ENTRANCE EXAMINATIONS – 2020

(Ph.D. Admissions - January 2021 Session)

Ph.D. Biochemistry

			Hall T	icket No.	
ime :	2 hours				Max. Marks : 70
1.		umber in the sections: Part ains 25 quest carries 2 m	space provided t A and Part B tions. Questions	above and a together wit s 1 to 15 ca	
	Answers have to be Apart from OMR sl				-
_	instructions.	MD anamon of	haat at tha and .	of evaluat	·
	Please return the Ol No additional sheet			oi examinai	ion.
	Rough work can be	carried out is		paper itself	in the space provided
8.	at the end of the boo Non programmable		re allowed.		
					
			Part A		
1.	In a certain code lang 'speak nicely to all' is 'all are like us' is code 'teach us lesson nicely 'lesson like all human What would be the co	coded as "ka ed as " si fo he y' is coded as ' as' is coded as	e to" " po ma fo re" "he re gu si"		
•	A) he	B) re	C) si		D) fo
2.	There are seven frien floor is no. 1, the floor numbered floor. G do E and G. A does not not live immediately and E. Both B and C floors. F lives on floor From the given option A) B	or above it is notes not live on even not above or immulive on even-ror number 5.	the topmost floor and the topmost floor and the topmost floor and the topmost floor and the topmost floor.	does not liver. Only one not lost not lost. There are G and C live	person lives between live below F. D does two floors between D in between the two
	,	,	•	ŕ	
3.	Look at this series: 8 A) 7	, 11, 9, 12, 10, B) 12	. 13, What nu C) 11	mber should	Come next? D) 9
4.	Given that out of the If 5 students opted for	•	-		-

3.	100µl from 1/1000 dilution 92 colonies.	f bacterial cells pon of the origina	per ml in the orig al sample was pla	inal culture given that w ted onto an agar plate g	/hen ave
	A) $92 \times 10^3 / \text{ml}$		B) 9.3	$2 \times 10^5 / \text{ml}$	
	C) $9.2 \times 10^4 / \text{ml}$			$\times 10^6 / \text{ml}$	
6.	A lipase purified from 60 step, a total of 100 ml car What is the specific activ A) 720 UC) 20000	rying 300 mg of ity of the lipase J/mg	f protein showed in this purification B) 24	72,000 units of activity	3rd
7.	DNA density on cesium of	hloride gradient	is		
	A) Higher than RNA	and Lower than	protein		
	B) Higher than protei	in and lower that	n RNA		
	C) Equal to protein as				
	D) Highest compared	to KINA or prot	ein		
8.	Identify right statement				
	A) Cycloheximide inl	hibits mRNA sy	nthesis while ch	oramphenicol inhibits	
	protein synthesis ii	n eukaryotes			
	inhibits ribosome	nibits prokaryoti	c protein synthes	is while Actinomycin D)
	C) Cycloheximide inf	nibits eukarvotic	nrotein synthesis	s while chloramphenicol	1
	innibits prokaryoti	c protein synthe	SiS		
	D) Cycloheximide inh	iibits prokaryoti	c DNA replicatio	n while Actinomycin D	
	inhibits ribosome e	elongation			
9.	A protein migrates on SDS native gel electrophoresis, What is the inference of the A) Protein is homodin	you observe thr se observation fr ner	ee bands at 20 K	ame protein is subjected Da, 30 KDa and 50kDa.	l to
	B) Protein is homotrin	ner Shunita linkod ka	. 4:16.4		
	C) Protein has three stD) Protein has three ed	qual subunits	y disuilide bond	•	
			·		
10.	An acidic solution of unkn NaOH to achieve a pH 7. A) 0.74 M	own concentrati What is the orig B) 0.6	on of 37 ml is tit ginal concentration C) 0.84 M	rated with 55 ml of 0.5 I on of the acid used? D) 0.55 M	М
11.	The pKa of a weak acid (F	AA) is 4.5. The r	OH of an agueo	re buffer actuation of IIA	
	which 50% of the acid is ic	onized is	or an aqueo	is outlet solution of HA	ım
	A) 7.0 B) 4	.5	C) 9.5	D) 8.5	
12.	A substance absorbs visible	e light of wavele	math 1 - 550	77 1 .	
	absorbed by 1 mole of the	substance? (Plan	ngui ∧ = 330 nm ik's constant = 6	. How much energy is	
	A) 200 J B) 3	15kJ		D) 196k	
13.	A cross between two homo indicates that	zygous recessiv	e results in non-n	nutant progeny. This	
	A) Alleles are mutation	ns on different g	enes		

