Entrance Examination: M.Sc. Mathematics, 2017

Hall Ticket Number \square
Time: 2 hours
Part A:25 Marks
Max. Marks: 100

Instructions

1. Write your Hall Ticket Number in the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
2. Answers are to be marked on the OMR sheet.
3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
4. Hand over the OMR answer sheet at the end of the examination.
5. The question paper can be taken by the candidate at the end of the examination.
6. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
7. Calculators are not allowed.
8. There are a total of 50 questions in PART A and PART B together.
9. There is a negative marking in PART A. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. Each question in PART A has only one correct option.
10. There is no negative marking in PART B. Each correct answer carries 3 marks. In PART B some questions have more than one correct option. All the correct options have to be marked in OMR sheet, otherwise zero marks will be credited.
11. The appropriate answer(s) should be coloured with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
12. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers, - \mathbb{Q} the set of rational numbers and \mathbb{N} the set of all natural numbers.
13. This book contains 10 pages including this page and excluding pages for the rough work. Please check that your paper has all the pages.

Part-A

1. Let $S=\{0,1,2, \ldots, 12\}$. Define a binary operation $*$ on S by $a * b=$ remainder when $a b$ is divided by 13 (remainder when x is divided by 13 is the unique number y in S such that $x-y$ is divisible by 13). Then the smallest n such that $2^{n}=1$ in S is
(A) 3 .
(B) 4 .
(C) 6 .
(D) 12 .
2. Let x, y, z be clements in a group such that $z=y^{3} x^{2} y^{-3}$. The order of x is 12 . Then the order of z is
(A) 2 .
(B) 3 .
(C) 6 .
(D) 12 .
3. Let \mathbb{Q} be the set of rationals and define a binary operation on \mathbb{Q} by $a * b=a+b-a b$. Then
(A) $(\mathbb{Q}, *)$ is a group.
(B) $(S, *)$ is a group for some subset $S \subseteq \mathbb{Q}$.
(C) $(\mathbb{Q}, *)$ is not associative.
(D) $(\mathbb{Q}, *)$ has no identity.
4. An element a in a group has order 100 . Then the order of a^{65} is
(A) 5 .
(B) 10 .
(C) 20 .
(D) 25 .
5. Consider the following two statements.
S_{1} : There exists a 3×3 matrix with integer entries with eigenvalues $1, w, w^{2}$ (cube roots of 1).
S_{2} : A 2×2 matrix with eigenvalues w and w^{2} cannot have all real entries.
Then
(A) both S_{1} and S_{2} are true.
(B) S_{1} is true but S_{2} is false.
(C) S_{1} is false but S_{2} is true.
(D) both S_{1} and S_{2} are false.
6. Let $\left(\begin{array}{l}3 \\ 0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}6 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}12 \\ 1 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{l}6 \\ 0 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}9 \\ 0 \\ 1 \\ 2\end{array}\right)$ be five vectors in \mathbb{R}^{4}. The maximum number of linearly independent vectors among them is
(A) 2 .
(B) 3 .
(C) 4 .
(D) 5 .
7. The determinant of A where

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 0 & a & b \\
0 & 0 & 0 & c & d \\
0 & 0 & 0 & e & f \\
p & q & r & s & t \\
v & w & x & y & z
\end{array}\right)
$$

