ENTRANCE EXAMINATIONS – 2020 M.Sc. Mathematics/Applied Mathematics

Hall Ticket No.

Time

Max. Marks

: 2 hours

: 100

PART A: 50 Marks

PART B: 50 Marks

Instructions

- Write your Hall Ticket Number on the OMR Answer Sheet given to you. Also 1. write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- Hand over the OMR answer sheet at the end of the examination to the Invigilator. 4.
- No additional sheets will be provided. Rough work can be done in the question 5. paper itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 50 questions in PART A and PART B together.
- 8. Each correct answer carries 2 marks and each wrong answer carries -0.66 mark. Each question has only one correct option.
- 9. The appropriate answer(s) should be coloured with either a blue or black ball point or a sketch pen. DO NOT USE A PENCIL.
- This book contains 14 pages including this page and excluding pages for the 10. rough work. Please check that your paper has all the pages.
- The question paper can be taken away by the candidate at the end of the examination. 11.
- Notations: R denotes the set of real numbers, C the set of complex numbers, Q 12. the set of rational numbers, Z the set of integers and N the set of natural numbers $\{1,2,3,\ldots\}$, and \varnothing the empty set. For a set A, A^c denotes its complement. For a ring R and a positive integer n, $M_n(R)$ denotes the set of all $n \times n$ matrices with entries from R.

PART - A

- 1. Let S_3 be a permutation group on three symbols. Then group $S_3 \times \mathbb{Z}/2\mathbb{Z}$ is isomorphic to
 - (A) The dihedral group with 12 elements, D_{12} .
 - (B) The alternating group A_4 .
 - (C) The cyclic group of order $\mathbb{Z}/12\mathbb{Z}$.
 - (D) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 2. Suppose $f:[a,b] \longrightarrow \mathbb{R}$, is a continuous map. Which of the following is true.
 - (A) if $\int_a^b f(x)dx = 0$, then f = 0.
 - (B) if $|\int_a^b f(x)dx| = 0$, then f = 0.
 - (C) if there exists $c \in (a, b)$ such that $f(c) \neq 0$, then $\int_a^b f(x) dx \neq 0$.
 - (D) if $\int_a^b f^2(x) dx = 0$, then f = 0.
- 3. If A is an orthogonal matrix of odd order then
 - (A) A I or A + I is necessarily singular.
 - (B) A is always singular.
 - (C) zero is an eigenvalue of A.
 - (D) A I is always non-singular.
- 4. Let $A = \{(-1)^n(1\frac{1}{n}) \mid n \in \mathbb{N}\}$. The limit points of A are
 - (A) 1.
 - (B) -1.
 - (C) -1, 0, 1.
 - (D) -1, 1.
- 5. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $a \in \mathbb{R}$. Suppose there exists m > 0 and $r \in \mathbb{N}$ such that, $|f(x) f(a)| < m|x a|^r$. Choose the correct answer.
 - (A) f is differentiable at a, for any r.
 - (B) f is differentiable at a, if m > 1.
 - (C) f is differentiable at a, if $r \geq 2$.
 - (D) f is differentiable at a, if m = 1.
- 6. The orthogonal trajectories of a family of circles passing through the points (0, 2) and (0, -2) are circles with
 - (A) centres at (0, c/2) and radius $\sqrt{c^2 16}/2$, |c| > 4.

- (B) centres at (0, -c/2) and radius $\sqrt{c^2 16}/2$, |c| > 4.
- (C) centres at (0,0) and radius $\sqrt{c^2 16}/2$, |c| > 4.
- (D) centres at (0, c/2) and radius c/2.
- 7. Let \mathbb{R} with the Euclidean (or standard) metric. Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q}, \\ x - 2, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- (A) f is continuous on $\mathbb{Q} \cap (0, \infty)$.
- (B) f is continuous only at 1 and -2.
- (C) f is not continuous at every point.
- (D) f is continuous on \mathbb{R} .
- 8. The least distance of the point (10,7) from the circle $x^2 + y^2 4x 2y 20 = 0$ is
 - (A) 10.
 - (B) 15.
 - (C) 5.
 - (D) 0.
- 9. The equation of the sphere having the circle $x^2+y^2+z^2+10y-4z-8=0$, x+y+z-3=0 as a great circle is

(A)
$$x^2 + y^2 + z^2 - 4x + 6y - 8z + 4 = 0$$
.

(B)
$$x^2 + y^2 + z^2 + 4x - 6y - 8z + 4 = 0$$
.

