ENTRANCE EXAMINATIONS-2021

M.Sc. Mathematics/Applied Mathematics

Time: 2 hours

Max. Marks: 100

PART A: 25 Marks

PART B: 75 Marks

Hall Ticket Number

Instructions

- (1) Write your Hall Ticket Number on the OMR Answer sheet given to you. Also write the Hall Ticket Number in the space provided above.
- (2) Answers to be marked on the OMR Answer Sheet.
- (3) Please read the instructions carefully before marking your answers on the OMR Answer Sheet.
- (4) Hand over the OMR Answer Sheet at the end of the examination to the Invigilator.
- (5) No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- (6) Calculators are not allowed.
- (7) There are total of 50 questions in PART A and PART B together.
- (8) There is a negative marking in PART A. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. Each question in PART A has only one correct option.
- (9) There is no negative marking in PART B. Each correct answer carries 3 marks. Questions in PART B can have more than one correct option. If a question in this part has more than one correct option, then all the correct options have to be marked in OMR sheet to get 3 marks, otherwise zero marks will be credited for that question.
- (10) The appropriate answer(s) should be coloured with either a blue or black ball point pen or a sketch pen. DO NOT USE A PENCIL.
- (11) This booklet contains 13 pages including this page and excluding pages for the rough work. Please check that your paper has all the pages.
- (12) The question paper can be taken away by the candidate at the end of the examination.
- (13) Notations: \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Q} the set of rational numbers, \mathbb{Z} the set of integers, \mathbb{N} the set of natural numbers, and ϕ the empty set. For a set A, A^c denotes its complement. For a ring R and a positive integer n, $M_n(R)$ denotes the set of all $n \times n$ matrices with entries from R.

Part-A

- (1) Suppose A is a nonzero 2×2 real matrix such that $\det(I+A) = 1 + \det(A)$, where I is the 2×2 identity matrix. Then which of the following statements is always true?
 - (A) The matrix A is singular
 - (B) $A^2 = A$
 - (C) $\lambda = 1$ is an eigenvalue of A
 - (D) If λ is an eigenvalue of A, then $-\lambda$ is also an eigenvalue of A
- (2) Let A and B be 4×4 real matrices and $C = A^2 + AB$. If C is non-singular, then which of the following statements is always true?
 - (A) The trace of B is nonzero
 - (B) The trace of A is nonzero
 - (C) The matrix A is non-singular
 - (D) The matrix B is non-singular
- (3) Together with (1, 1, 0) and (2, 2, 2), which of the following vector will form a basis of \mathbb{R}^3 ?
 - (A)(3,3,3)
 - (B) (0,0,3)
 - (C) (-1,-1,0)
 - (D)(1,2,0)
- (4) The area of $\{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 2\}$ is
 - (A) 4
 - (B) 8
 - (C) 12
 - (D) 16
- (5) Let S' denote the set of all limit points of the nonempty set $S \subseteq \mathbb{R}$. Which of the following statements is true?
 - (A) If S is countably infinite then so is S'
 - (B) If S' is countably infinite then $S \cap S' = \phi$
 - (C) If S is countably infinite then S' is a finite set
 - (D) There exists a countably infinite set S such that S' is uncountable

- (6) Let $f, g: [0,1] \to \mathbb{R}$ be continuous. Define $u, v: [0,1] \to \mathbb{R}$ by $u(x) = \max\{f(x), g(x)\}, v(x) = \min\left\{\frac{f(x)}{1+|f(x)|}, \frac{g^2(x)}{\cosh(g(x))}\right\}$. Then
 - (A) both u and v are continuous
 - (B) both u and v are discontinuous
 - (C) u is continuous and v is discontinuous
 - (D) u is discontinuous and v is continuous
- (7) Let $\alpha \in \mathbb{R}$ be an upper bound of a nonempty subset A of \mathbb{R} . Consider the following statements:

 S_1 : The number α is the suprimum of A if β cannot be an upper bound of A for any $\beta < \alpha$.

 S_2 : The number α is the suprimum of A if there exists $\epsilon>0$ such that $\alpha-\epsilon$ cannot be an upper bound of A.

