ENTRANCE EXAMINATION - 2016
 M. Sc. Chemistry

TIME: 2 HOURS
MAXIMUM MARKS: 100

HALL TICKET NUMBER:

INSTRUCTIONS

1. Write your HALL TICKET NUMBER and the BOOKLET CODE in the space provided above and also on the OMR ANSWER SHEET given to you.
2. Make sure that pages numbered from 1-20 are present (excluding pages assigned for rough work).
3. There are 100 questions in this paper. All questions carry equal marks.
4. There is negative marking. Each wrong answer carries $\mathbf{- 0 . 3 3}$ mark.
5. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
6. Hand over the OMR answer sheet at the end of the examination.
7. In case of a tie, the marks obtained in the first 25 questions (PART A) will be used to determine the order of merit.
8. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
9. Calculators are allowed. Cell phones are not allowed.
10. Useful constants are provided at the beginning, before PART A in the question paper.
11. Candidate should write and darken the correct Booklet Code in the OMR Answer Sheet, without which the OMR will not be evaluated. The candidates defaulting in marking the Booklet Code in the OMR shall not have any claim on their examination and University shall not be held responsible.

Booklet code A

Useful Constants:

Rydberg constant $=109737 \mathrm{~cm}^{-1} ;$ Faraday constant $=96500 \mathrm{C} ;$ Planck constant $=6.625 \times 10^{-34} \mathrm{~J} \mathrm{~s}$; Speed of light $=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} ;$ Boltzmann constant $=1.380 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} ;$ Gas constant $=8.314 \mathrm{~J}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; Mass of electron $=9.109 \times 10^{-31} \mathrm{~kg}$; Mass of proton $=1.672 \times 10^{-}$ ${ }^{27} \mathrm{~kg}$; Charge of electron $=1.6 \times 10^{-19} \mathrm{C} ; 1 \mathrm{D}=3.336 \times 10^{-30} \mathrm{C} \mathrm{m} ; 1 \mathrm{bar}=10^{5} \mathrm{~N} \mathrm{~m}$; $;$ RT/F (at 298.15 $\mathrm{K})=0.0257 \mathrm{~V}$.

PART - A

1. The increasing order of basicity of the following compounds is:

(I)

(II)

(III)

(IV)
[A] (I) $<$ (II) $<$ (III) $<$ (IV)
[B] (I) $<$ (II) $<$ (IV) $<$ (III)
[C] (II) $<$ (I) $<$ (III) $<$ (IV)
[D] (IV) $<$ (III) $<$ (II) $<$ (I)
2. The major product formed in the following reaction is:

[A]

[B]

[C]

[D]

3. The increasing order of reactivity of the following compounds towards aqueous hydrolysis is:

(I)

(II)

(III)

(IV)
[A] (III) $<$ (IV) $<$ (I) $<$ (II)
[B] (III) $<$ (II) $<$ (IV) $<$ (I)
[C] (IV) $<$ (II) $<$ (I) $<$ (III)
[D] (IV) $<$ (III) $<$ (II) $<$ (I)
4. The chiral compound among the following is:
[A]

[B]

[C]

[D]

5. Conversion of phthalaldehyde into 2-hydroxymethylbenzoic acid is an example of:
[A] Witting rearrangement
[B] Smiles rearrangement
[C] Intramolecular aldol reaction
[D] Intramolecular Cannizaro reaction
6. The increasing order of boiling point of the following isomeric hexanes is:

(I)

(II)

(III)

