ENTRANCE EXAMINATIONS – 2018

(Ph.D. Admissions - January 2019 Session)

Ph.D. Chemistry

TIME: 2 HOURS

MAXIMUM MARKS: 80

HALL TICKET NUMBER:

INSTRUCTIONS

- 1. Write your HALL TICKET NUMBER in the space provided above and also on the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1 19 are present (excluding 4 pages assigned for rough work).
- 3. There are eighty (80) multiple choice questions in this paper (20 in Part-A and 60 in Part-B); each question carries two (2) marks.
- 4. Attempt all questions in Part-A (20 × 2 = 40 marks), and any 20 in Part-B (20 × 2 = 40 marks); if more questions are answered in Part-B, only the first 20 will be considered for grading.
- 5. There is negative marking for both Part-A and Part-B. Each wrong answer carries 0.66 mark.
- 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
- 7. Hand over the OMR answer sheet to the invigilator at the end of the examination.
- 8. In case of a tie, the marks obtained in Part-A will be used to determine the order of merit.
- 9. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 10. Calculators are allowed. Cell phones are not allowed.
- 11. Useful constants are provided at the beginning of Part-A in the question paper.
- 12. OMR sheets without hall ticket number will not be evaluated and the University shall not be held responsible.

5-60

Useful Constants:

Rydberg constant = 109737 cm⁻¹; Faraday constant = 96500 C = 23.06 kcal/V; Planck constant = 6.625×10^{-34} J s; Boltzmann constant = 1.380×10^{-23} J K⁻¹; Gas constant = 8.314 J K⁻¹ mol⁻¹ = 0.082 L atm K⁻¹ mol⁻¹ = 1.987 cal K⁻¹ mol⁻¹; Mass of electron = 9.109×10^{-31} kg; Mass of proton = 1.672×10^{-27} kg; Charge of electron = 1.6×10^{-19} C; 1 bar = 10^5 N m⁻²; RT/F (at 298.15 K) = 0.0257 V; Avogadro number = 6.022×10^{23} ; Speed of light = 3.0×10^8 m s⁻¹

Part-A

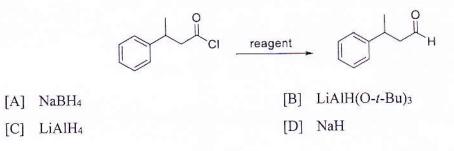
1. Diborane combines with excess NH3 at high temperature to form

[A]	H ₃ B←NH ₃	[B]	B ₃ N ₃ H ₆
[C]	$H_3B \rightarrow NH_3$	[D]	(BN) _n

2. The increasing order of polarizing powers of Na⁺, Mg²⁺ and Al³⁺ ions is

[A]	$Na^{+} < Mg^{2+} < Al^{3+}$	[B] Na ⁺	$< Al^{3+} < Mg^{2+}$
[C]	$Al^{3+} \le Mg^{2+} \le Na^{+}$	[D] Mg ²⁺	< Na ⁺ $<$ Al ³⁺

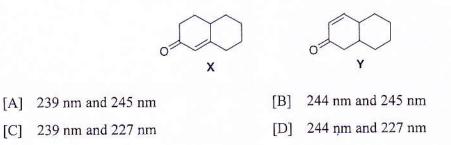
3. If BH_3^- is isolobal with $[M(CO)_5]^+$, the 3d transition metal M is


[A]	Cr	[B]	Mn
[C]	Fe	[D]	Co

- 4. N₂ ligand in [Ru(NH₃)₅(N₂)Ru(NH₃)₅]⁴⁺ complex is in
 - [A] infrared active end-on-bridge mode
 - [B] Raman active end-on-bridge mode
 - [C] infrared active side-on-bridge mode
 - [D] Raman active side-on-bridge mode
- 5. The total number of metal-metal bonds present in $(\eta^4-C_4H_4)_2Fe_2(CO)_3$ and $Co_4(CO)_{12}$ are respectively,

