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Abstract

In the recent past Cognitive Radio (CR) technology has received increased at-

tention to solve the spectrum scarcity problem using the opportunistic spectrum

re-usage technique. It allows secondary users to use the unlicensed channels oppor-

tunistically without causing interference to the licensed users. It involves mainly

two functionalities namely spectrum sensing and spectrum management. Spec-

trum sensing identifies vacant spectrum bands, i.e., spectrum holes for the op-

portunistic use of secondary users in the network. Robust spectrum sensing is

essential to avoid interference to existing ’licensed’ users and maximize the spec-

trum utilization. There exist mainly two class of sensing algorithms: data aided

and blind. The data aided algorithm requires the characteristics of the signal a pri-

ori for successful detection. However, in the real-time radio environment, it is not

always possible to know the signal characteristics a priori. Hence blind algorithms

are essential for reliable spectrum sensing in the real-time environment.

In the sensing domain, although energy detection is popularly being used due

to its low computational complexity, its performance suffers due to noise uncer-

tainty. Although it is a blind technique, but it requires information about the noise

variance. The estimation accuracy of received signal noise variance affects the de-

tection performance. This thesis proposes an improved energy detection technique

where the threshold is adjusted with respect to the noise variance. The noise vari-

ance is estimated using the Linear predictor method, i.e., the Burg method. This

thesis performs a detailed performance analysis of the energy detection algorithm

with noise variance estimation in the case of a single node and multi-node sensing

under white and colored noise characteristics of the channel. Since the accuracy of

sensing depends on the accuracy of the noise variance estimator, a detailed study

of different types of noise estimator and its impact on sensing accuracy is also

carried out.

The sensing performance can also be improved by estimating the signal to

noise ratio (SNR) of the received signal. This work also presents a blind SNR

estimation technique to match the real-time requirement. The proposed SNR

estimation technique simultaneously performs spectrum sensing without any extra

computational overhead. Its performance is analyzed for a wide range of SNR

vi



Abstract vii

ranging from -20 dB to +20 dB.

In the real-time environment many times, the received signal does not correlate

samples. Thus the popular methods that exploit correlation of the covariance

matrix fail during sensing; this work proposes a time domain sensing technique

utilizing the envelope tracking of the fourth moment of the received signal.

In general, the performance achieved in the algorithmic simulation is not

achieved in real time environment due to inadequate modeling. Thus, in the

CR domain, at one end there is a continuous demand to develop robust sensing

algorithms, and at another end, there is equally demand to perform real-time val-

idation of the algorithms. This thesis presents the real-time implementation of

the sensing algorithms such as Energy detection, Covariance detection and mo-

ment based detection algorithm in an experimental testbed. It further analyses

the locking time for each of the algorithm.

The main contributions of this thesis are as follows:

1. The analysis of linear predictor based noise variance estimator in white and

its extension to multi-node sensing. Comparative analysis of different weight

estimation techniques, in the case of multi-node sensing.

2. Propose a blind Signal to Noise Ratio (SNR) estimation algorithm that

can perform both estimation and sensing, without any extra computational

overhead.

3. Propose a time domain envelop tracking method for spectrum sensing.

4. Performance validation of a set of spectrum sensing algorithms such as en-

ergy detection, covariance method and envelop tracking method in an ex-

perimental testbed.

Thus, the results in the thesis provide the performance of a set of spectrum sensing

algorithms in both simulation and real-time experimental testbed under different

radio environment.
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Chapter 1

Introduction

1.1 Introduction

The rapid proliferation of wireless technology combined with the advantages of

pervasive wireless computing and communication led to many societal benefits.

According to a GSMA report [1], the number of mobile Internet subscribers has

increased dramatically from 2.3 billion in 2008 to 5.0 billion in 2017 and is pre-

dicted to rise to nearly 6.0 billion by 2020. The impact of wireless technology

on the cell phone to sensor network to the Internet of Things is tremendous on

building a smart X, i.e., home/city/agriculture/healthcare etc. This explosion of

wireless applications on different segment demands more radio spectrum.

In a paper released by the US Federal Communications Commission (FCC)

Spectrum Policy Task Force, it is reported that the use of existing spectrum is

non optimal [2]. Further, it mentions that (a) Spectrum is allocated by regulatory

agencies exclusively to an operator and (b) The spectrum is underutilized by the

operator.

