C - 4

ENTRANCE EXAMINATIONS – 2023 Ph.D. Mathematics/Applied Mathematics

Hall Ticket No.

Time : 2 hours Max. Marks : 70 PART A: 35 Marks PART B: 35 Marks

Instructions

- 1. Write your Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over the OMR answer sheet at the end of the examination to the Invigilator.
- 5. No additional sheets will be provided. Rough work can be done in the question paper "itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 70 questions in **PART A** and **PART B** together.
- 8. Each correct carries **1 mark**. In PART-A, there is **0.33** negative mark for each wrong answer. There is no negative mark in PART-B.
- 9. The appropriate answer(s) should be coloured with either a blue or black ball point or a sketch pen. DO NOT USE A PENCIL.
- 10. This book contains **15 pages** including this page and excluding pages for the rough work. Please check that your paper has all the pages.
- 11. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, and \mathbb{N} the set of all natural numbers.

Part-A

- 1. What is the next pair in the following sequence? 5:7, 11:13, 17:19, _____
 - **A.** 21:23
 - **B.** 37:39
 - **C.** 29:31
 - **D.** 47:49

2. Consider the map $f: \mathbb{Z}_{\geq 0} \times \mathbb{Z} \to \mathbb{Z}$ defined by $f(m, n) = 2^m(2n+1)$, then f is

- A. one-one but not onto
- B. both one-one and onto
- C. onto but not one-one
- \mathbf{D} . is not well defined
- 3. The number of 5 letter words formed with the letters A, B and C such that each letter appears at least once is
 - **A.** 60
 - **B.** 90
 - **C.** 120
 - **D.** 150
- 4. The unit digit of 2^{4^8} is
 - **A.** 2
 - **B.** 4
 - **C.** 8
 - **D.** 6
- 5. Consider the relation " \leq " on the power set $\rho(\mathbb{N})$ of \mathbb{N} , defined as $A \leq B \Leftrightarrow A \cap B \neq \emptyset$ for $A, B \subseteq \mathbb{N}$. Then the relation " \leq " on $\rho(\mathbb{N})$ is
 - A. reflexive and symmetric but not transitive
 - **B.** symmetric but not reflexive
 - C. transitive but not symmetric
 - **D.** equivalence relation
- 6. For two subsets A, B of a non empty set X, $A \Delta B$ is defined as $A \Delta B = (A \cup B) \setminus (A \cap B)$. Another representation of $A \Delta B$ among the following is
 - A. $(A^c \cap B) \cup (A \cap B)$
 - **B.** $(A^c \cap B) \cup (A \cap B^c)$
 - C. $(A \cap B) \cup (A \cap B^c)$
 - **D.** $A \setminus B$

- 7. In a certain code language STATISTICS is written as TATSSIITSC and UNIVERSITY is written as VINUREISYT. Then in the same code language PHILOSOPHY is written as
 - A. LIHPSOOPYH
 - B. LIPHSOPOYH
 - C. LIHPOSOPHY
 - D. LIHPSOPOYH
- 8. The number of 11 letter words formed with the letters of the word MATHEMATICS
 - A. $\frac{11!}{2!}$
 - **B.** $\frac{11!}{2!2!}$
 - C. $\frac{11!}{2!2!2!}$
 - **D.** 11!
- 9. A boy climbs up a 10 m high pole. He climbs up 3 m in first minute, but slips down 2 m in the second minute, again climbs up 3 m in the third minute and slips down 2 m in the fourth minute and so on. He reaches the top of the pole in
 - A. 15 minutes
 - B. 17 minutes
 - C. 19 minutes
 - D. 20 minutes
- 10. Suppose that $a, b \in \mathbb{N} \cup \{0\}$. What is the number of ordered pairs (a, b) with $\max\{a, b\} = k^2$, where $k \in \mathbb{N}$?
 - A. $2k^2 1$
 - **B.** $2k^2$
 - C. $2k^2 + 1$
 - **D**. k^2

11. The value of the integral $\int_0^{\pi/2} (\sin^5 x + \cos^5 x) dx$ is

- A. a negative real number
- **B.** equal to $\pi/2$
- C. greater than $\pi/2$
- **D.** a positive number less than or equal to $\pi/2$
- 12. The number of equivalence relations on $\{a,b,c,d\}$ containing 8 elements are
 - **A.** 4
 - **B.** 2
 - **C.** 8
 - **D.** 3

13. Given two positive integers a and b such that gcd(a, b) = p (prime). Consider the following statements:

C-4.

