Study of damping, saturation and surface losses on low level detection of NO

No Thumbnail Available
Date
2014-01-01
Authors
Yehya, F.
Chaudhary, A. K.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The time resolved pulsed photo-acoustic (PA) spectrum of atmospheric pollutant gas (NO2) buffered in two different mediums is reported. The closed window PA resonance cell made of stainless steel filled with highly pure NO2 gas mixed with air and nitrogen separately to study the role of buffer gases for the generation of radial modes of higher frequency and damping effect in the same cavity. The energy storage phenomena of the resonant cavity is explained using coupled oscillator theory. The second harmonics i.e. λ=532 nm pulses obtained from Q-switched Nd: YAG laser having 7 ns pulse width is used to excite the resonant modes of the cavity. The losses corresponding to radial and longitudinal modes are estimated experimentally and found to have a good agreement with their corresponding theoretical values. The dependence of saturation behavior of NO2 as an artifact of the PA cell along with gas molecules at different values of the incident laser energy has been discussed for the first time. In addition, we have successfully demonstrated the effect of damping on the quality factor-Q of the cavity which is not only responsible for generation of higher order modes but also decide the low level detection of the PA system. The developed PA sensor helped us to achieve minimum detection concentration of NO2 of the order of 0.213 ppbV and 1.2 ppbV. © 2013 Elsevier B.V.
Description
Keywords
Longitudinal, NO 2, Photo- acoustic, Pulsed laser, Radial modes
Citation
Optics Communications. v.312