There exists a vast temporal and geographic variations in the use of allocated

spectrum with utilization ranging from 15% to 85% in major US metropolitan

areas [2]. In another study, Berkeley University reported that the spectrum uti-

lization in the frequency range 0-6 GHz is 0.25% to 54.4% [3]. A study in Singapore

[4] reported that the spectrum usage in the frequency band 80 to 5850 MHZ is

4.54%, and most of the time 66% of the spectrum between 174-230 MHz and 614-

790 MHz band is unoccupied. A European agency studied spectrum occupancy

across three cities in Europe and concluded that the average spectrum usage is be-

tween 6.5% and 10.7% in the frequency range of 400 - 3000 MHz [5]. Similarly, in

India, the bands ranging from 170 MHz to 800 MHz, 800 MHz to 1000 MHz, and

ISM band ranging from 2.4 GHz to 2.5 GHz were studied for spectrum occupancy.

The study concluded that the first and third bands are underutilized whereas the

cellular band is utilized effectively [6]. Thus, from different studies, it is clear

1
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that spectrum scarcity is not due to the unavailability of the spectrum but due to

the fixed spectrum licensing policy in use. Real-time spectrum occupancy predic-

tion is investigated for dynamic spectrum access for Cognitive radio by the use of

time-series models and ML techniques [7]. If the user who does not have a license

to use the spectrum, known as a secondary user (SU), can use the underutilized

spectrum without causing interference to the licensed user, known as a Primary

User (PU), then the spectrum scarcity problem can be resolved. This technique of

spectrum reuse is also termed as dynamic spectrum access. Essentially, Cognitive

Radio (CR) enables this dynamic spectrum access technique for utilization of the

spectrum efficiently.

Cognitive Radio is a radio that can sense the operating radio environment and

adapt its transmission parameters accordingly to achieve the best application per-

formance. It can detect the parameters like transmission frequency, bandwidth,

power, modulation, waveform etc. that helps the secondary users to identify the

best available spectrum for its use. The secondary users use the best available

channel/spectrum and coordinate with other users during communication. Some

of the applications of CR include, but not limited to, Wide Area Mobile Networks,

Energy Efficient Wireless Networks, Public Safety Communications, Wireless Net-

work for Internet of Things (IoT), Vehicular Networks (VANET), Battlefield Ad-

Hoc networks etc.

Simon Haykin has defined CR as “.. an intelligent wireless communication

system that is aware of its surrounding environment (i.e., outside world), and

uses the methodology of understanding by building to learn from the environment

and adapt its internal states to statistical variations in the incoming RF stimuli

by making corresponding changes in certain operating parameters (e.g., transmit-

power, carrier frequency and modulation strategy) in real-time, with two primary

objectives in mind: a) Highly reliable communications whenever and wherever

needed and b) Efficient utilization of the radio spectrum” [8]. A typical CR cycle

is shown in Fig 1.1. It has four main tasks, i.e., (a) detecting vacant spectrum

bands known as spectrum sensing (b) analyzing radio environment and selecting

the best frequency band known as spectrum decision and (c) coordinating spec-

trum access with other users known as spectrum sharing and (d) vacating the band

when PU reclaims it known as spectrum mobility [8],[9]. It is achieved due to its

inherent functionalities like a) spectrum sensing, b) spectrum management and

c) spectrum allocation and sharing. The SU after sensing will know the available
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bands. Then it enables spectrum management and allocation functionality.

In the Cognitive Radio Network (CRN), if the primary user coexists with the

secondary user, then the primary user gets priority to use the spectrum [10]. In

this scenario, when a Primary User (PU) appears in the band, the Secondary

User (SU) vacates the channel and uses other frequencies according to the channel

characteristics. So the SU needs to continuously sense the wide-band spectrum

for hopping to the available vacant channel, known as spectrum hole [11]. On the

other hand, when secondary users are allowed to use the spectrum in the absence

of primary users, the secondary users need to be vigilant about the reclaiming by

PU. Thus in the CRN, the secondary users need to sense the radio spectrum for

spectrum holes. In the CR domain, this mechanism is known as spectrum sensing.

After sensing the SU will be aware of available bands. Then SU enables spectrum

management and allocation functionality. The current thesis studies spectrum

sensing, whereas the other two tasks are out of the scope of this thesis. Spectrum

sensing enables the CR (a) to get information about PU activities in the band (b)

presence of spectrum hole. With this information, CR can adapt its transmission

characteristics and communicate in vacant bands. Thus spectrum sensing is the

primary and critical function of the cognitive radio.

