B-7

Entrance Examination : M.Sc. Mathematics, 2013

Hall Ticket Number

Time : 2 hours Max. Marks. 100

Part A : 25 marks Part B : 75 marks

Instructions

- 2. In part A a right answer gets 1 mark and a wrong answer gets -0.33 mark.
- 3. In Part B, some questions have MORE THAN ONE correct option. All the correct options have to be marked in the OMR answer sheet, otherwise ZERO marks will be credited.
- 4. Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- 5. Hand over the OMR answer sheet at the end of the examination.
- 6. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 7. There are a total of 50 questions in Part A and Part B together.
- 8. The appropriate answer should be coloured in either a blue or black ball point or sketch pen. DO NOT USE A PENCIL.

Part A

B-7

- 1. We say that a sequence (a_n) does NOT converge to l if
 - **A**. $\forall \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \forall n \ge n_0 \text{ we have } |a_n l| > \varepsilon.$
 - **B**. $\forall \varepsilon > 0$. $\forall n_0 \in \mathbb{N}$. $\exists n \ge n_0$ such that $|a_n l| > \varepsilon$.
 - **C**. $\exists \varepsilon > 0, \forall n_0 \in \mathbb{N}, \exists n > n_0 \text{ such that } |a_n l| > \varepsilon.$
 - **D**. $\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \forall n \ge n_0 \text{ we have } |a_n l| > \varepsilon.$
- 2. Consider a sequence (a_n) of positive numbers satisfying the condition $a_n a_{n+2} \leq a_{n+1}^2, \ \forall n \in \mathbb{N}$ then (a_n) is a
 - A. convergent sequence if $a_1 \neq 2a_2$.
 - **B**. monotonically increasing sequence if $a_1 \neq 2a_2$.
 - **C**. convergent sequence if $a_1 = 2a_2$.

D. monotonically increasing sequence if $a_1 = 2a_2$.

- 3. The sum of the series $\sum_{n=1}^{\infty} \left[(n+1)^{\frac{1}{5}} n^{\frac{1}{5}} \right]$ is
 - A. less than -1.
 - **B**. equal to -1.
 - C. greater than -1 but less than 2.

D. none of the above.

4. Let $S = \{x \in \mathbb{R}/x^2 \le 5\} \cap \mathbb{Q}$. Which of the following statements is true about S?

A. S is bounded above and $\sup S \in \mathbb{Q}$.

- **B**. S is bounded above and $\sup S \in \mathbb{R} \mathbb{Q}$.
- C. S is a closed interval.
- **D**. S is an open interval.
- 5. The value of $\lim_{x\to 0} \frac{e^{(1/x)} e^{(-1/x)}}{e^{(1/x)} + e^{(-1/x)}}$ is
 - **A**. 0.
 - **B**. 1.
 - C. -1.
 - D. none of the above.
- 6. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} -x+3, & x \in \mathbb{Q}, \\ x^2 6x + 9 & x \notin \mathbb{Q}. \end{cases}$ The set of all points at which f is continuous is A. $\{2, 3\}$.

B. {3}. **C**. $\mathbb{R} - \{2, 3\}$. D. $\mathbb{R} - \{3\}$.

 $\mathbf{2}$

- B-7
- 7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} \sin x, & x \ge 0, \\ 1 \cos x, & x < 0. \end{cases}$ Which of the following statements is true about f?
 - A. f is differentiable.
 - **B**. f is continuous but NOT differentiable.
 - **C**. f is discontinuous.
 - **D**. none of the above statements is true.
- 8. Let $f: [0,1] \to \mathbb{R}$, $g: [0,1] \to \mathbb{R}$ given by $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0,1], \\ 0 & x \notin \mathbb{Q} \cap [0,1], \end{cases}$ and $g(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap [0,1], \\ 1 & x \notin \mathbb{Q} \cap [0,1], \end{cases}$ then
 - A. both f and g are Riemann integrable.

B. $\log 2$

- **B**. f is Riemann integrable but g is NOT Riemann integrable.
- C. g is Riemann integrable but f is NOT Riemann integrable.
- **D**. both f and g are NOT Riemann integrable.
- 9. $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{2k}{k^2 + n^2} =$ A. 0 B

C. 2 D. ∞

10. A solution of $xdy - ydx + (x^2 + y^2)dx + (x^2 + y^2)dy = 0$ is

- A. $\arctan(y/x) + x + y = C$. B. $\frac{y}{x} + x^2 + y^2 = C$. C. $\arctan(y/x) + x^2 + y^2 = C$. D. $\frac{y}{x} + x + y = C$.
- 11. The general solution of $(D^4 + I)^2 y = 0$ is
 - **A.** $C_1 \sin x + C_2 \cos x + C_3 e^x + C_4 e^{-x}$.
 - **B**. $C_1 x \sin x + C_2 x \cos x + C_3 e^x + C_4 e^{-x}$.
 - C. $(C_1 + C_2 x) \sin x + (C_3 + C_4 x) \cos x + C_5 e^x + C_6 e^{-x}$.
 - **D**. $(C_1 + C_2 x) \sin x + (C_3 + C_4 x) \cos x + (C_5 + C_6 x) e^x + (C_7 + C_8 x) e^{-x}$.
- 12. Consider three different planes $a_{11}x + a_{12}y + a_{13}z = d_1$, $a_{21}x + a_{22}y + a_{23}z = d_2$ and $a_{31}x + a_{32}y + a_{33}z = d_3$. Let $A = (a_{ij}), 1 \le i, j \le 3$. Which of the following conditions necessarily implies that there exists a unique point of intersection of all three planes?

A . $det(A) = 0$	B . det(A) $\neq 0$
C. Trace $(A) = 0$	D. Trace(A) $\neq 0$

13. The number of planes containing both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and x-2, y-4, z=6

 $\frac{x-2}{-1} = \frac{y-4}{-5} = \frac{z-6}{-1}$ is A. 0.

B. 1. **D**. infinite.

14. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 22 \\ 0 & 1/7 & \pi \end{bmatrix}$$
. then det(A) is

C. more than 1 but finitely many.

A. zero.

B. a nonzero rational number.

C. an irrational number less than 1.

D. an irrational number greater than 1.

15. Consider the vector space \mathbb{R}^3 over \mathbb{R} and $A, B \subset \mathbb{R}^3$ such that $0 \notin A \cup B$. Let the number of elements in A and B are 4 and 2 respectively, then

A. both A and B are linearly dependent sets.

B. A is linearly dependent set but B is linearly independent set.

C. both A and B are linearly independent sets.

D. none of the above is a true statement.

C. more than 1 but finitely many.

16. The number of group homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{13} is

A. 0.

B. 1. D. infinite.

17. The center of \mathbb{Z}_{33} is

A. $\{0\}$. B. \mathbb{Z}_{3} . C. \mathbb{Z}_{11} . D. \mathbb{Z}_{33} .

18. Let G be a group and H be a subgroup of G. Which of the following statements is true?

A. If H is a normal subgroup of G then gH = Hg, $\forall g \in G$.

B. If H is a normal subgroup of G then $gH \neq Hg$, for some $g \in G$.

C. If gH = Hg, for some $g \in G$ then H is a normal subgroup of G.

D. If $gH \neq Hg$, for some $g \in G$ then H is a normal subgroup of G.

19. The number of elements of order 8 in a cyclic group of order 16 is

A. 1. B. 2. C. 3. D. 4.

- 20. If $x \neq e$, $y \neq e$ are elements in a group G such that the order of x is 2 and $x^{-1}yx = y^2$ then the order of y is
 - **A**. 1. **B**. 2. **C**. 3. **D**. 4.

21. In the ring $(\mathbb{Z}, +, .)$ the set $\{12u + 30v | u, v \in \mathbb{Z}\}$ is same as $n\mathbb{Z}$ for n = A. 6. B. 4. C. 3. D. 2.

22. Let S be the sphere with center at the origin and radius 1. Let \overline{f} is a vector field given by $\overline{f}(x, y, z) = (z - 2xyz)\hat{i} + 9x^2yz^2\hat{j} + (yz^2 - 3x^2z^3)\hat{k}$. If \hat{n} is the outward normal then, the value of $\iint_{S} \overline{f} \cdot \hat{n} dS =$

- **A**. 0. **B**. $\frac{4}{3}\pi$. **C**. π .
- 23. If ϕ is a real valued smooth function and \overline{f} is a vector valued smooth function on \mathbb{R}^3 , then $\operatorname{div}(\phi \operatorname{Curl} \widetilde{f}) =$

D. $\frac{4}{2}\pi^3$.

A. $\nabla \phi$. $\operatorname{Curl} \overline{f}$ **B**. $\nabla(\overline{f}.\nabla\phi)$ **C**. $\nabla \phi$. $\operatorname{Curl} \overline{f} + \nabla(\overline{f}.\nabla\phi)$ **D**. none of the above.