(IV)
[A] (III) $<$ (IV) $<$ (II) $<$ (I)
[B] (I) $<$ (II) $<$ (IV) $<$ (III)
[C] (III) $<$ (IV) $<$ (II) $<$ (I)
[D] (IV) $<$ (III) $<$ (II) $<$ (I)
7. A triangle with vertices $P(-5,6), Q(2,3)$ and $R(5,10)$ is:
[A] an equilateral triangle
[B] an isosceles triangle
[C] a right-angled triangle
[D] a scalene triangle
8. If the point $(3, k)$ lies on the straight line through the points $(8,0)$ and $(-7,-6)$, then $k=$:
[A] 2
[B] -3
[C] -2
[D] 3
9. The graph of $4 x^{2}-9 y^{2}-16 x+18 y-29=0$ is:
[A] a circle
[B] a parabola
[C] an ellipse
[D] a hyperbola
10. $\lim _{x \rightarrow 2} \frac{\sqrt{x-2}}{x^{2}-4}=$
[A] 0
[B] 4
[C] 2
[D] ∞
11. Roots of the polynomial $x^{3}-4 x^{2}+2 x+4$ are:
[A] $2, \sqrt{3},-\sqrt{3}$
[B] $2, \sqrt{3}+1,-\sqrt{3}+1$
[C] $2, \sqrt{3}-1,-\sqrt{3}-1$
[D] $2,-\sqrt{3}+1, \sqrt{3}-1$
12. The $\mathrm{n}^{\text {th }}$ derivative of $f(x)=\frac{2}{1-x}$ is:
[A] $2(n!)(1-x)^{-n+1}$
[B] $2(n+1)!(1-x)^{n+1}$
[C] $2(n!)(1-x)^{n+1}$
[D] $2(n!)(1-x)^{n-1}$
13. The following solutions are mixed together in a beaker. Predict from which solution CaF_{2} $\left(\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-11}\right)$ will precipitate .
[A] 100 mL of $2.0 \times 10^{-4} \mathrm{M} \mathrm{Ca}^{2+}$ ion plus 100 mL of $2.0 \times 10^{-4} \mathrm{M} \mathrm{F}^{-}$ion
[B] 100 mL of $2.0 \times 10^{-5} \mathrm{M} \mathrm{Ca}^{2+}$ ion plus 100 mL of $2.0 \times 10^{-4} \mathrm{M} \mathrm{F}^{-}$ion
[C] 100 mL of $2.0 \times 10^{-2} \mathrm{M} \mathrm{Ca}^{2+}$ ion plus 100 mL of $6.0 \times 10^{-3} \mathrm{M} \mathrm{F}^{-}$ion
[D] 100 mL of $2.0 \times 10^{-4} \mathrm{M} \mathrm{Ca}^{2+}$ ion plus 100 mL of $6.0 \times 10^{-4} \mathrm{MF}^{-}$ion
14. Consider (a) photoelectric effect (b) interference, and (c) the equation $E=m c^{2}$. The behavior of light in these cases are, respectively, as:
[A] particle, particle, wave
[B] wave, particle, wave
[C] wave, wave, particle
[D] particle, wave, particle
15. A sample of 4.6 g of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ taken in a 1 L flask at $27^{\circ} \mathrm{C}$ dissociates partially to $\mathrm{NO}_{2}(\mathrm{~g})$. If the equilibrium total pressure is 1.4 atm , calculate the fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociated (assume perfect gas behavior for all).
[A] 0.24
[B] 0.14
[C] 0.50
[D] 0.64
16. At $20^{\circ} \mathrm{C}$, water and toluene require 102.2 and 68.9 seconds, respectively to flow through the capillary of an Ostwald viscometer. The densities of water and toluene are 0.998 and 0.866 g cm^{-3}, respectively. If the viscosity of water is 0.01 P , the viscosity of toluene is close to:
[A] 0.006 P
[B] 0.009 P
[C] 0.06 P
[D] 0.01 P
17. Heat of neutralization between HCl and NaOH is $13.7 \mathrm{kcal} \mathrm{mol}^{-1}$ and between HCN and NaOH is $3 \mathrm{kcal} \mathrm{mol}^{-1}$. The heat of ionization of HCN in $\mathrm{kcal} \mathrm{mol}^{-1}$ is:
[A] 16.7
[B] 10.7
[C] 13.7
[D] 5.7
18. In an orbital, the signs of lobes designate the:
[A] sign of the wave function
[B] sign of the probability distribution
[C] presence or absence of electron
[D] sign of charge
19. Which of the following is a disproportionation reaction?
[A] $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
[B] $\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
[C] $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+}$
[D] $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$
20. How many isomers are possible for the octahedral complex, $\left[\mathrm{CrCl}_{2} \mathrm{Br}\left(\mathrm{OH}_{2}\right)_{3}\right]$?
[A] 2
[B] 3
[C] 4
[D] 5
21. Which of the following compounds/ions among $\mathrm{FeF}_{6}^{3-}, \mathrm{Cu}(\mathrm{SCN}), \mathrm{CoCl}_{4}^{2-}, \mathrm{Ni}(\mathrm{CO})_{4}, \mathrm{PtCl}_{4}^{2-}$ are diamagnetic?
[A] CoCl_{4}^{2-} and PtCl_{4}^{2-}
[B] $\mathrm{FeF}_{6}^{3-}, \mathrm{Cu}(\mathrm{SCN})$, and $\mathrm{Ni}(\mathrm{CO})_{4}$
[C] $\mathrm{Cu}(\mathrm{SCN})$ and $\mathrm{Ni}(\mathrm{CO})_{4}$
[D] $\mathrm{Cu}(\mathrm{SCN}), \mathrm{Ni}(\mathrm{CO})_{4}$ and PtCl_{4}^{2-}
22. When 27 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ was reacted with 10 g of water, 27 g of nitric acid was obtained. What is the percentage yield of nitric acid?
[A] 32
[B] 67
[C] 87
[D] 100
23. Choose the correct hybridization for the underlined atoms in the compounds, $\mathrm{BCl}_{3}, \mathrm{BeCl}_{2}$ and HCN .
[A] $\mathrm{sp}^{2}, \mathrm{sp}^{2}$ and sp
[B] $\mathrm{sp}^{3}, \mathrm{sp}^{2}$ and sp
[C] sp^{2}, sp and sp
[D] $\mathrm{sp}^{3}, \mathrm{sp}^{2}$ and sp
24. Among the four compounds $\mathrm{SnCl}_{4}, \mathrm{SnCl}_{2}, \mathrm{~Pb}(\mathrm{OAc})_{4}$ and Pbl_{2}, the oxidizing and reducing agents are, respectively,
[A] SnCl_{4} and PbI_{2}
[B] SnCl_{2} and $\mathrm{Pb}(\mathrm{OAc})_{4}$
[C] $\mathrm{Pb}(\mathrm{OAc})_{4}$ and SnCl_{2}
[D] $\mathrm{Pb}(\mathrm{OAc})_{4}$ and SnCl_{4}
25. The degree of unsaturation in a lipid is measured in the form of:
[A] Polenski number
[B] saponification number
[C] iodine number
[D] Reichert-Meissil number

