ENTRANCE EXAMINATIONS – 2022

Ph.D. Chemistry

TIME: 2 HOURS

MAXIMUM MARKS: 70

HALL TICKET NUMBER:

- 1. Write your **HALL TICKET NUMBER** in the space provided above and also on the **OMR** ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1 26 are present (excluding 4 pages assigned for rough work).
- There are eighty (80) multiple-choice questions in this paper (20 in Part-A and 60 in Part-B). You are required to answer all questions of Part-A and a maximum of 20 questions of Part-B. If more than the required number of questions are answered in Part-B, only the first 20 questions will be evaluated.
- 4. Each question in Part-A and Part-B carries 1.75 marks.
- 5. There is no negative marking for both Part-A and Part-B.
- 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
- 7. Handover the OMR answer sheet to the invigilator at the end of the examination.
- 8. In case of a tie, the marks obtained in the first 20 questions (**Part-A**) will be used to determine the order of merit.
- 9. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 10. Calculators are allowed. Cell phones are not allowed.
- 11. Useful constants are provided just above Part-A in the question paper.
- 12. OMR without hall ticket number will not be evaluated and University shall not be held responsible.

Useful Constants:

Rydberg constant = 109737 cm⁻¹; Faraday constant = 96500 C; Planck constant = 6.625×10^{-34} J s; Speed of light = 2.998×10^8 m s⁻¹; Boltzmann constant = 1.380×10^{-23} J K⁻¹; Gas constant = 8.314 J K⁻¹ mol⁻¹ = 0.082 L atm K⁻¹ mol⁻¹ = 1.987 cal K⁻¹ mol⁻¹; Mass of electron = 9.109×10^{-31} kg; Mass of proton = 1.672×10^{-27} kg; Charge of electron = 1.6×10^{-19} C; 1 bar = 10^5 N m⁻²; RT/F (at 298.15 K) = 0.0257 V; Avogadro number = 6.022×10^{23} ; amu = 1.674×10^{-27} kg.

PART-A

- 1. Identify the most appropriate name reactions for conversion of (i) benzaldehyde into styrene and (ii) phenol into salicylaldehyde
 - [A] (i) Wittig reaction (ii) Prins reaction

- [B] (i) Wittig reaction (ii) Reimer-Tiemann reaction
- [C] (i) Reimer-Tiemann reaction (ii) Wittig reaction
- [D] (i) Reimer-Tiemann reaction (ii) Prins reaction
- 2. The major product obtained in the following reaction is:

3. Identify the most appropriate reagent (X) and the product (Y) in the following reactions:

4. Identify the species that can act as a 1,3-dipole in cycloadditions:

(i) H ₂ (C=N ₂	(ii)	H ₂ C=C=O	(iii) O ₃	(iv) H ₂	C=C	C-OMe
[A]	(ii) and	(iii))		l	[B]	(ii)
[C]	(i), (ii) a	and	(iv)		[[D]	(i) and (iii)

5. The major product formed in the following reaction is:

- 6. In Kiliani-Fischer synthesis of monosaccharides, the products are generally:
 - [A] Enantiomers [B] Diastereomers
 - [C] Anomers [D] Rotamers
- 7. The compound that shows the following mass spectrum is

- 8. The most significant observation of Watson and Crick that led to the proposal of the double helical model for DNA is:
 - [A] Hydrogen bonding between the nucleobases
 - [C] van der Waals attraction between nucleobases
- [B] Base stacking in the double helix
- [D] Electrostatic attraction between nucleobases

9. Hypophosphorous acid molecule has

- [A] 4 lone pairs, 1π bond and 5σ bonds.
- [B] 5 lone pairs and 5 σ bonds.
- [C] 6 lone pairs, 1π bond and 6σ bonds.
- [D] 7 lone pairs and 6 σ bonds.