[A] 3 and 2	[B]	4 and 3
-------------	-----	---------

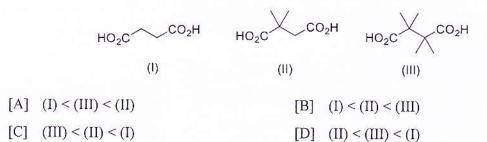
[C] 3 and 6 [D] 4 and 6


- 6. Photosynthesis by plants involves two major events, namely, visible light absorption and catalytic water oxidation. The specific metal ions engaged in the above two events are respectively,
 - [A] Mg and Co [B] Mg and Mn
 - [C] Mn and Mg [D] Mn and Fe
- 7. Reaction of hydrocinnamic acid (PhCH2CH2CO2H) with trifluoroacetic anhydride provides
 - [A] hydrocinnamic anhydride
 - [B] indan-1-one
 - [C] ethylbenzene
 - [D] mixed anhydride of hydrocinnamic acid and trifluoroacetic acid
- 8. The appropriate reagent to carry out the following transformation is

9. The precipitate formed in the estimation of glucose by its reaction with Fehling's solution is

[A]	CuO	[B]	CuCO ₃
[C]	Cu(OH) ₂	[D]	Cu ₂ O

10. The predicted electronic absorption maxima of X and Y are respectively,


- 11. According to Hammond's postulate, structure of the transition states for exothermic and endothermic reactions resemble the structure(s) of
 - [A] reactant
 - [B] product
 - [C] reactant and product respectively
 - [D] product and reactant respectively

12. Given that there are 20 amino acids, the number of possible tripeptides are

[A]	8000	[B]	1200

[C] 400 [D] 6400

13. The order of increasing reaction rates for cyclic anhydride formation from the following succinic acids is

14. The free energy change in a process is affected by

- [A] the entropy change of the system and the surrounding
- [B] only the entropy change of the system
- [C] only the entropy change of the surrounding
- [D] only the enthalpy change of the system
- 15. From the Hückel molecular orbitals, one can deduce that the spin density in allyl radical is predominantly localized on
 - [A] atoms 1 and 2 [B] atom 2
 - [C] atoms 1 and 3 [D] all the atoms equally

16. In the photoelectric experiment, slope of the kinetic energy vs frequency plot is

[A]	Planck constant	[B] Avogadro num	ber
[x x]	I failed constant		0.

- [C] velocity of electron [D] work function
- 17. Variance and standard deviation (σ) are two ways to report statistical error. Which of the following correctly describes the relationship between variance and standard deviation?

[A]	variance = σ	[B]	variance = $\sqrt{\sigma}$	
[C]	variance = σ^2	[D]	variance = $\sqrt[4]{\sigma}$	

18. Which, among the following, is a set of linearly independent functions?

[A]	$\sin^2 x, \cos^2 y, 1$	[B] $8, x, x^2, 3x^2 - 1$	
[C]	$\sin x$, $\cos x$, e^{ix}	[D] $\sin^2 x, \cos^2 x, 1$	

19. According to Graham's law of effusion, the rate of effusion is

- [A] independent of molar mass
- [B] directly proportional to molar mass
- [C] inversely proportional to square root of molar mass
- [D] inversely proportional to square of molar mass
- 20. A phase transition occurs at the temperature at which the system in the two phases have the same

[A]	internal energies	[B] entropies
~ ~	-	

[C] volumes

[D] chemical potentials

Part-B

21. A sample of pure Na_2CO_3 weighing 0.3542 g is dissolved in water and titrated with a solution of HCl. A volume of 30.23 mL of aqueous HCl solution is required to reach the end point. The molarity of acid is close to (atomic weight of Na = 23)

[A]	0.055 M	[B]	0.11 M
[C]	0.22 M	[D]	$2.2 \times 10^4 \text{ M}$

22. A sample of 5.0 mmol of iron(II) sulfate is dissolved in 100 mL of aqueous sulfuric acid and titrated with 0.10 M cerium(IV) sulfate solution. The potential of the inert electrode (*E* in V) in the solution at 25°C, after the addition of 10 mL and 60 mL of Ce(IV) solution are respectively, [Given: $E^{0}_{Fe^{3+}/Fe^{2+}} = 0.77 V$; $E^{0}_{Ce^{4+}/Ce^{3+}} = 1.61 V$]

