphate
- [B] Isostearic acid
- [C] Stearic acid

1.0

- [D] All three have similar collapse pressure
- **33.** If the change of surface tension with concentration at constant temperature, $\left(\frac{\partial \gamma}{\partial \ln c}\right)_T$, of a fatty acid is 40 µN m⁻¹. At 20 °C, the number of fatty acid molecules present per square meter of the surface in a 0.1 mol dm⁻³ aqueous solution is

[A]	9.6×10^{15}	[B]	9.6×10^{11}
[C]	19.2×10^{15}	[D]	19.2×10^{11}

34. At 298K, the standard electrode potentials for the half-cells are given below.

$Pd^{2+}(aq) + 2e^{-} \Rightarrow Pd(s)$	$E^0 = 0.83 \text{ V}$
$PdCl_4^{2-}(aq) + 2e^- \rightleftharpoons Pd(s) + 4Cl^-(aq)$	$E^{0} = 0.64 \text{ V}$

At 298K, the equilibrium constant for the reaction is closest to:

$$Pd^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons PdCl_{4}^{2-}(aq)$$

[A]	$1.4 imes 10^{6}$	[B]	2.8×10^{6}
[C]	$5.6 imes 10^{6}$	[D]	$7.6 imes 10^{6}$

35. The normalization factor for the wave function of a particle in one-dimensional box of length a is

[A]	$\sqrt{a/2}$	[B]	$\sqrt{2/a}$
[C]	$\sqrt{a/\pi}$	[D]	$\sqrt{a/\pi}$

36. The gap between the two energy levels in a two-level system is 100 cm^{-1} . The temperature at which the population of the upper state becomes one-fourth of that in the lower state is nearly equal to (in K)

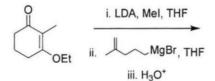
[A]	260	[B]	520
[C]	1040	[D]	2080

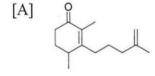
37. With the 4-fold increase of temperature, the factor by which the translational partition function of a gas increases (assuming the volume of the container remains the same) is:

[A]	2	[B]	4
[C]	6	[D]	8

38. Equal weights of polymers with molecular weights 10,000 g mol⁻¹ and 100,000 g mol⁻¹ is mixed. The weight average molecular weight (g mol⁻¹) is

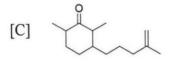
[A]	2.75×10^4	[B]	2.75×10^{3}
[C]	5.5×10^{4}	[D]	5.5×10^{3}

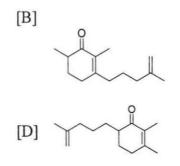

39. The standard electrode potential and the temperature coefficient for a cell are 2 V and -5×10^{-4} V/K, respectively. Considering involvement of 2 electrons in the cell reaction, the standard reaction enthalpy at 300 K is closest to (in kJ)

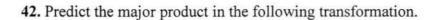

[A]	+206	[B]	-413
[C]	-193	[D]	+354

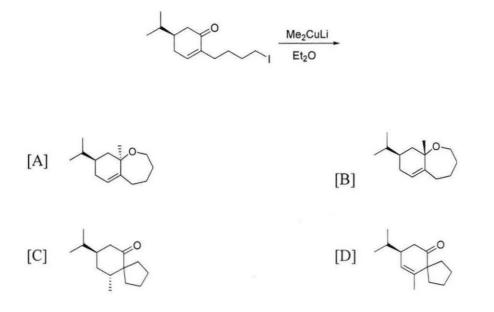
40. At 200 nm, the transmittance of a 1.42×10⁻³ M solution of a chemical compound is 0.083. If the path length of the cell is 1.21×10⁻³ m, the value of molar absorption coefficient (in m² mol⁻¹) is closest to

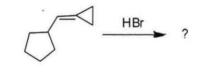
[A]	6.28	[B]	1.29
[C]	628	[D]	329

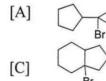

41. Predict the major product in the following reaction.

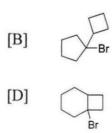


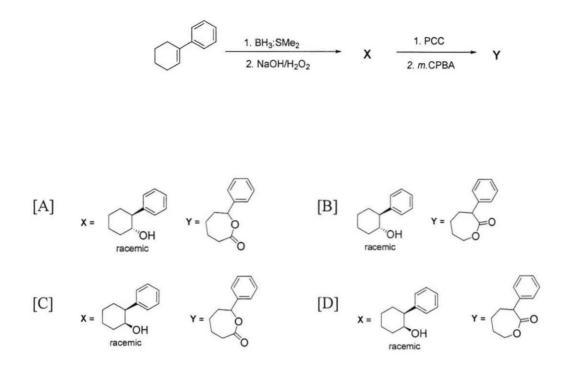

8.41


. . .

