Fractal and multifractal analysis on fused silica glass formed by bound abrasive grain mediated grinding using diamond grits

No Thumbnail Available
Date
2022-04-01
Authors
Balagopalan, Susmitha
Abdul Rasheed, I.
Sharma, Hemant
Chhabra, Inder Mohan
Gupta, Mahender Kumar
Manimaran, P.
Karthikeyan, B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Optical component fabrication involves highly controlled polishing and lapping methods. The method used for polishing and lapping depends upon the application and the properties required. The main properties of materials for the optical purpose are roughness (Ra) and Subsurface damage (SSD). The control of these parameters has to be done right from the early stages of lapping. This work is based on the fractal and multifractal based study on the surface roughness of fused silica glass samples lapped with a deterministic grinding method using abrasives, diamond particles embedded in different matrixes such as metal bound and resin-bound of different grit sizes. White light interferometry is carried out to study the average roughness of the samples. A field emission scanning electron microscope (FESEM) was used to take the images of the samples. Fractal and multifractal analyses are done to find the relation between the fractal parameters and the average roughness of the sample formed for different grit sizes of the matrix as well as different abrasives used.
Description
Keywords
Bound abrasive diamond grit, Coherence correlation interferometer, Fractal analysis, Lapping, Multifractal analysis, Surface roughness
Citation
Journal of Non-Crystalline Solids. v.581