[A]	0.77 and 1.61	[B]	0.24 and 0.24
[C]	0.81 and 1.65	[D]	0.73 and 1.57

23. Iron in a 0.70 g sample that contains 25% Fe_2O_3 is precipitated as $Fe(OH)_3$ using aqueous ammonia solution. The volume of aqueous ammonia solution of 2.3% (w/v) required to complete the precipitation of iron is (atomic weight of Fe = 55.85)

[A]	4.89 mL	[B]	1.69 mL
[C]	2.46 mL	[D]	1.23 mL

24. The correct statement(s) about crown ethers among the following is/are

- (i) They are soluble in both organic solvents and water
- (ii) They are soluble only in organic solvents
- (iii) They are soluble only in water
- (iv) They are structurally flexible

[A]	(i) and (iv)	[B]	(iii) and (iv)
[C]	(i)	[D]	(ii) and (iv)

25. The crystal field stabilization energy (CFSE) of [Co(CN)6]³⁻ is

[A]	-24Dq	[B]	-4Dq + P
[C]	-24Dq + 3P	[D]	-24Dq + 2P

26. Among the following configurations in octahedral crystal field, the configuration expected to have higher than spin-only magnetic moment is

[A]	d^3 (in both weak and strong ligand fields)	[B]	d ⁴ (in weak ligand field)
[C]	d ⁴ (in strong ligand field)	[D]	d ⁵ (in weak ligand field)

27. According to HSAB theory the equilibrium constants (K) of the following two reactions $CdI_2 + CaF_2 \implies CdF_2 + CaI_2$ and $AII_3 + 3NaF \implies AIF_3 + 3NaI$ are expected to be

[A]	> 1 and < 1 , respectively	[B]	< 1 and > 1 , respectively
[C]	> 1 in both cases	[D]	< 1 in both cases

28. The standard potentials (E⁰) for Ag⁺ + e⁻ → Ag and [Ag(CN)₂]⁻ + e⁻ → Ag + 2CN⁻ are 0.80 and -0.31 V, respectively. The formation constant of the complex [Ag(CN)₂]⁻ at 25°C is close to

[A]	4.5×10^{18}	[B]	1.7×10^{8}
[C]	2.24×10^{-19}	[D]	1.7×10^{-8}

29. The reasons for the observation of AA'XX' spectral pattern at -19° C and a broad single peak at 67°C for ethylenic protons in the ¹H NMR (60 MHz) spectra of (η^{5} -C₅H₅)Rh(C₂H₄)₂ are

- (i) static and dynamic structures of the compound at -19° C and 67° C, respectively.
- (ii) rotation of the olefin about the metal-olefin bond axis.
- (iii) exchange of C₂H₄ between two different molecules.

[A]	(i), (ii) and (iii)	[B]	(1) and (11)
[C]	(i) and (iii)	[D]	(ii) and (iii)

30. The order of increasing metal-carbon bond distances in the following compounds is

$(\eta^5-C_5H_5)_2Fe$	(η ⁵ -C ₅ H ₅) ₂ Co	(η ⁵ -C ₅ H ₅) ₂ Ni
I	II	III

[A]	I < II < III	[B]	$\Pi < I < \Pi$
[C]	III < II < I	[D]	$I \leq III \leq II$

31. The metal-metal bond orders in the complexes shown in the following reaction sequence $[\operatorname{Re}_2\operatorname{Cl}_8]^{2-} \xrightarrow{\operatorname{PR}_3} [\operatorname{Re}_2\operatorname{Cl}_4(\operatorname{PR}_3)_4] \xrightarrow{\operatorname{O}_2} [\operatorname{Re}_2\operatorname{Cl}_4(\operatorname{PR}_3)_4]^{2+}$ are respectively,