10. The compound *isolobal* to $Ni(CO)_2$ is:

- [A] $[Co(CO)_4]^+$ [B] $Fe(CO)_4$ [C] $[Ni(CO)_3]^+$ [D] $[Cu(CO)_2]^+$
- 11. The lowest formal oxidation state of iron is found in

[A]	[CpFe(CO) ₂] ₂	[B]	$K_4[Fe(CN)_6]$
[C]	Na ₂ [Fe(CO) ₄]	[D]	Fe(CO)5

12. Coulometry refers to:

- [A] Determination of quantity of analyte using Faraday's law when the reaction proceeds at 100% current efficiency.
- [B] Determination of quantity of analyte using half-wave potential.
- [C] Qualitative determination of elements using half-wave potential.
- [D] Quantitative determination of metals deposited on electrodes in a electrolytic process.

13. The metalloprotein oxyhemocyanin contains

[A]	$Co(II)$ and O_2^{2-}	[B]	Cu(II) and O_2^{2-}
[C]	$Co(IV)$ and O_2^-	[D]	Fe(III) and O_2^{2-}

14. The most appropriate statement about valinomycin is:

- [A] It is an acyclic oligopeptide capable of binding K^+
- [B] It is a cyclic oligopeptide capable of binding K^+
- [C] It is an acyclic oligopeptide capable of binding Cl⁻
- [D] It is a cyclic oligopeptide capable of binding Cl⁻

15. Among N₂, H₂O, CH₃CH₃ and CH₂Cl₂, pure vibrational spectrum will be shown by

- [A] N₂, H₂O and CH₂Cl₂
 [B] H₂O and CH₂Cl₂
 [C] H₂O, CH₃CH₃ and CH₂Cl₂
 [D] H₂O
- 16. The commutator $2\pi[x, p_x]$ equals to

[A]	iħ			[B]	−iħ
[C]	ih			[D]	$-\hbar$

17. For a first-order reaction, $2A \rightarrow$ Products, the expression for [A] is:

(Here, k: rate constant, t: time, [A]₀: initial concentration)

[A]	$[A] = [A]_0 \exp(-kt/2)$	[B]	$[A] = 2[A]_0 \exp(-kt)$
[C]	$[A] = 2[A]_0 \exp(-2kt)$	[D]	$[A] = [A]_0 \exp(-2kt)$

18. The value of the rotational partition function for a structureless particle is:

[A]	0	[B]	1
[C]	ln 2	[D]	Infinite

B-6

19. The single equivalent symmetry operation for S_6^3 is:

 $\begin{array}{ccc} [A] & C_3 & & & [B] & \sigma_h \\ [C] & E & & & [D] & i \end{array}$

20. The rotational symmetry number for water is:

[A]	0	[B]	1
[C]	2	[D]	3

PART - B

21. Identify X and Y in the following reactions

22. Identify X and Y in the following reactions

B-6

23. The major product formed in the following reaction is:

24. The major product obtained by the reaction of diphenylamine with benzoic acid in the presence of ZnCl₂ at 230 °C is:

13-6

25. The major product formed in the following reaction is:

- 26. The biosynthetic precursor for the hormone serotonin and natural camphor respectively are:
 - [A] tryptophan and linaloyl pyrophosphate
 - [B] phenylalanine and neryl pyrophosphate
 - [C] glycine and chrysanthemyl pyrophosphate
 - [D] dopamine and farnesyl pyrophosphate

27. The major product formed in the following reaction is:

B-6

28. The reagents I and II in the following reactions are

- [A] $I = CH_2I_2$, Zn-Cu; $II = Me_3S^+I^-$, NaH
- $[B] \quad I = CH_2I_2, Zn-Cu; II = Me_3S^+(O)I^-, NaH$
- [C] $I = Me_3S^+(O)I^-$, NaH; II = Me_3S^+I^-, NaH
- [D] $I = Me_3S^+(O)I^-$, NaH; II = CH₂I₂, Zn-Cu