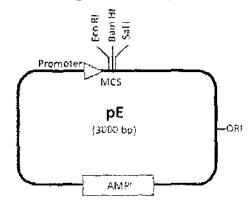
- B) Alleles are mutations in the same gene
- C) No conclusion can be made with respect to the genes that carry these mutation
- D) Mutations were lost during the breeding process
- 14. Given below are a few statements about the Golgi complex.
 - 1. It synthesizes proteins
 - 2. It does protein sorting to organelles
 - 3. It does covalent modifications on certain proteins
 - 4. It has ribosomes on the surface of its membrane
 - 5. It does packaging of proteins into vescicles

Choose the combination that correctly represents the golgi function

- A) 1,2,3 only
- B) 2,4,5 only
- C) 2,3,5 only
- D) 1,2,3,5 only
- 15. What are the three basic steps of conventional PCR?
 - A) Denature, anneal, & strand displacement
 - B) Denature, anneal & extension
 - C) Strand displacement, synthesis & release
 - D) Reverse-transcription, anneal & extend
- 16. Which one of the following dilution(s) can yield 52% sucrose solution when you are diluting 70% stock solution?
 - A) 10.4 ml stock+ 3.6ml water
- B) 11.2 ml stock + 3.8ml water
- C) 52 ml stock+ 48ml water
- D) 2.8 ml stock + 0.95 ml water
- 17. Thymus and lymph node tissues from normal and RAG-1/2 knockout mice were extracted and subjected to FACS analysis to identify the population of double negatives (CD8-CD4-), double positives (CD8+ CD4+) or single positive (CD8+ or CD4+) T cells using fluorescein labeled anti-CD4 and rhodamine-labeled anti-CD8 antibodies. Which of the following statements regarding the FACS observations will be correct?
 - A) Thymus from normal mice will show all categories of T cells, but thymus from RAG-1/2 KO mice will not have single positive T cells
 - B) Thymus from RAG-1/2 KO will not have double negative and double positive T cells, but will have single positive T cells
 - C) Lymph node tissue from normal mice will not have double positive T cells and Lymph node tissue from RAG-1/2 KO mice will have only double negative T cells
 - D) Both A and C statements are correct
- 18. N1 and N3 atoms of purine ring are contributed by which of the following?

- A) N1-Glutamine & N3-Aspartate
- B) N1- HCO3 & N3-Glutamine
- C) N1-Aspartate & N3-HCO3
- D) N1-Aspartate & N3-Glutamine

- 19. A mixture of compounds X and Y were separated by paper chromatography. During separation X has travelled a distance of 6.8 cm. The compound Y moved 3.5 cm and is 5 cm away from the distance travelled by the solvent. What is the Rf value of X?
 - A) 0.68
- B) 0.8
- C) 0.85
- D) 0.118
- 20. Match the contents between Set I (cell cycle proteins) and Set II (its functions)


	Set I	Set II
i)	APC/Cyclosome	Controls metaphase to anaphase transition by, inhibiting separase
ii)	pRb	II) E3 Ub ligase that is active during mitosis
iii)	p27	III) cyclin dependent kinase inhibitor
iv)	Securin	IV) Cellular gate keeper