 S_1 : Possible values of $gcd(a^3, b)$ are p, p^2 , and p^3 .

 S_2 : Possible values of $gcd(a^3, b^2)$ are p^2 , and p^3 .

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false
- 14. The sum of squares of first n natural numbers with one of them missed is 51. What is the number that was missed?
 - **A**. 1
 - **B.** 2
 - **C.** 3
 - **D.** 4
- 15. The average weight of a football team (11-players) reduces by 3 kg when two players with weight 70 kg and 73 kg are replaced by 2 youngster of equal weight. What is the weight of these young players?
 - **A.** 55 kg
 - **B.** 56 kg
 - C. 58 kg
 - **D.** 60 kg

16. For any $n \in \mathbb{N}$, the value of gcd(n! + 1, (n + 1)! + 1) is

- **A.** n + 1
- **B.** 1
- **C.** *n*
- **D.** n-1
- 17. The number of bijective functions $f : \{a, b, c, d, e\} \rightarrow \{1, 2, 3, 4, 5\}$ such that $f(a) \neq 1$ and $f(b) \neq 2$, is
 - **A**. 6
 - **B.** 13
 - **C.** 26
 - **D.** 78

18.

Two plane mirrors facing each other are kept at 10° to each other. A point is located on the angle bisector. The number of images of the point is

- **A.** 35
- **B.** 10
- **C.** 5
- **D.** 1

19. Let $f(x) = 6x^4 - 13x^3 + 9x^2 - 2x$ be a polynomial such that $f(\frac{u}{v}) = 0$ for some $u, v \in \mathbb{N}$. Consider the following statements:

 S_1 : 6 is a multiple of v.

 S_2 : 2 = ub for some $b \in \mathbb{Z}$.

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false
- 20. If the average of 10 numbers x_1, x_2, \ldots, x_{10} is 11. Suppose each x_i is increased by *i* when *i* is even and each x_i is reduced by i 1 when *i* is odd then the average of new integers is
 - **A.** 11
 - **B.** 12
 - C. 13
 - **D.** 14

21. The number of diagonals in any octagon (8-sided polygon) is

- **A.** 19
- **B.** 20
- **C.** 21
- **D.** 22

22. The value of $39 + 17 \times 8 \div 2 - 9\%$ of 600 is

- **A**. 53
- **B.** 54
- **C.** 55
- **D.** 56

23. The number of positive integral solutions to the equation $x_1 + x_2 + x_3 + x_4 = 19$ is

- **A.** 814
- **B.** 815
- C. 816
- **D.** 817

c-4.

24. What comes in 209 and 210 positions of the following sequence? 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, ...

A. 1 and 2 respectively

B. 2 and 1 respectively

C. 1 and 1 respectively

D. 2 and 2 respectively

25. On the sets \mathbb{N} and \mathbb{Z} , suppose \cup is written as \cap , \cap is written as \cup , \setminus is written as \triangle and \triangle is written as \setminus . Then the set $(\mathbb{N} \cup \mathbb{Z}) \triangle (\mathbb{Z} \setminus \mathbb{N}) =$?

A. \mathbb{N}

B. \mathbb{Z}

C. \emptyset

D. $\mathbb{Z}_{\geq 0}$

26. The number of permutations of the letters of the word BENTONVILLE is equal to

A. 11!

B. $\frac{11!}{2!2!2!}$

C. $\frac{11!}{2!}$

D. $\frac{11!}{2!2!}$

27. How many 5-digit numbers can be formed by using the digits 2 to 8 if repetition of digits is not allowed?

A. 42

B. 120

C. 2520

D. 5040

28. A committee of 4 persons is to be formed from a group of 4 men and 5 women. The committee should consist of 2 men and 2 women. In how many ways can this be done?