Spectrum sensing is a signal processing algorithm that senses the radio environ-

ment (which may have heterogeneous spectrum signatures from multiple devices)

under stringent noise and channel impediments. Although, there exist differ-

ent sensing algorithms, the most popular among them are energy detection [12],

matched filter [13], cyclostationary [14], entropy based [15] and covariance tech-

niques [16]. Other algorithms have looked at sub-space methods, wavelet and ran-

dom matrix methods [17],[18],[19],[20]. The most challenging task is to detect the

presence of a signal in a negative Signal-to-Noise Ratio environment with a faded

channel. The sensing algorithms are extended to cooperative sensing to tackle the

problem of hidden node and fading [21],[22],[23]. All these algorithms compete

with each other in terms of detection performance and complexity. To qualify a

sensing algorithm to be useful in real- time, a careful study of its detection perfor-

mance under noise uncertainties, algorithmic complexity, implement-ability, real

type prototyping is essential. It is equally important to evaluate the performance

of the sensing algorithm in real-time. It motivates to develop different sensing

algorithms and evaluate its real-time performance on a hardware platform.
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Figure 1.1: The cognitive cycle [24]

1.2 Challenges

To make the CR technology deployable, the CR should decide which frequency

band to use? It further leads to questions like : does the radio need to find the

available frequency band and should it be able to decide which band is the best

frequency band from the available bands?

Thus in spectrum sensing the first challenge is to find the available frequency

band then to analyse it. Many of the spectrum sensing algorithms assume ideal

channel conditions. In reality, signals fade due to movement or obstructions in

the channel. This fade has to be equalized in the algorithm for robust detection.

Alternately, the waveform must have fade resistance. Simple methods like energy

detection fail at negative SNR conditions and algorithms that exploit the other

dimensions of the signal like eigen values require complex matrix operations thus

increasing algorithmic complexity. Issues like synchronization, noise figure of the

RF section, signal conditioning, sampling related issues, finite word effects also

add to the algorithmic complexity. Many of the reported algorithms require the

information about the signal apriori, which cannot always be satisfied in real-

time. So the development of blind sensing algorithm to work at negative SNR is

a challenging task.

The other challenge is the sensing algorithm should perform satisfactorily as

per the standards in a real-time environment. It demands the validation of sensing

algorithm on a experimental testbed in real-time.
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1.3 Research objective

The objective of this research work is to study some of the problems associated

with the spectrum sensing namely :

1. Channel SNR estimation at a low Signal-to-Noise Ratio.

2. Noise power estimation to improve the detection probability of energy de-

tection at low Signal-to-Noise Ratio.

3. Investigate blind sensing methods with low computational complexity.

4. Investigate real-time implementation of sensing algorithms to validate the

simulation results.

1.4 Thesis contribution

We investigated the noise power estimation and used this for adapting the thresh-

old for sensing. The noise variance is estimated using the unbiased estimate of the

variance and an estimator based on linear prediction method. The results demon-

strate that it improves the efficiency of Energy detection by giving information

for varying threshold based on noise power. Further, this analysis is extended to

colored noise environment and cooperative sensing.

The second contribution of this work is the development of a novel SNR es-

timation method based on the covariance of the received signal. The SNR is

estimated by comparing the test statistic, derived from the Sample Covariance

Matrix (SCM) of the received signal, with a calibrated signal. The estimated

SNR is the value of the SNR that minimizes the difference between the computed

and calibrated test statistics. The algorithm demonstrates good performance for

positive and negative SNRs. Binary Frequency Shift Keying (BFSK) is used as

the waveform for the study.

A time domain fourth order moment based sensing algorithm (M4-Edge) is de-

veloped to detect uncorrelated received signals. The simulated results were com-

pared with energy detection and Covariance Absolute Value (CAV). The analysis

demonstrates improved performance as compared with CAV at low sample sizes.

The proposed algorithm performs well even when the signal is not correlated.
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The performance of the algorithm is compared with respect to the probability of

detection and SNR wall.

We performed a real-time spectrum sensing using Virtex-6 FPGA. Three algo-

rithms namely energy detection, CAV and M4-Edge are tested in real-time condi-

tions. The experimental results are analysed and compared in terms of processing

time, detection time and the probability of detection. The result and analysis

presented in this thesis thus provides a set of spectrum sensing algorithms and

real-time performance analysis for different environments.

1.5 Thesis organization

Chapter 1: Introduction

This chapter describes the objective of the research work, research contribution

and the details about the thesis organization. The need for cognitive radio is ex-

plained.

Chapter 2: Spectrum Sensing Techniques and Hardware test setup

Chapter 2 presents the various spectrum sensing methods and details the test

setup and the hardware details of the Virtex-6 FPGA board.