(C)
$$x^2 + y^2 + z^2 - 4x - 6y - 8z - 4 = 0$$
.

(D)
$$x^2 + y^2 + z^2 = 16$$
.

- 10. Which of the following is conditionally convergent?
 - (A) $\sum_{n=1}^{\infty} \frac{1}{n}.$
 - (B) $\sum_{n=1}^{\infty} \frac{1}{n^2}.$
 - (C) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$
 - (D) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.

- 11. Let $S = \{1, 2, 4, 6, 7, 8\}$. The number of 3-digit integers formed using the digits from S such that the integer is either an even number or else an odd number but without repetition of digits is
 - (A) 184.
 - (B) 186.
 - (C) 212.
 - (D) 108.
- 12. The necessary and sufficient condition for the differential equation M(x,y)dx+N(x,y)dy=0 to be exact is
 - (A) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$
 - (B) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
 - (C) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$.
 - (D) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$
- 13. A sequence $\{x_n\}$ of real numbers satisfies $|x_{n+2}-x_{n+1}| \le c|x_{n+1}-x_n|$, for all $n \in \mathbb{N}$ and for some 0 < c < 1. Then $\{x_n\}$ is called
 - (A) cauchy.
 - (B) convergent.
 - (C) contractive.
 - (D) divergent.
- 14. If $\tilde{\mathbf{A}}$ be vector valued function on \mathbb{R}^3 , then which of the following is always true?
 - (A) $curlcurl\tilde{\mathbf{A}} = \mathbf{grad}(\mathbf{div}\tilde{\mathbf{A}}) \nabla^2 \tilde{\mathbf{A}}$.
 - (B) $curlcurl \mathbf{\tilde{A}} = \mathbf{0}$.
 - (C) $grad(div\tilde{\mathbf{A}}) = \mathbf{0}$.
 - (D) $curl curl \tilde{\mathbf{A}} = -\nabla^2 \tilde{\mathbf{A}}$.
- 15. The volume generated by revolving the region in the first quadrant bounded by $y = x^3$ and y = 4x about the x-axis is
 - (A) $\frac{512\pi}{21}$.
 - (B) $\frac{128\pi}{21}$.
 - (C) $\frac{256\pi}{21}$.
 - (D) $\frac{1024\pi}{21}$

16. How many group homomorphisms are there from \mathbb{Z}_5 to \mathbb{Z}_{10} ?

- (A) 1.
- (B) 2.
- (C) 5.
- (D) 10.

17. Let $V = span\{\mathbf{x_1}, \mathbf{x_2}\}$; where $\mathbf{x_1} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x_2} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Then orthogonal basis $\{\mathbf{v_1}, \mathbf{v_2}\}$ for V is given by

(A)
$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$$
; $\mathbf{v_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

(B)
$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$$
; $\mathbf{v_2} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$.

(C)
$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}$$
; $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

(D)
$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}$$
; $\mathbf{v_2} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$.

18. Let $f: [-1,1] \to \mathbb{R}$ be differentiable at x=0, then $\lim_{n\to\infty} \left[\sum_{k=1}^{N} f\left(\frac{k}{n}\right) - Nf(0) \right]$

- (A) is equal to 0.
- (B) is equal to N(N+1)/2.
- (C) is equal to N/2.
- (D) does not exist.

19. Let $f:[0,1]\to\mathbb{R}$ be defined as $f(x)=\begin{cases} x^2,\ x\in[0,1]\cap\mathbb{Q},\\ x^3,\ x\in[0,1]\backslash\mathbb{Q}. \end{cases}$ Let U(f) and L(f) denote the upper and lower Riemann integrals of f. Then

(A)
$$0 < U(f) - L(f) < \frac{1}{20}$$
.

(B)
$$\frac{1}{10} < U(f) - L(f) < 1$$
.

(C)
$$\frac{1}{20} < U(f) - L(f) < \frac{1}{10}$$
.

(D)
$$1 < U(f) - L(f) < 2$$
.

- 20. Eigenvalues of idempotent matrices can only be
 - (A) 0 and 1.
 - (B) 0.
 - (C) 1.
 - (D) 0,1 and 2.
- 21. Let V, W be two finite dimensional vector spaces over \mathbb{R} . Suppose $T:V\to W$ be any function. Which of the following statements is/are true?
 - I. If T is a linear map, then T(0) = 0.
 - II. If $T:(V,+)\to (W,+)$ is a group homomorphism, then T is a linear map.
 - III. If $T:(V,+)\to (W,+)$ is a group homomorphism, then T need not be a linear map.
 - IV. Both I and II are true, only when V = W.
 - (A) I and II.
 - (B) I and III.
 - (C) IV.
 - (D) I, III and IV.
- 22. Let $A = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Consider the following statements.
 - S_1 : There exists a non constant sequence in $A \cap [0, 1]$,
 - S_2 : There exists a non constant Cauchy sequence in A.

