Novel mechanism of inhibition of human angiotensin-l-converting enzyme (ACE) by a highly specific phosphinic tripeptide

dc.contributor.author Akif, Mohd
dc.contributor.author Schwager, Sylva L.
dc.contributor.author Anthony, Colin S.
dc.contributor.author Czarny, Bertrand
dc.contributor.author Beau, Fabrice
dc.contributor.author Dive, Vincent
dc.contributor.author Sturrock, Edward D.
dc.contributor.author Acharya, K. Ravi
dc.date.accessioned 2022-03-27T04:56:22Z
dc.date.available 2022-03-27T04:56:22Z
dc.date.issued 2011-05-15
dc.description.abstract Human ACE (angiotensin-I-converting enzyme) has long been regarded as an excellent target for the treatment of hypertension and related cardiovascular diseases. Highly potent inhibitors have been developed and are extensively used in the clinic. To develop inhibitors with higher therapeutic efficacy and reduced side effects, recent efforts have been directed towards the discovery of compounds able to simultaneously block more than one zinc metallopeptidase (apart from ACE) involved in blood pressure regulation in humans, such as neprilysin and ECE-l (endothelin-converting enzyme-l). In the present paper, we show the first structures of testis ACE [C-ACE, which is identical with the C-domain of somatic ACE and the dominant domain responsible for blood pressure regulation, at 1.97Å (l Å = 0.1 nm)] and the N-domain of somatic ACE (N-ACE, at 2.15Å) in complex with a highly potent and selective dual ACE/ECE-1 inhibitor. The structural determinants revealed unique features of the binding of two molecules of the dual inhibitor in the active site of C-ACE. In both structures, the first molecule is positioned in the obligatory binding site and has a bulky bicyclic P 1' residue with the unusual R configuration which, surprisingly, is accommodated by the large S 2' pocket. In the C-ACE complex, the isoxazole phenyl group of the second molecule makes strong pi-pi stacking interactions with the amino benzoyl group of the first molecule locking them in a 'hand-shake' conformation. These features, for the first time, highlight the unusual architecture and flexibility of the active site of C-ACE, which could be further utilized for structure-based design of new C-ACE or vasopeptidase inhibitors.
dc.identifier.citation Biochemical Journal. v.436(1)
dc.identifier.issn 02646021
dc.identifier.uri 10.1042/BJ20102123
dc.identifier.uri https://portlandpress.com/biochemj/article/436/1/53/45468/Novel-mechanism-of-inhibition-of-human-angiotensin
dc.identifier.uri https://dspace.uohyd.ac.in/handle/1/7524
dc.subject Angiotensin-l-converting enzyme (ACE)
dc.subject Cardivascular disease
dc.subject Crystal structure
dc.subject Inhibitor design
dc.subject Metalloprotease
dc.title Novel mechanism of inhibition of human angiotensin-l-converting enzyme (ACE) by a highly specific phosphinic tripeptide
dc.type Journal. Article
dspace.entity.type
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: