

ENTRANCE EXAMINATION - 2020 Ph.D. Plant Sciences

Time: 2 hours	Maximum Marks: 70
	•
HALL TICKET NO.	

INSTRUCTIONS

Please read carefully before answering the questions:

- 1. Write your Hall Ticket Number in the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked only on the <u>OMR answer sheet</u> following the instructions provided there upon.
- 3. Hand over the OMR answer sheet at the end of the examination to the Invigilator.
- 4. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 5. The question paper contains 70 questions. Part-A: Question Nos. 1-35 and Part-B: Questions Nos. 36-70 of multiple-choice printed in 15 pages, including this page. One OMR answer sheet is provided separately. Please check.
- 6. The marks obtained in Part-A will be used for resolving the tie cases.
- 7. Each question carries one mark.
- 8. Calculators and mobile phones are NOT allowed.

Part-A

1. Over expression of the gene encoding 5-enolpyruvyl shikimate 3-phosphate synthase in transgenic crop plants causes resistance to				
	A. 2,4-D	B. dicamba	C. glyphosate	D. glufosinate
a short trinuc	• '	-	A by Cas9:gRNA requithe target genome. The	•
	A. NAA	B. NGG	C. NTT	D. NCC
are correct? (i) Th 3' dir (ii) Th enhar (iii) annea (iv)	 3. Consider the following statements about designing primers for PCR. Which of the statements are correct? (i) The orientation of primer sequence should be 3' to 5' as it enables the synthesis in 5' to 3' direction (ii) The forward and reverse primers should have similar melting temperatures as it enhances the specificity (iii) Primers with melting temperatures above 65°C have a tendency for secondary annealing (iv) The GC content of primer should be 20% or less as it enables easy melting and annealing 			
•.	A. (i) and (ii)	B. (ii) and (iii)	C. (ii), (iii) and (iv)	D. (iii) and (iv)
4. A foreign DNA was cloned into lacZ site of a plasmid that also contains ampicillin resistance gene. The plasmid was then transformed into <i>E. coli</i> and plated on two different media. How will you screen the positive colonies?				
(i) Medium containing IPTG and X-gal but no ampicillin.(ii) Medium containing IPTG, X-gal and ampicillin.				

A. White colonies that grow on (i) but not on (ii) are positive

C. Blue colonies that grow on (i) but not on (ii) are positive

B. White colonies that grow on (ii) are positive

D. Blue colonies that grow on (ii) are positive

Consider th	e following reactions. The enzyme classes the	at catalyze these processes are:
	(i) ethanol + NAD+> acetaldehyde + NAD	DH + H+
	(ii) glucose + ATP> glucose-6-phosphate	+ ADP
	(iii) glucose-6-phosphate <> fructose-6-ph	•
	A. oxidoreductase, transferase, and isomera	se, respectively
	B. dehydrogenase, phosphatase, and isome	rase, respectively
	C. hydrolase, transferase, and isomerase, re-	espectively
	D. kinase, phosphatase, and isomerase, resp	pectively
_	nolecule of DNA is amplified by PCR for amplicon will be produced?	25 cycles. Theoretically, how many
	A. 11332210	B. 22443321
	C. 33554432	D. 44665543
7. 'Metabolon	nics' is used to detect in a bi	ological system?
	A. promoter sequences	
	B. a specific condition induced mRNA mole	ecules
	C. specific membrane proteins	
	D. low-molecular-weight molecules of belo	w 1 kDa
8. Which of th	ne following tool predicts subcellular localiza	tion of a protein?
	A. TargetP	B. Translate
	C. ClustalW	D. Dotlet
9. Which of experiment?	the following enzymes is used for RACE	
	A, T4 DNA ligase	
	B. restriction enzyme HindIII	
	C. specific membrane proteins	
	D. terminal deoxynucleotidyl transferase	•
10. Why EDT experiments?	A (ethylene-diamine-tetraacetic acid) molect	ıle is widely used in molecular biology
	A. It directly degrades enzymes	
	B. It inhibits activities of various enzymes b	by chelating their essential cofactors
	C. It can directly activate enzymes	
	D. It is a pH regulator	
	= u L	

