IM.Sc-Optometry & Vision Science

Entrance Examination- 2013

Н	all	Ticket Numb	per			
T	m	e: 2 hours			Total marks: 75	
		Please re	ad the follow	ing instructions care	fully before answering.	
				Instructions		
	1.	This booklet l	nas (8) pa	ges. Please check tho	roughly for all the pages.	
	2.	Enter the Ha	ll ticket num	ber on the first pag	e of this booklet as well as o	n the
	3.	There is nega	tive marking.	For each wrong ans	wer 0.33 marks will be deduc	ted.
4. There are two PARTS in the question paper – PART A (Question nos. PART B (Question nos. 26-75. In case of a tie, marks obtained in PART considered for resolving the tie.					PART A (Question nos. 1-25 narks obtained in PART A w	. and ill be
,	5.	Calculators a	re not permit	ted		
	•			PART A		_
1.	A B C	ell biology mear . how molecules . how tissues and . how cells funct . how nucleus in	interact in ce d organs of an tion	lls individual organism	function and interact	
2.		epatitis is an int . Brain	flammatory co B. Liver	ndition of: C. Kidneys	D. Heart	,
3.	A B C	he function of tR. Transport of a Carry codons to Translate RNA Transcribe the	mino acids for the ribosome	r protein synthesis es		
4.		hich of the meta. Iron	al below has th B. Calcium	ne highest density? C. Silver	D. Gold	

The four main elements in the human body are A. sulphur, nitrogen, oxygen and hydrogen B. carbon, nitrogen, oxygen and hydrogen C. carbon, sulphur, nitrogen and hydrogen D. carbon, sulphur, oxygen and hydrogen				
A "body continues to be in its state of rest or uniform motion in a straight line unless acted upon by a force" is a statement of: A. Newton's second law of motion B. Newton's law of gravitation C. Newton's law of friction D. Newton's first law of motion				
The values of sin A. 1, 0	$(\Delta x / x)$ and $1 / x$, B. 1, 1	when $x \longrightarrow 0$: C. $0, \infty$	D. 1, ∞	
and refractive ind	ed 20 cm away from ex, RI = 2.0. If the	m a curved surface of RI of air is 1.0, then	radius of curvature, RC=10 cm the image of the object will be	
	B. 40 cm	C20 cm	D. – 40 cm	
What is the speed A. $2x10^8$ m/sec	of light of $\lambda = 55$ B. $3x10^8$ m/sec	0 nm in a fused quartz C. 4x10 ⁸ m/sec	z of refractive index, $\mathbf{n} = 1.5$? D. 5.5×10^8 m/sec	
Three coplanar vectors are expressed with respect to a certain rectangular co-ordinate system of a given reference frame as: a = 4i-j, b = -3i-2j and c = 2j. The value of "r", which is the sum of these vectors is:				
A.i+j			D. i + 2j	
The average translational kinetic energy per molecule in a gas at room temperature, T= 300 °K is: A. 2.7x10 ⁻²¹ J/molecule B. 6.21x10 ⁻²¹ J/molecule D. 4.14x10 ⁻²¹ J/molecule				
. The value of "γ" for monoatomic, diatomic and polyatomic gases are: A. 1.67. 1.33, 1.40 B. 1.33, 1.67, 1.40				
. The moment of inertia for a solid sphere about the diameter and solid cylinder about the				
cylindrical axis is A. 2MR ² /5, 2MR	s: ² /3	B. MR ² /2, 2MR ² /5 D. 2MR ² /3, 2MR ² /5		
In the Bohr model of the hydrogen atom, the electrons circulate around the nucleus in a path of radius, 5.1×10^{-11} m at a frequency, $\mathbf{v} = 6.8 \times 10^{15}$ rev/sec. The current flow rate is A. 1.1×10^{-2} Amp B. 1.1×10^{-3} Amp C. 1.1×10^{-4} Amp D. 1.1×10^{-5} Amp				
Find the correct pair among the following pairs of vector multiplication: A. i. $i = 1$ and i x i = -j B. j. j = 0 and j x j = 0 C. k. k - 1 and k x I = -j D. k. i = 0 and k x k = 0			= 0	
6. Plants require Magnesium for: A. Holding cells together C. Photosynthesis B. Transpiration D. Development of Cell wall			Cell wall	
	A. sulphur, nitroge B. carbon, nitroge C. carbon, sulphur D. carbon, sulphur A "body continue acted upon by a fo A. Newton's seco C. Newton's law of The values of sin A. 1, 0 An object is place and refractive indeformed at: A. 20 cm What is the speed A. 2x10 ⁸ m/sec Three coplanar ve system of a given which is the sum A. i + j The average trans T= 300 °K is: A. 2.7x10 ⁻²¹ J/mo C. 3.1x10 ⁻²¹ J/mo C. 3.1x10 ⁻²¹ J/mo The value of "γ" fo A. 1.67, 1.33, 1.44 C. 1.40, 1.67, 1.35 The moment of in cylindrical axis is A. 2MR ² /5, 2MR ² / C. 2MR ² /5, MR ² / In the Bohr mode path of radius, 5.1 A. 1.1x10 ⁻² Amp C. 1.1x10 ⁻⁴ Amp Find the correct p A. i . i = 1 and i x C. k . k - 1 and k Plants require Ma A. Holding cells in	A. sulphur, nitrogen, oxygen and hy B. carbon, nitrogen, oxygen and hy C. carbon, sulphur, nitrogen and hy C. carbon, sulphur, oxygen and hy C. Newton's second law of motion C. Newton's second law of friction The values of sin ($\Delta x / x$) and $1 / x$, A. 1, 0 B. 1, 1 An object is placed 20 cm away from and refractive index, $RI = 2.0$. If the formed at: A. 20 cm B. 40 cm What is the speed of light of $\lambda = 5.5$ A. $\lambda = 5.5$ M. $\lambda = 5$	A. sulphur, nitrogen, oxygen and hydrogen B. carbon, nitrogen, oxygen and hydrogen C. carbon, sulphur, nitrogen and hydrogen D. carbon, sulphur, oxygen and hydrogen D. Newton's first law D. Newton's law of garbon D. Newton's law of garbo	