- (A) both S_1 and S_2 are true.
- (B) S_1 is true and S_2 is false.
- (C) S_1 is false and S_2 is true.
- (D) both S_1 and S_2 are false.
- 23. Suppose $a_n > 0$, $\forall n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converges. Consider the following statements:

$$S_1$$
: The series $\sum_{n=1}^{\infty} \frac{e^{a_n}}{n^{\frac{3}{2}}}$ converges

$$S_2$$
: The series $\sum_{n=1}^{\infty} \frac{|\sin a_n|}{a_n}$ converges

(A) both S_1 and S_2 are true.

(B) S_1 is true and S_2 is false.

(C) S_1 is false and S_2 is true.

(D) both S_1 and S_2 are false.

24. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 3 \\ \beta \end{bmatrix}$. Consider

 S_1 : The equations Ax = b has a unique solution when $\alpha = 3$ and $\beta = 2$.

 S_2 : The equations Ax = b has an infinite number solutions when $\alpha = 2$ and $\beta = 2$.

Then

(A) S_1 and S_2 are true.

(B) S_1 and S_2 are false.

(C) S_1 is true but S_2 is false.

(D) S_1 is false but S_2 is true.

25. Let
$$f(x, y) = \log(\cos^2 e^{x^2}) + \sin(x + y)$$
. Consider

$$S_1: \frac{\partial^2 f}{\partial x \partial y} = -1 \text{ at } x = 0 \text{ and } y = \pi/2.$$

$$S_2: \frac{\partial^2 f}{\partial x^2} = 4 \tan(e)$$
 at $x = 0$ and $y = 0$.

. Then

- (A) S_1 and S_2 are true.
- (B) S_1 and S_2 are false.
- (C) S_1 is true but S_2 is false.
- (D) S₁ is false but S₂ is true.

PART - B

26. Consider $f(x) = (\sin x)^{\sin x}, x \in (0, \pi)$.

(I) f(x) has a minimum at $x = \pi/2$.

(II) f(x) has a maximum at $x = \pi/2$.

(III) f(x) has a maximum at $x = \sin^{-1}(\frac{1}{e})$.

Then

(A) Only (I) is True.

(B) Only (II) is True.

- (C) Both (I) and (II) are True.
- (D) Both (I) and (III) are False:
- 27. Which of the following are TRUE?
 - (1) Every bounded sequence in R has a convergent subsequence.
 - (2) Every sequence in R has a monotone subsequence.
 - (3) Every subsequence of an unbounded sequence in R is unbounded.
 - (4) The sum of two unbounded sequences in R is again an unbounded sequence.
 - (A) (1) and (4).
 - (B) (1) and (2).
 - (C) (2) and (3).
 - (D) (2) and (4).
- 28. Let H, K be two subgroups of a finite group G. Which of the following statements is/are correct?
 - I. HK is always a subgroup of C.
 - II. If H is normal and K is not normal subgroup, then only HK is a subgroup of G.
 - III. HK is need not be a subgroup of G.
 - IV. HK is a subgroup of G, if H is a normal subgroup of G.
 - (A) I and II.
 - (B) III and IV.
 - (C) II and III.
 - (D) II and IV.
- 29. Which of the following statements is/are true or False?
 - **A.** In a metric space, a ball can contain another ball of strictly bigger radius.
 - B. Let (X,d) be a metric space and let A, B and C be three subsets of X. Define

$$d(A,B) = \inf_{(a,b) \in A \times B} d(a,b).$$

Then, $d(A,C) \leq d(A,B) + d(B,C)$.

- (A) Both **A** and **B** are true.
- (B) Both A and B are false.
- (C) A is false and B is true.
- (D) **A** is true and **B** is false.

- 30. Consider the following statements:
 - I. An abelian group is cyclic.
 - II. A group of a prime order is cyclic.
 - III. A cyclic group is abelian.
 - IV. $\mathbb{Z}_2 \times \mathbb{Z}_2$ is cyclic.