29. The major product formed in the following reaction is:

B-6

30. The major product formed in the following reaction is:

31. The major product formed in the following reaction is:

32. The major product formed in the following reaction is:

33. The major product formed in the following reaction is:

34. The reaction intermediate involved in the following reaction is a

- [A] singlet carbene
- [B] radical
- [C] carbanion
- [D] triplet carbene

35. The relation between the benzylic protons (marked bold) in the following compounds I and II are respectively:

- [A] homotopic and enantiotopic
- [B] enantiotopic and enantiotopic
- [C] enantiotopic and diastereotopic
- [D] diastereotopic and enantiotopic

36. The major product formed in the following reaction is:

37. The major product formed in the following reaction is:

i. Br₂, P
CH₃COOH
$$\xrightarrow{\text{ii. KCN}}$$

iii. H₃O⁺

[A] Succinic acid

- [B] Malonic acid
- [D] α-Hydroxypropionic acid

[C] Glycolic acid

38. The major product formed in the following reaction sequence is:

39. The major products **X** and **Y** formed in the following reactions are:

40. Identify the most appropriate chemical shifts (i to iv) to the labelled carbons (a to d) of the given compound from the following list:

$$\begin{array}{c} 0 \\ d \\ c \\ \end{array} \begin{array}{c} 0 \\ a \\ b \\ \end{array} \begin{array}{c} (i) \\ \delta & 25.7 \\ (ii) \\ \delta & 38.1 \\ (iii) \\ \delta & 129.8 \\ (iv) \\ \delta & 150.9 \end{array}$$

- [A] a (iv); b (iii); c (ii); d (i)[B] a - (iii); b - (iv); c - (ii); d - (i)
- [C] a (iv); b (iii); c (i); d (ii)
- [D] a (iii); b (iv); c (i); d (ii)
- 41. The experimental hydration energies of Ca²⁺, Mn²⁺ and Zn²⁺ were plotted against atomic numbers. A straight line passing through these points gave a value of -716 kcal/mol as the hydration energy of Ni²⁺. If the ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ transition for $[Ni(H_2O)_6]^{2+}$ occurs at 8650 cm⁻¹, calculate the expected hydration energy of Ni²⁺ [1 kcal/mol = 350 cm⁻¹].

[A]	-666 kcal/mol	[B]	-686 kcal/mol
[C]	-746 kcal/mol	[D]	-766 kcal/mol

- 42. Trigonal-bipyramidal complex of formula [M(A–A)B₂X] (A–A represents a symmetrical bidentate ligand and B and C represent two different monodentate ligands) can have
 - [A] 3 geometrical isomers and one of them will be optically active.
 - [B] 4 geometrical isomers and 2 of them will be optically active.
 - [C] 3 geometrical isomers and 2 of them will be optically active.
 - [D] 4 geometrical isomers and one of them will be optically active.

43. The correct *styx* number of $[B_{10}H_{15}]^-$ structure given below is (B in the given structure represents BH):

44. Identify the correct order by using ¹H-NMR chemical shift values of compounds.

- [A] $W(Me)_6 = Mn(CO)_5H < (\eta^2 C_2H_4)_2Ni < (\eta^5 C_5H_5)_2Fe$
- [B] $Mn(CO)_5H < (\eta^5 C_5H_5)_2Fe < (\eta^2 C_2H_4)_2Ni < W(Me)_6$
- [C] $(\eta^5 C_5H_5)_2Fe < (\eta^2 C_2H_4)_2Ni < W(Me)_6 < Mn(CO)_5H$
- [D] W(Me)₆ < Mn(CO)₅H < $(\eta^{5}-C_{5}H_{5})_{2}Fe < (\eta^{2}-C_{2}H_{4})_{2}Ni$

45. Match the following terms:

a	$(\eta^1 - C_5 H_5)(\eta^5 - C_5 H_5)(CO)_2 Fe$	i	Butterfly framework
b	HCo(CO) ₄	ii	Hemocyanin
c	Os4(CO)15	iii	Ring Whizzer
d	Cyanide poisoning	iv	Carboxypeptidase
e	Arthropoda	V	Amyl nitrite
f	Entactic	vi	Acidic

