ENTRANCE EXAMINATION, 2020

QUESTION PAPER BOOKLET

M.Sc. (OCEAN \& ATMOSPHERIC SCIENCES)

Marks : 75
Time : 2:00 hrs.
Hall Ticket No.: \square

Read carefully the following instructions

i) Please enter your Hall Ticket Number on the OMR Answer Sheet given to you and the space provided above.
ii) This Question paper has two parts: Part - A and Part - B
iii) Part - A consists of 25 objective type questions and Part - B consists of 50 objective type questions. Each question carries one mark.
iv) There is negative marking. Each wrong answer carries $\mathbf{- 0 . 3 3}$ marks.
v) Answers are to be marked on the OMR answer sheet following the instructions provided there upon. An example is show here
75. (A) (B) (C)
vi) Hand over the OMR answer sheet at the end of the examination to the Invigilator.
vii) No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
viii) Only scientific non-programmable calculators are permitted. Mobile phone based calculators are not permitted. Logarithmic tables are not allowed.
ix) This question paper booklet contains 14 pages.

Code No. W-15

PART - A

1. A force of 12.5 N acts on a particle along a direction making an angle of 37° with the vertical. Find the component of the force in the vertical direction
A. 0.1
B. 1.0
C. 10.0
D. 12.5
2. The oxidation number of cobalt in $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is
A. +1
B. -1
C. +3
D. -3
3. If a, b and c are unit coplanar vectors, then the value of $[2 a-b 2 b-c 2 c-a]$ is
A. -1
B. 0
C. 1
D. 2
4. Which of the following ions forms most stable complex compound?
A. Fe^{3+}
B. Cu^{2+}
C. Mn^{2+}
D. Ni^{2+}
5. An ideal gas is taken around the cycle ABCA as shown in the $\mathrm{p}-\mathrm{V}$ diagram

The total work done by the gas during the cycle is
A. pV
B. 2 pV
C. 3 pV
D. 4 pV
6. For $x \geq 3$, the solution set of $\{f(x)+|x-2|\} f(x) \leq 0$ lies in
A. $(4, \infty)$
B. $(-\infty, 3)$
C. $(3,4)$
D. None of these

Code No. W-15

7. A 0.023 g of sodium metal is reacted with $100 \mathrm{~cm}^{3}$ of water. The pH of the resulting solution is?
A. 12
B. 11
C. 10
D. 9
8. Statement I: In Young's double slit experiments; the two slits are at distance d apart. Interference pattern is observed on a screen at distance D from the slits. At a point on the screen when it is directly opposite to one of the slits, a dark fringe is observed. Then the wavelength of wave is proportional to square of distance of two slits.
Statement II: For a dark fringe intensity is zero
A. Statement I is true, Statement II is also true and Statement II is the correct explanation of Statement I
B. Statement I is true, Statement II is also true and Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is faise
D. Statement I is false, Statement II is true
9. If the adjoint of a 3×3 matrix P is, $\left[\begin{array}{lll}1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3\end{array}\right]$, then the possible value(s) of the determinant of P are
A. ± 1
B. ± 2
C. ± 3
D. ± 4
10. If a student drops a stone from a cliff of height 30 m and the time it takes to reach the ground is 2.6 s , then the acceleration due to gravity is
A. $4.8 \mathrm{~m} / \mathrm{s}^{2}$
B. $8.8 \mathrm{~m} / \mathrm{s}^{2}$
C. $9.8 \mathrm{~m} / \mathrm{s}^{2}$
D. $10.8 \mathrm{~m} / \mathrm{s}^{2}$
11. What is the chemical name of baking soda?
A. Sodium carbonate
B. Sodium bicarbonate
C. Sodium nitrate
D. Sodium nitrite
12. What is the $31^{\text {st }}$ term of the sequence: $1,4,7,10, \ldots .$. ?
A. 90
B. 91
C. 92
D. 93