	B. A.	Nickel column for 6xHis tag pro Antigen immobilized column for Sephadex G50 column for desalt Streptavidin column for biotinyl	antibodies ing
		e separated using two-dimension which of the following charac	nal electrophoresis performed under denaturing teristics?
		First Dimension	Second Dimension
	B. C.	Subunit molecular weight Density Isoelectric point Hydrophobicity	Density Charge Subunit molecular weight Subunit molecular weight
13. A tradition information?	nal N	Northern blotting technique <u>cann</u>	ot be used to determine which of the following
	В. С.	the size of the mRNA species the amino acid sequence of the p the relative levels of the mRNA the half-life of the mRNA specie	-
		As that are important for the deveyo. This can be demonstrated by	velopment are located in the distinct regions of using
		Western blotting In situ hybridization	B. Northern blottingD. In vitro translation
15. An α-heli	cal s	structure of a protein in solution	is best determined by
	B. C.	Fluorescence spectroscopy UV-visible absorbance spectros Circular dichroism Analytical ultracentrifugation	сору
16. One of the	e tec	chniques that can be used to show	v the fluidity of bio-membranes is
		Phase-contrast microscopy Electron microscopy	B. Fluorescence microscopy D. Compound microscopy
		for assessing the statistical si is called	ignificance of the positions of branches in a
		Bootstrapping Normalizing	B. Scoring D. Reappropriating
		4	

11. Principle of which of the following chromatography techniques is <u>not</u> dependent on affinity based purification?

- 18. Three researchers (M, N, O) were identifying the proteins that interact with a transcription factor, TF. M performed gel filtration assay and identified that TF was found along with proteins α , β , γ , and δ . N performed co-immunoprecipitation experiments using TF-specific antibodies and identified α , β , and γ . O did yeast two-hybrid screen and identified only β . The below are the conclusions made to explain all the results. Which of these conclusions best explains the result?
 - (i) α , β , γ , and δ are in a complex with TF
 - (ii) TF directly interacts with β
 - (iii) Only α , β and γ are in complex with TF
 - (iv) δ is probably weakly associated with TF.

A. (i), (ii) and (iii)

B. (i), (ii) and (iv)

C. (i), (iii) and (iv)

D. (ii), (iii) and (iv)

19. In which of the following molecular biology techniques the term "driver" and "tester" is being used?

A. Microarray hybridization

B. Illumina genome analyser

C. Subtractive hybridization

D. Serial analysis of gene expression

20. After the outbreak of Coronavirus in Wuhan, China, several research groups have performed the complete genome sequencing of this virus strains collected from different geographical region of the world and submitted in NCBI database. One research scholar from University of Hyderabad wanted to compare genome sequences of all strains and prepare its dendrogram. Which of the following software/tool you will suggest him/her for preparing dendrogram?

A. KEGG

B. PHYLIP

C. FGENESH

D. Vgas

21. Which among the following indicate different types of DNA markers?

A. RFLP, AFLP, SSR

B. ddATP, ddGTP, ddCTP

C. BAC, PAC, YAC

D. BLAST, PFAM, GeneMark

- 22. In some of the plant molecular biology and functional genomics studies, few chemicals like Ethyl methanesulfonate (EMS) and Ethyl nitrosourea (ENU) are used. What are the functions of these chemicals?
 - A. EMS is chemical mutagen whereas ENU is fertilizer for plant growth
 - B. EMS is chemical mutagen whereas ENU is a dye which intercalates between nitrogenous bases of DNA
 - C. EMS is used for cleaning plant seeds whereas ENU is used for RNA purification
 - D. Both are chemical mutagens

23. In molecular cloning experiments, 1:3 and 1:6 vector-to-insert ratio is often recommended for sticky-end and blunt-end cloning ligation reactions, respectively. A student has been asked to carry out two separate *in silico* ligation reactions for sticky-end cloning and blunt-end cloning using a common vector (plasmid size: 12-kilobase). The amount plasmid DNA of this common vector to be taken in each reaction is 50-nanogram. If size of the insert to be used for sticky-end cloning is 8-kilobase, whereas the insert size for blunt-end cloning is 4-kilobase, calculate how much amount of each insert, for sticky-end and blunt-end cloning, respectively, would be required in each ligation reaction, keeping the vector-to-insert ratios same as recommended.

- A. 100 ng for sticky-end and 200 ng for blunt-end
- B. 50 ng for sticky-end and 100 ng for blunt-end
- C. 100 ng for sticky-end and 100 ng for blunt-end
- D. 200 ng for sticky-end and 100 ng for blunt-end
- 24. Match the items listed in "A" with the most relevant match listed in "B"

	A		В
a.	COBRA	i.	Taqman® probe
b.	SARS-CoV-2	ii	Protein-protein interaction
c.	Y2H	iii	Fokl
d.	Genome-editing	iv	BstUI

A. a(iv), b(i), c(ii), d(iii)

B. a(iii), b(i), c(ii), d(iv)

C. a(iv), b(ii), c(i), d(iii)

D. a(iii), b(ii), c(i), d(iv)

25. Which of the answers is <u>true</u> for the given statements on Barnase-Barstar system expressed in a cell?

Statement 1: Barnase is a ribonuclease which when expressed is lethal to the cell. Barstar is a strong repressor gene that prevents barnase action.

Statement 2: If both of these genes are constitutively expressed in a cell, barnase action will be impaired and the lethal effect of its expression will be suppressed.

- A. Statement 1 is incorrect whereas statement 2 is true.
- B. Statement 1 is true whereas statement 2 is incorrect.
- C. Both statements are true.
- D. Both statements are incorrect.
- 26. How many unrooted trees are possible in a phylogenetic analysis, if the number of taxa taken in the analysis is two?

A. Zero

B. One

C. Two

D. Four

	the following methods ves of the study is also			ed in an experiment if one ed novel genes?
	A. Northern blotting B. Serial analysis of C. Quantitative real-t D. Microarray		1	,
28. Which of crops?	f the answers is <u>true</u> f	or the given sta	tements on herbicid	e resistance in transgenic
synthase (EP	SPS) of the shikimate p : An insensitive EPSPS	pathway in plan Sallele is overe orrect whereas s whereas states re true.	ts. xpressed to introduc statement 2 is true.	vylshikimate-3-phosphate e herbicide tolerance trait
	group segregating ger	-		nt populations using DNA le classes. What are these
	A. Purelines C. Bulks		B. Inbreds D. Doubled haploid	is
30. Which on of a gene?	e of the following DNA	A-based marker	s can be used to quan	tify the mRNA transcripts
•	A. Mini satellite mar C. Single nucleotide	- _	B. Microsatellite nD. Expressed sequence	
vectors are ra	* -	the recipient ge	enome and the altered	ucleic acid (DNA)-based d genes are screened using
	A. Insertional mutage C. Transposition	enesis	B. Promoter trappin D. Chromosome la	-
	on flowers exhibit coont, the possibility of an		-	nts are crossed with white
•	A. 1/4	B. 1/2	C. 1/12	D. 3/4

- 33. Which of the following statements is not true about phenylmethylsulfonyl fluoride (PMSF)?
 - A. It binds covalently to the active site serine residue in trypsin and chymotrypsin
 - B. It has greater solubility and highest stability in aqueous solutions
 - C. Effective in most protein solutions at 0.1 to 1 mM final concentration
 - D. It inhibits mammalian acetylcholinesterase
- 34. Consider the following statements.
- I. In vitro androgenesis is more commonly used for haploid production in different crop species than in vitro gynogenesis as it is more efficient and easy to culture
- II. Haploid plants produced through in vitro gynogenesis are fertile and can set seeds
- III. Chromosome doubling of haploid plants produced from pollen embryogenesis restores fertility and results in homozygous diploids
- IV. Diploid plants produced through anther wall tissues in anther cultures are somatic diploids

Which of the following statements related to above are **correct**?