Α.

- 24. What is the probability of that girls outnumber boys in a family with 5 children. Assume that births are independent trials and probability of a boy is equal to 1/2.
 - **A.** 0. **B.** $\frac{1}{2}$. **C.** $\frac{15}{32}$. **D.** $\frac{17}{32}$.
- 25. Consider two boxes numbered Box1 and Box2. Let Box1 contains 5 red balls and 4 black balls Box2 contains 10 red balls and 17 black balls. Consider a random experiment of choosing a box, picking a ball from it. What is the probability that the color of the ball is red?

25	5 0	_ 15	15
$\overline{54}$	B . $\frac{1}{54}$	C. $\overline{36}$	$\mathbf{D}_{\cdot} = \frac{1}{17}$

Correct answer/s marked in OMR sheet to a question in this Section get 3 marks and zero otherwise.

- 26. Consider the statement 'There is a train in which every compartment has at least one passenger without the ticket.' Negation of this statement is
 - A. There is a train in which every compartment has at least one passenger with the ticket.
 - B. There is a train in which every passenger of every compartment has the ticket.
 - C. Every train has a compartment in which every passenger has the ticket.
 - D. In every train every passenger in every compartment has the ticket.
- 27. Consider a sequence (a_n) of real numbers. Which of the following conditions imply that (a_n) is convergent?

A.
$$|a_{n+1} - a_n| < \frac{1}{n}, \forall n \in \mathbb{N}.$$

B.
$$|a_{n+1} - a_n| < \frac{1}{3^n}, \forall n \in \mathbb{N}.$$

C. $a_n > 0$, $\forall n \in \mathbb{N}$ and a_n is monotonically increasing.

D. $a_n > 0$, $\forall n \in \mathbb{N}$ and a_n is monotonically decreasing.

28. Which of the following series are convergent?

A.
$$\sum_{n=0}^{\infty} \frac{\log n}{n^{3/2}}$$
 B. $\sum_{n=0}^{\infty} \frac{n^2}{n!}$ C. $\sum_{n=0}^{\infty} \frac{1}{n \log n}$ D. $\sum_{n=0}^{\infty} \frac{e^n}{n^{100}}$

29. Which of the following statements are true?

A. If $A \subset \mathbb{Q}$ such that $\mathbb{Q} - A$ is finite then A is dense in \mathbb{R} .

- **B**. There exists $A \subset \mathbb{Q}$ such that $\mathbb{Q} A$ is infinite and A is dense in \mathbb{R} .
- C. There exists a pair of disjoint subsets of Q such that both of them are dense in \mathbb{R} .

D. None of the above is a true statement.

30. Consider $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sin^3(|x|)$, then f'(0)

A. is equal to -1 .	\mathbf{B} . is equal to 0.
\mathbf{C} . is equal to 1.	D. does not exist

B-7

1

- 31. Consider the following two statements.
 - S₁: If $f : [0, 1] \rightarrow [0, 1]$ is continuous then $\exists x_0 \in [0, 1]$ such that $f(x_0) = x_0$.

S₂: There exists a continuous function $f : [0,1] \rightarrow [0,1] - \{\frac{1}{2}\}$ such that f is on to.

A. Both S_1 and S_2 are true.

B. S_1 is true but S_2 is FALSE.

C. S_2 is true but S_1 is FALSE.

D. Both S_1 and S_2 are FALSE.

32. Consider the following two statements.
$$e^{\pi/2}$$

$$S_1: \int_0^{\pi/2} \frac{\sin x}{x} dx \text{ exists.}$$
$$S_2: \int_0^1 \frac{x}{\log x} dx \text{ exists.}$$

A. Both S_1 and S_2 are true.

B. S_1 is true but S_2 is FALSE.

C. S_2 is true but S_1 is FALSE.

D. Both S_1 and S_2 are FALSE.

33. Solution of
$$(x^2 + y^2)xdx + (x^2 + y^2)ydy + 2xy(xdy - ydx) = 0$$
 is
A. $\log(\sqrt{x^2 + y^2}) - \frac{x^2}{x^2 + y^2} = C$.
B. $\log(x^2 + y^2) - \frac{x^2}{x^2 + y^2} = C$.
C. $\log(\sqrt{x^2 + y^2}) - \tan^{-1}\frac{y}{x} = C$.
D. $\log(x^2 + y^2) - \tan^{-1}\frac{y}{x} = C$.