[A]	4, 3 and 4	[B]	4, 3 and 2
[C]	2, 3 and 4	[D]	3, 4 and 3

32. The number of lines expected in the electron paramagnetic resonance (epr) spectrum of ⁶³Cu²⁺ ion at room temperature (25°C) is

[A]	0	[B]	2
[C]	3	[D]	4

- 33. Choose the correct statement(s) in connection with the structure of Fe(CO)₅ molecule.
 - (i) The IR spectrum is consistent with a trigonal bipyramidal structure with distinct axial and equatorial CO groups.
 - (ii) The Raman spectrum is consistent with a trigonal bipyramidal structure with distinct axial and equatorial CO groups.
 - (iii) The room temperature (25°C) ¹³C NMR spectrum clearly shows that it has a trigonal bipyramidal structure with distinct axial and equatorial CO groups.

[A]	(i) and (ii)	[B]	(ii) and (iii)
[C]	(i) and (iii)	[D]	(i) only

34. Choose the compound(s) that is(are) hypervalent among the following: AsCl₃, SbF₅, S(O)Cl₂, [Ph₄P]⁺[Cl]⁻

[/	A]	SbF5 and S(O)Cl2	[B]]	SbF5 only	
[(C]	AsCl ₃ and SbF ₅	[D]]	SbF5, S(O)Cl2 and	$[Ph_4P]^+[C1]^-$

35. The total number of microstates possible for a d³ ion and a ²P term are respectively,

[A]	120 and 6	[B]	45 and 3	
[C]	60 and 4	[D]	80 and 5	

36. The effective magnetic moment taking spin-orbit coupling into account for $[Ni(en)_3]^{2+}$ considering the following parameters, $\alpha = 4$, $\lambda = -315$ cm⁻¹ and $\Delta_0 = 11500$ cm⁻¹ is

[A]	3.14 BM	[B]	2.83 BM
[C]	2.14 BM	[D]	4.83 BM

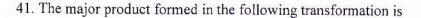
37. The lability of the square planar complexes, assuming an associative mechanism for substitution, is in the order

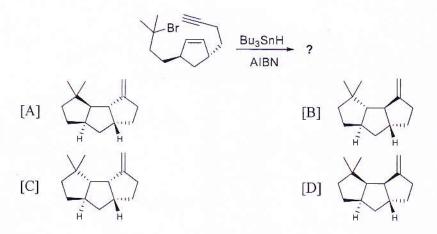
[A]	$Ni(II) \le Pd(II) \le Rh(I)$	[B]	Ni(II) > Pd(II) > Rh(I)
[C]	Ni(II) > Rh(I) > Pd(II)	[D]	Ni(II) < Rh(I) < Pd(II)

38. Consider the following equation: $Fe_2O_3(s) + 6H^+(aq) + 2e^- \rightarrow 2Fe^{2+}(aq) + 3H_2O(l)$. Choose the correct statements from the following

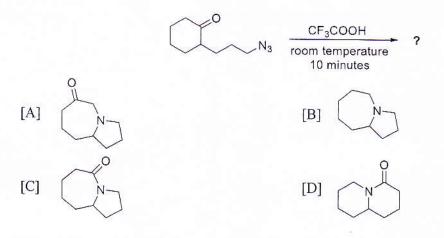
- (i) The potential for this reaction increases with the increase in pH
- (ii) The potential for this reaction decreases with the increase in pH
- (iii) The potential for this reaction increases with the increase in the concentration of [Fe]²⁺
- (iv) The potential for this reaction decreases with the increase in the concentration of [Fe]²⁺

[A]	(i) and (iii)	[B]	(ii) and (iii)
[C]	(ii) and (iv)	[D]	(i) and (iv)