is
(A) aderw.
(B) $a d(p w-v q)$.
(C) $a d-b c$.
(D) 0 .
8. Let $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ be three non-zero vectors in \mathbb{R}^{3} such that $\vec{x}_{i} \cdot \vec{x}_{j}=0$ when $i \neq j$. Then
(A) such vectors cannot exist.
(B) such vectors form an orthonormal basis of \mathbb{R}^{3}.
(C) the vectors must have integer coordinates.
(D) the vectors must be linearly independent.
9. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Consider the following statements
$S_{1}:$ If $f \geq 0$ and $\int_{a}^{b} f(x) d x=0$ then $f \equiv 0$.
$S_{2}:$ If $\int_{c}^{d} f(x) d x=0, \forall[c, d] \subseteq[a, b]$ then $f \equiv 0$.
Then
(A) both S_{1} and S_{2} are true.
(B) S_{1} is true but S_{2} is false.
(C) S_{1} is false but S_{2} is true.
(D) both S_{1} and S_{2} are false.
10. Consider the following statements
S_{1} : A bounded sequence of real numbers must have a convergent subsequence.
S_{2} : A Cauchy sequence of real numbers must be bounded.
Then
(A) both S_{1} and S_{2} are true.
(B) S_{1} is true but S_{2} is false.
(C) S_{1} is false but S_{2} is true.
(D) both S_{1} and S_{2} are false.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and non-negative function. Consider the following statements:
$S_{1}:$ If $\exists c \in(0,1)$ such that $f(c)=100$ then $\int_{0}^{1} f(x) d x \geq \frac{1}{2}$.
$S_{2}:$ If $\int_{0}^{1} f(x) d x>\frac{1}{2}$ then $f(c)>\frac{1}{2}$ for some $c \in(0,1)$.
S_{3} : If $\int_{0}^{1} f(x) d x=\frac{1}{2}$ then $\exists c \in(0,1)$ such that $f(c)=\frac{1}{2}$.
Then
(A) only S_{1} is false.
(B) only S_{2} is false.
(C) only S_{3} is false.
(D) S_{1}, S_{2} and S_{3} are false.
12. Let $X=\left(0, \frac{1}{3}\right) \cap \mathbb{Q}$ and $Y=\left(\frac{1}{9}, \frac{1}{3}\right) \cap \mathbb{Q}$. Then
(A) every function $f: X \rightarrow Y$ fails to be injective.
(B) every function $f: Y \rightarrow X$ fails to be surjective.
(C) every function $f: X \rightarrow Y$ satisfies $f(x) \geq x, \forall x \in X$.
(D) none of the above.
13. Which of the following sets is countable?
(A) The set of all rational numbers \mathbb{Q}.
(B) The set of all subsets of \mathbb{N}.
(C) The set of all real numbers.
(D) The set of irrational numbers.
14. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a cubic polynomial then which of the following is an empty set?
(A) $\left\{x \in \mathbb{R}: f\left(x^{3}\right)=\sqrt{2}\right\}$.
(B) $\{x \in \mathbb{R}: f(x+m)=f(x+n), \forall m, n \in \mathbb{N}\}$.
(C) $\left\{x \in \mathbb{R}: f^{\prime}(x)=f^{\prime}(y)\right.$ for some $\left.y \in \mathbb{R} \backslash\{x\}\right\}$, where f^{\prime} is the derivative of f.
(D) $\left\{x \in \mathbb{R}: f\left(x^{3}+x\right)=0\right\}$.
15. Consider the statement: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of even degree then it is not surjective. Which of these would follow from this?
(A) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a surjective polynomial function, then its degree should be odd.
(B) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a non-surjective polynomial function, then its degree can be any integer.
(C) All non-surjective functions have to be polynomials of even degree.
(D) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial of even degree, then it is not surjective.
16. If the line $\frac{x-7}{2}=-(y+3)=(z-4)$ intersects the planes $6 x+4 y-5 z=4$ and $x-5 y+\alpha z=12$ in the same point then α is
(A) -2 .
(B) 0 .
(C) 2 .
(D) 4 .
17. The equation of the plane through the points $(1,0,-1),(3,2,2)$ and parallel to the line $\frac{x-1}{1}=\frac{y-1}{-2}=\frac{z-2}{3}$ is
(A) $4 x-y-2 z-6=0$.
(B) $x-z=0$.
(C) $x-2 y+z-1=0$.
(D) none of the above.
18. Let $f:(0,1) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x) \neq 0, \forall x \in(0,1)$. Then which of the following statements is False?
(A) f is monotone.
(B) f is one-one.
(C) f is uniformly continuous.
(D) None of these.
19. Let $f(x)=\left\{\begin{array}{ll}x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} .\end{array}\right.$ The function f at the point $x=0$
(A) is differentiable.
(B) has the left derivative but not the right derivative.
(C) has the right derivative but not the left derivative.
(D) has neither the left derivative nor the right derivative.
20. The value of integral $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$ where $\vec{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$ ans S is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=16$ above the $x y$-plane is
(A) 0 .
(B) -16π.
(C) 16π.
(D) 32π.
21. Consider $f:[-1,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\sin (x), & x \in[-1,1] \cap \mathbb{Q}, \\ 0, & x \notin[-1,1] \cap \mathbb{Q} .\end{cases}
$$

Then at $x=0, f$ is
(A) continuous and Riemann integrable in every interval (a, b) containing 0.
(B) continuous and Riemann integrable in exactly one interval (a, b) containing 0 .
(C) continuous but not Riemann integrable in any interval containing x.
(D) discontinuous.
22. A ring A is called local if it has a unique maximal ideal. Which of the following is a local ring?
(A) \mathbb{Z}.
(B) $\mathbb{C}[X]$.
(C) $\mathbb{C}[X] /\left(X^{2}\right)$.
(D) $\mathbb{Z} / 6 \mathbb{Z}$.