- A. Statements I, II and III are correct
- B. Statements I, II and IV are correct
- C. Statements I, III and IV are correct
- D. Statements II, III and IV are correct
- 35. Hairy root cultures for secondary metabolite production are induced by transforming plant cells with
 - A. Virus
 - B. Agrobacterium tumefaciens
 - C. Bacillus thuringiensis
 - D. Agrobacterium rhizogenes

Part-B

36. Which of the following transcription factor far	milies is plant-specific?
A. AP2	B. bZIP
C. MYB	D. WRKY
37. In tRNA, Ψ (Psi) -arm is named for the present	ace of
A. amino-pseudopurine	B. pyrimidinediol
C. uracil-pseudouridine	D. dioxypyrimidine
38. Which of the following statements about prote (i) Hydrophobic amino acid side chains are (ii) Beta-sheets are stabilised by hydrogen (iii) Amino acids in coils have an undefine	e buried inside globular proteins bonds between parallel or antiparallel strands
	re can be changed by high salt concentration
A.(i) and (ii)	B. (i) only
C. (iii) and (iv)	D. (iii) only
39. Match the <u>correct</u> hormonal combination (I) v	
I	II
a. High auxin to cytokinin ratio	
b. Low auxin to cytokinin ratio c. Auxin alone	(ii) Shoot elongation (iii) Callus initiation
d. Cytokinin alone	(iv) Shoot regeneration
A. a(ii), b(iii), c(iv), d(i)	B. a(iii), b(iv), c(i), d(ii)
C. a(iv), b(i), c(ii), d(iii)	D. a(iv), b(iii), c(i), d(ii)
40. Which of the following is an example of polytonia	terpene?
A. Secondary wood	B. Natural rubber
C. Menthol	D. Vincristine
41. Antibiotics 'beta-lactams' inhibit bacterial gro	owth by inhibiting
A. cell wall synthesis	B. protein synthesis
C. cell membrane potential	D. Nucleic acid biosynthesis

42	is a molecular chaperone.
	A. Chlorophyll binding protein located in chloroplasts B. Binding immunoglobulin protein (BiP) located in the ER C. Limonene synthase located in leucoplasts D. Polysomal complex located in cytosol
43. The Shin	ne-Delgarno sequence is a sequence that is referred to
	A. 5'-end of 16S ribosomal RNA B. 3'-end of bacterial mRNA downstream of the stop codon C. 5'-end of bacterial mRNA, upstream of the start codon D. 3'-end of 28S ribosomal RNA
44. Each cyc	le of β-oxidation can produce?
	A. 1 FAD, 1 NAD+, and 2 CO2 molecules B. 1 FADH2, 1 NAD+, and 1 acetyl-CoA C. 1 FADH2, 1 NADH, and 1 acetyl-CoA D. 1 FADH2, 1 NADH, and 2 CO2 molecules
45. The zymo	ogen trypsinogen is converted to active trypsin by
	 A. binding of a crucial metal ion B. reduction of a disulphide bond C. proteolytic cleavage D. phosphorylation of an active site residue
46. The eukar	ryotic photosynthesis originated via—
•	A. Endosymbiosis of Cyanobacteria B. Endosymbiosis of Purple Bacteria C. Endosymbiosis of Archaea Bacteria D. From Algae
47. The plant	hormone auxin mediates changes in plant growth rate due to
	A. increased extensibility of the walls of the affected cells B. loss of turgor pressure in the affected cells C. cytoskeletal rearrangements in the affected cells D. enlargement of vacuoles in the affected cells
48. An upstrea	am activating sequence in a single gene gets deleted and the mutation is expected to
~*	A. lethal B. cis-dominant C. trans-dominant D. silent

iii.	Mycoplasmas – Ó Mycobacteria – Fa Chlamydiae – Fac Rickettsia – Facul	acultative parasites cultative parasites		,
	A. i, ii	B. iii. iv	C. ii, iii	D. i. iv
50. Endore	eduplication means			
	B. recurrent D C. mobilization	of endoplasmic reticution of PNA replication without on of DNA into ER and of DNA in the nuclei of DNA in the nucl	nt consequent mitosis and replication of DNA is	and cytokinesis n the ER
namely, C genome as rationale	CaH, PEPC, PPDK and found that rice of	, NADP-MDH, and I encodes 2, 6, 2, 9, and	NADP/P-ME. A reseated for the second of the	of five specific enzymes, archer analyzed the rice of these enzymes. The enzymes given below. Which of
(i)	The identified gen	es could be pseudogen	es having no function	
(ii	(ii) The genes could be in a transcriptionally inactive state			
(ii	(iii) The genes might have evolved to perform different functions			
(iv) The genes might	have got nonsense mu	tations	
	A. (i) and (iv)		B. (iv) only	
	C. (ii) and (iii)	D. (iii) only	
52. The below reasons are proposed for preferring floral characters over vegetative characters for the classification of angiosperms. Identify the correct statement(s).				
(ii (ii) Floral characters i) Shape of flower	shows a large degree show less variations this is diagnostic feature in o study floral features	nan vegetative traits many families	
	A. (i) only C. (ii) only		B. (i) and (iii) D. (ii) and (iv)	;

