Entrance Examination: Ph.D. Mathematics/Applied Mathematics, 2017

Hall Ticket Number

Time: 2 hours Max. Marks: 80

Part A:40 Marks Part B:40 Marks

Instructions

- 1. Write your Hall Ticket Number in the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over the OMR answer sheet at the end of the examination.
- 5. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 40 questions in **PART A** and **PART B** together.
- 8. Each correct answer carries 2 marks.
- 9. The appropriate answer(s) should be coloured with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
- 10. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers and \mathbb{N} the set of all natural numbers.
- 11. This book contains 9 pages including this page and excluding pages for the rough work. Please check that your paper has all the pages.

Part-A

- 1. Suppose the statements P and Q are false and the statements R and S are true. Then the truth value of the statement $(S \to P) \iff \sim (Q \lor R)$
 - (A) is True.
 - (B) is **False**.
 - (C) is sometimes **True** and sometimes **False**.
 - (D) cannot be determined.

2. The negation of the statement "There are apples that cost Rs 25/- or more" is

- (A) No apple costs less than Rs. 25/-.
- (B) Some apples cost less than Rs. 25/-.
- (C) There is an apple that costs Rs. 20/-.
- (D) All apples cost less than Rs. 25/-.

3. Consider the statements:

- All bats are cats.
- No cat is a rat.
- All rats are tigers.
- Some tigers are fighters.

Which of the following conclusions are true?

- S_1 : Some tigers are cats.
- S_2 : At least some fighters being rats is a possibility.
- S_3 : At least some cats are definitely bats.
- S_4 : None of the fighters is a rat.
 - (A) Both S_1 and S_2 are true.
 - (B) Both S_3 and S_4 are true.
 - (C) Both S_2 and S_3 are true.
 - (D) Both S_1 and S_4 are true.
- 4. Let $X = \{(x, y) : 0 \le x \le 4, \ 0 \le y \le 4\}$. For $i, j \in \mathbb{N} \cup \{0\}$, define $A_{i,j} = \{(x, y) : i \le x \le i+2, \ j \le y \le j+2\}$. The number of elements in the set $\{(i, j) : A_{i,j} \subset X\}$ is
 - (A) 16.
 - (B) 12.
 - (C) 9.
 - (D) 4.

P-57

- 5. Let $X = \{1, 2, \dots, 9\}$, $Y = \{1, 2, 3\}$ and $Z = \{1, 2, \dots, 6\}$. If $F = \{A \subseteq X : Y \subset A \text{ and } A \notin Z\}$, then the number of elements in F is equal to
 - (A) 64.
 - (B) 60.
 - (C) 56.
 - (D) 52.
- 6. Let P(A) denote the power set of A. Let ϕ be the empty set. Then the number of elements in $P(P(P(\phi)))$ is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 4.
- 7. In a hexagon ABCDEF, each vertex is joined with the remaining vertices with line segments. The number of line segments which are inside the hexagon is
 - (A) 8.
 - (B) 9.
 - (C) 12.
 - (D) 15.
- 8. Let A, B, C be the vertices of a triangular field of sides 10m, 10m and 15m. Assume that at each vertex a cow is tied with a rope of length 4m. The area that these three cows can graze together, in square meters, is
 - (A) 14π .
 - (B) 12π .
 - (C) 10π .
 - (D) 8π .
- 9. Raghu is at a point A. He walks 3 km to the North and then he turns to his left. He walks 4 km in this direction. He turns left again and walks 6 km. If he wishes to reach point A again, then the direction he should be walking and the distance he will have to cover are
 - (A) South-East direction and 5 km.
 - (B) North-East direction and 5 km.
 - (C) South-East direction and 4 km.
 - (D) North-East direction and 4 km.

	C5	F 3	I~15	
10. The missing term in the following figure	L 1	?	R4	is
	U5	X 12	A 60	

- (A) B 5.
- (B) O 5.
- (C) B 4.
- (D) O 4.

Instructions for Questions 11 and 12: Read the following information carefully and answer the following questions.

Six people A, B, C, D, E and F are sitting on the ground at the vertices of a regular hexagon. A is not adjacent to B or C; D is not adjacent to C or E; B and C are adjacent; F is in the middle of D and C.

- 11. Which of the following is not a possible neighbour pair?
 - (A) A and F.
 - (B) D and F.
 - (C) B and E.
 - (D) C and F.
- 12. Which of the following is in the right sequence for the above data?
 - (A) A, F, B.
 - (B) F, A, E.
 - (C) B, C, F.
 - (D) D, A, B.
- 13. In a certain code language MATH is written as MBTI and ABEL is written as ACEM. Then the possible word for JUNE in that code language is
 - (A) JWKP
 - (B) JVNF
 - (C) JPNQ
 - (D) BAST
- 14. In a certain code language FOOD is written as HQQF and RAVI is written as TCXK. Then the possible word for JOIN in that code language is
 - (A) LQKP
 - (B) NQPK
 - (C) JPKQ
 - (D) BAST

- 15. In a certain code language WONDER is written as VPMEDS. Then the possible word for MASTER in that code language is
 - (A) LBRWDW.
 - (B) LCRVDV.
 - (C) LBSVDV.
 - (D) LBRUDS.