Then

- (A) S_1 is true and S_2 is false
- (B) S_1 is false and S_2 is true
- (C) both S_1 and S_2 are true
- (D) both S_1 and S_2 are false
- (8) Let (a_n) be a sequence in \mathbb{R} . Then which of the following statements is true?
 - (A) If (a_n) is a monotonic sequence in (0,1), then $(a_n) \to a$, for some $a \in (0,1)$
 - (B) If (a_n) is a Cauchy sequence and $|a_{2n} \frac{1}{2}| < \frac{1}{2}$, $\forall n \in \mathbb{N}$, then $(a_n) \to a$, for some $a \in (0,1)$
 - (C) If (a_n) is a Cauchy sequence and $|a_p \frac{1}{2}| < \frac{1}{4}$, \forall prime number p, then, $(a_n) \to a$, for some $a \in (0,1)$
 - (D) If (a_n) is a Cauchy sequence then it is monotonic
- (9) Let $f:(-1,1)\to\mathbb{R}$ be a non-constant continuous function. Consider the following statements.

 S_1 : If f is differentiable at x=0, then $\lim_{x\to 0} \frac{f(x)}{x}$ exists.

 S_2 : If $\lim_{x\to 0} \frac{f(x)}{x}$ exists, then f is differentiable at x=0, and the limit is equal to f'(0). Then

- (A) S_1 is true and S_2 is false
- (B) S_1 is false and S_2 is true
- (C) both S_1 and S_2 are true
- (D) both S_1 and S_2 are false

$$(A) yy'' + y' = 0$$

(B)
$$yy'' - (y')^2 = 0$$

$$(C) y'' + (y')^2 = 0$$

$$(D) yy'' + (y')^2 = 0$$

(11) If $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{k}{x}N(x,y)$, for some $k \neq 1$, then which of the following functions is always an integrating factor of M(x,y)dx + N(x,y)dy = 0

(A)
$$\mu = x$$

$$(B) \ \mu = \frac{1}{x}$$

(C)
$$\mu = x^k$$

(D)
$$\mu = x^{-k}$$

(12) Any solution of $x^2y'' + 3xy' + 10y = 0$, x > 1 is

- (A) bounded
- (B) has finite number of zeros
- (C) monotonic
- (D) always a constant function

(13) If $\bar{a}, \bar{b}: \mathbb{R}^3 \to \mathbb{R}^3$ are differentiable, then $\operatorname{div}(\bar{a} \times \bar{b}) =$

$$(A) \ \bar{a}.\operatorname{curl}(\bar{b}) - \bar{b}.\operatorname{curl}(\bar{a})$$

(B)
$$\bar{b}.\operatorname{curl}(\bar{a}) - \bar{a}.\operatorname{curl}(\bar{b})$$

$$(C) \ \bar{a}.\operatorname{curl}(\bar{b}) + \bar{b}.\operatorname{curl}(\bar{a})$$

(D)
$$\operatorname{curl}(\bar{a}).\operatorname{curl}(\bar{b})$$

(14) The equation of the plane parallel to 4x + 2y + 7z + 25 = 0 and passing through the point (-1, -2, 7) is

$$(A) 4x + 2y + 7z + 4 = 0$$

$$(B) 4x + 2y + 7z - 41 = 0$$

$$(C) 4x + 2y - 7z + 57 = 0$$

$$(D) 4x - 2y + 7z - 49 = 0$$

(15) Which of the following series converges?

$$(A) \sum_{n=0}^{\infty} \frac{|\cos n| + |\sin n|}{n}$$

$$(B) \sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^n$$

$$(C) \sum_{n=0}^{\infty} \frac{n!}{n^n}$$

(D)
$$\sum_{n=0}^{\infty} \frac{2^n}{\log n} \left(1 + \frac{1}{n}\right)^{-n}$$

(16) The number of ways of arranging m boys and n girls, where $m \ge n$, around a circular table such that no two girls are next to each other is

(A)
$$\frac{(m-1)!m!}{(m-n)!}$$

(B)
$$m!(n-1)!$$

$$(C) (m-1)!(n-1)!$$

(D)
$$\frac{(n-1)!m!}{(m-n)!}$$

(17) The equation of the straight line perpendicular to both $\frac{x-1}{3} = \frac{y+1}{-4} = \frac{z+1}{4}$ and $\frac{x+4}{3} = \frac{y-6}{-1} = \frac{z-1}{-5}$, and passing through (1, 2, 3) is

(A)
$$\frac{x-1}{4} = \frac{y-2}{6} = \frac{z-3}{3}$$

(B)
$$\frac{x-1}{8} = \frac{y-2}{19} = \frac{z-3}{1}$$

(C)
$$\frac{x-1}{3} = \frac{y-2}{9}, z = 3$$

$$(D) \ \frac{x-1}{8} = \frac{y-2}{9} = \frac{z-3}{3}$$

(18) If (2,5,6) and (4,1,2) are the end points of a diameter of a sphere, then the equation of the sphere is

(A)
$$x^2 + y^2 + z^2 - 6x - 6y - 8z + 25 = 0$$

(B)
$$x^2 + y^2 + z^2 - 3x - 3y - 4z + 29 = 0$$

(C)
$$x^2 + y^2 + z^2 - 6x - 6y - 8z + 29 = 0$$

(D)
$$x^2 + y^2 + z^2 - 3x - 3y - 4z + 25 = 0$$

- (19) If S denotes the sphere $x^2 + y^2 + z^2 = 3$, then $\int_S (2x^2 + 3y^2 4z^2) dS =$
 - $(A) 6\pi$
 - (B) 12π
 - $(C) 54\pi$
 - $(D) 108\pi$
- (20) Which of the following statements is true?
 - (A) Every infinite cyclic group is isomorphic to $\mathbb Z$
 - (B) An infinite cyclic group may not have a non-trivial subgroup
 - (C) If p is a prime number, then any group of order p^2 is cyclic
 - (D) Every group of order 6 is isomorphic to $\mathbb{Z}/6\mathbb{Z}$
- (21) Let G be a group of order 8. Then which of the following statements is true?
 - (A) G is necessarily abelian
 - (B) G is necessarily nonabelian
 - (C) There exists a nonabelian group of order 8
 - (D) There are exactly two nonisomorphic abelian groups of order 8
- (22) Which of the following is a field?
 - (A) $\mathbb{Q}[X]/(X-1)(X-2)$
 - '(B) $\mathbb{Z}[X]/(X^2+1)$
 - $(C) \mathbb{R}[X]/(X^2)$
 - (D) $\mathbb{Q}[X]/(X-100)$
- (23) Let p is an odd prime number. The remainder of the number $1^p + 2^p + \cdots + p^p$ after division with p is
 - (A) 0
 - (B) 1
 - (C) -1
 - $(D) \ \frac{p-1}{2}$

- (24) Let R be a ring with unity 1. Then the characteristic of R
 - (A) is always 0
 - (B) is always a prime number
 - (C) is always a composite number
 - (D) can be any non-negative integer
- (25) Which of the following rings does not have a nonzero zero-divisor?
 - (A) 2×2 matrices over \mathbb{R}
 - (B) 2×2 matrices over $\mathbb{Z}/2\mathbb{Z}$
 - (C) polynomial ring $\mathbb{Z}[X]$
 - $(D) \mathbb{Z} \times \mathbb{Z}$

Part-B

(26) The distance of the point (1,2,5) from the plane through (1,-1,-1), having the normal perpendicular to both the lines $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-5}{3}$ and

$$\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z+7}{1}$$
 is

- $(A) \sqrt{3}$
- $(B) \ 3\sqrt{3}$
- $(C) \ \frac{1}{\sqrt{3}}$
- $(D) \frac{1}{3}$
- (27) A sphere has x + y + z 9 = 0 and x + y + z 15 = 0 as tangent planes. If the center of the sphere lies on the line y = 2x, z = 3x, then the equation of the sphere is