23 . Let $M_{2}(\mathbb{R})$ be the set all 2×2 matrices with real coefficients. Then which of the following maps is a ring homomorphism?
(A) $\phi: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$, given by $\phi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a$.
(B) $\phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$, given by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.
(C) $\phi: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$, given by $\phi(A)=\operatorname{Tr}(A)$.
$(\mathrm{D}) \phi: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ given by $\phi(A)=\operatorname{det}(A)$.
24. Which of the following limits exists in \mathbb{R} ?
(A) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$.
(B) $\lim _{x \rightarrow 0^{+}}\left|\sin \frac{1}{x}\right|$.
(C) $\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}$.
(D) $\lim _{x \rightarrow 0^{+}} \frac{1}{x} \sin \frac{1}{x}$.
25. Let $\left\{a_{n}\right\} \rightarrow a$ and $\left\{b_{n}\right\} \rightarrow b$ in \mathbb{R}. Consider the following statements.
S_{1} : If $a_{n} \leq b$ and $b_{n} \leq a$ for infinitely many $n \in \mathbb{N}$ then $a=b$.
S_{2} : If $a_{n} \leq b_{n}$ for infinitely many $n \in \mathbb{N}$ then $a \leq b$.
Then
(A) both S_{1} and S_{2} are true.
(B) S_{1} is true but S_{2} is false.
(C) S_{1} is false but S_{2} is true.
(D) both S_{1} and S_{2} are false.