PART - B

26. In the zwitterionic form, an amino acid acts as:
[A] a proton donor
[B] a proton acceptor
[C] both proton donor and acceptor
[D] a conductor of electricity
27. A nucleoside differs from a nucleotide in that:
[A] it lacks the nitrogenous base
[B] it lacks the sugar
[C] it lacks the phosphate
[D] it lacks hydroxyl group
28. The term 'clone' cannot be applied to offspring formed by sexual reproduction because:
[A] offspring do not possess exact copies of parental DNA
[B] DNA of only one parent is copied and passed on to the offspring
[C] offspring are formed at different times
[D] DNA of parent and offspring are completely different
29. The maximum value of the function, $6 \cos 4 x$ is:
[A] 1
[B] 6
[C] 12
[D] 24
30. Angle between the vectors $\vec{X}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $\vec{Y}=2 \hat{\imath}-3 \hat{\jmath}-\hat{k}$ is:
[A] 60°
[B] 90°
[C] 120°
[D] 180°
31. Out of 5 mathematics and 7 chemistry questions in an examination, 2 mathematics and 4 chemistry questions are to be answered. If one chemistry question is mandatory, then the number of ways for answering is:
[A] 35
[B] 200
[C] 350
[D] 4000
32. Value of the determinant $\left|\begin{array}{ccc}1 & 1 & 4 \\ 2 & 2 & 6 \\ -1 & -1 & 5\end{array}\right|$ is:
[A] 10
[B] -7
[C] 0
[D] 5
33. The points of intersection of the curves $y=4 x^{2}$ and $x=4 y^{2}$ are:
[A] $(0,0)$ and $(0.5,0.5)$
[B] $(0.25,0.25)$ and $(0.5,0.5)$
[C] $(0,0)$ and $(0.25,0.25)$
[D] $(0,0)$ and $(-0.25,-0.25)$
34. Maximum of the function, $y=x \ln x+(1-x) \ln (1-x)$ is at $x=$
[A] 0.25
[B] 0.50
[C] 0.75
[D] 1.00
35. Inverse of the matrix $\left[\begin{array}{cc}1+i & i \\ -i & 1-i\end{array}\right]$ is:
[A] $\left[\begin{array}{cc}1+i & i \\ -i & 1-i\end{array}\right]$
[B] $\left[\begin{array}{cc}1+i & -i \\ i & 1-i\end{array}\right]$
[C] $\left[\begin{array}{cc}i & 1+i \\ 1-i & i\end{array}\right]$
[D] $\left[\begin{array}{cc}1-i & -i \\ i & 1+i\end{array}\right]$
36. Among the following sets, the set which is a group under multiplication is:
[A] $\{1, i\}$
[B] $\{1, i,-i\}$
[C] $\{1,-1, i\}$
[D] $\{1,-1, i,-i\}$
37. A hypothetical element having symbol E has two isotopes with natural abundances of 25% and 75%. If this element forms a diatomic molecule E_{2}, what is the probability that a molecule in a large sample of E_{2} will have both the isotopes?
[A] $\frac{1}{2}$
[B] $\frac{3}{8}$
[C] $\frac{\pi}{4}$
[D] $\frac{1}{24}$