(A)
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 11 = 0$$

(B)
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 5 = 0$$

(C)
$$x^2 + y^2 + z^2 - 4x - 8y - 12z + 53 = 0$$

(D)
$$x^2 + y^2 + z^2 - 4x - 8y - 12z + 47 = 0$$

- (28) The last two digits of $3^{3^{13}}$ are
 - (A) 27
 - (B) 81
 - (C) 43
 - (D) 61

- (29) Let V and W be two vector spaces. Let $T:V\to W$ be a linear transformation which is one-one, and $S:V\to W$ be an onto linear transformation. Assume that $A\neq \phi, B\neq \phi$ are subsets of V such that A is linearly dependent and B is linearly independent. Then which of the following statements are always true?
 - (A) Both T(B) and S(B) are linearly independent
 - (B) Both T(A) and S(A) are linearly dependent
 - (C) Both S(A) and S(B) are linearly dependent
 - (D) T(A) is linearly dependent and T(B) is linearly independent
- (30) Let A be a 3×3 nonzero complex matrix. Let $\sigma(A)$ denote the set of eigenvalues of A. Then which of the following statements is true?
 - (A) If A is nilpotent, then $\sigma(A) = \{0, 1\}$
 - (B) If A is idempotent, then $\sigma(A) = \{0, 1\}$
 - (C) If $\sigma(A) = \{0\}$, then A is nilpotent
 - (D) If $\sigma(A) = \{0\}$, then A is idempotent
- (31) Let V be a vector space. Suppose $\{u_1, u_2, \ldots, u_n\}$ and $\{w_1, w_2, \ldots, w_n\}$ are linearly independent and linearly dependent subsets of V respectively. Then there exists a linear transformation $T: V \to V$ such that
 - $(A) T(u_i) = w_i$
 - (B) $T(w_i) = u_i$
 - (C) $\operatorname{Ker}(T) = \operatorname{span}(\{u_1, u_2, \dots, u_n\})$
 - (D) Range of (T) =span($\{u_1, u_2, \dots, u_n\}$)
- (32) Let f: [0,1] → R be a function. Consider the following statements:
 S₁: If f is differentiable in (0,1), continuous on [0,1], then f' is bounded in (0,1).
 S₂: If f' exists and is bounded in (0,1), then f is uniformly continuous.
 Then
 - (A) both S_1 and S_2 are true
 - (B) both S_1 and S_2 are false
 - (C) S_1 is true and S_2 is false
 - (D) S_1 is false and S_2 is true

- (33) Let $\mathcal{R}[a,b] = \{f : [a,b] \to \mathbb{R}/f \text{ is Riemann integrable}\}$. Then which of the following statements is/are true?
 - (A) If $f:[0,1]\to\mathbb{R}$ is such that $f\Big|_{[a,1]}\in\mathcal{R}[a,1],\ \forall a\in(0,1),$ then $f\in\mathcal{R}[0,1]$
 - (B) If $f:[0,1]\to\mathbb{R}$ is continuous, then $f\in\mathcal{R}[0,1]$
 - (C) If $f \in \mathcal{R}[0,1]$, then there exists a finite set S such that f is continuous on $[0,1] \setminus S$
 - (D) If $f:[0,1] \to \mathbb{R}$ is monotone, then $\sin(f) \in \mathcal{R}[0,1]$
- (34) Let (x_n) , (y_n) be two sequences in \mathbb{R} . Define $z_n = \begin{cases} x_{\frac{n}{2}}, & \text{if } n \text{ is even,} \\ y_{\frac{n+1}{2}}, & \text{if } n \text{ is odd.} \end{cases}$

Then which of the following statements are true?

- (A) If (x_n) and (y_n) are bounded, then (z_n) has a convergent subsequence
- (B) If (x_n) and (y_n) are Cauchy sequences, then so is (z_n)
- (C) If (z_n) is a Cauchy sequence, then so is (x_n)
- (D). If (z_n) has a convergent subsequence, then at least one of (x_n) or (y_n) has a convergent subsequence
- (35) Consider the following statements:

 $S_1: \text{If } f: \mathbb{Q} \to \mathbb{R} \text{ is continuous, then there exists a continuous function } F: \mathbb{R} \to \mathbb{R}$ such that $F(r) = f(r), \forall r \in \mathbb{Q}$.