53. A genus w	ith a single species is o	called			
	A. Atypic C. Solotypic		B. Monotypic D. Neotypic		•
54. A locus tha	at explains a fraction of	f the genetic var	riance of a gene e	xpression phen	otype is called
	A. eQTL C. mQTL		B. gQTL D. pQTL		
	eat (Triticum aestivum 1 in pasta. Consider the		•		
(ii) <i>T.</i> (iii) <i>T.</i>	nestivum is a hexaploid durum was originated aestivum has an additi durum served as an an	in ancient Egyp ional 'C' genor	ot and T. aestivum ne that is absent i	n in Indus Valle in <i>T. durum</i>	у
	A. (i) only C. (i) and (iv)		B. (ii) and (iv) D. (i), (ii) and (iii)	iv)	
56. Match the	NCBI database (I) wit	th its correct de	escription (II).		
	I	II			
	a. PubMed b. SRA c. GenBank d. GEO	(ii) Gene expr (iii) Database	collection of DN ression profiles of of citations and a eration sequencing	f sequence data abstracts	
	A. a(iii), b(ii), c(iv),	d(i)	B. a(iii), b(i), c((iv), d(ii)	
•	C. a(ii), b(iii), c(i), d((iv)	D. a(iii), b(iv),	c(i), d(ii)	
57. The corre	ct grading of the below	v taxa in the de	scending order of	Linnaean hiera	archy is
(i) Class	(ii) Kingdom (iii) P	•	order (v) Genus	(vi) Family	(vii) Species
	A. (ii), (iii), (iv), (vi)		. •		
	B. (vii), (v), (i), (vi),		t ,		
	C. (ii), (iii), (i), (iv),				
	D. (vii), (v), (vi), (iv)				
58. The secon	ndary metabolites are n				ing pathways?
	A. Shikimate pathwa C. C4 pathway	ıy .	B. C3 pathway D. B-oxidation		

J. What is the up	pproximate genome size of covid-	-17;	
A.	30 Kb	B. 30 Mb	
C.	3 Kb ·	D. 3 Mb	
60. Which of the	following are the names of plant of	lisease resistance genes?	
A.	Cy3 & Cy5	B. Hm1 & RPS2	
C.	GENIE & Xq28	D. Bcl-2 & BRCA1	
	orrect statements with respect to ings and choose the <u>right</u> options	pedigree characteristics of X-linked dominant	
I. Affected sons n	nust have an affected mother		
_	nters must have either an affected		
	ners (if heterozygous) will pass the ers will pass the trait on to all their	e trait on to all their sons and not daughters daughters	
A.	Statements I, II and III are correct	t	
B.	Statements I, II and IV are correc	t	
C.	Statements I, III and IV are corre	ect	
D.	Statements II, III and IV are corre	ect	
62. Which of the	following sequence of lipids are a	bundant in chloroplasts?	
A.	DGDG, MGDG, PG and SQDG		
	MGDG, DGDG, SQDG and PG		
	DGDG, MGDG, SQDG and PG		
D.	MGDG, DGDG, PG and SQDG		
63. Aphelenchoides besseyi is plant pathogen which causes rice white tip, spring dwarf, and strawberry crimp disease. This pathogen is a			
A.	bacteria	B. fungi	
C.	virus	D. nematode	
64. In an organism, the phenotype of the offspring is determined by the genotype of the mother. This can be explained by			
Α.	Maternal inheritance	B. Genome imprinting	
C.	Genetic maternal effect	D. Epigenetic inheritance	

65. In this question, a statement is given, followed by two conclusions. Select the right answer.

Statement: Under optimal conditions, C4 crop species can assimilate CO₂ at rates two to three times greater than that of C3 species.