Part-B

26. Let A be the closure in \mathbb{R} of the set $\left\{n+\frac{1}{m}+\frac{1}{k}: n, m, k \in \mathbb{N}\right\}$. For $S \subset \mathbb{R}$, let S^{\prime} denote the set of limit points of S in \mathbb{R}. Then
(A) $\mathbb{N} \subseteq A^{\prime}$.
(B) $\mathbb{N} \cup\left\{n+\frac{1}{m}: m \in \mathbb{N}\right\} \subseteq A^{\prime}$.
(C) $\mathbb{N} \cup\left\{n+\frac{1}{m}: m \in \mathbb{N}\right\} \cup\left\{n+\frac{1}{m}+\frac{1}{k}: n, m, k \in \mathbb{N}\right\} \subseteq A^{\prime}$.
(D) $\mathbb{N} \cup\left\{n+\frac{1}{m}+\frac{1}{k}+\frac{1}{\ell}: n, m, k, \ell \in \mathbb{N}\right\} \subseteq A^{\prime}$.
27. The equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=1,2 x+4 y+5 z=6$ and touching the plane $z=0$ is
(A) $x^{2}+y^{2}+z^{2}-2 x-4 y-5 z+5=0$.
(B) $5\left(x^{2}+y^{2}+z^{2}\right)-2 x-4 y-5 z+1=0$.
(C) $x^{2}+y^{2}+z^{2}+2 x+4 y+5 z-5=0$.
(D) $5\left(x^{2}+y^{2}+z^{2}\right)+2 x+4 y+5 z-1=0$.
28. The volume of revolution of the region between $y=x^{2}$ and $y=5 x$ when revolved about the x-axis is
(A) $5^{4} \pi / 3$.
(B) $(2 / 3) 5^{4} \pi$.
(C) $5^{4} / 3$.
(D) $(2 / 3) 5^{4}$.
29. The equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and contains a line of intersection of the planes $x+2 y+3 z-4=0,2 x+y-z+5=0$ is
(A) $6 x+18 y-14 z=1$.
(B) $75 x-123 y-z=5$.
(C) $51 x+15 y-50 z+173=0$.
(D) $23 x-5 y-50 z=1$.
30. Let $f:(0,1) \rightarrow \mathbb{R}$ be a twice differentiable function. Which of the following statements are False?
(A) If f is bounded then f^{\prime} is bounded.
(B) If f and f^{\prime} are bounded then $f^{\prime \prime}$ is bounded.
(C) If $f(x)>0$ and $f^{\prime}(x)>0, \forall x \in(0,1)$, then $f^{\prime \prime}(x)>0, \forall x \in(0,1)$.
(D) If $f^{\prime \prime}$ is a polynomial then f is a polynomial.
31. Let A be a non-empty subset of \mathbb{R}. Which of the following statements are True?
(A) If A is closed and dense in \mathbb{R} then $A=\mathbb{R}$.
(B) If A is closed then A is infinite.
(C) If A is open then A is infinite.
(D) If A is infinite then A is either open or closed or dense in \mathbb{R}.
32. Let $A \subset \mathbb{R}$. Let A° denote the set of interior points of A and A^{\prime} denote the set of all limit points of A in \mathbb{R}. Then which of the following statements are True?
(A) If A is finite then A° is empty.
(B) If A is finite then A^{\prime} is empty.
(C) If A is countably infinite then A^{0} is countably infinite
(D) If A is countably infinite then A^{\prime} is countably infinite.
33. Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous on $[-1,1]$ and twice differentiable on $(-1,1)$. Let $f(0)=0, f(-1)=-1$ and $f^{\prime}(1 / 2)=1$. Then which of the following are always True?
(A) there exists $c \in(-1,0)$ such that $f^{\prime}(c)=1$.
(B) there exists $c \in(-1,1)$ such that $f^{\prime \prime}(c)=0$.
(C) $f^{\prime \prime}(c)=0$ for all $c \in(-1,1)$.
(D) $f(1)>0$.
34. Let $x_{n} \in(0, \infty)$ be such that $\sum_{n=1}^{\infty} x_{n}^{2}<\infty$. Which of the following series are convergent?
(A) $\sum_{n=1}^{\infty} \frac{1}{x_{n}^{2}+n}$.
(B) $\sum_{n=1}^{\infty} \frac{x_{n}}{x_{n}^{2}+1}$.
(C) $\sum_{n=1}^{\infty} \frac{1}{x_{n}^{2}+n^{2}}$.
(D) $\sum_{n=1}^{\infty} \frac{x_{n}}{n^{1 / 3}}$.
35. Let $a_{n} \leq b_{n}$ then which of the following statements are True?
(A) If $\sum b_{n}$ converges then $\sum a_{n}$ always converges.
(B) If $\sum b_{n}$ diverges then $\sum a_{n}$ always diverges.
(C) If $a_{n} \geq 0$ and $\sum b_{n}$ converges then $\sum a_{n}$ always converges.
(D) If $a_{n} \geq 0$ and $\sum b_{n}$ diverges then $\sum a_{n}$ always diverges.
36. Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at $x=1$?
(A) $f(x)=\left||x|-\frac{1}{2}\right|$.
(B) $f(x)=\max \{|x-1|,|x+1|\}$.
(C) $f(x)=|x-1|+\mathrm{e}^{x}$.
(D) $f(x)=\left|\mathrm{e}^{x}-1\right|$.
37. Which of the following permutations in S_{5} are even?
(A) (12345).
(B) $(1234)(13)$.
$(\mathrm{C})(12)(34)(45)$.
(D) (1234).
38. The center of $\mathrm{GL}_{2}(\mathbb{R})$ is
(A) $\left\{\left(\begin{array}{cc}a & c \\ 0 & a\end{array}\right): a \neq 0, c \in \mathbb{R}\right\}$.