Code No. W-15

13. According to Newton's 2nd law the object's acceleration and centripetal force are
A. at right angles to each other
B. anti-parallel to each other
C. make acute angle with each other
D. in same direction
14. Based on the first law of thermodynamics, which one of the following is correct?
A. For an isothermal processes, $q=+w$
B. For an isochoric process, $\Delta \mathrm{U}=-\mathrm{w}$
C. For a cyclic process, $q=-w$
D. For an adiabatic process, $\Delta \mathrm{U}=-\mathrm{w}$
15. If the order of a matrix A is $m \times p$. And the order of B is $p \times n$. Then the order of matrix AB is?
A. $\mathrm{n} \times \mathrm{m}$
B. $\mathrm{n} \times \mathrm{p}$
C. $m \times n$
D. $m \times p$
16. Statement: All mangoes are golden in colour. No golden-coloured things are cheap. Conclusions:
I. All mangoes are cheap
II. Golden-coloured mangoes are not cheap.
A. Only conclusion I follows
B. Only conclusion II follows
C. Either I or II follows
D. Neither I nor II follows
17. Current in a 60 W light bulb when it is connected to a 230 V power supply is
A. 2.6 A
B. 0.26 A
C. 0.026 A
D. 22.6 A
18. For the reversible reactions, $\mathrm{A}_{(\mathrm{s})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})} \Delta \mathrm{G}^{\circ}=-350 \mathrm{~kJ}$, Which one of the following statements is true?
A. The entropy change is negative
B. The reaction is thermodynamically not feasible
C. Equilibrium constant is greater than one
D. The reaction should be instantaneous
19. The number that least fits this set: $(324,187,97$ and 64$)$ is
A. 324
B. 187
C. 97
D. 64

Code No. W-15

20. Which of the following pairs represent units of the same physical quantity?
A. Kelvin and Joule
B. Joule and Calorie
C. Calorie and Kelvin
D. Calorie and Newton
21. The water pollution in river is measured by the dissolved amount of
A. chlorine
B. ozone
C. nitrogen
D. oxygen
22. Most stable isotope in nature is of
A. Fe^{56}
B. C^{12}
C. U^{235}
D. U^{238}
23. Metalloids are:
A. elements having some properties of both metals and non-metals
B. colloids of metals
C. alloys of alkali metals with other metals
D. metals heavier than lead
24. The solution of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 0
D. 1
25. According to Avogadro's hypothesis:
26. The molecular weights of the perfect gases occupy the same volume under same conditions of temperature and pressure.
27. Product of the gas constant and the molecular weight of an ideal gas is constant.
28. Gases have two values of specific heat.
29. All systems can be regarded as closed systems.

Which of the statements given above is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

PART - B
26. Match the following:

1. Homogeneous solution.
2. Heterogeneous solution
a. Distilled water
3. Colloidal solution
b. Milk
c. Orange juice with bulb

Select the correct answer using the codes given below:
A. 1-a, 2-b, 3-c
B. 1-b, 2-c, 3-a
C. 1-c, 2-b, 3-a
D. 1-a, 2-c, 3-b
27. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$, then A^{-1} is
A. $\frac{-1}{19} \mathrm{~A}$
B. $\frac{1}{19} \mathrm{~A}$
C. $\frac{1}{17} \mathrm{~A}$
D. $\frac{-1}{17} \mathrm{~A}$
28. Match the following:

Type of Electromagnetic radiation	Wavelength (m)
A. Infrared radiation	1.10^{-12}
B. X-rays	\vdots
C. UV radiation	2.10^{-5}
D. Gamma rays	

Select the correct answer using the codes given below:
A. $\mathrm{a}-2, \mathrm{~b}-3, \mathrm{c}-4, \mathrm{~d}-1$
B. $a-1, b-4, c-3, d-2$
C. $a-1, b-3, c-4, d-2$
D. $a-2, b-4, c-3, d-1$
29. What is the value of $\mathrm{x}-\mathrm{y}+\mathrm{z}$ from the following equation
$\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
A. 21
B. 5
C. 17
D. 1

Code No. W-15

30. Match the following:

Element	Source of Symbol
a. Sodium	1. Argentum
b. Iron	2. Wolfram
c. Tungsten	3. Ferrum
d. Silver	4. Natrium