34. The general solution of $(D^2 - I)y = x^2 + e^{-x}$ is

A.
$$C_1 e^x + C_2 e^{-x} - \left[\frac{1}{4}(2x+1)e^{-x} + x^2 + 2\right].$$

B. $C_1 \sin x + C_2 \cos x - \left[\frac{1}{4}(2x+1)e^{-x} + x^2 + 2\right].$
C. $C_1 e^x + C_2 e^{-x} - \left[\frac{1}{2}e^{-x} + x^2 + 2\right].$
D. $C_1 \sin x + C_2 \cos x - \left[\frac{1}{2}e^{-x} + x^2 + 2\right].$
35. The value of k such that the lines $\frac{x-1}{k} = \frac{y-1}{4} = \frac{z-2}{3}$ and $x+1$ $y-1$ z

 $\frac{1}{2} = \frac{g-1}{1} = \frac{z}{3}$ are coplanar is

A.
$$-1$$
, **B**. 1. **C**. -2 . **D**. 2.

36. Consider a plane which is at a distance p from the origin O = (0, 0, 0). Let A, B, C be the points of intersection of that plane with the co-ordinate axis. The locus of the center of the sphere passing through O, A, B and C is

A.
$$\frac{2}{x^2} + \frac{2}{y^2} + \frac{2}{z^2} = \frac{1}{p^2}$$
.
B. $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{4}{p^2}$.
C. $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{2}{p^2}$.
D. $\frac{4}{x^2} + \frac{4}{y^2} + \frac{4}{z^2} = \frac{1}{p^2}$.

37. Consider the circle C which is the intersection of the sphere $x^2 + y^2 + z^2 - x - y - z = 0$ and the plane x + y + z = 1. The radius of the sphere with center at the origin, containing the circle C is

A. 1. B. 2. C. 3. D. 4.

- 38. Which of the following statements are true?
 - A. All groups of order 4 are abelian.
 - **B**. All groups of order 6 are abelian.
 - **C**. $73^{12} 1$ is divisible by 7.
 - D. A subgroup of a cyclic group must be cyclic.
- 39. Consider the quotient group $G = \frac{\mathbb{Q}}{\mathbb{Z}}$ under addition. Which of the following statements about G are true?
 - **A**. G is a finite group.
 - **B**. In G every element has a finite order.
 - \mathbf{C} . G has no nontrivial proper subgroups.
 - **D**. G is NOT a cyclic group.

40. Let
$$\mathcal{G} = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{Q} - \{0\}, \ b \in \mathbb{Q} \right\}, \ \mathcal{U} = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| \ b \in \mathbb{Q} \right\}, \ \mathcal{D} = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{Q} - \{0\} \right\}.$$

Which of the following statements are true?

A. \mathcal{G} , \mathcal{U} , \mathcal{D} are all groups under multiplication.

- **B**. \mathcal{D} is a normal subgroup of \mathcal{G} .
- C. \mathcal{U} is a normal subgroup of \mathcal{G} .
- **D**. For every matrix $\mathcal{A} \in \mathcal{U}$, $\mathcal{ADA}^{-1} \subseteq \mathcal{D}$.

41. Let $X = \{1, 2, 3, 4, 5\}$, $\mathscr{P}(X)$ be the power set of X. Consider the ring $R = (\mathscr{P}(X), \Delta, \cap)$, for subsets A&B of X, $A\Delta B = (A \cup B) - (A \cap B)$. Which of the following statements are true about R?

A. R is a commutative ring with unity.

B. R is a field.

C. Every element in R has 'additive' order 2.

D. Every element in R has 'multiplicative' order 2.

- 42. Consider the ring $R = (\mathbb{Z}_{60}, +, .)$. Which of the following statements are true about R?
 - A. There are no maximal ideals in R.