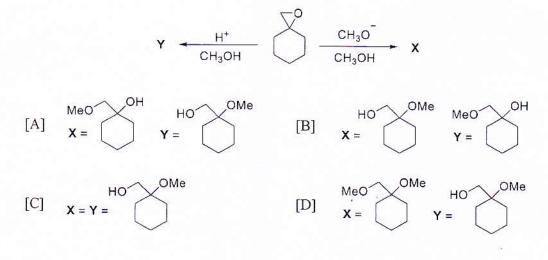

39. The correct matching of the items in the following table are

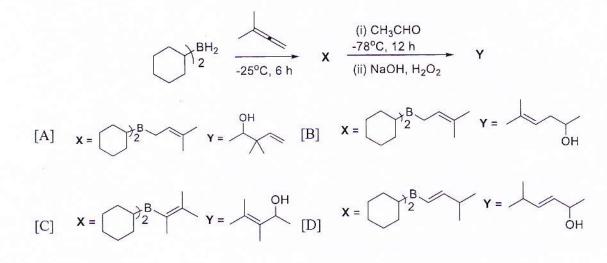

1.	Fischer Tropsch process	a.	HCo(CO) ₄
2.	water gas shift reaction	b.	Os ₃ (CO) ₁₀ (CH ₄)
3.	oxo process	c.	carbide/carbine mechanism
4.	agostic Interaction	d.	Ru(bpy) ₂ Cl ₂

- [C] 1=d; 2=c; 3=b; 4=a [D] 1=a; 2=d; 3=b; 4=c
- 40. The ground state term symbol representation and magnetic moment for Pr³⁺ ion (4f²) are respectively,

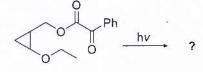

[A]	³ H ₄ and 3.58 BM	[B]	⁴ I _{9/2} and 2.68 BM
[C]	² F _{5/2} and 2.54 BM	[D]	$^{3}\mathrm{H}_{6}$ and 2.82 BM

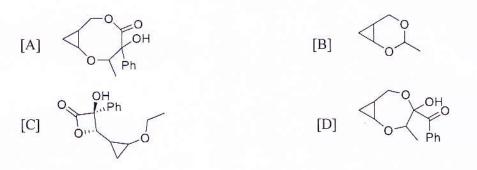
8

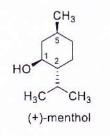




42. The major product formed in the following reaction is


43. Identify the products X and Y in the following reactions.

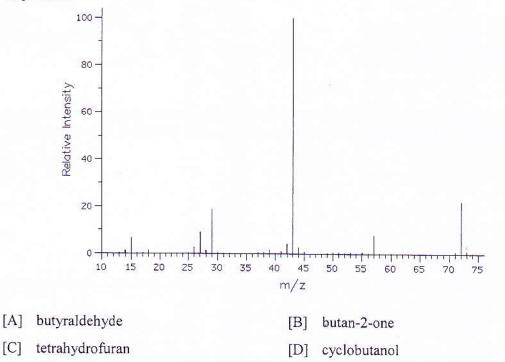



44. Identify \mathbf{X} and \mathbf{Y} in the following reaction sequence.

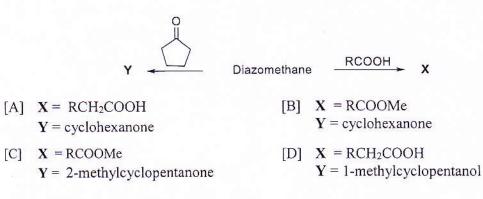
45. The product formed in the following transformation is

46. The absolute configuration of (+)-menthol is

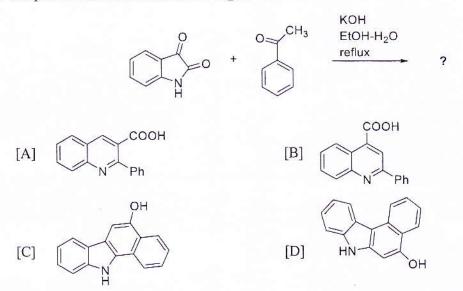
[A] 1*S*, 2*S*, 5*S*[C] 1*S*, 2*S*, 5*R*