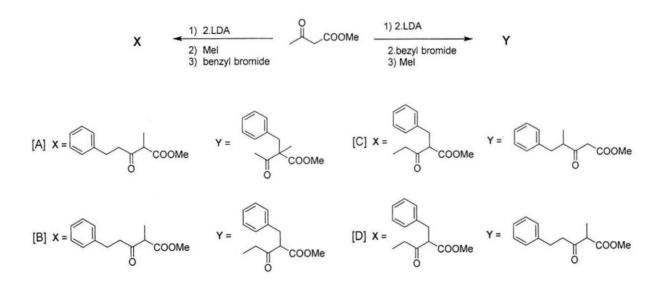



11





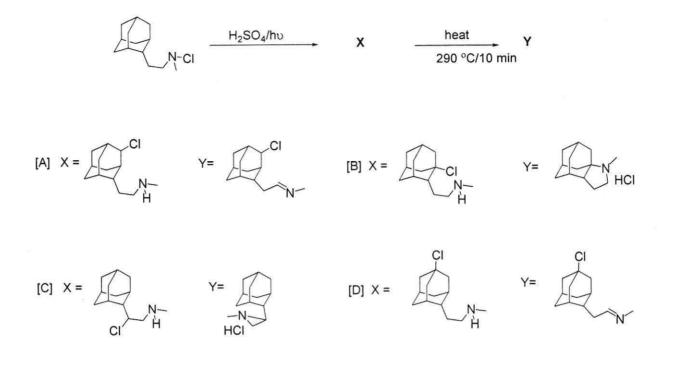
43. Identify the product in the following reaction

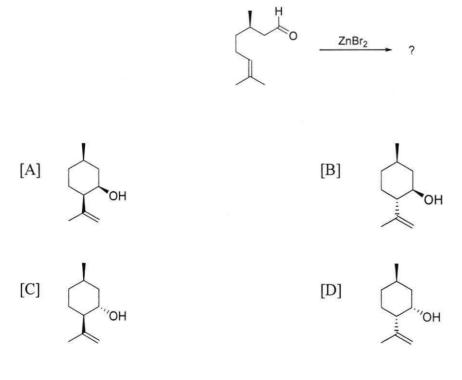


44. Identify X and Y in the following reaction sequence

.

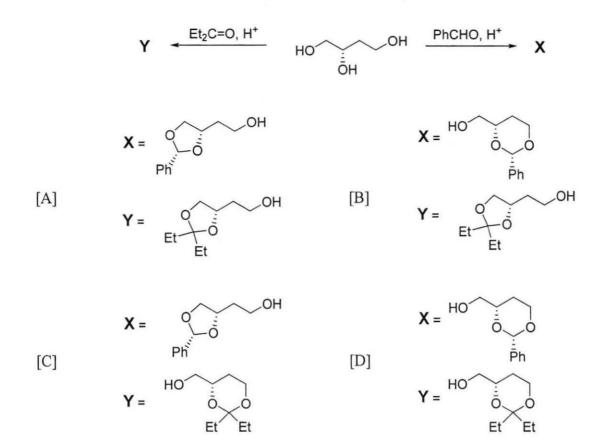
Sec. 10.

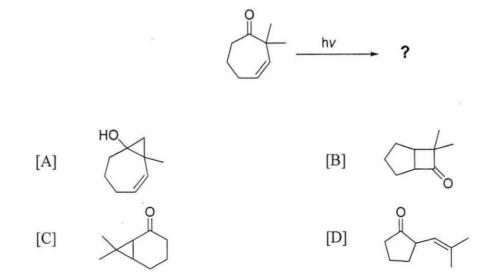

45. Identify X and Y in the following reaction sequence.


C-10

1. 0.0

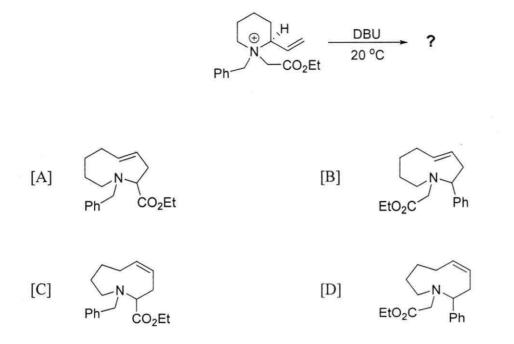
46. Identify X and Y in the following reaction sequence