Select the correct answer using the codes given below:
A. $\mathrm{a}-2, \mathrm{~b}-3, \mathrm{c}-4, \mathrm{~d}-1$
B. $\mathrm{a}-4, \mathrm{~b}-2, \mathrm{c}-1, \mathrm{~d}-3$
C. $a-4, b-3, c-2, d-1$
D. $a-2, b-4, c-1, d-3$
31. An ideal diatomic gas is enclosed in an insulated cylindrical chamber at temperature 300 K . The chamber is closed by a freely movable mass-less piston, whose initial height from the base is 1 m . Now the gas is heated such that its temperature becomes 400 K at constant pressure. The new height (in m) of the piston from base is:
A. $\frac{4}{3}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$
32. Two litres of an ideal gas at a pressure of 10 atm expands isothermally against a constant external pressure of 1 atm until its total volume is 10 litres. How much heat is absorbed in the expansion?
A. 10 litre-atm
B. 8 litre-atm
C. 12 litre-atm
D. 6 litre-atm
33. The solution of the integral $\int \frac{(1+\log x)^{2}}{x} d x$ is \qquad (Z is a constant)
A. $\frac{1}{3}(1+\log x)^{3}+Z$
B. $\frac{1}{5}(1+\log x)^{3}+Z$
C. $\frac{1}{3}(1+\log x)^{5}+Z$
D. $\frac{1}{5}(1+\log x)^{5}+Z$
34. The pair NH_{3} and BH_{3} is isoelectric with which of the following compounds mentioned below:
A. $\mathrm{B}_{2} \mathrm{H}_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. $\mathrm{C}_{2} \mathrm{H}_{4}$
D. CO_{2}

Code No. W-15

35. A spherical ball of radius R, is floating in a liquid with half of its volume submerged in the liquid. Now the ball is displaced vertically by small distance inside the liquid. The frequency of oscillation (f) of ball is
A. $\frac{1}{2 \pi} \sqrt{\frac{2 g}{R}}$
B. $\frac{1}{2 \pi} \sqrt{\frac{3 g}{R}}$
C. $\frac{1}{2 \pi} \sqrt{\frac{3 g}{R}}$
D. $\frac{2}{2 \pi} \sqrt{\frac{3 g}{2 R}}$
36. The position vector of the mid-point of the vector joining the points $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(4$, $1,-2$)
A. $2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$
B. $3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$
C. $\hat{\imath}+3 \hat{\jmath}+2 \hat{k}$
D. $2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$
37. A point object is moving with velocity $0.01 \mathrm{~m} / \mathrm{s}$ on principal axis towards a convex lens of focal length 30 cm . When object is at a distance of 40 cm from the lens, the rate of change of position of the image is
A. $0.09 \mathrm{~m} / \mathrm{s}$
B. $0.9 \mathrm{~m} / \mathrm{s}$
C. $0.01 \mathrm{~m} / \mathrm{s}$
D. $0.1 \mathrm{~m} / \mathrm{s}$
38. What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of $10 \mathrm{~m} \mathrm{~s}^{-1}$? ($\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$)
A. $896.7 \times 10^{-34} \mathrm{~m}$
B. $044.8 \times 10^{-34} \mathrm{~m}$
C. $6.626 \times 10^{-34} \mathrm{~m}$
D. 100 m
39. The value of ' λ ' when the projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units
A. 3
B. 5
C. 7
D. 8
40. Which of the following ions have the highest value of ionic radius?
A. Li^{+}
B. F^{-}
C. O^{2-}
D. B^{3+}

Code No. W-15

41. A large open tank has two holes in the wall. One is a square hole of side L at a depth y from the top and the other is a circular hole of radius R at a depth $4 y$ from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then, what is the value of R ?
A. $\frac{L}{\sqrt{2 \pi}}$
B. $\frac{L}{\sqrt{\pi}}$
C. $\frac{L}{2}$
D. $\frac{L}{4}$
42. The binary operation $*: R \times R \rightarrow R$ is defined as $a * b=2 a+b$. The value of $(2 * 3) * 4$ is
A. 14
B. 16
C. 18
D. 20
43. The current across the AC source is given as, $I=I_{1} \cos \omega t+I_{2} \sin \omega t$. The rms value of current is
A. $\frac{l_{1}+I_{2}}{2}$
B. $\frac{I_{1}^{2}+I_{2}^{2}}{2}$
C. $\frac{\left(l_{1}+t_{2}\right)^{2}}{\sqrt{2}}$
D. $\sqrt{\frac{L_{1}^{2}+I_{2}^{2}}{2}}$
44. Which of the following oxides is amphoteric in nature?
A. CaO
B. CO_{2}
C. SiO_{2}
D. SnO_{2}
45. Five numbers $10,7,5,4$ and 2 are to be arranged in a sequence from left to right following the direction given below:
46. No two odd or even numbers are next to each other
47. The second number from the left is exactly half of the left most number
48. The middle number is exactly twice the right most number