$$
K-10
$$

38. Sum of the series $2,10,30,68,130,222, \ldots \ldots$. up to n terms is:
[A] $\frac{1}{2} n(n+1)$
[B] $\frac{1}{6} n(2 n+1)(2 n+5)$
[C] $\frac{1}{4} n^{2}(n+1)^{2}$
[D] $\frac{1}{4} n(n+1)\left(n^{2}+n+2\right)$
39. The general solution for y^{2} of the equation $\frac{d y}{d x}=y-\frac{1}{y}$ is:
[A] $A e^{x}+1$
[B] $A e^{2 x}+1$
[C] $A\left(e^{x}+e^{-x}\right)$
[D] $A\left(e^{x}-e^{-x}\right)$
40. Value of the derivative of the function $\left(x^{2}-1\right) /\left(x^{2}+1\right)$ at $x=-1$ is:
[A] -2
[B] -1
[C] 1
[D] 2
41. Spallation of ${ }^{63} \mathrm{Cu}$ by bombardment with a proton of energy around $110-170 \mathrm{MeV}$ leads to the formation of:
[A] ${ }^{38} \mathrm{Cl}+\mathrm{p}+n+6 \alpha$
[B] ${ }^{38} \mathrm{Cl}+{ }^{25} \mathrm{Al}+n$
[C] ${ }^{24} \mathrm{Na}+{ }^{39} \mathrm{~K}+n$
[D] ${ }^{39} \mathrm{Cl}+{ }^{24} \mathrm{Al}+n$
42. Which of the following functions will have the greatest slope at $x=0$?
[A] $e^{3 x}$
[B] $\cos x$
[C] $2 \sin x$
[D] x^{3}
43. Match the complex ions given in Column I with the hybridization and number of unpaired electrons given in Column II.

Column I	Column II
(a) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(i) $\mathrm{d}^{2} \mathrm{sp}^{3}, 1$
(b) $[\mathrm{CrCl}$	6
$]^{-}$	(ii) $\mathrm{sp}^{3} \mathrm{~d}^{2}, 1$
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	(iii) $\mathrm{sp}^{3} \mathrm{~d}^{2}, 2$
(d) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	(iv) $\mathrm{sp}^{3} \mathrm{~d}^{2}, 3$

[A] a-i, b-ii, c-iii and div
[B] a-ii, b-iv, ci and d-iii
[C] a-iv, b-ii, c-iii and di
[D] a-iv, b-iii, c-ii and di
44. In a reaction $\mathrm{A} \rightarrow$ products, the concentration [A] varies with time, t as shown below.