The correct match is

- A) i-I, ii-III, iii-IV, iv-II
- B) i-II, ii-IV, iii-III, iv-I
- C) i-II, ii-III, iii-IV, iv-I
- D) i-IV, ii-II, iii-I, iv-III
- 21. In a family, one parent has a dominant phenotype and the other has a recessive phenotype and the 2 offspring have dominant phenotype. Which one of the following genotypes for the parent with the dominant phenotype can be deduced with certainty?
 - A) Homozygous dominant only
 - B) Heterozygous dominant only
 - C) Either heterozygous or homozygous dominant
 - D) Genotype cannot be deduced from the information provided
- 22. In ion-exchange chromatography, often a salt gradient is used to elute the bound proteins. This is because:
 - A) As salts are neutral, they keep the protein active
 - B) A salt gradient allows the protein to ionise and bind specifically
 - C) At a certain ionic strength, the salt will compete with the protein for binding to the column
 - D) Salt gradients are used to equilibrate the column
- 23. The mechanisms regulating the decision between lysis and lysogeny for bacteriophage has been described as a genetic switch. The following five statements are made of this system:
 - a. The cl and cro are transcribed in opposite directions.
 - b. The mRNA encoding cI and Cro protein are synthesized using the same strand of DNA as template.
 - c. Of the three OR sites in genome, Cro has greatest affinity for OR3.
 - d. Of the three OR sites in genome, cI has greatest affinity for OR1.
 - e. Synthesis of cI is stimulated by its binding to OR1 and OR2.
 - A) Only a and e are correct
- B) Only a, b and e are correct
- C) Only a, c and d are correct
- D) Only a, c, d and e are correct
- 24. You have amplified your favourite gene (YFG) of 0.5 kb in size using a forward primer containing a Barn HI site followed by a Kpn I site (in 5' to 3' direction) and a

reverse primer harbouring a Bam HI site followed by a Sal I site (in 5' to 3' direction). You performed a non-directional cloning of the Bam HI digested amplified product at the Bam HI site of the expression vector pE (3 kb). At the multiple-cloning-sites (MCS) of the vector there are Eco RI and Sal I unique sites flanking the Bam HI site as shown in the figure. After cloning of YFG in the pE vector you have performed few restriction digestions and made the following observations:

- 1) Digestion with Barn HI yielded a 3 kb and a 0.5 kb bands.
- 2) Digestion with Kpn I yielded a 3.5 kb band.
- 3) Digestion with Sal I yielded a 3.5 kb band.
- 4) A double digestion with Kpn I and Sal I yielded a 3.5 kb band.

Which of the following statements best explains these observations?

- A) The YFG insert did not get inserted into the vector.
- B) The YFG insert got inserted into the vector in such a manner that the Sal I site of the insert and the Sal I site of the vector were next to each other.
- C) The Kpn I site of the insert got mutated.
- D) The Sal I site of the insert got mutated.

25. Match the column I statements with best fit column II electron transport chain complexes

Column II
a) Complex I
b) Complex II
c) Complex III
d) Complex IV

A) i-b; ii-c; iii-a; iv-d

B) i-d; ii-b; iii-a; iv-b

C) i-c; ii-a; iii-d; iv-c

D) i-c; ii-b; iii-d; iv-a

PART B

26. A synthetic mRNA with the sequence 5'AACUAACUAACUAACUAACUAACUA', is translated in cell-free translational system. It will produce A) Single polypeptide, Di and Tripeptides B) will not be translated in an invitro translation system C) an octapeptide D) Pentapeptide only 27. Which one of the nucleotides mentioned below existed possibly early in evolution? A) GTP B) ATP C) TTP D) UTP 28. Fusidic acid inhibits A) Delivery of fMET-tRNAi to 30S ribosome subunits B) EF.TU/TS C) Inhibits the translocase activity of EF-G D) Inhibits Cap binding protein eIF4E 29. How many supercoils can you see in the linear DNA carrying 360 base pairs when it is unwound by 42 bases pairs A) Two Negative supercoils B) Four Positive Supercoils C) Four Negative Supercoils D) None 30. Which one of the radioactive labels do you use to study DNA synthesis in cells? B) Beta – dGTP C) Alpha-dTTP A) Gamma -dCTP D)Gamma-dATP 31. Which of the following structural features is NOT associated with all isotypes of antibodies? A) Presence of a proline rich hinge region B) Presence of carbohydrate groups on heavy chain C) Antiparallel beta-pleated strands D) Region of hypervariability within the variable region of a light chain 32. Which of the following statements is INCORRECT about oxygen-dependent microbicidal mechanisms used by activated neutrophils and macrophages? A) TNFa induces expression of inducible nitric oxide synthase (iNOS) in macrophages B) Myeloperoxidases generate hypochlorous acid in neutrophils for antimicrobial C) Superoxide dismutase generates reactive oxygen species (ROS) to kill D) Activation of pattern receptors on neutrophils and macrophages induces respiratory burst. 33. What general pathway(s) can a eukaryotic cells use to synthesize nucleotides? A) Catabolic and de novo pathways B) Salvage and de novo pathways C) Anabolic pathways