 S_2 : If $F: \mathbb{R} \to \mathbb{R}$ is continuous and $f: \mathbb{Q} \to \mathbb{R}$ is defined by $F(r) = f(r), \forall r \in \mathbb{Q}$, then f is continuous.

Then

- (A) both S_1 and S_2 are true
- (B) both S_1 and S_2 are false
- (C) S_1 is true and S_2 is false
- (D) S_1 is false and S_2 is true
- (36) The value of α such that $(\frac{1}{x^2} + \frac{1}{y^2})dx + (\frac{\alpha x + 1}{y^3})dy = 0$ is exact, and the solution to the corresponding exact equation are
 - (A) $\alpha = 2$, $2(x^2 y^2) x = cxy^2$, where $c \in \mathbb{R}$ is an arbitrary constant
 - (B) $\alpha = -2$, $2(x^2 y^2) x = cxy^2$, where $c \in \mathbb{R}$ is an arbitrary constant
 - (C) $\alpha = 2$, $2x^2y^2 x = cxy^2$, where $c \in \mathbb{R}$ is an arbitrary constant
 - (D) $\alpha = -2$, $2x^2y^2 x = cxy^2$, where $c \in \mathbb{R}$ is an arbitrary constant

(37) If
$$x = e^{r\cos\theta}\cos(r\sin\theta)$$
, $y = e^{r\cos\theta}\sin(r\sin\theta)$, then

$$(A) \frac{\partial x}{\partial \theta} = -r \frac{\partial y}{\partial r}, \quad \frac{\partial y}{\partial \theta} = r \frac{\partial x}{\partial r}$$

$$(B) \ \frac{\partial x}{\partial \theta} = r \frac{\partial y}{\partial r}, \quad \frac{\partial y}{\partial \theta} = r \frac{\partial x}{\partial r}.$$

$$(C) \ \frac{\partial x}{\partial \theta} = -r \frac{\partial y}{\partial r}, \ \ \frac{\partial y}{\partial \theta} = -r \frac{\partial x}{\partial r}$$

$$(D) \ \frac{\partial x}{\partial \theta} = r \frac{\partial y}{\partial r}, \quad \frac{\partial y}{\partial \theta} = -r \frac{\partial x}{\partial r}$$

(38) Let
$$a_n, b_n > 0$$
, $a_n + b_n \neq 1$, $\forall n \in \mathbb{N}$, $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series. Consider the statements:

$$S_1$$
: The series $\sum_{n=1}^{\infty} a_n (1-b_n)^n$ converges.

$$S_2$$
: The series $\sum_{n=1}^{\infty} \frac{8^n (1+\frac{1}{n})^{4n}}{9^n (1-(a_n+b_n))^n}$ converges.

Then

(A) both
$$S_1$$
 and S_2 are true

$$(B)$$
 both S_1 and S_2 are false

(C)
$$S_1$$
 is true and S_2 is false

(D)
$$S_1$$
 is false and S_2 is true

(39) The solution of
$$\frac{dy}{dx} = \frac{2y}{x} + \frac{x^3}{y} + x \tan(\frac{y}{x^2})$$
, subject to $y(1) = 2\pi$ is

• (A)
$$y \sin(\frac{y}{x^2}) - x \cos(\frac{y}{x^2}) = -x^3$$

(B)
$$y \sin(\frac{y}{x^2}) + x \cos(\frac{y}{x^2}) = x^3$$

(C)
$$y \sin(\frac{y}{x^2}) - x^2 \cos(\frac{y}{x^2}) = -x^3$$

(D)
$$y\sin(\frac{y}{x^2}) + x^2\cos(\frac{y}{x^2}) = x^3$$

(40) We denote by \simeq an isomorphism of groups. Which of the following is true?

$$(A)$$
 $(\mathbb{Z},+) \simeq (\mathbb{Q},+)$

(B)
$$(\mathbb{R},+)\simeq (\mathbb{R}^{>0},\cdot)$$
, where $\mathbb{R}^{>0}$ is the set of all nonzero positive reals