t / min	0	2	4	6
$[\mathrm{~A}] / \mathrm{M}$	10	9	8	7

Order of the reaction is:
[A] 0
[B] 1
[C] 1.5
[D] 2
45. A spectrophotometer cell when filled with liquid A transmits 50% and when filled with liquid B transmits only 25% of the incident light at a certain wavelength. What would be the optical density at this wavelength when the same cell is filled with a mixture of equal volumes of A and B ?
[A] 0.45
[B] 0.50
[C] 0.75
[D] 0.90
46. If two solutions are separated by a semipermeable membrane and solvent flows in both directions equally, then the solutions are called:
[A] iso-osmotic
[B] isotonic
[C] ideal
[D] none of the above
47. The ratio of velocities of Ag^{+}and NO_{3}^{-}ions in an aqueous solution of AgNO_{3} is 0.92 . The transport number of Ag^{+}and NO_{3}^{-}are, respectively,
[A] 0.48 and 0.52
[B] 0.38 and 0.62
[C] 0.62 and 0.38
[D] 0.52 and 0.48
48. Which one of the following events occurs during the charging of a lead storage battery?
[A] consumption of sulphuric acid
[B] formation of sulphuric acid
[C] formation of lead sulphate
[D] consumption of lead
49. Metals present in the metalloenzymes, carbonic anhydrase and sulphite oxidase are :
[A] Cu and Mo respectively
[B] Zn and Mo respectively
[C] Mo and Cu respectively
[D] Co and Zn respectively
50. For the transformation $\mathrm{RCl}+\mathrm{H}_{2} \mathrm{O}$ (excess) $\rightarrow \mathrm{ROH}+\mathrm{HCl}$, molecularity and order of the reaction are, respectively,
[A] 2 and 2
[B] 2 and 1
[C] 1 and 2
[D] 1 and 1
51. When 0.6 g of an organic compound decomposed, 112 mL of nitrogen and 226 mL of carbon dioxide were released at STP. The molecular weight of the compound is likely to be:
[A] 106
[B] 116
[C] 126
[D] 136
52. A sample of 10 mol of an ideal gas is compressed isothermally and reversibly from 230 L to 2.3 L at 300 K . The free energy change during the process is:
[A] -230 kJ
[B] -115 kJ
[C] 115 kJ
[D] 230 kJ
53. Given the q is the heat transferred to a system, w is the work done on the system and ΔU is the change in internal energy of the system, which of the following is correct?
[A] For an isothermal process, $q=+w$
[B] For an isochoric process, $\Delta U=-q$
[C] For an adiabatic process, $\Delta U=-w$
[D] For a cyclic process, $q=-w$
54. The rate constant of a reaction is $1.0 \mathrm{~s}^{-1}$ and $10 \mathrm{~s}^{-1}$ at 300 K and 600 K respectively. The activation energy of the reaction is:
[A] $9.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[B] $10.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[C] $\quad 11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[D] $12.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
55. Calculate the EMF of the cell and the free energy change associated with the cell reaction for the cell $\mathrm{Cu}\left|\mathrm{Cu}^{2+}(0.0200 \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.0200 \mathrm{M})\right| \mathrm{Ag}$, maintained at $25^{\circ} \mathrm{C}$. $\left(E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{o}=+0.799\right.$ $\mathrm{V}, E_{C u^{2+} / C u}^{o}=+0.333 \mathrm{~V}$)
[A] +0.412 V and -79.5 kJ
[B] -0.412 V and +79.5 kJ
$[\mathrm{C}]+0.462 \mathrm{~V}$ and -89.2 kJ
[D] -0.462 V and +89.2 kJ
56. In two experiments, an ideal (perfect) gas undergoes reversible expansion from volume V_{i} to V_{f} (i) isothermally and (ii) adiabatically. If the initial pressure is the same in both, the final pressure in the two cases, $\mathrm{p}_{\mathrm{iso}}$ and p_{ad}, are such that:
[A] $\mathrm{p}_{\mathrm{iso}}=\mathrm{p}_{\mathrm{ad}}=1$ bar
[B] $\mathrm{p}_{\text {iso }}=\mathrm{p}_{\text {ad }} \neq 1$ bar
[C] $\mathrm{p}_{\text {iso }}<\mathrm{p}_{\text {ad }}$
[D] $\mathrm{p}_{\text {iso }}>\mathrm{p}_{\text {ad }}$
57. Ionization constant, K_{w} of water at $37^{\circ} \mathrm{C}$ is $2.42 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$. The pH of neutral water at this temperature is:
[A] 8.1
[B] 7.0
[C] 6.8
[D] 4.5
58. X-ray diffraction from a cubic lattice shows the (110) peak at $\theta=20^{\circ}$: what will be the angle for (111) peak?
[A] 18.8
[B] 24.5
[C] 24.8
[D] 25.0
59. Given the standard reduction potentials at $25^{\circ} \mathrm{C}, E^{\phi}\left(A^{+}, A\right)=0.6 \mathrm{~V}$ and $E^{\phi}\left(B^{+}, B\right)=0.8 \mathrm{~V}$, Predict the spontaneous reaction at $25^{\circ} \mathrm{C}$ from the following.