17.	The protein coat o A. Cosmid	f a virus is called: B. Plasmid	C. Capsid	D. Plastid		
18.	What reaction con A. Anabolic reacti C. Anabolism		cules to form large mo B. Catabolic reaction D. Hydrolase reaction	L		
19.	This hormone is so A. Leptin	ecreted from panc B. Glucagon	reas when glucose lev C. Insulin	els are low in the blood - D Adiponectin		
20.	Reproduction in most of the bacteria is by a process known as A. Binary fission B. Budding C. Sexual D. Sporulation					
21.	Which one of these is a correct sequence of the flow of genetic information in a biological system: A. Replication, Translation, Transcription B. Replication, Transcription, Translation C. Translation, Transcription, Replication D. Translation, Replication, Transcription					
22.	Which one of the following is correct about Cosmid? A. Extra genetic material in mycoplasma B. Circular DNA found in bacteria C. Extra DNA in bacteria D. Fragment of DNA inserted in bacteria for forming copies.					
23.	During translation initiation in prokaryotes, a GTP molecule is needed in A. association of 30S, mRNA with formyl-met-t RNA B. association of 50S subunit of ribosome with initiation complex C. formation of formyl-met-Trna D. binding of 30 subunit of ribosome with mRNA					
24.	In Drosophila, the sex is determined by: A. The ratio of pairs of X-chromosomes to the pairs of autosomes B. X and Y chromosomes C. The ratio of number of X-chromosomes to the sets of autosomes D. Whether the egg is fertilized or develops parthenogenetically					
25.	What does "lac" r A. Lactose C. Lac insect	efer to in lac oper	on? B. Lactase D. The number 1,00	,000		
PART -B						
26.	The maximum nu A. 1	umber of hydroger B. 2	bonds that a molecul C. 3	e of water can have is D. 4		
27.	For a 10% solution A. 10.0	on of NaCl in 100 B. 5.85	ml, you need C. 58.5	Grams of NaCl D. 100.0		
28.	All the terminator A. Adenine	r codons begin wi B. Uracil	th the nucleotide of C. Guanine	D. Cytosine		

29.	Which of the followard. Proteins	wing is the riches B. Fats and oils	t source of energy in o C. Fibre	our diet? D. Carbohydrates	
	A. lac Y, lac Z, lac C. lac A, lac Y, lac	e A e Z	ac operon concept is B. lac Z, lac Y, lac A D. lac A, lac Z, lac Y	•	
•	hours, if you start A. 32,000	with 1,000 <i>E.coli</i> B. 128,000	bacteria? C. 16,000	D.64,000	
32.	the cytoplasm?			formation from the nucleus to	
	A. DNA	B. RNA	C. Proteins	D. Lipids	
33.		e bacteria detect a	and respond to chemic	als in their surrounding	
	A. Lipopolysaccha C.Porins	aride	B. Muramic acid D. Volutin granules		
34.	A very common in A. Entamoeba his C. Eichhornia cra	tolytica	pollution is: B. <i>Escherichia coli</i> D. <i>Lemna paucicost</i> e	ata	
35.	One of the environ A. An increase in C. An increase in	the temperature	f "Green House Gas" i B. An increase in at D. An increase in O	mospheric pressure	
36.	In a zero-order retemperature is income. A. 64 times	action for every 1 creased from 10°C B. 128 times	C to 100°C, the rate of	the rate is double D. If the the reaction will become D. 512 times	
	of the gas remain A. 2.5 x 10 ¹⁰	per cubic cm at 2 B. 2.5 x 10 ¹¹	27 °C in the chamber? C. 2.5 x 10 ¹²	mm Hg. How many molecules D. 2.5 x 10 ¹³	
38	38. If the length " <i>l</i> " and the radius " <i>r</i> " of a cooper wire having a resistance, R , is dou the new resistance of the wire will be:				
	A. ½ R	B. 2R	C. ¼ R	D. R	
39	A capacitor of $1000 \mu F$ is connected to a DC source of voltage 100 V . The energy stored by the capacitor is:				
	A. 2 J	B. 20 J	C. 200 J	D. 2000 J	
40	Suppose two 1 m	rce between two verter long wires, so force of attraction	separated by a distance	is defined in terms of Nt / length , d, is 1m and carrying equal	
	A. 2x10 ⁻⁷ Nt/m	B. 4x10 ⁻⁷ Nt/m	C. $2x10^7$ Nt/m	D. $4x10^7$ Nt/m	
41	. Time required fo A. 2k/a	or 100 percent con B. a/2k	npletion of a zero orde C. a/k	r reaction is D. ak	
42	2. Image formed by A. Virtual and R	eal	e and convex lenses ar B. Real and Real D. Virtual and Virt		