Which is the second number from the right?
A. 2
B. 4
C. 7
D. 10
46. The area bounded by the lines $3 x+2 y=14,2 x-3 y=5$ in the first quadrant is
A. 15.25
B. 14.50
C. 15.75
D. 14.35

Code No. W-15

47. The half-life of a radioisotope is four hours. If the initial mass of isotope was 200 g , the mass of it remaining after 24 hours undecayed is?
A. 1.042 g
B. 4.167 g
C. 3.125 g
D. 2.084 g
48. An electromagnetic wave, going through vacuum is described by $E=E_{0} \sin (k x 1 \omega t)$. Which of the following is independent of wavelength?
A. k / ω
B. $k \omega$
C. both (a) and (b) are correct
D. both (a) and (b) are wrong
49. An electric field of $300 \mathrm{~V} \mathrm{~m}^{-1}$ is confined to a circular area 10 cm in diameter. If the electric field is increasing at the rate of $20 \mathrm{~V} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, the magnitude of magnetic field at a point 15 cm from the centre of the circle will be
A. $1.85 \times 10^{-15} \mathrm{~T}$
B. $3.70 \times 10^{-16} \mathrm{~T}$
C. $1.85 \times 10^{-18} \mathrm{~T}$
D. $0.85 \times 10^{-17} \mathrm{~T}$

50 . For one molar aqueous solution of the following compounds which one will show the highest freezing point?
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] .3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
.51. If \vec{p} is a unit vector and $(\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})=80$, then $|\vec{x}|$ is
A. 9
B. 7
C. 13
D. 21
52. In the following equation, x, t and F represent displacement, time and force respectively. $F=a+b t+\frac{1}{c+x d}+A \sin (\omega t+\varphi)$, The dimensional formula for $A \times d$ is
A. $\left[\mathrm{M}^{8} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
B. $\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
C. $\left[\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
D. $\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\right]$
53. A compound (60 g) on analysis gave $\mathrm{C}=24 \mathrm{~g}, \mathrm{H}=4 \mathrm{~g}$ and $\mathrm{O}=32 \mathrm{~g}$. Its empirical formula is
A. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
C. $\mathrm{CH}_{2} \mathrm{O}$
D. $\mathrm{CH}_{2} \mathrm{O}_{2}$

Code No. W-15

54. If $f(x)=\sqrt{\frac{\sec x-1}{\sec x+1}}$, then $f^{\prime}\left(\frac{\pi}{2}\right)$ is
A. $\frac{\pi}{2}$
B. 1
C. $\frac{\pi}{4}$
D. 0
55. A uniform disc of radius R lies in $x-y$ plane with its centre at origin. Its moment of inertia about the axis $x=2 R$ and $y=0$ is equal to the moment of inertia about the axis $y=d$ and $z=$ 0 , where d is equal to
A. $\frac{4}{3} R$
B. $3 R$
C. $\frac{\sqrt{17}}{2} R$
D. $\frac{\sqrt{15}}{2} R$
56. The correct order of increasing basic nature for the bases $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}<\mathrm{NH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\mathrm{NH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
C. $\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}<\mathrm{NH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{NH}_{3}<\left(\mathrm{CH}_{3}\right) 2 \mathrm{NH}$
57. The daily rainfall in Hyderabad during summer monsoon has a
A. continuous distribution
B. discrete distribution
C. combination of both discrete and continuous distribution
D. Constant zero
58. The mass of a hydrogen molecule is $3.32 \times 10^{-27} \mathrm{~kg}$. If 10^{23} molecules are colliding per second on a stationary wall of area $2 \mathrm{~cm}^{2}$ at an angle of 45° to the normal to the wall and reflected elastically with a speed $10^{3} \mathrm{~m} \mathrm{~s}^{-1}$. Find the pressure exerted on the wall (in $\mathrm{N} \mathrm{m}^{-2}$)
A. 3.32×10^{-24}
B. 2.347×10^{-24}
C. 2.347×10^{3}
D. 3.32×10^{3}
59. A water sample has ppm level concentration of the following anions: $\mathrm{F}=10 ; \mathrm{SO}_{4}{ }^{2-}=100$; $\mathrm{NO}_{3}^{-}=50$. The anions/anions that make/makes the water unsuitable for drinking is/are
A. both $\mathrm{SO}_{4}{ }^{2-} \& \mathrm{NO}_{3}{ }^{-}$
B. only F^{-}
C. only $\mathrm{SO}_{4}{ }^{2-}$
D. only NO_{3}
60. In a scatter plot of X versus Y that has a negative correlation,
A. As X decreases, Y decreases
B. As X decreases, Y increases
C. As X increases, Y increases
D. For every unit increase of X , the Y increases by 2.73 times