- **A.** 16
- **B.** 60
- **C.** 110
- **D.** 126

29. The coefficient of x^{20} in the expression $\left(x^2 - \frac{2}{x}\right)^{22}$ is equal to

- **A.** $\binom{22}{8}$
- **B.** $4\binom{22}{20}$
- C. $2^{8}\binom{22}{8}$
- **D.** $2^{20}\binom{22}{2}$

C-4

30. Consider the following statements:

 S_1 : If $a, b \in \mathbb{N}$ and gcd(a, b) = 1 then gcd(a + b, a - b) = 1.

 S_2 : If $a, b \in \mathbb{N}$ and gcd(a, b) = 1 then gcd(a + b, a - b) = 2.

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

31. The cardinality of the set $\{n \in \mathbb{N} : 10 \le n \le 100 \text{ and } \gcd(n, 100) = 1\}$ is

- **A.** 40
- **B.** 36
- C. 37
- **D.** 35
- 32. A subset S of Z is said to have property (**P**) if $1 \in S$ and $a, b \in S \Leftrightarrow ab \in S$. Which of the following sets has property (**P**)?
 - A. $S = \mathbb{Z} \setminus 8\mathbb{Z}$
 - **B.** $S = \mathbb{Z} \setminus 20\mathbb{Z}$
 - C. $S = \mathbb{Z} \setminus 30\mathbb{Z}$
 - **D.** $S = \mathbb{Z} \setminus \{0\}.$
- 33. Suppose that a jar filled with chocolates weighed 10 kg. After removing 3/4 of the chocolates the weight of the jar along with the remaining chocolates is 6 kg. Then the weight of the total number of chocolates in the jar was
 - A. $\frac{53}{60}$ kg
 - **B.** 5 kg
 - C. $\frac{71}{10}$ kg
 - D. $\frac{16}{3}$ kg

34. Which of the following is an injective function?

- **A.** $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x 1
- **B.** $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 1$
- **C.** $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = |x|
- **D.** $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x x^3$
- 35. If $e^x (1 + 2 \cosh x) = 3$ then
 - **A.** x = 0
 - **B.** x = 1
 - C. x = 2
 - **D.** x = 3

Part-B

36. Let $f(r, \theta) = u(r, \theta) + iv(r, \theta)$ be an entire function such that

$$\frac{\partial u}{\partial r}\frac{\partial v}{\partial \theta} - \frac{\partial v}{\partial r}\frac{\partial u}{\partial \theta} = 2r$$

in the whole complex plane. Then

- **A.** f has infinite number of zeros
- **B.** f(z) = az + b, $|a| = \sqrt{2}$
- C. f is constant
- **D.** f is periodic

37. The set of all real values of a such that the series $\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right)\right)^{\frac{a}{3}}$ converges is

- A. $[\frac{1}{2}, \frac{3}{2}]$
- **B.** $[\frac{1}{2}, \frac{3}{2})$
- C. $(\frac{3}{2},\infty)$
- **D.** $\left[\frac{3}{2},\infty\right)$

38. $\lim_{n \to \infty} (2^n + 3^n + 5^n + 7^n + 11^n + 13^n + 17^n + 19^n)^{\frac{1}{n}} =$

- **A.** 3
- **B.** 7
- C. 13
- **D.** 19
- 39. Consider the following statements:

 S_1 : The improper Riemann integral $\int_0^\infty \sin x^2 dx$ exists. S_2 : The improper Riemann integral $\int_0^\infty |\sin x^2| dx$ exists.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false

C. S_1 is false but S_2 is true

- **D**. both S_1 and S_2 are false
- 40. What is the number of positive integers less than or equal to 1000 which are not divisible by 2, 3 and 5?
 - **A**. 458
 - **B.** 345
 - C. 321
 - **D**. 266

- S_1 : If $\lim_{z \to \infty} \frac{f(z)}{z} = 0$ then f is constant.
- S₂: If there exists an entire function g and a constant C > 0 such that $|f(z)| \le C|g(z)|$ for all $z \in \mathbb{C}$ then f is a constant multiple of g.

