Molecular dynamics simulation and binding studies of β-sitosterol with human serum albumin and its biological relevance
Molecular dynamics simulation and binding studies of β-sitosterol with human serum albumin and its biological relevance
No Thumbnail Available
Date
2010-07-15
Authors
Sudhamalla, Babu
Gokara, Mahesh
Ahalawat, Navjeet
Amooru, Damu G.
Subramanyam, Rajagopal
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
β-Sitosterol is a naturally occurring phytosterol that is widely used to cure atherosclerosis, diabetes, cancer, and inflammation and is also an antioxidant. Here, we studied the interaction of β-sitosterol, isolated from the aerial roots of Ficus bengalensis, with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence, circular dichroism (CD), molecular docking, and molecular dynamics simulation methods. The experimental results show that the intrinsic fluorescence of HSA is quenched by addition of β-sitosterol through a static quenching mechanism. The binding constant of the compound to HSA, calculated from fluorescence data, was found to be K β-sitosterol = 4.6 ± 0.01 - 103 M -1, which corresponds to -5.0 kcal M-1 of free energy. Upon binding of β-sitosterol to HSA, the protein secondary structure was partially unfolded. Specifically, the molecular dynamics study makes an important contribution to understanding the effect of the binding of β-sitosterol on conformational changes of HSA and the stability of a protein-drug complex system in aqueous solution. Molecular docking studies revealed that the β-sitosterol can bind in the large hydrophobic cavity of subdomain IIA, mainly by the hydrophobic interaction but also by hydrogen bond interactions between the hydroxyl (OH) group of carbon-3 of β-sitosterol to Arg(257), Ser(287), and Ala(261) of HSA, with hydrogen bond distances of 1.9, 2.4, and 2.2 A, respectively. © 2010 American Chemical Society.
Description
Keywords
Citation
Journal of Physical Chemistry B. v.114(27)