Instructions for Questions 16–20: Read the following information carefully and answer the following questions.

In a certain code language:

"politics is not money" is written as "sa ri ga ma";

"media driven state politics" is written as "pa da ni sa";

"money controls many things" is written as "ok ri oo ha";

"media controls state politics" is written as "ok pa sa da".

16. What may be the possible code for "money controls politics" in the code language?

- (A) ni pa sa.
- (B) ri ok sa.
- (C) ri pa ni.
- (D) ga pa ma.

17. What may be the possible code for "media controls many things" in the code language?

- (A) ok da oo ha
- (B) ri ok oo ha
- (C) ok ri oo ni
- (D) ok da pa sa

18. What may be the possible code for "state driven politics" in the code language?

- (A) ga sa da
- (B) pa ni sa
- (C) ga ma ni
- (D) pa ni ga

19. What may be the possible code for "media is powerful" in the given code language?

- (A) xi ga da.
- (B) xi ma sa.
- (C) xi da ri.
- (D) xi ni ha.

20. What may be the possible code for "state and controls" in the code language?

- (A) pa zz ok.
- (B) sa da zz.
- (C) oo ri zz.
- (D) ha ga pa.

Part-B

21. Let P(x) = x(x-1)(x-2)(x-3). Consider the statements

 $S_1: P'$ has 3 real roots.

 S_2 : P'' has 2 real roots.

Then

- (A) both S_1 and S_2 are true.
- (B) S_1 is true but S_2 is false.
- (C) S_2 is true but S_1 is false
- (D) both S_1 and S_2 are false.

22. Let $f_n(x) = \frac{x^n}{1+x^2}$, for $n \in \mathbb{N}$. Then which of the following statements is **true**?

- (A) f_n converges uniformly on [0, 1].
- (B) f_n converges uniformly on $[-1, 1-\epsilon]$ for $\epsilon \in (0, 1)$.
- (C) $\sum f_n$ converges uniformly on [0, 1).
- (D) $\sum f_n$ converges uniformly on $[-1 + \epsilon, 1 \epsilon]$ for $\epsilon \in (0, 1)$.
- 23. Let $C[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$. Consider C[0,1] with the norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. If $\{f_n\}$ is a bounded sequence in $(C[0,1], || \cdot ||_{\infty})$, then $\{f_n\}$ has a convergent subsequence with respect to $|| \cdot ||_{\infty}$ provided
 - (A) each f_n is a polynomial.
 - (B) $f_1 \geq f_2 \geq \cdots \geq 0$.
 - (C) $f_1 \leq f_2 \leq f_3 \leq \cdots$.
 - (D) $\{f_n : n \in \mathbb{N}\}$ is equicontinuous.
- 24. Let D be the unit open disc. Which of the following statements need not imply that an analytic function f is a constant function?
 - (A) $f: D \to \mathbb{C}$, Range $(f) = \{a + ib : b = 3a, a \in \mathbb{R}\}$.
 - (B) $f : \mathbb{C} \to \mathbb{C}, |f(z)| \ge 5, \forall z \in \mathbb{C}.$
 - (C) $f : \mathbb{C} \to \mathbb{C}, f(\{z : Re(z) = 0\})$ is bounded.
 - (D) $f: D \to \mathbb{C}, f(\frac{1}{n}) = 0, \forall n \in \mathbb{N}.$

25. The nature of the singular points of $f(z) = \frac{z+1}{(z^2+1)(z^4-1)}$ is

- (A) a pole of order 1 and 2 poles of order 2 each.
- (B) a pole of order 2 and 2 poles of order 1 each.
- (C) 3 poles of order 1.
- (D) 4 poles of order 1.

- 26. Consider the following statements.
 - $S_1: f: \mathbb{R} \to \mathbb{R}$ is a measurable function if and only if $f^{-1}((-\infty, r))$ is a measurable set for every $r \in \mathbb{Q}$.
 - $S_2: f: \mathbb{R} \to \mathbb{R}$ is a measurable function if and only if $f^{-1}(U)$ is a measurable set for every open set U in \mathbb{R} .

Then

- (A) both S_1 and S_2 are true.
- (B) S_1 is true but S_2 is false.
- (C) S_2 is true but S_1 is false
- (D) both S_1 and S_2 are false.
- 27. Pick up a true statement from the following.
 - (A) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then f^2 is Lebesgue integrable.
 - (B) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then $f^{1/2}$ is Lebesgue integrable.
 - (C) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then |f| is Lebesgue integrable.
 - (D) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then f is Riemann integrable in every compact interval.
- 28. Let X be any topological space, and Y a Hausdorff topological space. Let $f, g: X \to Y$ be continuous maps. Consider the following two sets:

$$P = \{(y, y) : y \in Y\} \subseteq Y \times Y,$$

$$Q = \{x \in X : f(x) = g(x)\} \subseteq X.$$

Then pick up a statement which is always true from the following.