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

42. For the system x' = x - 10y, y' = 4x + 5y, the origin is

A. sink

B. spiral source

C. center

D. spiral sink

43. If ϕ_1 and ϕ_2 are solutions of $y'' + a_1(x)y' + a_2(x)y = 0$ with Wronskian $W(\phi_1, \phi_2)(x) = 1, \forall x \in \mathbb{R}$ then $a_1(x)$ is equal to

- A. 0
 B. 1
 C. 2
- **D.** 3
- 44. The singular solution of the differential equation $y = px + p^2$ (where p = y') obtained by using *p*-discriminant is
 - A. $y = x^2$ B. $y = -x^2$ C. $y = \frac{-x^2}{4}$ D. $y = \frac{x^2}{4}$
- 45. Consider the following statements:

S₁: If $f_1(x, y) = \frac{1}{2}\sqrt{y}$, $|x| \le 1, 0 \le y \le 1$, then f_1 is Lipschitz. S₂: If $f_2(x, y) = 3x^2|y|$, $|x| \le 1$, $|y| \le 1$, then f_2 is Lipschitz.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

- 46. Consider the following two statements:
 - S_1 : There exists a rearrangement of series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ with partial sum S'_n such that $\liminf_{n \to \infty} S'_n = -1$ and $\limsup_{n \to \infty} S'_n = 1$.

C-4

S₂: If
$$\sum_{n=0}^{\infty} a_n = A$$
, $\sum_{n=0}^{\infty} b_n = B$ and $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ then $\sum_{n=0}^{\infty} c_n = AB$.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true

D. both S_1 and S_2 are false

- 47. Let (X, d) be a metric space and $\mathcal{C}(X)$ be the set of all complex-valued continuous, bounded functions with domain X. Let Y be a metric space $\mathcal{C}(X)$ with supremum norm. Suppose (f_n) is a sequence in $\mathcal{C}(X)$. Consider the following statements:
 - S_1 : If (f_n) converges to a function f in Y then (f_n) converges uniformly on X.
 - S₂: If (f_n) converges to a function f uniformly on X, then (f_n) converges to f in Y.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 ais false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false
- 48. Assume that $E \subset \mathbb{R}^n$ is an open set and $f: E \longrightarrow \mathbb{R}^n$ is one-to-one, continuous and has finite partial derivatives on E. Then f(E) is open in \mathbb{R}^n if
 - A. f is differentiable on E
 - **B.** f is continuously differentiable on E
 - C. determinant of Jacobian matrix of f is nonzero on E
 - **D.** determinant of Jacobian matrix of f is equal to 0 on E
- 49. Which of the following are vector spaces over a specified fields?
 - (a) \mathbb{C} over \mathbb{Q}
 - (b) $\{x \in \mathbb{R} : x > 0\}$ over \mathbb{R}
 - (c) $\{(x,y) \in \mathbb{F}_2^2 : x^2 + y^2 = 0\}$ over \mathbb{F}_2 where \mathbb{F}_2 is the filed with 2 elements
 - (d) $\mathbb{Q}[X]$ over \mathbb{Q}

A. Only (a) and (d)

- **B.** Only (a), (b) and (c)
- C. Only (a), (c) and (d)

D. (a), (b), (c) and (d)

- 50. Let $n \ge 2$ and A be an $n \times n$ matrix over \mathbb{R} such that every entry of A is $1 \in \mathbb{R}$. Consider the following.
 - (a) A has only two distinct eigenvalues.
 - (b) A is invertible.
 - (c) A is diagonalizable.

Then

- A. only (a) and (c) are correct
- **B.** all (a), (b) and (c) are correct
- C. only (a) is correct
- D. only (b) is correct

51. Let $0 \neq A \in M_2(\mathbb{R})$, and consider the map $\ell_A \colon M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $B \mapsto AB$. Then