[A] $A^{+}+B \rightarrow A+B^{+}$
[B] $A+B^{+} \rightarrow A^{+}+B$
$[\mathrm{C}] \quad A^{+}+B^{+} \rightarrow A^{2+}+B$
[D] $A^{+}+B^{+} \rightarrow A+B^{2+}$
60. The standard potential E^{0} of a given cell is 1.1 V at 298 K and $\left(\partial E^{0} / \partial T\right)_{P}=-6.5 \times$ $10^{-5} \mathrm{~V} \mathrm{~K}^{-1}$. Calculate ΔH^{0} for the cell reaction assuming $n=2$.
[A] $-208 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[B] $-216 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[C] $104 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[D] $-104 \mathrm{~kJ} \mathrm{~mol}^{-1}$
61. An iron ore was analysed by dissolving 1.1324 g of the sample in concentrated HCl . The resulting solution was diluted with water, and the iron(III) was precipitated as the hydrous oxide $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ by the addition of NH_{3}. After filtration and washing, the residue was ignited at a high temperature to give 0.5394 g of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (Mol. Wt. $=159.69$). The \% Fe (At. Wt. $=55.845$) in the sample is:
[A] 0.30%
[B] 33.32%
[C] 34.97%
[D] 47.63%
62. In a glass tube, the observed capillary rise is 2 cm at $20^{\circ} \mathrm{C}$. The density and surface tension of water are $1 \mathrm{~g} \mathrm{~cm}^{-3}$ and $0.0728 \mathrm{~N} \mathrm{~m}^{-1}$, respectively. Neglecting the density of air, the diameter of the tube is:
[A] 1.49 mm
[B] 0.55 mm
[C] 0.75 mm
[D] 1.1 mm
63. The ionic mobility of Li^{+}ion in methanol at $25^{\circ} \mathrm{C}$ is $4.13 \times 10^{-4} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. If the viscosity coefficient of methanol at this temperature is 0.55 cP , the hydrodynamic radius of Li^{+}ion in the solution is:
[A] $4.1 \AA$
[B] $2.7 \AA$
[C] $1.9 \AA$
[D] $3.7 \AA$
64. The color of a dilute solution of sodium in liquid ammonia is blue. It is due to:
[A] the formation of sodium - ammonia complex
[B] the formation of sodium amide and H_{2}
[C] the formation of solvated electrons
[D] decrease in the pH of ammonia
65. An object of mass 2 g is suspended from the end of a spring. The frequency of its vibration is 3 Hz . Force constant of the spring is:
[A] $0.11 \mathrm{~N} \mathrm{~m}^{-1}$
[B] $2.1 \mathrm{Nm}^{-1}$
[C] $\quad 0.71 \mathrm{~N} \mathrm{~m}^{-1}$
[D] $5.2 \mathrm{Nm}^{-1}$
66. Adsorption of a gas is described by the Langmuir isotherm with $\mathrm{K}=0.777 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. The pressure at which the fractional surface coverage becomes 0.2 is:
[A] 1.02 kPa
[B] 0.52 kPa
[C] 0.26 kPa
[D] 0.32 kPa
67. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ is expected to be:
[A] $8000 \mathrm{~cm}^{-1}$
[B] $12000 \mathrm{~cm}^{-1}$
[C] $16000 \mathrm{~cm}^{-1}$
[D] $20000 \mathrm{~cm}^{-1}$
68. Which one of the following molecules has an overall dipole moment?
[A] CO_{2}
[B] SO_{2}
[C] $\quad \mathrm{BF}_{3}$
[D] XeF_{4}
69. Choose the correct statement with respect to hypophosphorous acid in its predominant form from the following.
[A] It is dibasic and it has two P-H bonds
[B] It is monobasic and it has one $\mathrm{P}-\mathrm{H}$ bond
[C] It is dibasic and it has one P-H bond
[D] It is monobasic and it has two $\mathrm{P}-\mathrm{H}$ bonds
70. For the compounds $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Co}_{3} \mathrm{O}_{4}$, which of the following statements is correct?
[A] They have normal spinel and inverse spinel structures, respectively
[B] Both do not have spinel structures
[C] They are not mixed valent compounds
[D] They have inverse spinel and normal spinel structures respectively
71. The increasing order of Lewis acidity is:
[A] $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$
[B] $\mathrm{BBr}_{3}<\mathrm{BCl}_{3}<\mathrm{BF}_{3}$
[C] $\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<\mathrm{BF}_{3}$
[D] $\mathrm{BF}_{3}<\mathrm{BBr}_{3}<\mathrm{BCl}_{3}$
72. Which of the following atoms show highest catenation ability?
[A] Cl
[B] S
[C] P
[D] Se
73. Which of the following complexes (0.1 mol), during precipitation titration with Ag^{+}ion, will result the maximum precipitate of AgCl ?
[A] $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
[B] $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
[C] $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
[D] same in case of all the three complexes