D) Anabolic and amphibolic pathways

		h one of the fol	llowing stateme	ents is t	ue regardin	g the regula	tion of	purine
		•	nate synthase is	inhibit	ed by AMP	only		
	-	•	nate synthase is		•	•	t not A	TP
		•	nate synthase is					- -
		-	nate synthase is		-			
35.	Which	of the following	ng amino acids	are pur	ely ketogeni	ic?		
		A) Leucine an		_		ine and Lysi	ne	
		C) Leucine an	d Lysine		D) Lysine	and Arginin	e	ı
36.	Synthe	sis of 1 mole o	f cholesterol re	auires .	&	?		
	-		tyl-CoA and 18	_				
			tyl-CoA and 16					
			tyl-CoA and 16					
	D)	16 moles Ace	tyl-CoA and 18	moles	NADPH			
37.	Histon	es are present i	n the nucleoso	me as:				
		-	ch of 2 histones					
			ch of 4 histones					
	C)	8 copies of 1 l	nistone					
	D)	6 copies of 1 l	histone and 2 co	opies of	1 histone			
38.	The ba	sic unit of chro	omatin organiza	ation is				
		Histone	_		C) DNA		D) Nuc	leolus
39.	In whi	ch of the folloy	ving organizati	onal for	ms is the D	NA present	in an ei	ukarvotic
_ • •		nase nucleus:				I		
	1		string structure		B) 30 nm	fiber		
		C) Condensed	l chromosomes		D) Proteir	free DNA		
.40.			ng RNA types l	nas high	est number	of RNA mo	dificati	ions per 100
	base p	tRNA	B) mRNA		C) rRNA		D) piR	NT A
	A)	INNA	D) IIIKNA		C) IKNA		D) pik	NA.
41.	Which	of the following	ng best describe	es the p	rocess of ge	nomic impri	nting?	
			ne inactivation	_	_	•	_	
	В)	Maternal inhe	ritance of mito-	chondri	al genes			
	C)	Paternal inher	ritance of Y-lin	ked gen	es. 🧠	•		
	D)	Differential ex	xpression of all	eles der	ending on i	its parent of	origin.	
42.	An ena	zyme catalyzed	reaction was in	nvestiga	ated in the p	resence and	absenc	e of an
		-	-Menten plot o	_	-			
	not ch	ange significan	tly when differ	ent con	centration o	f inhibitors v	was use	ed. Which
	type of	f inhibition is t	his?					
	A)	Competitive	B) unc	competi	tive C)	noncompeti	tive	D) mixed
4 3.	Which	of the following	ng amino acid s	side cha	ins can act :	as a nucleop	hile in	enzyme
	catalys	sis?				•		
	A)	Arginine	B) Histidine	C) As	partamine	D) Glut	amine	