- A. ℓ_A is surjective
- **B.** ℓ_A is a ring homomorphism
- C. ℓ_A is an \mathbb{R} -vector space homomorphism
- **D.** ℓ_A is injective
- 52. We denote by I_n the $n \times n$ identity matrix, and we denote by rk(A) the rank of a matrix A. Match the following.
 - $\begin{array}{ll} (1) \ 0 \neq A \in M_5(\mathbb{C}) \ \text{such that} \ A^2 = 0 & \text{I}) \ rk(A) = 1 \\ (2) \ A \in M_3(\mathbb{C}) \ \text{such that} \ A^3 = I_3 & \text{II}) \ rk(A) = 2 \\ & \text{III}) \ rk(A) \leq 2 \\ & \text{IV} \ rk(A) = 3 \end{array}$
 - A. (1, I) and (2, II)
 - **B.** (1, II) and (2, IV)
 - C. (1, IV) and (2, III)

D. (1, III) and (2, IV)

- 53. Match the following.
 - A symmetric matrix over R I) is diagonalizable
 A symmetric matrix over C II) need not be diagonalizable
 A hermitian matrix over C III) is invertible
 - **A.** (1, I), (2, I), and (3, I)
 - **B.** (1, I), (2, II) and (3, I)
 - C. (1, III), (2, I), and (3, I)
 - **D.** (1, III), (2, II), and (3, I)

54. Suppose G is a group having exactly 12 elements of order 5. Then the number of subgroups of order 5 is given by

- **A.** 3
- **B.** 6
- **C.** 11
- **D.** 12

55. Suppose $a \in G$ and $O(a^4) = 12$, then the possible orders of a are

- **A.** 48
- **B.** 24
- **C.** 12
- **D.** 6

56. If $a, b \in G$ such that O(a) = 12 and O(b) = 22, then

 $\mathbf{A.} \quad (a) \cap (b) = (e)$

B. $(a) \cap (b) \neq (e)$ then $a^2 = b^2$

- C. $(a) \cap (b) \neq (e)$ then $a^6 = b^{11}$
- **D.** $(a) \cap (b) \neq (e)$
- 57. Consider the following statements:
 - S_1 : The number of onto group homomorphisms from \mathbb{Z}_{20} to \mathbb{Z}_{10} is 4.
 - S_2 : The number of onto group homomorphisms from \mathbb{Z}_{20} to \mathbb{Z}_8 is 4.

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

58. Let p be a prime. For $n \in \mathbb{N}$, let C_{p^n} be the set of all p^n -th roots of unity. Let $G = \bigcup_{n=1}^{\infty} C_{p^n}$ and

H is a proper subgroup of G. Consider the following statements

- S_1 : H can be an infinite but not a cyclic group.
- S_2 : $H = C_{p^n}$ for some $n \in \mathbb{N}$.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

59. Let $\alpha \in \mathbb{Q}$ such that $\alpha \neq \beta^2$ for any $\beta \in \mathbb{Q}$. Then $[\mathbb{Q}[\sqrt[4]{\alpha}] : \mathbb{Q}]$ is equal to

- A. 2B. 4
- **C.** 12
- **D.** 24
- 60. Let $k \subset L \subset \overline{k}$, k, L are fields and \overline{k} algebraic closure of k. Suppose the minimal polynomial of $\alpha \in L$ over F has a unique root in \overline{k} . Consider the following statements:
 - $S_1: \quad \alpha \in k \text{ if } \operatorname{char}(k) = 0.$

 $S_2: \quad \alpha \in k \text{ if } \operatorname{char}(k) \neq 0.$

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false
- 61. Suppose $\{H_{\lambda} : \lambda \in \Lambda\}$ is the collection of all subgroups of order n, for some fixed $n \in \mathbb{N}$. Consider the following statements
 - $S_1: \cap H_{\lambda}$ is a normal subgroups of G.
 - S_2 : $\cap H_{\lambda}$ is a normal subgroups of G only if n is a prime.

Then

- **A.** both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

62. Suppose k, n are two natural numbers such that $k \leq n$. Then consider the following statements:

 S_1 : If k divides n then $(x^k - 1)$ divides $(x^n - 1)$.

 S_2 : If $(x^k - 1)$ divides $(x^n - 1)$ then k divides n.

Then

A. both S_1 and S_2 are true

B. S_1 is true but S_2 is false

- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

 S_1 : The Sylow-11 subgroup is normal.

 S_2 : If it has a sugroup of order 77, then it has to be normal.