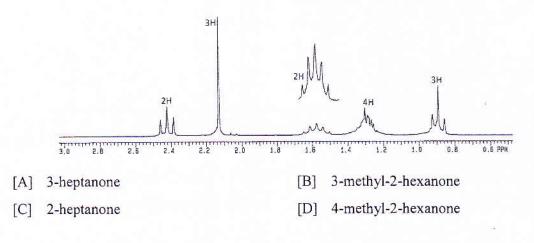

[B] 1*S*, 2*R*, 5*S*[D] 1*S*, 2*R*, 5*R*

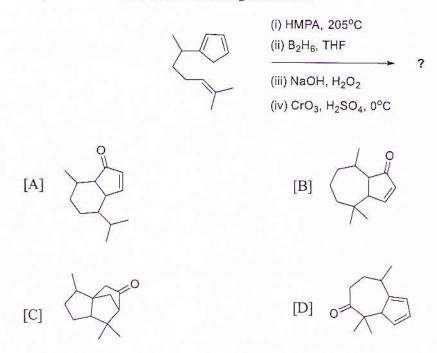
0


0 OSi(ⁱPr)₃ N2 light Х Y light OSi(ⁱPr)₃ 0=0: (ⁱPr)₃SiO OHC X = [A] Y = [B] 0 X = **Y** = 0 ,OSi(ⁱPr)₃ (ⁱPr)₃SiO С 0 [C] [D] X = **X** = Y **Y** =

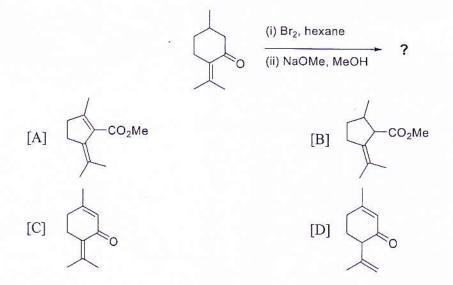
47. Identify the products X and Y in the following transformation.


48. The mass spectrum of a compound with molecular formula C₄H₈O is given below. The compound is

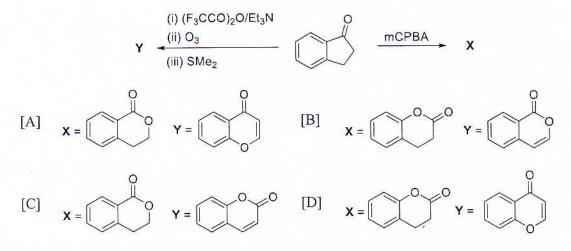

49. Predict the most appropriate products X and Y in the following reactions.

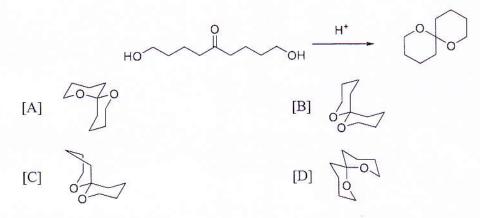


50. The product obtained in the following reaction is

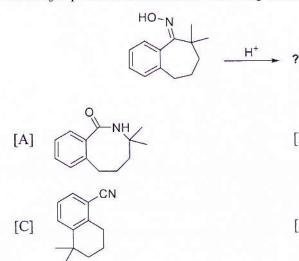

51. The ¹H-NMR spectrum of a compound with molecular formula C₇H₁₄O is given below. The IR spectrum of the same compound has an intense band at 1718 cm⁻¹. The compound is

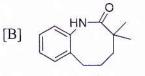
52. The product obtained in the following reaction is