(B) $\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right): a \neq 0\right\}$.
(C) $\mathrm{GL}_{2}(\mathbb{R})$.
(D) $\left\{A \in \mathrm{GL}_{2}(\mathbb{R}): \operatorname{det}(A)=1\right\}$.
39. Which of the following statements are True?
(A) Every group whose order is the power of a prime has a non-trivial centre.
(B) Every group of order p^{2} is cyclic, where p is a prime number.
(C) Every non-abelian group of order 6 is isomorphic to S_{3}.
(D) Every finite group of order n is isomorphic to a subgroup of S_{n}.
40. The automorphism group of $\mathbb{Z} / 10 \mathbb{Z}$ is isomorphic to
(A) $\mathbb{Z} / 4 \mathbb{Z}$.
(B) $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
(C) $\mathbb{Z} / 10 \mathbb{Z}$.
(D) S_{4}.
41. Which of the following are integral domains?
(A) \mathbb{Z}.
(B) $\mathbb{Z}[X] /\left(X^{2}-3\right)$.
(C) The ring of $n \times n$ matrices with entries in \mathbb{R}.
(D) The ring of continuous functions on the unit interval $[0,1] \in \mathbb{R}$.
42. The integer 11213 is a prime number and $11213=82^{2}+67^{2}$. Which of the following statements are True in the Gaussian ring $\mathbb{Z}[i]$?
(A) The ideal generated by $(82+67 i)$ is a maximal ideal.
(B) $\pm 82 \pm 67 i, \pm 67 \pm 82 i$ are irreducible elements of $\mathbb{Z}[i]$.
(C) The Gaussian ring $\mathbb{Z}[i]$ is not a PID.
(D) $\mathbb{Z}[i] /(82+67 i)$ is isomorphic to $\mathbb{Z} / 11213 \mathbb{Z}$.
43. Let A be a $n \times n$ matrix with real coefficients. Then A is non-singular if and only if
(A) for all $n \times p$ matrices $B, \operatorname{rank}(A B)=\operatorname{rank}(B)$.
(B) A has a left inverse.
(C) $\operatorname{Tr}(A)=0$.
(D) the row rank of A is n.
44. If a matrix A in $M_{n \times n}(\mathbb{R})$ where $n \geq 2$ is nilpotent, then which of the following statements are True?
(A) $I+A$ is non-singular.
(B) If A and B commute then $A B$ is nilpotent.
(C) If P be any invertible matrix then $P A$ is nilpotent.
(D) All eigenvalues of A are zero.
45. The solution of $2 x y \mathrm{~d} x+\tan \left(x^{2}\right) \mathrm{d} y+y^{2} \sec \left(x^{2}\right) \mathrm{d} y=0$ is
(A) $y^{2}+y \sin \left(x^{2}\right)=$ constant .
(B) $y^{3}+3 y \sin \left(x^{2}\right)=$ constant.
(C) $x^{3}+3 x \tan \left(y^{2}\right)=$ constant.
(D) $x^{2}+x \sec \left(y^{2}\right)=$ constant .
46. The differential equation $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d x+\left(\frac{A x+1}{y^{3}}\right) d y=0$ is exact and has the of the form
(A) $A=-2$ and $2 x^{2}-2 y^{2}-x=c x y^{2}$ where c is a constant.
(B) $A=2$ and $2 x^{2}-2 y^{2}-x=c x y$ where c is a constant.
(C) $A=-2$ and $2 x^{2}+2 y^{2}-x=c x y$ where c is a constant.
(D) $A=2$ and $2 x^{2}+2 y^{2}-x=c x y^{2}$ where c is a constant.
47. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Consider the following statements:
S_{1} : If $\left\{x_{n}\right\}$ is a Cauchy sequence, $\left(x_{3 n+1}\right) \rightarrow a$ and $\left(x_{6 n}\right) \rightarrow b$, then $a=b$.
S_{2} : If every subsequence $\left\{x_{n_{k}}\right\}$ has a convergent subsequence $\left\{x_{n_{k_{l}}}\right\}$, then $\left\{x_{n}\right\}$ is convergent.

Then
(A) both S_{1} and S_{2} are true.
(B) S_{1} is true but S_{2} is false.
(C) S_{1} is false and S_{2} is true
(D) both S_{1} and S_{2} are false.
48. If v_{1}, v_{2}, v_{3} are linearly dependent vectors in a vector space V over a field F. If v_{3} is not a linear combination of v_{1} and v_{2} then
(A) v_{1} is a linear combination of v_{2} and v_{3}.
(B) $\operatorname{dim}(V) \leq 2$.
(C) v_{3} must be a zero vector.
(D) v_{1} and v_{2} are linearly dependent.
49. The number of words consisting of 4 letters from the letters of word CHEESE so that no two E's are together is
(A) 24 .
(B) 42 .
(C) 88 .
(D) 94 .
50. Suppose a bag contains 4 white balls and 3 black balls. If two draws of 2 balls are successively made then the probability of getting 2 white balls at first draw and 2 black balls at second draw when the balls drawn at first draw are replaced is
(A) $3 / 7$.
(B) $1 / 7$.
(C) $19 / 49$.
(D) $2 / 49$.