$$
k-10
$$

74. The formula of the basic structural unit in a one-dimensional silicate is:
[A] $\left(\mathrm{SiO}_{3}\right)^{4-}$
[B] $\left(\mathrm{SiO}_{3}\right)^{2-}$
[C] $\left(\mathrm{Si}_{3} \mathrm{O}_{9}\right)^{6-}$
[D] $\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)^{6}$
75. The color of potassium dichromate is due to:
[A] metal to ligand charge transfer transition
[B] dd transition
[C] transition in potassium ion
[D] ligand to metal charge transfer transition
76. The type of bonds present in diborane $\mathrm{B}_{2} \mathrm{H}_{6}$ are:
[A] six $(2 \mathrm{c}-2 \mathrm{e}) \mathrm{B}-\mathrm{H}$ bonds
[B] four $(2 \mathrm{c}-2 \mathrm{e}) \mathrm{B}-\mathrm{H}$ bonds and two $(3 \mathrm{c}-2 \mathrm{e}) \mathrm{B}-\mathrm{B}$ bonds
[C] four ($3 \mathrm{c}-2 \mathrm{e}$) B-B bonds and two ($2 \mathrm{c}-2 \mathrm{e}$) $\mathrm{B}-\mathrm{H}$ bonds
[D] one $(2 c-2 e) B-B$ bond and six $(2 c-2 e) B-H$ bonds
77. The structures of BCl_{3} and AlCl_{3} in their liquid state are, respectively:
[A] monomer and monomer
[B] dimer and dimer
[C] dimer and monomer
[D] monomer and dimer
78. Acetic acid is weak acid in aqueous solution. In sulphuric acid, it behaves as:
[A] base
[B] strong acid
[C] mild acid
[D] amphoteric
79. The decreasing order of rate of acetolysis of the following compounds is:

(I)

(II)

(III)
[A] (III) $>$ (II) $>$ (I)
[B] \quad (II) $>$ (III) $>$ (I)
[C] (I) $>$ (III) $>$ (II)
[D] (III) $>$ (I) $>$ (II)
80. The structure of XeF_{5}^{-}according to VSEPR theory is:
[A] pentagonal planar with two non-bonding pairs above and below the plane of the pentagon
[B] square based pyramidal arrangement
[C] trigonal bipyramidal geometry
[D] distorted octahedral geometry
81. The ratio of mass of Pb^{206} to the mass of U^{238} in a certain rock specimen is found to be 0.5 . Estimate the age of rock assuming that it originally contained no lead. Half-life of uranium is 4.5×10^{9} years.
[A] 2.63×10^{9} years
[B] 1.63×10^{9} years
[C] 2.03×10^{9} years
[D] 2.99×10^{9} years
82. The enolate responsible for the formation of a stable intramolecular aldol product from the following diketone \mathbf{X} would be:

[A]

[B]

[C]

[D]

83. The reagent system used for the following transformation is:

[A]

[B] HgSO_{4} (1 equiv.), H^{+}
[C] HgSO_{4} (1 equiv.), $\mathrm{H}_{2} \mathrm{O}_{2}$
[D] HOBr (1 equiv.), aqueous NaOH

$$
K-10
$$

84. Identify the compound having carbon with highest oxidation state.
[A] CH_{4}
[B] HCHO
[C] HCN
[D] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
85. The aromatic systems among the following are:

(I)

(II)

(III)

(IV)
[A] (III) and (IV)
[B] (I) and (II)
[C] (II) and (IV)
[D] (I) and (IV)
86. In the three dimensional structure of DNA:
[A] adenine pairs with cytosine involving 3 hydrogen bonds
[B] thymine pairs with adenine involving 3 hydrogen bonds
[C] guanine pairs with cytosine involving 3 hydrogen bonds
[D] cytosine pairs with thymine involving 3 hydrogen bonds
87. The IUPAC name of the following compound is:

[A] 1-methyl-2-vinylcyclopentene
[B] 1-vinyl-2-methylcyclopent-2-ene
[C] 1-methyl-5-vinylcyclopentene
[D] 2-methyl-3-vinylcyclopentene
88. The increasing order of energy of the following conformers is:

(I)

(II)

(III)
[A] (II) $<$ (III) $<$ (I)
[B] (I) $<$ (II) $<$ (III)
[C] (III) $<$ (II) $<$ (I)
[D] (I) $<$ (III) $<$ (II)
89. The major product formed in the following reaction is:

[A]

[B]

[C]

[D]

90 . The product of the following reaction is:

[B]

[C]

[D]

91. The increasing order of reactivity of the following compounds (I) - (III) towards reaction with maleic anhydride (IV) is:

(I)

(II)

(III)

[A] (I) $<$ (II) $<$ (III)
[B] (II) $<$ (I) $<$ (III)
[C] (II) $<$ (III) $<$ (I)
[D] (III) $<$ (II) $<$ (I)

$$
k-10
$$

92. The minimum number of moles) of phenylhydrazine required for the complete conversion of one mole of glucose to its corresponding osazone derivative is:
[A] 1 mole
[B] 2 moles
[C] 3 moles
[D] 6 moles
93. The most appropriate reaction that produces compounds containing α-hydroxyketone moiety is:
[A] Aldol reaction
[B] Perkin condensation
[C] Benzoin condensation
[D] Knoevenagel condensation
94. The compound which, upon heating, results in a ketone with molecular weight 58 is:
[A]

[B]

[C]

[D]

95. The increasing order of reactivity of the following compounds towards $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ is:

(I)

(II)

(III)

(IV)
[A] (II) $<$ (I) $<$ (III) $<$ (IV)
[B] (I) $<$ (II) $<$ (IV) $<$ (III)
[C] (II) $<$ (I) $<$ (IV) $<$ (III)
[D] (I) $<$ (II) $<$ (III) $<$ (IV)
96. Among the following compounds the one that is most soluble in water is:
[A]

[B]

[C]

[D]

97. Assign the configurations of the chiral centers in the following compound.

[A] $2 S, 4 S$
[B] $2 R, 4 R$
[C] $2 S, 4 R$
[D] $2 R, 4 S$
98. The major product formed in the following reaction is:

[A]

[B]

[C]

[D]

99. The decreasing order of reactivity of the following compounds towards iodide $\left(\mathrm{I}^{-}\right)$under $\mathrm{S}_{\mathrm{N}} 2$ reaction condition is:

(I)

(II)

(III)
[A] (II) $>$ (III) $>$ (I)
[B] \quad (I) $>$ (III) $>$ (II)
[C] (II) $>$ (III) $>$ (I)
[D] (III) $>$ (I) $>$ (II)
100. The incorrect statement with respect to fluorescence is:
[A] fluorescence is a radiative process
[B] fluorescence occurs at higher energy region than the absorption
[C] maximum possible fluorescence quantum yield is 1
[D] fluorescence occurs at lower energy region than the absorption
