Physics - Publications
Permanent URI for this collection
Browse
Browsing Physics - Publications by Author "Acero, M. A."
Results Per Page
Sort Options
-
ItemAdjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data( 2020-12-01) Acero, M. A. ; Adamson, P. ; Agam, G. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Asquith, L. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bour, P. ; Bowles, R. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Carroll, T. J. ; Catano-Mur, E. ; Childress, S. ; Choudhary, B. C. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Feldman, G. J. ; Filip, P. ; Flanagan, W. ; Franc, J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kullenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Li, L. ; Lin, S. ; Lokajicek, M. ; Luchuk, S. ; Maan, K.The two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.
-
ItemAdjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data( 2020-12-01) Acero, M. A. ; Adamson, P. ; Agam, G. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Asquith, L. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bour, P. ; Bowles, R. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Carroll, T. J. ; Catano-Mur, E. ; Childress, S. ; Choudhary, B. C. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Feldman, G. J. ; Filip, P. ; Flanagan, W. ; Franc, J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kullenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Li, L. ; Lin, S. ; Lokajicek, M. ; Luchuk, S. ; Maan, K.The two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.
-
ItemDeep underground neutrino experiment (DUNE) near detector conceptual design report( 2021-12-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bomben, L. ; Bonesini, M. ; Bongrand, M.The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
-
ItemDeep underground neutrino experiment (DUNE) near detector conceptual design report( 2021-12-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bomben, L. ; Bonesini, M. ; Bongrand, M.The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
-
ItemDesign, construction and operation of the ProtoDUNE-SP Liquid Argon TPC( 2022-01-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Montiel, C. Benitez ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bevan, A. ; Bezerra, T. J.C. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
-
ItemDesign, construction and operation of the ProtoDUNE-SP Liquid Argon TPC( 2022-01-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Montiel, C. Benitez ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bevan, A. ; Bezerra, T. J.C. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
-
ItemExtended search for supernovalike neutrinos in NOvA coincident with LIGO/Virgo detections( 2021-09-15) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Asquith, L. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bowles, R. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Carroll, T. J. ; Catano-Mur, E. ; Choudhary, B. C. ; Christensen, A. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Dolce, M. ; Doyle, D. ; Dueñas Tonguino, D. ; Dukes, E. C. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Ewart, E. ; Feldman, G. J. ; Filip, P. ; Franc, J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hall, A. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Hausner, H. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Huang, J. ; Jargowsky, B. ; Jarosz, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Kalitkina, A. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kralik, R. ; Kullenberg, Ch ; Kubu, M. ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lasorak, P. ; Lesmeister, J. ; Lin, S. ; Lister, A.A search is performed for supernovalike neutrino interactions coincident with 76 gravitational wave events detected by the LIGO/Virgo Collaboration. For 40 of these events, full readout of the time around the gravitational wave is available from the NOvA Far Detector. For these events, we set limits on the fluence of the sum of all neutrino flavors of F < 7(4)×1010 cm-2 at 90% C.L. assuming energy and time distributions corresponding to the Garching supernova models with masses 9.6(27) M⊙. Under the hypothesis that any given gravitational wave event was caused by a supernova, this corresponds to a distance of r > 29(50) kpc at 90% C.L. Weaker limits are set for other gravitational wave events with partial Far Detector data and/or Near Detector data.
-
ItemExtended search for supernovalike neutrinos in NOvA coincident with LIGO/Virgo detections( 2021-09-15) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Asquith, L. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bowles, R. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Carroll, T. J. ; Catano-Mur, E. ; Choudhary, B. C. ; Christensen, A. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Dolce, M. ; Doyle, D. ; Dueñas Tonguino, D. ; Dukes, E. C. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Ewart, E. ; Feldman, G. J. ; Filip, P. ; Franc, J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hall, A. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Hausner, H. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Huang, J. ; Jargowsky, B. ; Jarosz, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Kalitkina, A. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kralik, R. ; Kullenberg, Ch ; Kubu, M. ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lasorak, P. ; Lesmeister, J. ; Lin, S. ; Lister, A.A search is performed for supernovalike neutrino interactions coincident with 76 gravitational wave events detected by the LIGO/Virgo Collaboration. For 40 of these events, full readout of the time around the gravitational wave is available from the NOvA Far Detector. For these events, we set limits on the fluence of the sum of all neutrino flavors of F < 7(4)×1010 cm-2 at 90% C.L. assuming energy and time distributions corresponding to the Garching supernova models with masses 9.6(27) M⊙. Under the hypothesis that any given gravitational wave event was caused by a supernova, this corresponds to a distance of r > 29(50) kpc at 90% C.L. Weaker limits are set for other gravitational wave events with partial Far Detector data and/or Near Detector data.
-
ItemFirst measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA( 2019-10-11) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Altakarli, S. ; Anfimov, N. ; Antoshkin, A. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blackburn, T. ; Blair, J. ; Booth, A. C. ; Bour, P. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Cedeno, A. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Cooper, J. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Feldman, G. J. ; Filip, P. ; Flanagan, W. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kourbanis, I. ; Kreymer, A. ; Kulenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M.The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ.
-
ItemFirst measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA( 2019-10-11) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Altakarli, S. ; Anfimov, N. ; Antoshkin, A. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Bashar, S. ; Bays, K. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blackburn, T. ; Blair, J. ; Booth, A. C. ; Bour, P. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Calvez, S. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Cedeno, A. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Cooper, J. ; Corwin, L. ; Cremonesi, L. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Elkins, M. ; Feldman, G. J. ; Filip, P. ; Flanagan, W. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Hewes, J. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kourbanis, I. ; Kreymer, A. ; Kulenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M.The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ.
-
ItemFirst results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform( 2020-12-01) Abi, B. ; Abud, A. Abed ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adamowski, M. ; Adams, D. ; Adrien, P. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
-
ItemFirst results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform( 2020-12-01) Abi, B. ; Abud, A. Abed ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adamowski, M. ; Adams, D. ; Adrien, P. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
-
ItemLong-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration( 2020-10-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments.
-
ItemLong-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration( 2020-10-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments.
-
ItemMeasurement of neutrino-induced neutral-current coherent π0 production in the NOvA near detector( 2020-07-01) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Basher, S. ; Bays, K. ; Behera, B. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bolshakova, A. ; Bour, P. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Cronin-Hennessy, D. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Feldman, G. J. ; Flanagan, W. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kreymer, A. ; Kullenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M. ; Lozier, J. ; Luchuk, S. ; Maan, K. ; Magill, S.The cross section of neutrino-induced neutral-current coherent π0 production on a carbon-dominated target is measured in the NOvA near detector. This measurement uses a narrow-band neutrino beam with an average neutrino energy of 2.7 GeV, which is of interest to ongoing and future long-baseline neutrino oscillation experiments. The measured, flux-averaged cross section is σ=13.8±0.9(stat)±2.3(syst)×10-40 cm2/nucleus, consistent with model prediction. This result is the most precise measurement of neutral-current coherent π0 production in the few-GeV neutrino energy region.
-
ItemMeasurement of neutrino-induced neutral-current coherent π0 production in the NOvA near detector( 2020-07-01) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Baldi, P. ; Bambah, B. A. ; Basher, S. ; Bays, K. ; Behera, B. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blair, J. ; Booth, A. C. ; Bolshakova, A. ; Bour, P. ; Bromberg, C. ; Buchanan, N. ; Butkevich, A. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Corwin, L. ; Cremonesi, L. ; Cronin-Hennessy, D. ; Davies, G. S. ; Derwent, P. F. ; Ding, P. ; Djurcic, Z. ; Doyle, D. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Feldman, G. J. ; Flanagan, W. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Johnson, C. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kreymer, A. ; Kullenberg, Ch ; Kumar, A. ; Kuruppu, C. D. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M. ; Lozier, J. ; Luchuk, S. ; Maan, K. ; Magill, S.The cross section of neutrino-induced neutral-current coherent π0 production on a carbon-dominated target is measured in the NOvA near detector. This measurement uses a narrow-band neutrino beam with an average neutrino energy of 2.7 GeV, which is of interest to ongoing and future long-baseline neutrino oscillation experiments. The measured, flux-averaged cross section is σ=13.8±0.9(stat)±2.3(syst)×10-40 cm2/nucleus, consistent with model prediction. This result is the most precise measurement of neutral-current coherent π0 production in the few-GeV neutrino energy region.