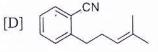

53. The major product formed in the following reaction is

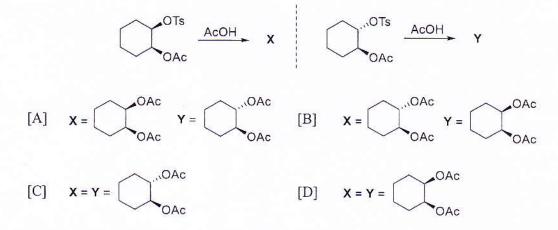

54. The side product obtained in the Reimer-Tiemann reaction of indole via cyclopropanation is

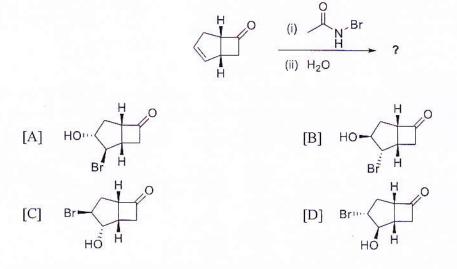
- [A] 3-chloroquinoline
- [B] 2-chloroquinoline
- [C] 2-chloro indole-3-carboxaldehyde
- [D] 3-chloro indole-2-carboxaldehyde


55. Identify \mathbf{X} and \mathbf{Y} in the following conversions.

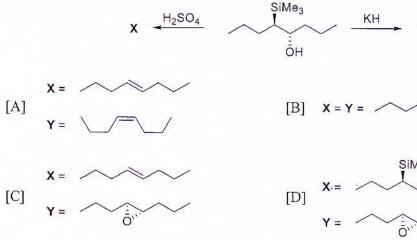



56. The most favorable conformer of the product in the following transformation is

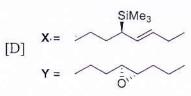

57. The major product formed in the following transformation is



14



58. Identify X and Y in the following transformations


59. The major product obtained in the following transformation is

60. Identify X and Y in the following transformations.

Y

15

61. The fraction of light transmitted through a 200 mm thick glass plate is 0.955. The absorption coefficient of the glass is

[A]	$2.0 \times 10^{-4} \text{ mm}^{-1}$	[B]	$5.0 \times 10^{-4} \text{ mm}^{-1}$
[C]	$9.0 \times 10^{-4} \text{ mm}^{-1}$	[D]	$1.0 \times 10^{-4} \text{ mm}^{-1}$

62. The molecule that is equally well described by single determinantal molecular orbital and simple valence bond theories is

[A]	Na ₂	[B]	FCI	
[C]	NaCl	[D]	I_2	

63. The π -electron charges on the four carbon atoms of *trans*-1,3-butadiene are in the ratio

[A]	1.1.1.1	[D]	1:2:2:1
[C]	1:√2:√2:1	[D]	1:3:3:1

64. The dissociation constant of a weak acid (K_a) can be expressed as [C and λ are the concentration and conductance of the acid, respectively; λ_0 is the conductance of the acid at infinite dilution]

[A]	λC	[B]	$\lambda^2 C$
	$(\lambda_0 - \lambda)$		$\overline{\lambda_0(\lambda_0-\lambda)}$
[C]	$\lambda^2 C$	[D]	$\lambda^2 C$
	λ_0^2		$\overline{\lambda_0(\lambda-\lambda_0)}$

65. A polymer sample has two types of chains having different molecular weights as shown in the table

	weight fraction	molecular weight
A	0.10	104
В	0.90	105

The number average molecular weight of the polymer is

[A]	5.26×10^4	[B]	5.26×10^{3}
[C]	9.1×10^{4}	[D]	9.1×10^{3}

66. For a cell reaction, $Hg_2Cl_2 + H_2 \rightarrow 2 Hg + 2H^+ + 2Cl^-$, the standard cell potential at 25°C is 0.25 V and the temperature coefficient of the standard cell potential is $-3.2 \times 10^{-4} VK^{-1}$. The standard enthalpy of the reaction (in kJ mol⁻¹) is close to

[A]	-66	[B]	-33
[C]	66	[D]	33

67. The ¹H NMR spectrum of an AB spin system in a 60 MHz spectrometer produces four lines at 423.0, 418.5, 416.0, and 411.5 Hz with reference to TMS. The coupling constant J_{AB} is