	cofactor?
	A) Biotin helps in carboxylation
	B) NAD+ as an oxidizing agent
	C) Tetrahydrofolate transfers a one carbon unit
	D) Pyridoxal phosphate helps in transfer of alkyl group
	of 1 handler brooking to be in a constant of analy 2 group
45.	Which of the following transcription and translational mechanisms are wrongly paired
	with its location?
	A) Translation- cytoplasm B) Post translational modifications EP
	B) Post-transcriptional modifications-ERC) Transcription- nucleus
	D) Post-translational mechanism-ER
	D) Fost-dansiadonal mechanism-ex
4 6.	In an experiment, alpha amanitin was added with increasing concentrations. Which below mentioned sequences correctly represents the sensitivity of RNA polymerases? A) Pol I -> pol III, pol II unaffected B) pol II -> pol III, pol I unaffected C) pol III->pol II -> pol II D) pol I->pol II->pol III
4 7.	Which one of the below mentioned processes involves metabolite-sensing in
	noncoding portions of mRNAs to control gene expression?
	A) Alternative polyadenylation B) Short-peptide translation
	C) Adenosine methylation D) Riboswitching
48.	Which one of the statements below best describes the function of helicase in RNA transcription? A) Annealing of two separated DNA strands B) Separation of two DNA strands giving access to polymerase enzyme C) Cleaving of methyl groups from DNA strands D) Catalyzing the interaction between transcription factors and the DNA strand
4 9.	Sickle Cell Anemia is caused by a point mutation in hemoglobin beta chain at
	position 6. The point mutation is
	A) Glu to Val B) Glu to Phe C) His to Arg D) Val to Tyr
50.	Which of the following cellular process is characterized by inflammatory form of lytic programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response. A) Apoptosis B) Auophagy C) Pyroptosis D) Necrosis
51.	Which of the following is a ketohexose containing 3 asymmetric carbon atoms A) Fructose B) Ribulose C) Stachyose D) Erythrose
52.	Hemolytic anemia is caused due to the deficiency of A) Glucose 6-phosphate dehydrogenase C) Glutathione synthetase D) Hydratase

44. Which of the following is not correct about the function of the corresponding

		-	y affect the syn	thesis of β-ga	alactosidase in
	iving the ger	notype			
a, Z- b, I+(Y+ A+.				
c. I- C			~l\		
	-	ne presence of	glucose).		
)° Z+ / I+ 0				
	correct answ				
-	ly a, b and c				
•	ly b, c and d				1
		d d are correct			
D) On	iy a, b, c and	d e are correct			
54 Indicate th	e false state	ment Gene-kr	ockout experim	nents	
			type genes with		\$
•	-		cies boundaries	_	0.
•		-	ey show no effe		
•		_	-		nes (ORFs) with no
•			nes encode func	_	
				, ,	F
55. How much	ı more acidi	c is a solution	of pH 2 compar	red to a soluti	on of pH 4.
A) 10	times	B) 2 times	C) 100 times	D) 1/	100 times
the INCOR A) 3:1 B) 1:2 C) 2:1	RRECT state is the expension is the expension is the expension of the expension of the expension is the expension of the expe	ement cted phenotype pected genotypected ratio of he	e ratio with one	dominant and	
A) The B) The C) The		menable to mo e inherited factorial	TRUE for a qui decular analysis		t (e.g. crop yield)?
58. The first el		ptor of NADH	I dehydrogenase	complex (C	omplex I) of electror
A) 2F		B) CoQ	C) FM	Ν .	D) FAD
A)	ositive redox Cytb6f com Photosyster	iplex	taining biologic B) Oxygen eve C) Photosyster	olving compl	ex
Ā) G		oupled Recepto	ty other than lig	_	ine Receptors

PhD Biochemistry: Answer Key (Q paper Code No - Y-68)

PART A	Question no.	Answer	PART B	Question	Answer	Question	Answer
	1	В		26	Α	51	Α
	2	Ð		27	В	52	Α
	3	С	1	28	C	53	С
	4	С	1	29	D	54	¹ C
	5	В		30	С	55	C.
	6	В	-	31	Α	56	D
	7	В	7	32	С	57	С
	8	С	1	33	В	58	С
	9	С	1	34	Α	59	С
	10	Α	1	35	С	60	С
	11	С	7	36	С		
	12	D		37	В		
	13	Α		38	В		
	14	D	7	39	С		
	15	В		40	Α		
	16	Α		41	D		
	17	D		42	Α		
	18	D		43	В		
	19	В		44	D		
	20	В		45	В		
	21	С		46	В		
	22	С		47	D		
	23	D		48	В		
	24	D		49	Α		
	25	D		50 .	С		

d8/1/2021