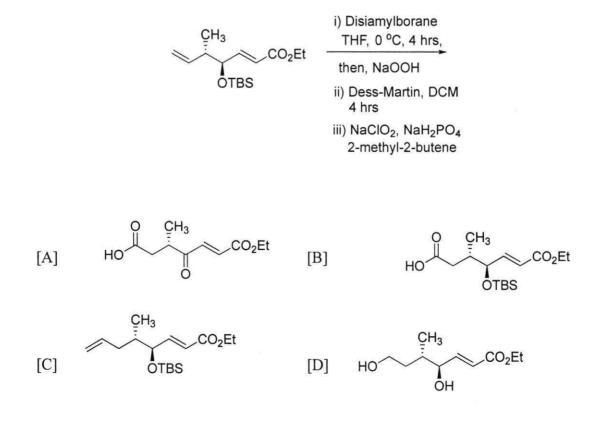

47. The major product formed in the following reaction is

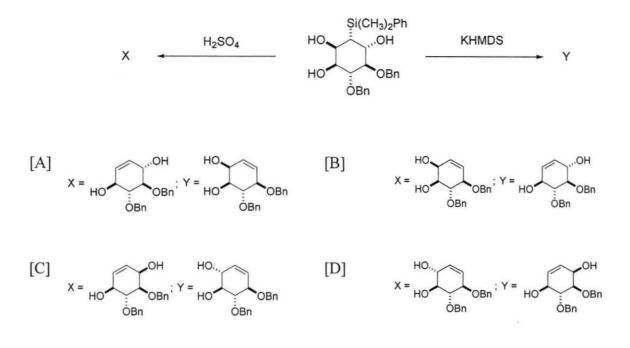

48. Identify the products X and Y in the following transformations

•

14.15

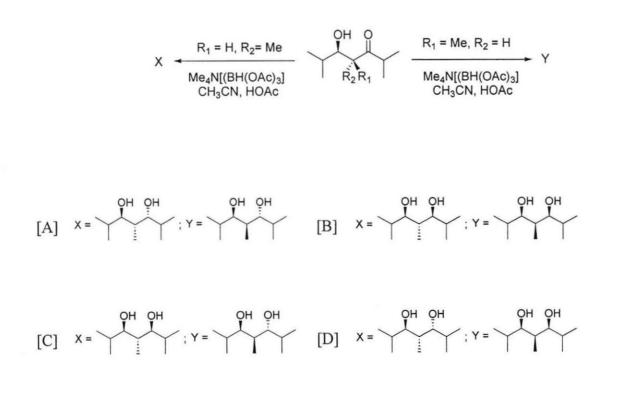

49. The major product formed in the following reaction is


15

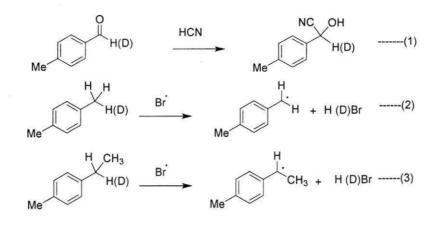

50. The major product formed in the following reaction is

· . *

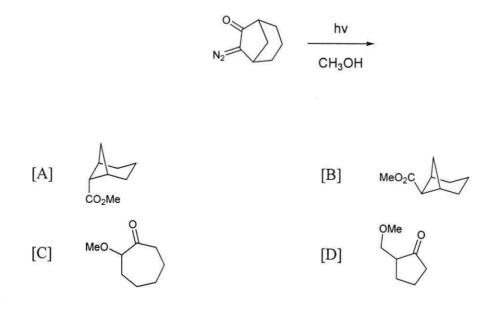
51. The major product of the following reaction is:



52. Identify the major products X and Y formed in the following reactions:

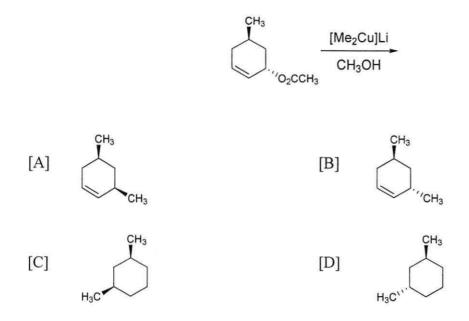

 $\langle \mathbf{u} \rangle$

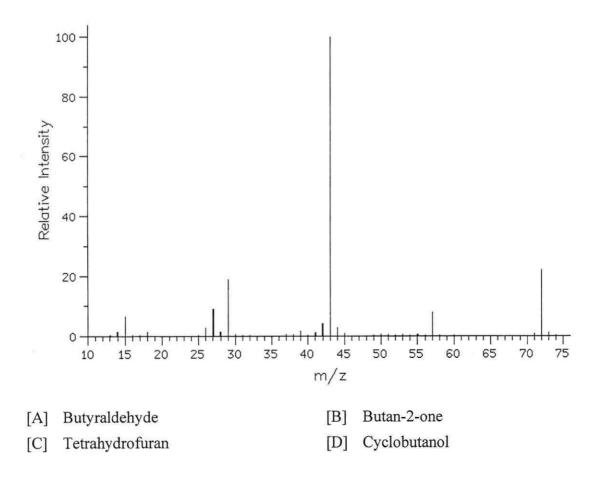
53. Identify the major products X and Y formed in the following reactions:

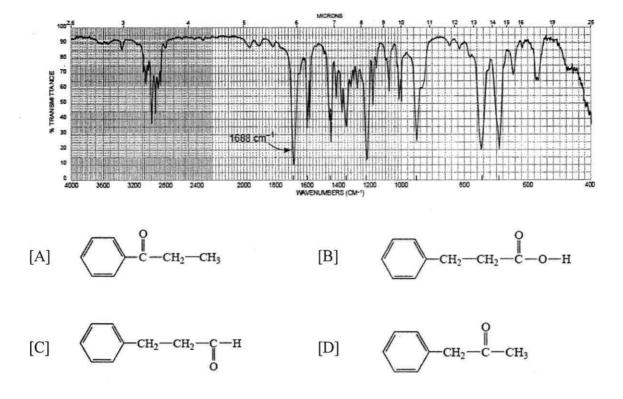

×

54. The appropriate matching of the $k_{\rm H}/k_{\rm D}$ values for the given reactions (1), (2) and (3) respectively are

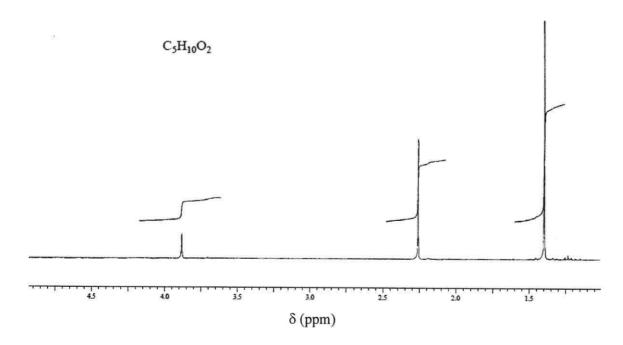
[A] 2.70, 4.90, 0.37
[B] 0.37, 4.90, 2.70
[C] 4.90, 0.37, 2.70
[D] 2.70, 0.37, 4.90

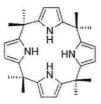

55. Find out the product in the reaction given below.


56. Find out the product in the following transformation.


8

G,


57. The provided mass spectrum corresponds to a compound having the molecular formula C_4H_8O . The compound is



58. Identify the compound associated with the provided IR spectrum.

- **59.** The NMR spectrum of Compound A ($C_5H_{10}O_2$) reveals resonances at δ 1.4, 2.25 and 3.9 with an intensity ratio of 6:3:1. Select the most probable structure for Compound A from the provided options.
 - [A] 1-hydroxy, 3-methyl-butan-2-one
- [B] 3-hydroxy, 3-methyl-butan-2-one
- [C] 1-hydroxy-pentane-3-one
- [D] 2-hydroxy-pentan-3-one