Code No. W-15

61. Two point masses m_{1} and m_{2} are initially at rest and at infinite distance apart. They start moving towards one another under their mutual gravitational field. Their relative speed when they are at a distance d
A. $\sqrt{2 G\left(m_{1}+m_{2}\right)}$
B. $\sqrt{\frac{2 G\left(m_{1}+m_{2}\right)}{d}}$
C. $\sqrt{\frac{2 G\left(m_{1} m_{2}\right)}{d}}$
D. $\sqrt{\frac{2 G d}{\left(m_{1}+m_{2}\right)}}$
62. Which of the following kinds of isomerism can nitroethane exhibit?
A. Metamerism
B. Functional isomerism
C. Tautomerism
D. Position isomerism
63. A ball is thrown in the air. Its height at any time t is, $\mathrm{h}=3+14 \mathrm{t}-5 \mathrm{t}^{2}$. Its maximum height is
A. 19.2 m
B. 12.8 m
C. There is no way to decide with the given information
D. 5 m
64. The Poisson's ratio for a material is 0.1 . If the longitudinal strain of a rod of this material is 1×10^{-3}, find the percentage change in the volume of the rod.
A. 1.12%
B. 11.2%
C. 112%
D. 0.12%
65. Which of the following is a soft base?
A. NH_{3}
B. $\mathrm{R}_{2} \mathrm{~S}$
C. Cu^{+}
D. $\mathrm{H}_{2} \mathrm{O}$
66. The order of the following differential equation $-\left(d^{2} x / d x^{2}\right)^{4}+(d y / d x)=3$ is
A. 3
B. 1
C. 2
D. 4
67. The chemical formula for Sucrose is
A. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
D. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5}$

Code No. W-15

68. $\mathrm{A} \mathrm{He}^{+}$ions is at rest and is in ground state. A neutron with initial kinetic energy K collides head on with the He^{+}ion. Find the minimum value of K so that there can be an inelastic collision between these two particles.
A. 40 eV
B. 48 eV
C. 51 eV
D. 54 eV
69. Which of the following is INCORRECT, as per Rutherford's scattering experiment?
A. The atom is neutral
B. There exists large space between the electrons and nucleus of the atom
C. Electrons can change orbits when they emit energy
D. The nucleus is positively charged
70. Consider the following reaction:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ Product
Among the following, which one cannot be formed as a product under any condition?
A. Diethyl ether
B. Ethyl hydrogen sulphate
C. Ethylene
D. Acetylene
71. For an arbitrary scalar $\mathrm{A}, \nabla \times \nabla \mathrm{A}=$
A. 0
B. $\nabla \mathrm{A}$
C. $\nabla^{2} A$
D. None of the above
72. If for a real continuous function $f(x), f(a) f(b)<0$, then in the range of $[a, b]$ for $f(x)=0$, there is
A. only one root
B. at least one root
C. no root
D. Given information is insufficient to conclude
73. Coriolis force deflects the direction of an air current the northern bemisphere
A. to its left
B. upwards
C. to its right
D. downwards
74. The triple point of water occurs at
A. 273.16 K
B. 0.01 K
C. 32.018 K
D. $273.16^{\circ} \mathrm{C}$

Code No. W-15

75. A man is known to speak truth 3 out of 4 times. He throws a die and report that it is a 6 . Find the probability that it is actually 6 .
A. $3 / 8$
B. $5 / 8$
C. $7 / 8$
D. $7 / 9$