[A]	2.5 Hz	[B]	7.0 Hz
[C]	4.5 Hz	[D]	11.5 Hz

68. The diffusion coefficient of glycine molecule in water at 25 °C is 1.055×10^{-9} m²s⁻¹. The time required (in seconds) for a glycine molecule to have a root mean square displacement of 1.0 cm is

[A]	5.0×10^{3}	[B]	4.7×10^4
[C]	$9.0 imes 10^2$	[D]	10

69. Given the following standard molar Gibbs energy of reactions,

$$\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \to H^+(aq) + Cl^-(aq) \qquad \Delta_r G^o = -131.2 \text{ kJ mol}^{-1}$$

Ag(s) + $\frac{1}{2}Cl_2(g) \to Ag^+(aq) + Cl^-(aq) \qquad \Delta_r G^o = -54.1 \text{ kJ mol}^{-1}$

the standard molar Gibbs energy of formation of Ag⁺(aq) ions (in kJ mol⁻¹) is

[A]	-77.1	[B]	+77.1
[C]	+185.3	[D]	-185.3

70. The vapor pressure of a liquid in a particular temperature range follows the equation, $\ln p = 14.9 - \left(\frac{2610.6}{T}\right)$ with pressure, p in Torr and temperature, T in K. Value of the enthalpy of vaporization of the liquid (in kJ mol⁻¹) is

[A]	21.7	[B]	14.9	
[C]	2.6	[D]	0.2	10

71. The correct relation between the thermodynamic entropy, S and the probability of microstates, p_i is

$$\begin{bmatrix} A \end{bmatrix} \quad S = -k_B \sum_{i} p_i \ln p_i \qquad \begin{bmatrix} B \end{bmatrix} \quad S = -k_B T \sum_{i} p_i \ln p_i$$
$$\begin{bmatrix} C \end{bmatrix} \quad S = -k_B \sum_{i} \ln p_i \qquad \begin{bmatrix} D \end{bmatrix} \quad S = -\sum_{i} p_i \ln p_i$$

72. The vibrational wave number of $H_2(g)$ is 4320 cm⁻¹. This corresponds to a vibrational temperature (in K) of

[A]	777	[B]	1555
[C]	3110	[D]	6220

73. The excited state of a molecule lies at 540 cm⁻¹ above the ground state. If both states are nondegenerate, the temperature (in K) at which 10% of the molecules will be in the upper state is

[A]	300	[B]	354
[C]	259	[D]	432

74. The rotational symmetry number for the molecules NH₃ and CH₄ are respectively,

[A]	12, 3	[B] 3, 4	
[C]	4,3	[D] 3,12	

75. The commutator $[\hat{x}^2, \hat{p}_x] =$

[A]	2iħx	[B]	2iħ
[C]	2iħp _x	[D]	2iħxp _x

76. A particle is described by the wave function: $f(x) = \sqrt{a} e^{-ax} (a > 0)$. The length (L) of the interval $-L \le x \le L$ in which the particle can be found with 40% probability is

[A]	$L = -\frac{1}{2a}\ln(0.6)$	[B] $L = -\frac{1}{2a}\ln(0.4)$
[C]	$L = -\frac{1}{2a}\ln(0.5)$	[D] $L = -\frac{1}{2a}\ln(0.3)$

77. The minimum of the following function V(r) is

	$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$
[A] <i>-ε</i>	[B] <i>-σε</i>
[C] -σ	[D] σ

78. For a first order reaction, ratio of the time required for 99% completion to that for 90% completion is

[A]	1	[B]	2
[C]	3	[D]	4

79. The modes of *trans*-1,3-butadiene that are Frank-Condon active in a $\pi \to \pi^*$ excitation, belong to the irreducible representation

[A]	A_g	[B]	A _u
[C]	B_g	[D]	B _u

80. An element forms crystals with face-centered cubic (*fcc*) lattice as well as body-centered cubic (*bcc*) lattice. Ratio of the densities of the crystals, ρ_{fcc}/ρ_{bcc} is

[A]	2.000	[B]	1.089
[C]	0.918	[D]	0.544