Assumption 1: Rubisco is present in the leaf bundle sheath cells of C4 plants where concentration of CO₂ may reach to several fold higher than that in C3 plants.

Assumption 2: Unlike C4 plants, photosynthesis of C3 plants is not inhibited by O₂ and they have a very low CO₂ compensation point.

- A. Only assumption 1 is practical
- B. Only assumption 2 is practical
- C. Both assumptions are practical
- D. Neither assumption 1 nor assumption 2 is practical
- 66. Mapping of polygenes is usually carried through mating/hybridization between plants of diverse nature followed by screening of the segregating populations through molecular markers is known as:
 - A. Quantitative trait loci analysis
 - B. Qualitative trait analysis
 - C. Monosomic analysis
 - D. Regression analysis
- 67. Which of the following genes is <u>not</u> closely associated with the action or production of the plant hormone gibberellin?
 - A. Reduced height!
- B. Semi-dwarf 1
- C. Shatterproof 4

- D. Submergence 1
- 68. Match the plant hormones listed in "A" with the associated receptors listed in "B".

	A		B
a.	Auxin	i.	PYR/PYL/RCAR
b.	Abscisic acid	ii	CREI
c.	Ethylene	iii	TIR1
d.	Cytokinin	iv	.ERS1 •

- A. a(i), b(ii), c(iii), d(iv)
- B. a(ii), b(iii), c(iv), d(i)
- C. a(ii), b(iv), c(i), d(iii)
- D. a(iii), b(i), c(iv), d(ii)

69. Read the following statement and reason carefully with regard to photolithoautrophic life forms and identify the **correct** answer

Statement: These are life forms which derive energy from light, inorganic chemicals as electron donors and carbon sources.

Reason: This type of growth mode is common only among bacteria which use light as source of energy, H_2O as inorganic electron donor and can fix CO_2 .

- A. Both statement and reason are correct and the reason explains the statement.
- B. Only the statement is correct and the reason is incomplete explanation of the statement.
- C. Both statement and reason are incorrect
- D. Statement is incorrect and reason is correct explanation of photolithoautrophic life forms.
- 70. Which of the following chromosomal changes is <u>not</u> responsible for the position-effect/variegation effect of a gene?

A. Transposition

B. Translocation

C. Inversion

D. Polyploidization

----/END//----

University of Hyderabad Entrance Examinations – 2020

School/Department/Centre

: Department of Plant Sciences, School of Life Sciences

Course/Subject

: Ph.D. Plant Sciences

Q.No.	Answer	Q.No.		Q.No.	Answer	Q.No.	Answer
1	С	26	Α	51	D	76	
2	В	27	В	52	С	77	
3	В	28	Α	53	В	78	
4	В	29	С	54	Α	79	-
5	Α	30	D	55	С	80	17
6	С	31	Α	56	D	81	
7	D	32	В	57	С	82	
8	Α	33	В	58	Α	83	=
9	D	34	С	59	Α	84	
10	В	35	D	60	В	85	
11	С	36	Α	61	В	86	
12	С	37	С	62	D	87	
13	В	38	D	63	D	88	
14	С	39	В	64	С	89	
15	С	40	В	65	Α	90	
16	В	41	Α	66	Α .	91	
17	Α	42	В	67	С	92	
18	В	43	С	68	D	93	
19	С	44	С	69	В	94	
20	В	45	С	70	D	95	
21	Α	46	Α	71		96	
22	D	47	Α	72	3	97	
23	С	48	В	73		98	
24	Α	49	Α	74		99	
25	С	50	В	75		100	

Note/Remarks: --

Signature G/ 26 09 20 20 School/Department/Centre

अध्यक्ष / HEAD

वनस्पति विज्ञान विभाग/ Dept. of Plant Sciences जैविक विज्ञान संकाय/ School of Life Sciences हैदराबाद विश्वविद्यालय/ University of Hyderabad हैदराबाद/ Hyderabad-500 046, भारत/ INDIA