- [A] a=iii; b=vi; c=i; d=v; e=ii; f=iv
- [B] a=vi; b=i; c=iii; d=v; e=iv; f=ii
- [C] a=vi; b=v; c=i; d=ii; e=iv; f=iii
- [D] a=iii; b=v; c=i; d=ii; e=iv; f=vi

46. The following diagrams are the pictorial representations of hemoglobin synthetic model systems.

The correct names of the models are:

- [A] I) Roofed, II) Strapped and III) Picket fence
- [B] I) Picket fence, II) Strapped and III) Roofed
- [C] I) Picket fence, II) Roofed and III) Strapped
- [D] I) Picket fence, II) Hemisphere and III) Roofed
- 47. The schematic drawing shown below represents active sites of bovin *Superoxide Dismutase*. X and Y are the metal centres.

Identify a combination of X and Y centres which can deactivate the enzyme.

- [A]X = Zn and Y = Cu[B]X = Cu and Y = Cu[C]X = Co and Y = Cd[D]X = Cd and Y = Cu
- 48. The rate of a substitution reaction is given by rate = $(k_1 + k_2[I^-])$ [PtCl(dien)⁺], with k_1 and k_2 being the first and second order rate constants. The observed rate in the presence of excess of I^- ions is given by
 - [A] $k_{obs} = k_1 + k_2[I^-]$ [B] $k_{obs} = k_2[I^-][PtCl(dien)^+]$ [C] $k_{obs} = k_1$ [D] $k_{obs} = k_1[PtCl(dien)^+]$

- 49. Consider Bailar twist and Ray-Dutt twist for the racemization of octahedral complexes with bidentate ligands and choose the correct statement/s among the following.
 - (i) Ray-Dutt twist takes place intermolecularly.
 - (ii) The C₃ axis is the twist axis for Bailar twist.
 - (iii) Both the processes take place via a trigonal prismatic intermediate/transition state.

[A]	(i) and (ii)	[B]	(i) and (iii)
[C]	(ii) and (iii)	[D]	(ii) only

50. For the molecule MX₇ with capped (capping on the square face) trigonal prismatic structure, how many environments are theoretically possible for X?

[A]	Two	[B]	Three
[C]	Four	[D]	One

51. Given that $p[H_2] = 1$, pH = 7, $[Fe]^{2+} = 1M$, and $E^{o}_{Fe}^{2+}/Fe} = 0.47$ V, the potential *E* for the oxidation of Fe to Fe²⁺ is closest to

[A]	+0.05V	[B]	- 0.05 V
[C]	- 0.36 V	[D]	+ 0.36 V

- 52. Sulfur dioxide forms 1:1 coordination complexes with both SbF₅ and Ir(PPh₃)₂(CO)Cl. Choose the correct statement about the donor atom (from SO₂) among the following.
 - [A] Oxygen is the donor atom in both the complexes.
 - [B] Sulfur is the donor atom in both the complexes.
 - [C] Sulfur is the donor atom in the iridium complex and the oxygen is the donor atom in SbF₅ complex.
 - [D] Oxygen is the donor atom in the iridium complex and sulfur is the donor atom in the SbF₅ complex.

- 53. Consider a metal ion having a S = 3/2 spin system. Predict the possible number of fine structures in an EPR spectrum if you consider a zero field splitting ZFS (D) and Kramer's degeneracy to be present in the system and in case if the ZFS (D) value is too large compared to applied magnetic field.
 - [A] 3 and 1, respectively. [B] 4 and 2, respectively.
 - [C] 1 and 2, respectively. [D] 3 and 2, respectively.
- 54. For Sm³⁺ and Eu³⁺, the calculated values of μ_J (BM) are far lesser than the experimentally obtained values of 1.6 and 3.6 BM respectively. The reason for this anamoly is
 - [A] multiplet width approximately being equal to k_BT .
 - [B] multiplet width much lesser than k_BT .
 - [C] multiplet width greater than k_BT .
 - [D] multiplet width infinitely larger than k_BT .
- 55. Identify the *d*ⁿ system corresponding to the Tanabe-Sugano configuration given below. Also identify the number of spin allowed transitions in the weak and strong field part of the diagram.