-
ItemNeutrino interaction classification with a convolutional neural network in the DUNE far detector( 2020-11-09) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
-
ItemNeutrino interaction classification with a convolutional neural network in the DUNE far detector( 2020-11-09) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
-
ItemNew constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment( 2018-08-01) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Bambah, B. A. ; Bays, K. ; Behera, B. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blackburn, T. ; Blair, J. ; Bolshakova, A. ; Bour, P. ; Bromberg, C. ; Brown, J. ; Buchanan, N. ; Butkevich, A. ; Bychkov, V. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Cedeno, A. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Cooper, J. ; Corwin, L. ; Cremonesi, L. ; Cronin-Hennessy, D. ; Davies, G. S. ; Davies, J. P. ; De Rijck, S. ; Derwent, P. F. ; Dharmapalan, R. ; Ding, P. ; Djurcic, Z. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Feldman, G. J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Grover, D. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kourbanis, I. ; Kreymer, A. ; Kulenberg, Ch ; Kumar, A. ; Kuruppu, C. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M.We present updated results from the NOvA experiment for νμ→νμ and νμ→νe oscillations from an exposure of 8.85×1020 protons on target, which represents an increase of 46% compared to our previous publication. The results utilize significant improvements in both the simulations and analysis of the data. A joint fit to the data for νμ disappearance and νe appearance gives the best-fit point as normal mass hierarchy, Δm322=2.44×10-3 eV2/c4, sin2θ23=0.56, and δCP=1.21π. The 68.3% confidence intervals in the normal mass hierarchy are Δm322[2.37,2.52]×10-3 eV2/c4, sin2θ23[0.43,0.51][0.52,0.60], and δCP[0,0.12π][0.91π,2π]. The inverted mass hierarchy is disfavored at the 95% confidence level for all choices of the other oscillation parameters.
-
ItemNew constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment( 2018-08-01) Acero, M. A. ; Adamson, P. ; Aliaga, L. ; Alion, T. ; Allakhverdian, V. ; Anfimov, N. ; Antoshkin, A. ; Arrieta-Diaz, E. ; Aurisano, A. ; Back, A. ; Backhouse, C. ; Baird, M. ; Balashov, N. ; Bambah, B. A. ; Bays, K. ; Behera, B. ; Bending, S. ; Bernstein, R. ; Bhatnagar, V. ; Bhuyan, B. ; Bian, J. ; Blackburn, T. ; Blair, J. ; Bolshakova, A. ; Bour, P. ; Bromberg, C. ; Brown, J. ; Buchanan, N. ; Butkevich, A. ; Bychkov, V. ; Campbell, M. ; Carroll, T. J. ; Catano-Mur, E. ; Cedeno, A. ; Childress, S. ; Choudhary, B. C. ; Chowdhury, B. ; Coan, T. E. ; Colo, M. ; Cooper, J. ; Corwin, L. ; Cremonesi, L. ; Cronin-Hennessy, D. ; Davies, G. S. ; Davies, J. P. ; De Rijck, S. ; Derwent, P. F. ; Dharmapalan, R. ; Ding, P. ; Djurcic, Z. ; Dukes, E. C. ; Dung, P. ; Duyang, H. ; Edayath, S. ; Ehrlich, R. ; Feldman, G. J. ; Frank, M. J. ; Gallagher, H. R. ; Gandrajula, R. ; Gao, F. ; Germani, S. ; Giri, A. ; Gomes, R. A. ; Goodman, M. C. ; Grichine, V. ; Groh, M. ; Group, R. ; Grover, D. ; Guo, B. ; Habig, A. ; Hakl, F. ; Hartnell, J. ; Hatcher, R. ; Hatzikoutelis, A. ; Heller, K. ; Himmel, A. ; Holin, A. ; Howard, B. ; Huang, J. ; Hylen, J. ; Jediny, F. ; Judah, M. ; Kakorin, I. ; Kalra, D. ; Kaplan, D. M. ; Keloth, R. ; Klimov, O. ; Koerner, L. W. ; Kolupaeva, L. ; Kotelnikov, S. ; Kourbanis, I. ; Kreymer, A. ; Kulenberg, Ch ; Kumar, A. ; Kuruppu, C. ; Kus, V. ; Lackey, T. ; Lang, K. ; Lin, S. ; Lokajicek, M.We present updated results from the NOvA experiment for νμ→νμ and νμ→νe oscillations from an exposure of 8.85×1020 protons on target, which represents an increase of 46% compared to our previous publication. The results utilize significant improvements in both the simulations and analysis of the data. A joint fit to the data for νμ disappearance and νe appearance gives the best-fit point as normal mass hierarchy, Δm322=2.44×10-3 eV2/c4, sin2θ23=0.56, and δCP=1.21π. The 68.3% confidence intervals in the normal mass hierarchy are Δm322[2.37,2.52]×10-3 eV2/c4, sin2θ23[0.43,0.51][0.52,0.60], and δCP[0,0.12π][0.91π,2π]. The inverted mass hierarchy is disfavored at the 95% confidence level for all choices of the other oscillation parameters.