43.	If the incident lighthe angle of the res			s rotated by an angle α , then D2 α
44.	Down's syndrome A. Trisomy	is an example of B. Monosomy	a chromosal abnormal C. Deletion	D. Inversion
45.	Scurvy is a disease A. Deficiency	e caused due to: B. Radiation	C. Mutation	D. Infection
46.	Which of the follo	owing is never con B. Habitats	ntained in food chain? C. Herbivore	D. Omnivore
47.	Water soluble vita A) Vit. C & Vit. E C) Vit. C & Vit. E	3	B) Vit. B & Vit. D D) Vit.D & Vit.E	
48.	The presence of sta. Cell stain	tarch in potato car B. Iodine solution	n be detected by: on C. Biuret reagent	D. Benedicts solution
49.	Ethyl benzene CAA. Clemmensen r C. Wurtz-Fittig re	eduction	ed by B. Wurtz reaction D. Friedel-Crafts rea	action
50.	The following alv A. A color change C. Heat energy is	e occurs	chemical reaction B. A gas is given of D. A new substance	
51.	On electrolysis at A. Ions	cids release: B. Mesotrons	C. Neutrons	D. Positrons
52.	Quicklime is a co A. CaO	ommon name for v B. Ca(OH) ₂	which of the following C. CaCl ₂	chemical? D. CaCO ₃
53.	Normality is a ter A. Mixtures	rm used in the cor B. Acids	ntext for : C. Organic solvents	D. Inorganic solvents
54	Hydrolytic reactiA. EsterificationC. Carboxylation		stic soda is known as B. Saponification D. Acetylation	:
55	. NaH is an examp A. Ionic Hydride C. Complex Hyd	;	B. Covalent hydrid D. Interstitial hydrid	
56	A. 32	of nitrogen in amn B. 82	nonia is : C. 55	D. 25
57	C. C ₂ H ₆ is an: A. Alkane	B. Alkali	C. Alkyne	D. Alkene
58	Ribozyme is: A. RNA without C. RNA with en	-	B. RNA with sugar D. RNA with extra	

59.	A. Nitrogen Fixing bacteria		rites and then nitrites to free nitrogen are known as: B. Ammonifying bacteria D. Denitrifying bacteria		
60.	Which one of them A. Sucrose	n is a monosaccha B. Lactose	ride: C. Galactose	D. Maltose	
61.	The most abundan A. Insulin	t protein in the an B. Trypsin	imal world is: C. Collagen	D. Haemoglobin	
62.	Thickening of arte A. Thrombosis	ries due to the de B. Rhinitis	position of fat is known C. Stenosis	n as: D. Atherosclerosis	
63.	Rickets can be pre A. Carrots	vented by taking: B. Oranges	C. Calciferol	D. Green leafy vegetables	
64.	Bile salts are production A. Liver	uced in the liver t B. Lungs	out stored in: C. Pancreas	D. Gall Bladder	
65.	Islet of Langerhan A. Kidney Cortex		C. Anterior Pituitary	D. Endocrine Pancreas	
66.	Hemoglobin retain A. Lungs	ns oxygen and rele B. Heart	eases it in: C. Tissues	D. Liver	
67.	The Fahrenheit an A40 °C	d Celsius scale re B. 460 °C	adings of temperature C. 0 °C	coincide at: D2730°C	
68.	If no heat is transf A. Isobaric	erred into or out B. Isochloric	of a system, then it is I C. Adiabatic	known as: D. Isothermal	
69.	Mustard belongs t A. Solanaceae	o the family: B. Cruciferae	C. Poaceae	D. Amaryllidaceae	
70.	Tobacco mosaic d A. Bacteria	isease is caused b B. A virus	oy: C. Genetic abnorma	lities D. Radiation	
71.	A. how animals carry out their functions B. interactions of animals with each other & their physical environment C. variety of living forms and animal habits D. animal structure and function				
72.	Motile zygote of l A. Human RBCs C. Gut of female		rs in B. Human liver D. Salivary glands o	f Anopheles	
73.	Which of the follo A. Cockroach	owing animal belo B. Cyclops	ongs to class Crustacea C. Mosquito	n: D. Grasshopper	
74.	Which one is not A. Loss of weight	a symptom of dia t B. Excessive th	betes: irst C. Excess urinatio	n D. Night blindness	
75	Hepatic portal sys		od from C. Kidney	D. Alimentary canal	