- [A] d^4 : 2 and 1, respectively.
- [C] d^6 : 1 and 4, respectively.
- [B] d^5 : 3 and 3, respectively. [D] d^7 : 3 and 1, respectively.
- 20

56. Calculate the cell potential for

Ag | AgCl (saturated), HCl (0.0200 M) | H₂(0.800 atm),Pt

and comment whether it is a spontaneous (galvanic cell) or non-spontaneous (electrolytic cell) reaction (Use $E_{AgCl/Ag}^{o} = 0.222$ V)

- [A] 0.00 V and no reaction will occur
- [B] -0.420 and non-spontaneous electrolytic cell
- [C] +0.420 and spontaneous galvanic cell
- [D] +0.222 V and non-spontaneous electrolytic cell
- 57. For the electron transfer process $[Co(NH_3)_5X]^{2+} + [Cr(H_2O)_6]^{2+} + 5H_3O^+ \rightarrow [Cr(H_2O)_5X]^{2+} + [Co(H_2O)_6]^{2+} + 5NH_4^+$, identify the correct pair of inert complexes:
 - [A] $[Co(NH_3)_5X]^{2+}$ and $[Co(H_2O)_6]^{2+}$ [C] $[Cr(H_2O)_5X]^{2+}$ and $[Co(H_2O)_6]^{2+}$ [D] $[Co(NH_3)_5X]^{2+}$ and $[Cr(H_2O)_5X]^{2+}$

58. Among macrocycles A, B and C, the order of affinity towards lithium ion is

С

 $[A] \quad C = B = A$

A

 $[C] \quad C < B < A$

 $[B] \quad A < B < C$ $[D] \quad C < A < B$

59. Truncated icosahedron (e.g., C₆₀) has

- [A] 12 pentagons and 20 hexagons
- [B] 12 pentagons and 20 squares
- [C] 20 equilateral triangular faces and 20 hexagons
- [D] 20 equilateral triangular faces and 12 pentagons

60. Which statement among the following about a Verkade's superbase is correct?

- [A] Protonation occurs on the phosphorus atom with additional intramolecular N–P bond formation
- [B] Protonation occurs on the phosphorus atom without any additional intramolecular N–P bond formation
- [C] Protonation occurs on the nitrogen atom without any additional intramolecular N–P bond formation
- [D] Protonation occurs on the nitrogen atom with the additional intramolecular N–P bond formation

61. The packing efficiency of a 2-dimensional square lattice is:

[A]	0.820	[B]	0.785
[C]	0.682	[D]	0.750

62. The bond dissociation energy of H₂ molecule is 431.6 $kJ mol^{-1}$. If the zero-point energy of H₂ molecule is 26.0 $kJ mol^{-1}$, the bond-dissociation energy of D₂ molecule in $kJ mol^{-1}$ is: (assume identical force constant for the H-H and D-D bonds)

[A]	457.6	[B]	405.6
[C]	439.2	[D]	444.1

63. The reaction $2NO + O_2 \rightarrow 2NO_2$ proceeds through the following steps:

$$\begin{array}{ll} 2\text{NO} \rightleftharpoons & \text{N}_2\text{O}_2 & (\text{fast}) \\ \text{N}_2\text{O}_2 + \text{O}_2 \longrightarrow 2\text{NO}_2 \end{array}$$

If ΔG for the first step is $-15 \ kcal \ mol^{-1}$ and E_a for the second step is $9 \ kcal \ mol^{-1}$, the rate constant of the reaction at 35°C (k₂) is related to the rate constant at 25 °C (k₁) as

[A]	$k_2 = 8.2 k_1$		[B]	$k_2 = 0.6 \ k_1$
[C]	$k_2 = 7.2 \ k_1$	•	[D]	$k_2 = 6.3 k_1$

64. The characters of the irreducible representations of C_{3h} point group are given below. The correct Mulliken symbols for the IR₁ and IR₂ are:

		C _{3h}	E	2 <i>C</i> ₃	σ_h	2 <i>S</i> ₃
		IR ₁	2	-1	2	-1
		IR ₂	1	1	-1	-1
[A]	E and A				[B] <i>I</i>	E'and A''
[C]	E''and A'				[D] <i>I</i>	E_2 and A_1

65. The separation between the energy levels in a two-level system is $1.38 \times 10^{-20} J$. The temperature (in K) at which the population of the ground state would be 4 times greater than that of the excited state is closest to:

[A]	475	[B]	530
[C]	721	[D]	1220

66. The rotational temperature for H_2 with a rotational constant 60.6 cm⁻¹ is nearly equal to:

[A]	67.3	[B]	77.3
[C]	87.3	[D]	97.3

67. The work done (in kJ) when 3 moles of an ideal monatomic gas at 298 K undergo irreversible isothermal expansion from pressure of 60.0 kPa to 30.0 kPa until the volume is doubled is:

[A]	0.37	[B]	3.7
[C]	-0.37	[D]	-3.7

68. The bond length in ¹²C¹⁴N is 117 pm, and its force constant is 1630 Nm⁻¹, the fundamental vibrational frequency (in cm⁻¹) is:

[A]	2.07×10^{3}	[B]	2.07×10^{2}
[C]	3.07×10^{3}	[D]	2.07×10^{2}

69. The zero-point energy (in J) of an electron confined in a box of length 1.0 nm is close to:

[A]	1.060×10^{-20}	[B]	4.025×10^{-20}
[C]	6.025×10^{-20}	[D]	3.025×10^{-20}

70. The correct expression for the Langmuir adsorption isotherm which is required to plot the experimental data set of pressure and volume is (where V_{∞} is the volume corresponding to complete coverage and *K* is the ratio of adsorption and desorption rate constants):

$$\begin{bmatrix} A \end{bmatrix} \quad \frac{p}{V} = \frac{p}{V_{\infty}} - \frac{1}{KV_{\infty}} \qquad \qquad \begin{bmatrix} B \end{bmatrix} \quad \frac{p}{V} = \frac{p}{V_{\infty}} + \frac{1}{K}$$
$$\begin{bmatrix} C \end{bmatrix} \quad \frac{p}{V} = \frac{p}{V_{\infty}} + \frac{1}{KV_{\infty}} \qquad \qquad \begin{bmatrix} D \end{bmatrix} \quad \frac{p}{V} = \frac{p}{V_{\infty}} - \frac{1}{K}$$

71. The polymer molecular weight vs. conversation plots of two different polymerization mechanisms are shown below. Plots (A) and (B) represent:

72. The reduced form of the van der Waals equation is:

[A]
$$p_r = \frac{8T_r}{3V_r - 1} - \frac{3}{T_r V_r^2}$$
 [B] $p_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r^2}$
[C] $p_r = \frac{3T_r}{8V_r - 1} - \frac{8}{3T_r V_r^2}$ [D] $p_r = \frac{3V_r}{8T_r - 1} - \frac{3}{V_r^2}$

73. Which of the following is equal to zero:

[A]	$[\hbar L_z, L^2]$	[B]	$[L_z, \hbar L]$
[C]	$\left[L_{x}, iL_{y}\right]$	[D]	$\left[L_{y}, iL_{z}\right]$

74. The energy eigenvalue of the ground electronic state of a hydrogen atom is -13.6 eV. If the atom stays in this state for 2 ns, the uncertainty in its energy (in eV) will be close to

[A]	1.64×10^{-7}	[B]	5.23×10^{-7}
[C]	8.23×10^{-7}	[D]	6.14×10^{-7}

75. The spatial part of the ground electronic wave function of H₂ molecule is given by $\Psi = N$ [1s_A(1) + 1s_B(1)] [1s_A(2) + 1s_B(2)], where the two hydrogen atoms are designated by A and B, 1 and 2 are the two electrons, and N is the normalization constant. The term symbol of the corresponding electronic state is:

[A]	$^{1}\Sigma_{g}^{+}$	[B]	$^{1}\Sigma_{u}^{-}$
[C] a	${}^{3}\Sigma_{g}^{+}$	[D]	$^{3}\Sigma_{u}^{+}$

76. Butadiene has an absorption at 4.54×10^4 cm⁻¹ for an electron on a transition from n = 2 state to n = 3 state. Assuming that butadiene can be modeled as a particle in a 1-dimensional box, the approximate total length of the molecule (in Å) is:

[A]	5.78	[B]	4.78
[C]	6.78	[D]	7.78

77. If 4% of the K⁺ ions in a KCl crystal are replaced by Ca^{2+} ions, the % decrease in the density of the crystal [atomic weight (g mol⁻¹): K = 39.10; Ca = 40.08; Cl = 35.45] is:

[A]	0.00	[B]	0.50
[C]	1.02	[D]	2.05

78. In the X-ray diffraction pattern of a crystal with a cubic lattice, peaks are observed at 2θ values of 21.00° and 29.87° . If the first peak is assigned to the (1 0 0) plane, the second peak can be assigned to the plane:

[A]	$(1\ 1\ 0)$	[B]	$(1\ 1\ 1)$
[C]	$(\bar{1} \ 0 \ 0)$	[D]	(2 0 0)

79. The ionic mobility of Na⁺ ion (in $m^2 V^{-1} s^{-1}$) in 0.1 M aqueous solution of NaCl at 25°C, (given the diffusion coefficient of Na⁺ ion is $1.30 \times 10^{-9} m^2 s^{-1}$) is:

[A]	5.92×10^{-7}	[B]	0.59×10^{-7}
[C]	5.06×10^{-8}	[D]	50.6×10^{-8}

80. A zinc rod is placed in 0.1 M solution of zinc sulphate at 25°C. Assume that the salt is dissociated to the extent of 95% at this dilution. Given, $E_{Zn^{2+}, Zn}^{0} = -0.76$ V, the electrode potential (in V) at 25°C is:

[A]	-0.79	[B]	0.79
[C]	-0.76	[D]	0.76

University of Hyderabad Ph.D. Entrance Examinations - 2022

School/Department/Centre Course : Ph.D.

: Chemistry Subject : Chemistry

1 B 26 A 51 A 2 A 27 A 52 C 3 C 28 B 53 A 4 D 29 C 54 A 5 A 30 C 55 C 6 B 31 B 56 B 7 D 32 B 57 D 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C 13 B 38 D 63 B	2 A A 2 3 0 0
3 C 28 B 53 A 4 D 29 C 54 A 5 A 30 C 55 C 6 B 31 B 56 B 7 D 32 B 57 D 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
4 D 29 C 54 A 5 A 30 C 55 C 6 B 31 B 56 B 7 D 32 B 57 D 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
5 A 30 C 55 C 6 B 31 B 56 B 7 D 32 B 57 C 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
6 B 31 B 56 B 7 D 32 B 57 D 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
7 D 32 B 57 D 8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
8 A 33 C 58 D 9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
9 A 34 D 59 A 10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
10 D 35 C 60 A 11 C 36 A 61 B 12 A 37 B 62 C	
11 C 36 A 61 B 12 A 37 B 62 C	
12 A 37 B 62 C	
	e
13 B 28 D C2 D	
13 B 38 D 63 B	
14 B 39 B 64 B	
15 C 40 D 65 C	
16 C 41 C 66 C	
17 D 42 D 67 D	
18 B 43 D 68 A	
19 D 44 C 69 C	
20 C 45 A 70 C	
21 D 46 B 71 C	
22 A 47 C 72 B	
23 B 48 A 73 A	
24 B 49 C 74 A	
25 C 50 B 75 A	
76 A	
77 C	
78 A	
79 C	
80 A	

Note/Remarks :

M. Sale quive

Martie 22-11-22 mi Signature School/Department/Centre