B. There are three maximal ideals in R.

C. There are ten nonzero proper ideals in R.

- **D**. All nonzero ideals in R are maximal.
- 43. Consider the group \mathbb{Z} under addition +. Define the binary operation * on \mathbb{Z} by a * b = 0, $\forall a, b \in \mathbb{Z}$. Which of the following statements are true about R?
 - A. $(\mathbb{Z}, +, .)$ is a commutative ring with unity.
 - **B**. $(\mathbb{Z}, +, .)$ is a ring.

C. Every additive subgroup of \mathbb{Z} is an ideal.

D. The only ideals in \mathbb{Z} are of the form $n\mathbb{Z} = \{nx | x \in \mathbb{Z}\}$.

44. Let A be a nonsingular 3×3 matrix with real entries. For every nonzero eigenvalue λ of A,

A. λ is an eigenvalue of both $P^{-1}AP$, PAP^{-1} where det $(P) \neq 0$.

B. $1 + \lambda$ is an eigenvalue of I + A.

C. if det(A) < 1 then $|\lambda| < 1$.

D. if μ is an eigenvalue of A^{-1} then $\mu \lambda = 1$.

45. Let A be a 2×2 real matrix. Let the sum of the entries in each row of A be equal to 2. Which of the following statements is true?

A. 0 is always an eigenvalue of A.

B. 0 and 2 are always eigenvalues of A.

C. 2 is always an eigenvalue of A.

D. None of the above.

46. Let A, B be a 4×4 matrices. Denote rank of a matrix A, B by $\rho(A)$, $\rho(B)$ and adjoint of A by adj(A). Which of the following statements are true?

A. $\rho(A+B) \le \rho(A) + \rho(B)$. **B.** $\rho(A-B) \le \rho(A) - \rho(B)$. **C.** $\rho(AB) \le \rho(A)\rho(B)$. **D.** If $\rho(A) = 2$ then $\operatorname{adj}(A) = O_{4\times 4}$.

- 47. Consider the vector space $V = \mathbb{R}^3(\mathbb{R})$ and $B = \{v_1, v_2\} \subset V, 0 \notin B$. Which of the following statements are true?
 - A. If B is a linearly dependent set then $\exists (\alpha_1, \alpha_2) \neq (0, 0)$ such that $\alpha_1 v_1 + \alpha_2 v_2 = 0$.
 - **B.** If B is a linearly dependent set then $\exists (\alpha_1, \alpha_2)$ such that $\alpha_1 \neq 0$, $\alpha_2 \neq 0$ and $\alpha_1 v_1 + \alpha_2 v_2 = 0$.
 - C. If B is linearly independent then \exists no nonzero 2-tuple (α_1, α_2) such that $\alpha_1 v_1 + \alpha_2 v_2 \neq 0$.
 - **D**. If B is linearly independent then \exists no nonzero 2-tupple (α_1, α_2) such that $\alpha_1 v_1 + \alpha_2 v_2 = 0$.

48. Let $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $|\overline{r}| = \sqrt{x^2 + y^2 + z^2}$ and $\overline{f} : \mathbb{R}^3 - \{0\} \to \mathbb{R}^3$ be given by $f(x, y, z) = \frac{\overline{r}}{|\overline{r}|^n}$. The value of n for which $\operatorname{div}(\overline{f}) = 0$ is A. 1. B. 2. C. 3. D. 4.

49. Let R be a region in the xy-plane. The boundary of R is a smooth simple closed curve C which is parametrized by $C = (x(t), y(t)), t \in [0, 1]$. The area of R is NOT equal to

$$\begin{aligned} \mathbf{A}. & \int_{0}^{1} x(t)y'(t)dt. \\ \mathbf{B}. & -\int_{0}^{1} y(t)x'(t)dt. \\ \mathbf{C}. & \frac{1}{2}\int_{0}^{1} \left(x(t)y'(t) + y(t)x'(t)\right)dt. \\ \mathbf{D}. & \frac{3}{4}\int_{0}^{1} x(t)y'(t)dt - \frac{1}{4}\int_{0}^{1} y(t)x'(t)dt. \end{aligned}$$

- 50. A storage depot contains 10 machines 4 of which are defective. If a company selects 5 of these machines randomly, then what is the probability that at least 4 of the machines are NON DEFECTIVE?
 - A. $\frac{11}{42}$. B. $\frac{5}{21}$. C. $\frac{1}{252}$. D. none of the above.