Which of the following statements is/are correct:

- (A) II, III and IV.
- (B) II and III.
- (C) II and IV.
- (D) I and IV.
- 31. An ordering of three of the numbers 0, 1, 2, 3, 4, 5 matching with the sequence 'determinant, trace, rank' for the matrix $\begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 1 \\ -2 & 0 & -2 \end{bmatrix}$ is
 - (A) 2,5,3.
 - (B) 4,1,3.
 - (C) 0.2,1.
 - (D) 0,1,2.
- 32. Let [x] denote the greatest integer less than or equal to $x \in \mathbb{R}$. Then match the following:

- (A) (1)-(iii), (2)-(i), (3)-(ii).
- (B) (1)-(i), (2)-(ii), (3)-(iii) .
- (C) (1)-(ii), (2)-(iii), (3)-(i).
- (D) (1)-(ii), (2)-(i), (3)-(iii).

33. Match the following set/equations to the corresponding geometric objects in the xyzspace:

$ \begin{array}{ c c } \hline (1) \{(1,2,t) : t \in \\ \mathbb{R}\} \end{array} $	(i) plane parallel to the xy-plane
(2) x = 0, z = 5	(ii) line parallel to the z-axis
(3) z = 5	(iii) line parallel to the y -axis
(4) x = 5	(iv) plane or- thogonal to the xy-plane

- (A) (1)-(ii), (2)-(i), (3)-(iii), (4)-(iv).
- (B) (1)-(ii), (2)-(iii), (3)-(i), (4)-(iv) .
- (C) (1)-(iv), (2)-(ii), (3)-(ii), (4)-(i).
- (D) (1)-(iii), (2)-(iv), (3)-(ii), (4)-(i)

34. Given that there are real constants a, b, c, and d such that the identity $\lambda x^2 + 2xy + y^2 = (ax + by)^2 + (cx + dy)^2$ holds for all x and y in \mathbb{R} . Then match the following

(i.) λ lies in	(a.) $[1,\infty)$ if $c \geq 0$
(ii.) b and d lie in	(b.) $[0, \infty)$
(iii.) a lies in	(c.) $[-1,1]$

- (Å) (i.)-(b.),(ii.)-(c.), (iii.)-(a.).
- (B) (i.)-(a.),(ii.)-(c.), (iii.)-(b.).
- (C) (i.)-(c.),(ii.)-(b.),(iii.)-(a.).
- (D) (i.)-(b.),(ii.)-(a.),(iii.)-(c.).
- 35. Match the following

(i.)
$$u = x^{2} \cos 2y$$
, $v = x^{2} \sin 2y$ (a.) $J\left(\frac{u,v}{x,y}\right) = 0$ at $x = 1$, $y = 1$.
(ii.) $u = x\sqrt{1 - y^{2}} + y\sqrt{1 - x^{2}}$, $v = \sin^{-1} x + \sin^{-1} y$ (b.) $J\left(\frac{u,v}{x,y}\right) > 0$ at $x = 1$, $y = 1$.
(iii.) $u = \cosh x \cos y$, $v = \sinh x \sin y$ (c.) $J\left(\frac{u,v}{x,y}\right) = 4$ at $x = 1$, $y = 1$.

- (A) (i.)-(c.),(ii.)-(a.), (iii.)-(b.).
- (B) (i.)-(a.),(ii.)-(c.),(iii.)-(b.).

- (C) (i.)-(c.),(ii.)-(b.),(iii.)-(a.).
- (D) (i.)-(b.),(ii.)-(a.), (iii.)-(c.).
- 36. Match the following statements.

(a) For a real Hermitian matrix	(i) zero is always an eigenvalue.	
(b) For a real skew-Hermitian matrix	(ii) the eigenvalues are zero	
	or purely imaginary.	
(c) For a unitary matrix	(iii) the eigenvalues have unit modulus.	
(d) For a singular matrix	(iv) the eigenvalues are real.	

- (A) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv).
- (B) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i).
- (C) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii).
- (D) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii).
- 37. Match the following differential equations with their integrating factors.

(a) $(2x^2 + y)dx + (x^2y - x)dy = 0$	$(i) x^2y$.
(b) $(3y + 4xy^2)dx + (2x + 3x^2y)dy = 0$.	(ii) $\frac{1}{x^3y^3}$.
(c) $(xy-1)dx + (x^2 - xy)dy = 0$.	(iii) $\frac{1}{x}$.
$(d) xdy + ydx + 3x^3y^4dy = 0.$	$(iv) \frac{1}{x^2}$.