60. Select the reaction that calix[4]pyrrole undergoes easily?

- [A] Planar complexation with tetravalent metal ions by deprotonation
- [B] Planar complexation with anions by hydrogen bonding
- [C] 1,3-alternate arrangement of pyrrole ring and complexation with tetravalent metal ions by deprotonation
- [D] Complexation with anions in cone conformation by hydrogen bonding
- **61.** The correct statement when molecule A is photoexcited to A^*
 - [A] A^{*} is a good oxidizing agent
 - [B] A^{*} is a good reducing agent
 - [C] A* is both a good oxidizing and also a good reducing agent
 - [D] Both A and A* are equally good oxidants and reductants
- **62.** Which element among the Group15 elements can display a +1 oxidation state, and what is the reason?
 - [A] Nitrogen, due to the absence of 'd' orbital
 - [B] Phosphorus, due to the presence of 'd' orbital
 - [C] Arsenic and Antimony, because they possess 'f' orbital
 - [D] Bismuth, because of the stabilization of 6s orbital and inert-pair effect induced by relativistic effect.
- **63.** Calculate the potential and equilibrium constant of the following cell in the direction of the spontaneous reaction

Pt, $H_2(0.9 \text{ atm}) | H^+(0.1 \text{ M}) | | KCl(0.1 \text{ M}), AgCl | Ag$

Given: $E_{Ag^+/AgCl}^{\circ} = +0.22 V$; $E_{2H^+/H2}^{\circ} = 0.0 V$

[A]	$+0.22$ V and 2.9×10^{7}	[B] +0.22 V and 7.46

[C] +0.33 V and 2.9×10^7 [D] +0.34 V and 7.46

64. The number of bridging CO in [Os4(CO)16] is/are

[A] 0 [B] 1 [C] 2

1

[D] 3

65. The hapticity of the cycloheptatriene in $(\eta^n - C_7 H_8)_2 Cr(CO)_3$, and $(\eta^n - C_7 H_8)_2 Fe(CO)_3$ compounds is

[A] 4 and 6, respectively

[B] 4 and 4, respectively

[C] 5 and 6, respectively

[D] 6 and 4, respectively

66. Which statements among the following are true for Hemocyanin?

(i) Blue blood
(ii) It transports O₂
(iii) The oxygen has oxo coordination mode
(iv) Involves MLCT transition during O₂ binding

[A] (i) and (ii) [B] (i), (iii) and (iv) [C] (ii) and (iii) [D] (i) and (iv)

67. Photosystem II in photosynthesis contains

- [A] tetranuclear magnesium cluster as the catalytic site and catalyses the reduction of water.
- [B] tetranuclear manganese cluster as the catalytic site and catalyses the oxidation of water.
- [C] tetranuclear iron cluster as the catalytic site and catalyses the reduction of CO₂.
- [D] tetranuclear cobalt cluster as the catalytic site and catalyses the oxidation of glucose.

68. If BH is isolobal with $[M(\eta^5-C_5H_5)]$, then M is

.

s é la s

[A]	Co	[B]	Mn
[C]	Fe	[D]	Cr

69. The coordination geometry of the metal center and the Co-N-O bond angle in [Co(CO)₃(NO)] are, respectively

- [A] tetrahedral and 120°
 [B] square-planar and 180°
 [C] tetrahedral and 180°
 [D] square-planar and 120°
- 70. The relationship between the crystal field splitting in a cubic geometry (Δ_c) an that in an octahedral geometry (Δ_o) is

[A]	$\Delta_{\rm c} = 4/3\Delta_{\rm o}$	[B]	$\Delta_c = 4/9\Delta_o$
[C]	$\Delta_c = 8/6\Delta_o$	[D]	$\Delta_c=8/9\Delta_o$

 The basic structural unit of infinite single chain silicate, infinite double chain silicate, and layered structure of silicate are, respectively

[A]
$$[Si_4O_{11}]_n^{6n-}$$
, $[SiO_3]_n^{2n-}$, and $[Si_2O_5]_n^{2n-}$ [B] $[SiO_3]_n^{2n-}$, $[Si_2O_5]_n^{2n-}$, and $[Si_4O_{11}]_n^{6n-}$

[C] $[SiO_3]_n^{2n-}, [Si_6O_{18}]^{12-}, and [Si_2O_5]_n^{2n-}$ [D] $[SiO_3]_n^{2n-}, [Si_4O_{11}]_n^{6n-}, and [Si_2O_5]_n^{2n-}$

72. Choose the correct statement regarding the mechanism of the following two reactions

- (i) $W(CO)_6 + PPh_3 \rightarrow W(CO)_5(PPh_3) + CO$
- (ii) $[Ni(CN)_4]^{2-} + {}^{14}CN^- \rightarrow (Ni(CN)_3({}^{14}CN)]^{2-} + CN^-$
- [A] (i) is associative while (ii) is dissociative
- [B] (i) is dissociative while (ii) is associative
- [C] Both (i) and (ii) are associative
- [D] Both (i) and (ii) are dissociative

73. How many valence shell electron pairs are present in BrF5, ICl4⁻ and XeF4?

- [A] 6, 5 and 6.
- [B] 6, 4 and 4.
- [C] 6, 6, and 6.
- [D] 5, 4 and 4.