(C)
$$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \simeq S_3$$
, where S_3 is a permuation group on three letters

(D)
$$(\mathbb{Q},+)\simeq (\mathbb{Q}^{>0},\cdot)$$
, where $\mathbb{Q}^{>0}$ is the set of all positive rationals

(41) The equation of the line that intersects the lines
$$x + y + z = 1$$
, $2x - y - z = 2$; $\frac{x-1}{5} = \frac{y}{-1} = \frac{z+2}{6}$, and passes through the point $(1,1,1)$ is

(A)
$$\frac{x-1}{0} = \frac{y-1}{1} = \frac{z-1}{3}$$

(B)
$$\frac{x-1}{1} = \frac{y-1}{0} = \frac{z-1}{3}$$

(C)
$$\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{1}$$

$$(D) \ \frac{x-1}{1} = \frac{y-1}{3} = \frac{z-1}{0}$$

(42) Match the following vector spaces over ℝ given in List-I with their dimensions given in List-II.

List-I	List-II
(i) The space of 4×4 real skew symmetric matrices	(a) 12
(ii) The space of 3×3 Hermitian matrices	(b) 6
(iii) The space of all continuous functions $f: \mathbb{R} \to \mathbb{R}$	(c) 9
such that $f(n) = 0, \forall n \in \{1, 2, 3, 4, 5, 6\}$	$(d) \infty$

$$(A) (i) - (b), (ii) - (a), (iii) - (d)$$

$$(B)$$
 $(i) - (b)$, $(ii) - (c)$, $(iii) - (d)$

$$(C)$$
 $(i) - (a)$, $(ii) - (c)$, $(iii) - (d)$

$$(D)$$
 $(i) - (a)$, $(ii) - (b)$, $(iii) - (c)$

(43) Match the following:

List-I	List-II
$(i) \lim_{n \to \infty} \left(2^{\frac{n+1}{n}} - 1 \right)^n$	(a) does not exist in \mathbb{R}
(ii) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^k k^2}{1 + k^2}$	(b) is equal to 1
$(iii) \lim_{x \to 0} \left(4 + \frac{3}{x}\right)^x$	(c) is equal to 4

$$(A) (i) - (b), (ii) - (a), (iii) - (c)$$

$$(B)$$
 $(i) - (c)$, $(ii) - (a)$, $(iii) - (b)$

$$(C)$$
 $(i) - (a)$, $(ii) - (b)$, $(iii) - (c)$

$$(D)$$
 $(i) - (c)$, $(ii) - (b)$, $(iii) - (a)$

(44) Let $a_1, a_2 \in \mathbb{R}$. Match the properties of the roots of the quadratic equation $X^2 + a_1X + a_2 = 0$ and that of the nonzero solutions of the differential equation $y'' + a_1y' + a_2y = 0$.

Roots	Nonzero solution				
(i) Real, distinct, positive	(a) unbounded and monotonic in $[M, \infty]$ for some $M > 0$				
(ii) Complex numbers with a positive real part	(b) bounded and periodic				
(iii) purely imaginary	(c) unbounded and vanishes infinitely many times in \mathbb{R}				

$$(A)$$
 $(i) - (a)$, $(ii) - (b)$, $(iii) - (c)$

$$(B)$$
 $(i) - (b)$, $(ii) - (c)$, $(iii) - (a)$

$$(C)$$
 $(i) - (a)$, $(ii) - (c)$, $(iii) - (b)$

$$(D)(i) - (c), (ii) - (a), (iii) - (b)$$

- (45) We say that in a ring R with unity an element $a \in R$ is a sum of squares in R if $a = x_1^2 + x_2^2 + \cdots + x_p^2$ for some x_i 's in R and for some natural number n. Then which of the following statements are true?
 - (A) -1 is a sum of squares in \mathbb{R}
 - (B) -1 is a sum of squares in $\mathbb C$
 - (C) -1 is a sum of squares in $\mathbb{Z}/17\mathbb{Z}$
 - (D) -1 is a sum of squares in $\mathbb{Q}[X]/(X-1)$
- (46) Let R be a ring with unity 1. A nonzero element $e \in R$ is said to be an *idempotent* if $e \neq 1$ (and $e \neq 0$) and $e^2 = e$. Consider the following statements:
 - S_1 : The ring of matrices $M_2(\mathbb{R})$ has an idempotent.
 - S_2 : The ring $\mathbb{Z}/pq\mathbb{Z}$ (where p,q are distinct primes numbers) has an idempotent.
 - S_3 : The ring $\mathbb{Z}[X]/(X^2+1)$ has an idempotent. Then
 - (A) only S_1 and S_3 are true
 - (B) only S_1 and S_2 are true
 - (C) only S_2 and S_3 are true
 - (D) only S_1 is true

(47) Consider the following statements:

 S_1 : Every subgroup of an abelian group is normal.

 S_2 : If every subgroup of a group is normal, then the group is abelian. Then

- (A) both S_1 and S_2 are true
- (B) both S_1 and S_2 are false
- (C) S_1 is true and S_2 is false
- (D) S_1 is false and S_2 is true
- (48) If $x + y + \alpha z = 3$ is a tangent plane to $x^2 + y^2 + z^2 = 4$, then $\alpha =$
 - $(A)\,\pm\frac{1}{2}$
 - $(B) \pm \frac{3}{2}$
 - $(C)\ \pm\frac{2}{\sqrt{3}}$
 - $(D) \pm \frac{\sqrt{3}}{2}$
- (49) Which of the following statements are true?
 - (A) \mathbb{Q} is an ideal of \mathbb{R}
 - (B) A non-empty intersection of ideals in a ring is an ideal
 - (C) The set $\{(2m,n): m,n\in\mathbb{Z}\}$ is an ideal of $\mathbb{Z}\times\mathbb{Z}$
 - (D) For a ring R, $\{0\} \subset R$ is an ideal of R
- . (50) Match the following groups with their properties:

	Groups		Properties
$\overline{(i)}$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	(a)	Cyclic
(ii)	\mathbb{Z}	(b)	Non-abelian and finite
(iii)	$M_2(\mathbb{R})$, the ring of 2×2 matrices	(c)	Abelian but not cyclic
(iv)	D_8 (Dihedral group)	(d)	Non-abelian and infinite

$$(A)$$
 $(i) - (a)$, $(ii) - (b)$, $(iii) - (c)$, $(iv) - (d)$

$$(B)$$
 (i) – (b) , (ii) – (c) , (iii) – (d) , (iv) – (a)

$$(C)$$
 $(i) - (c)$, $(ii) - (d)$, $(iii) - (a)$, $(iv) - (b)$

$$(D)\ (i)-(c),\ (ii)-(a),\ (iii)-(d),\ (iv)-(b)$$

University of Hyderabad Entrance Examinations - 2021

School of Mathematics and Statistics Course/Subject: M.Sc. in Mathematics/Applied Mathematics

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
1	D	. 26	Α	51		76	
2	.с.	27	C = ::	52	reserve de la co	77	
3	D	28	A	53		78	
4	В	29	B,D	54		79	
5	D	30	С	55		80	
6	A	31	A, C, D	56		81	
7	'A	32	В	57		82	
8	С	33	B,D	58	7.	83	
9	В	34	A,C,D	59	70	84	10 (i)
10	D	35	D	60	***	85	-
11	C	36	В	61		86	
12	Α	37	А	62		87	
13	В	38	Α	63		88	***
14	В	39	D.	64		89	
15	С	40	В	65		90	
15	А	41	А	66		91	
17	D	42	В	67		92	***************************************
18	А	43	В	68		93	-
19	В	44	С	69		94	
20	А	45	В,С	70		95	
21	С	46	В	71		96	
22	D .	47	С	72		97	
23	A	48	А	73		98	
24	D	49	B, C, D	74	1100	99	
25	С	50	D	:75		100	

Note/Remarks:

Signature of the Head/Dean School/Department/Centre