Then

- (A) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv).
- . (B) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv).
 - (C) (a)-(iv), (b)-(i), (c)-(iii), (d) (ii).
 - (D) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv).
- 38. Let f be a function from \mathbb{R}^2 to \mathbb{R} . Then match the following

(i.) $f(x,y) = \frac{x^3 + y^3}{3x^2 + 4xy}$	(a.) is not a homogeneous function.
(ii.) $f(x,y) = \sin^{-1}(x+y)$	(b.) is a homogeneous function of degree 0.
(iii.) $f(x,y) = \ln\left(\frac{x^3 + y^3}{3x^2y + 4xy^2}\right)$	(c.) is a homogeneous function of degree 1.

- (A) (i.)-(c.),(ii.)-(a.), (iii.)-(b.).
- (B) (i.)-(a.),(ii.)-(c.), (iii.)-(b.).
- (C) (i.)-(c.),(ii.)-(b.), (iii.)-(a.).
- (D) (i.)-(b.),(ii.)-(a.),(iii.)-(c.).

39. Match the following functions with their Laplace transforms.

(a) $e^{2x} \sin 3x$	$(i) \frac{s-2}{(s-2)^2+9}$.
(b) $e^{2x}\cos 3x$	(ii) $\frac{3}{(s-2)^2+9}$.
(c) $e^{2x} \sinh 3x$	(iii) $\frac{(s-2)}{(s-2)^2-9}$.
(d) $e^{2x} \cosh 3x$	(iv) $\frac{3}{(s-2)^2-9}$.

Then

- (A) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv).
- (B) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv).
- (C) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii).
- (D) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv).
- 40. In this question, S_4 is the symmetric group on four letters, and A_3 is the alternating group. Let $D_8 = \langle r, s : r^4 = s^2 = 1, srs = r^{-1} \rangle$ be the dihedral group with 8 elements.

$\int 1. A_3$	I. 2
2. S ₄	II. 3
$3.$ D_8 $ imes$	III. 1.
$\mathbb{Z}/2\mathbb{Z}$	

We say that the pair is 'matched' if the *minimal* number of generators of a group listed on the left hand column equals to a number in the right hand column. Which of the pairs are matched?

- (A) (I,1); (II,3); (III,2).
- (B) (I,2); (II,1); (III,3).
- (C) (I,3); (II,2); (III,1).
- (D) (I,2); (II,3); (III,1).

41. If
$$f(x) = \int_{x}^{x^{2}} e^{-t^{2}} dt$$
 then

- (A) $f'(0) \le f'(1) \le f'(2)$.
- (B) $f'(0) \le f'(2) \le f'(1)$.
- $(C \cap f'(1) \le f'(0) \le f'(2).$
- (D) $f'(2) \le f'(1) \le f'(0)$.
- 42. Let $y = \phi(x)$ be a solution to $x^2y''(x) 2y(x) = 0$, y(1) = 1 and y(2) = 1, then which of the following is true?
 - (A) $\phi(1/2) \le \phi(3/2) \le \phi(5/2)$.
 - (B) $\phi(3/2) \le \phi(1/2) \le \phi(5/2)$.

- (C) $\phi(1/2) \le \phi(5/2) \le \phi(3/2)$.
- (D) $\phi(3/2) \le \phi(5/2) \le \phi(1/2)$.
- 43. Let 2 and 3 be the eigenvalues of a 2×2 matrix A. Then arrange the following matrices as per the descending values of their respective traces.
 - $P:A^{-1}$.
 - $Q:A^2$.
 - R:(A-I).
 - S:(A+I).
 - (A) S, R, Q, P.
 - (B) Q, S, R, P.
 - (C) Q, S, P, R.
 - (D) S, Q, P, R.
- 44. If $\vec{A}, \vec{B}, \vec{C}, \vec{D}$ represent the vectors $(z_1 z_0)$, $(z_2 z_0)$, $(z_3 z_0)$ and $(z_4 z_0)$, where $z_0 = 1 + i$, $z_1 = -3 + 2i$, $z_2 = 2 + 3i$, $z_3 = 1 + 5i$, $z_4 = 1 + 3i$, then arrange them in the descending order of the length of the vectors.
 - (A) $|\vec{C}|, |\vec{A}|, |\vec{B}|, |\vec{D}|.$
 - (B) $|\vec{A}|, |\vec{B}|, |\vec{C}|, |\vec{D}|.$
 - (C) $|\vec{A}|, |\vec{C}|, |\vec{B}|, |\vec{D}|$.
 - (D) $|\vec{C}|, |\vec{A}|, |\vec{D}|, |\vec{B}|$.
- 45. If A(n) denote the area of the region $\{(x,y) \in \mathbb{R}^2 : |x|^n + |y|^n \le 1\}$, $n \in \mathbb{N}$ then the arrangement of A(2), A(3), A(4), A(5) in the ascending order is
 - (A) A(4), A(3), A(2), A(5).
 - (B) A(5), A(3), A(4), A(2).
 - (C) A(2), A(3), A(4), A(5).
 - (D) A(2), A(3), A(5), A(4).
- 46. Let y_k , $1 \le k \le 4$ be the solution of $y'' + 10^k y = 0$. The arrangement of y_k 's in the decreasing order of their number of zeros in [-10, 10] is
 - (A) y_1, y_3, y_2, y_4
 - (B) y_1, y_2, y_3, y_4 .
 - (C) y_4, y_2, y_1, y_3 .
 - (D) y_4, y_3, y_2, y_1 .