(A) P is open in $Y \times Y$ and Q is open in X.

- (B) P is open in $Y \times Y$ and Q is closed in X.
- (C) P is closed in $Y \times Y$ and Q is open in X.
- (D) P is closed in $Y \times Y$ and Q is closed in X.
- 29. Let X' denote the dual of the normed linear space X. Consider the following statements.

 $S_1: (\ell^1)' = \ell^{\infty}.$ $S_2: (\ell^{\infty})' = \ell^1.$

Then

- (A) both S_1 and S_2 are true.
- (B) S_1 is true but S_2 is false.
- (C) S_2 is true but S_1 is false
- (D) both S_1 and S_2 are false.

- 30. Let X be a Hilbert space and $T: X \to X$ be a bounded linear operator satisfying $T^*T = I$. Then T is
 - (A) a normal operator.
 - (B) a self-adjoint operator.
 - (C) an isometry.
 - (D) a compact operator.
- 31. Consider the following statements
 - S_1 : Every complex $n \times n$ matrix of finite order (i.e, $A^m = I_n$ for some m) is diagonalizable.
 - S_2 : Every real and symmetric matrix is diagonalizable.

Then

- (A) both S_1 and S_2 are true.
- (B) S_1 is true but S_2 is false.
- (C) S_2 is true but S_1 is false
- (D) both S_1 and S_2 are false.
- 32. Let A be a complex matrix of order 5×5 with minimal polynomial $(X-1)^2(X+1)$. Then the number of possible Jordan canonical forms for the matrix A is
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) 4.

33. The number of distinct 3-cycles in S_6 is

- (A) 120.
- (B) 40.
- (C) 3!.
- (D) 6!.

34. The degree of the field extension $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{6})$ over \mathbb{Q} is

- (A) 2.
- (B) 4.
- (C) 6.
- (D) 8.
- 35. Consider the ring $R = (\mathbb{Z}/12\mathbb{Z}) \times (\mathbb{Z}/49\mathbb{Z})$ with pointwise addition and multiplication. Then the number of units in R is
 - (A) 21.
 - (B) 42.
 - (C) 84.
 - (D) 168.

P-57

- 36. The group generated by two elements, a and b with relations $a^4 = b^4 = e$, and $a^3b = ab^3 = ba$ is isomorphic to
 - (A) $\mathbb{Z}/8\mathbb{Z}$.
 - (B) S_3 .
 - (C) the group of quaternions.
 - (D) \mathbb{Q}/\mathbb{Z} .
- 37. Consider the regular Sturm-Liouville eigenvalue problem $(py')' + (q + \lambda s)y = 0$, y(0) = 0, y(1) = 0 where p > 0, s > 0. Which of the following statements is **true**?
 - (A) There exists a sequence λ_n of eigenvalues such that $\lambda_n \to 0$ as $n \to \infty$.
 - (B) There exists a sequence λ_n of eigenvalues such that $\lambda_n \to \infty$ as $n \to \infty$.
 - (C) It is possible to have a purely imaginary eigenvalue.
 - (D) Eigenfunctions are always of the form $\sin(\alpha x)$ for some $\alpha \in \mathbb{R}$.

38. Consider the system
$$\begin{cases} \frac{dx}{dt} = 2x + 3y, \\ \frac{dy}{dt} = 5x + 6y. \end{cases}$$

Then

- (A) there are no critical points for the given system.
- (B) there exists a critical point which is stable and there exists a critical point which is unstable.
- (C) all critical points are stable.
- (D) all critical points are unstable.

39. The solution of the problem
$$\begin{cases} u_t(x,t) = u_{xx}(x,t), \ 0 < x < \pi, \\ u(x,0) = \sin(x), \ 0 < x < \pi, \\ u(0,t) = u(\pi,t) = 0, \ t > 0. \end{cases}$$

 \mathbf{is}

(A)
$$u(x,t) = e^{-t} \sin(2x) - e^{-2t} \sin(x)$$
.
(B) $u(x,t) = e^{-t} \sin(2x) + e^{-2t} \sin(x)$.
(C) $u(x,t) = e^{-t} \sin(x)$.
(D) $u(x,t) = e^{t} \sin(x)$.

40. Pick up the partial differential equation which is parabolic from the following

- (A) $u_{xx} + u_{yy} = x^2$. (B) $u_t - u_{xx} + u^2 = 0$. (C) $u_{tx} + u^2 = 0$.
- (D) $u_{tt} u_{xx} + u^2 = 0.$