Then

- A. both S_1 and S_2 are true
- **B.** S_1 is true but S_2 is false
- C. S_1 is false but S_2 is true
- **D.** both S_1 and S_2 are false

64. Let $\sigma = (1\,2\,3\,4\,5)(6\,7\,8)(9\,10) \in S_{10}$. If σ^m is a 5-cycle, then

- A. $m = 6\ell$, for all $\ell \in \mathbb{N}$
- **B.** $m = 5\ell$ for all $\ell \in \mathbb{N}$

C. m = 12

D. $m = 3\ell$ for all $\ell \in \mathbb{N}$

65. Match the following.

1)
$$A \in M_4(\mathbb{R})$$
 satisfying $x^2 + 1 = 0$ I) is similar to $\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
2) $\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ II) is not similar to a real diagonal matrix.

II) is not similar to a real diagonal matrix

C-4

III) is similar to a real diagonal matrix

A. (1, I), (2, III) **B.** (1, I), (2, I) C. (1, III), (2, III) **D.** (1, II), (2,III)

66. If
$$\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} a_n (x-3)^n$$
 whenever $|x| < 1$ then $\lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ is equal to
A. $\sqrt{10}$

- B. $\sqrt{8}$
- C. $\sqrt{6}$
- D. $\sqrt{5}$

$C - \psi$

67. Consider the ring $R = \left\{\frac{a}{s} \text{ such that } a, s \in \mathbb{Z} \text{ and } 2 \text{ does not divide } s\right\} \subset \mathbb{Q}$ then

- **A.** R is a field
- **B.** the ideal generated by $\frac{4}{1}$ is a maximal ideal of R
- C. there are two distinct ideals of R
- **D.** the ideal generated by $\frac{2}{1}$ is the only maximal ideal of R
- 68. Suppose that the characteristic polynomial of a square matrix A over a field F is

 $\chi_A(X) = (X - a_1)(X - a_2) \cdots (X - a_n) \in F[X], \text{ where } a_i \in F \text{ are not necessarily distinct.}$

Then

- A. A is diagonalizable
- **B.** A is triangulable
- C. A is always invertible
- **D.** A is always not invertible
- 69. Let \mathcal{P}_{n-1} be a vector space of polynomials in one variable over a field F of degree n-1. Suppose that $a_1, a_2, \ldots, a_n \in F$ are pairwise distinct elements. Consider the following map

 $T: \mathcal{P}_{n-1} \to F^n$ given by $p \mapsto (p(a_1), p(a_2), \dots, p(a_n))$.

Then T is

- A. only an injective map
- B. only a surjective map
- C. only a bijective map
- D. an isomorphism of vector spaces

70. Suppose that $A, B \in M_n(\mathbb{R})$ having the same minimal and characteristic polynomials. Then

- A. A is similar to B only if n = 1 or n = 2 or n = 3
- **B.** A is similar to B only if n = 2
- C. A is similar to B only if n = 3
- **D.** A is similar to B only if n = 3 or n = 4

Rough Work

C-4

0 023

University of Hyderabad Ph.D. Entrance Examinations - 2023

REVISED

School/Department/Centre Course : Ph.D. :School of Mathematics and Statistics Subject : Mathematics/Applied Mathematics

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
1	C	26	В	51	С
2	A	27	C	52	D
3	D	28	В	53	В
4	D	29	C .	54	A
5	В	30	D	55	A
6	В	31	В	56	С
7	D	32	D	57	В
8	С	33	D	58	С
9	A	34	A	59	В
10	С	35	A	60	В
11	D	36	В	61	В
12	D	37	C	62	A
13	A	38	D	63	A
14	B	39	В	64	С
15	A	40	D	65	В
16	В	41	A	66	01 marks to all
17	D	42	B	67	C and/or D
18	A	43	A	68	В
19	A	44	C	69	D
20	8	45	C -	70	A
21	В	46	В		
22	А	47	A		1. Source of the second se
23	С	48	С	5.7 / m	annonen an
24	D	49	C or D		
25	A	50	A		

Note/Remarks :

C Signature 2022 0 School/Department/Centre