74. In substitution reaction of a ligand in square planar complex

- [A] *Trans* complex leads to *cis* complex and *cis* complex leads to *trans* complex.
- [B] Trans complex leads to cis complex and cis complex also leads to cis complex.
- [C] Trans complex leads to trans complex and cis complex also leads to trans complex
- [D] Trans complex leads to trans complex and cis complex leads to cis complex.
- 75. In a nuclear decay series, $^{238}U_{92}$ nucleus first decays an α -particle followed by two β particles and two α -particles in consecutive four steps. The resulting nucleus will be
 - $\begin{array}{ll} [A] & {}^{222} Rn_{86} \\ [B] & {}^{226} Ra_{88} \\ [C] & {}^{214} Pb_{82} \end{array}$
 - [D] ²³⁰Th₉₀
- 76. The number of observed versus predicted isomers for three different geometries (hexagonal, trigonal, and octahedral) of coordination complex MA₃B₃.
 - [A] 2 and 3, 3, 2
 - [B] 3 and 3, 3, 2
 - [C] 2 and 2, 3, 2
 - [D] 4 and 3, 3, 2

77. Select the accurate statement from the options provided.

- [A] Complexes of Pd(II) and Pt(II) are usually four coordinate, trigonal pyramidal and diamagnetic in nature.
- [B] Complexes of Pd(II) and Pt(II) are usually four coordinate, tetrahedral and diamagnetic in nature.
- [C] Complexes of Pd(II) and Pt(II) are usually four coordinate, square planar and paramagnetic in nature.
- [D] Complexes of Pd(II) and Pt(II) are usually four coordinate, square planar and diamagnetic in nature.

- 78. Predict the ³¹P NMR spectrum of P(OCH₃)₃ considering that ³J_{PH} coupling is observed in the compound. $[I = \frac{1}{2} \text{ for } {}^{31}P \text{ and } {}^{1}H]$
 - [A] 10 line pattern [B] 9 line pattern
 - [C] 6 line pattern

42 X

- [D] 12 line pattern
- 79. Using the Wade's rules, predict total valence electron count, skeleton electron pair, and type of structure for [B₅H₁₁].
 - [A] 26, 8, and arachno
 - [B] 26, 13, and nido
 - [C] 26, 13, and arachno
 - [D] 26, 7, and nido

80. Select the wrong statement of graphite from the options provided.

- [A] The graphene planes are separated from each other with distance of ~ 3.35 Å.
- The readily cleavage of graphite parallel to the planes of atoms is largely due to the [B] presence of impurities as well as weak attraction between the layers.
- [C] The electrical conductivity of graphite is closely related to the structure of its delocalized π bonds.
- [D] Its electrical conductivity perpendicular to the planes is high and decrease with increasing temperature.

Answer Key - Ph. D. Chemistry - 2024 (January)

1	A	31	A	61	С
2	D	32	С	62	D
3	С	33	A	63	A
4	D	34	В	64	Au
5	В	35	В	65	D
6	В	36	С	66	A
7	A	37	D	67	В
8	С	38	С	68	A
9	В	39	В	69	С
10	A	40	С	70	D
11	В	41	A	71	D
12	A	42	С	72	В
13	A	43	c	73	с
14	С	44	A	74	D
15	A	45	D	75	В
16	K C - Aly	46	В	76	A
17	A	47	В	77	D
18	A	48	В	78	A
19	А	49	D	79	A
20 .	В	50	A	80	D
21	С	51	В		
22	A	52	A .		
23	В	53	A		
24	С	54	В		
25	A	55	A		
26	A	56	Α		
27	С	57	В		5
28	В	58	A		
29	- D	59	В		
30	B	60	D		

M. Satt - mira. Dr. M.Sathiyendiran Professor School of Chemistry University of Hyderabad Hyderabad - 500 045. Ir dic