- 47. Arrange the following subgroups of \mathbb{Z}_{100} in decreasing order of their size (i.e. cardinality). : $H_1 = <15>, H_2 = <6>, H_3 = <24>, H_4 = <30>$.
 - (A) H_2, H_3, H_1, H_4 .
 - (B) H_1, H_2, H_3, H_4 .
 - (C) H_2, H_3, H_1, H_4 .
 - (D) H_4, H_1, H_3, H_2 .
- 48. Consider the following spheres:

$$S_1: x^2 + y^2 + z^2 - 2x - 2y - 4z = 20.$$

$$S_2: x^2 + y^2 + z^2 + 2x - 2y - 6z = 14.$$

$$S_3: x^2 + y^2 + z^2 = 4y - 2z.$$

$$S_4: x^2 + y^2 + z^2 + 10x - 6y + 6z + 34 = 0.$$

Arrange the spheres as per the decreasing order of their radii.

- (A) S_2, S_1, S_3, S_4 .
- (B) S_1, S_2, S_3, S_4 .
- (C) S_1, S_2, S_4, S_3 .
- (D) S_2, S_1, S_4, S_3 .
- 49. Let $X = \{1, 2, 3\}$. Arrange the following sets in an increasing order of cardinalities:
 - S_1 = The set of all symmetric relations on X.
 - S_2 = The set of all bijections of X.
 - $S_3 =$ The set of equivalence relations on X.
 - S_4 = The set of all relations on X.
 - S_5 = The set of all functions from X to X.
 - S_6 = The set of all reflexive relations on X.
 - (A) $|S_3| \le |S_2| \le |S_5| \le |S_1| \le |S_6| \le |S_4|$.
 - (B) $|S_2| \le |S_1| \le |S_3| \le |S_5| \le |S_6| \le |S_4|$.
 - (C) $|S_5| \le |S_1| \le |S_3| \le |S_6| \le |S_4| \le |S_2|$.
 - (D) $|S_2| \le |S_5| \le |S_3| \le |S_1| \le |S_6| \le |S_4|$.
- 50. Consider the general system $AX = \mathbf{0}$ of n equations in n unknowns. Arrange the following statements in the order
 - I. $\det A \neq 0$
 - II. The system has unique solution
 - III. Solution is $A^{-1}X$
 - IV. Rank(A)=Rank([A B])
 - (A) III,, II, IV, I.
 - (B) II, III, IV, I..
 - (C) I, IV, II, III.
 - (D) III, II, I, IV

University of Hyderabad Entrance Examinations - 2020

School

:Mathematics and Statistics

Course/Subject

: M.Sc in Mathematics/Applied Mathematics

Q.No.	Answer	Q.No.	An	swer
1	А	26	B or D	
2	D	27	В	
3	А	28	В	
4	D	29	D	
5	С	30	В	
6	A or B	31	D	
7	С	32	С	
8	С	33	В	
9	Α	34	Benefit to All	
10	С	35	Α	
11	Α	36	В	
12	В	37	С	
13	С	38	Α	
14	А	39	С	
15	Α	40	D	
16	С	41	В	
17	A or B	42	D	
18	А	43	В	
19	С	44	С	
20	А	45	С	
21	В	46	D	
22	А	47	A or C	-
23	В	48	С	
24	С	49	А	
25	С	50	Benefit to All	

Signature
School/Department/Centre 02/10/2020