Chapter 3: Improved Energy detection using Noise variance estima-

tion

This chapter presents a method of estimating noise power using a linear predic-

tive method. The autocorrelation matrix of the signal is evaluated and the noise

power is estimated using the Yule-Walker equations. The Burg method is used for

estimating the linear predictive coefficients. An unbiased estimator for the noise

power is also computed for comparison. It is shown that the methods improve the

detection capability compared to the energy detection with no noise power esti-

mation. The estimator is also used to evaluate improvement in energy detection

for cooperating nodes using combining schemes like LLR, EGC and DE.

Chapter 4: SNR estimation for spectrum sensing

This chapter presents a blind (Non-Data-Aided) SNR (Signal-to-Noise Ratio) esti-

mation algorithm for an M-ARY Frequency Shift Keying (FSK) signal in Rayleigh

and Rician fading channels with Additive White Gaussian Noise (AWGN). The
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SNR is estimated by comparing the test statistic of the received signal with a

calibrated signal. The estimated SNR is the value of the SNR that minimizes the

difference between the computed and calibrated test statistics. The test statistic

of both the received and calibrated signal is calculated using the Sample Covari-

ance Matrix (SCM). The performance of the proposed algorithm is compared with

the Partially Data Aided Maximum Likelihood Estimator (PDA MLE).

Chapter 5: Real-time implementation of spectrum sensing algo-

rithms on Virtex-6 FPGA.

This chapter presents the hardware details of the test setup used for this work. The

methodology of simulation and signal processing are detailed. A detailed method-

ology for real-time implementation and evaluation of spectrum sensing algorithms

is presented. The real-time performance of two algorithms namely Energy Detec-

tion (ED) and CAV (Covariance Absolute Value) is evaluated on a Virtex-6 FPGA

platform. BFSK signal corrupted with Additive White Gaussian Noise (AWGN)

is used for real-time performance evaluation. The probability of detection, sensing

time and resource utilisation are used as the metrics for measuring the efficiency

of an algorithm.

Chapter 6: Spectrum sensing with envelope tracking and signal mo-

ment

This chapter presents a moment based algorithm namely M4-Edge algorithm spec-

trum sensing. This algorithm overcomes the limitations of CAV and ED algo-

rithms. The proposed algorithm tracks the envelope of the signal burst, of the

primary user, in the time domain. The fourth central moment of the envelope is

evaluated and compared with a threshold to detect the rising and falling edges of

the burst and hence detects the presence of a signal. Further, the algorithm is

implemented on a Xilinx Virtex-6 Field Programmable Gate Array development

board for evaluating its real-time performance. In the real-time, the performance

of the proposed algorithm is compared with ED and CAV algorithm by consider-

ing both BFSK and DVBT signal corrupted by Additive White Gaussian Noise

(AWGN) and flat fading. The implementation results are compared on parameters

like sensing time and logic blocks utilization.
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Chapter 7: Conclusions and Future work

This chapter presents the research contributions of the proposed algorithms

which are summarized in the context of the efficiency of spectrum sensing and

implementation aspects. It also presents the future scope of the research.



Chapter 2

Spectrum sensing techniques and

Hardware test setup

2.1 Objective

The objective of this chapter is to introduce Spectrum Sensing (SS) techniques for

cognitive radio. The test setup and the hardware details using the Virtex 6 Field

Programmable Gate Array (FPGA) board are detailed..

2.2 Spectrum sensing techniques

In the wireless communication, the recieiver model is shown in the Fig 2.1

Figure 2.1: The signal model shows the various components of the chain from
transmitter to the sampled signal. The channel effect is multiplicative whereas
the noise is additive.

In the figure, the received signal y(t) is :

y(t) = hx(t) + w(t) (2.1)

9
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where, x(t) is the transmitted signal and w(t) is a zero mean white noise with

variance σ2, h is the channel gain (a random variable with a known or unknown

probability density function). The sampled signal is denoted by y(n). Spectrum

sensing is the ability to detect the presence of an active PU signal in the sensing

band. Mathematically it is nothing but testing a binary hypothesis to identify the

presence of PU signal.

In a given time the scanned band is said to be vacant if only noise is detected

whereas it is considered to be occupied by PU if a PU signal and noise are detected.

Thus mathematically the hypothesis is

H0 : y(n) = w(n)

H1 : y(n) = x(n) + w(n), n = 1, 2, . . ., N
(2.2)

Where the hypotheses H0 and H1 indicate the null hypothesis(absence of signal)

and true hypothesis (presence of signal) respectively and y(n) is the received signal.

x(n) and w(n) correspond to the primary user signal and noise respectively. The

detector output, the test statistic U(n), is then computed and compared with a

threshold γ(n) to decide the presence or absence of a signal.

U(n)
H1

≷
H0

γ(n) (2.3)

In the case of sequential sensing the decision rule can be expressed as

U(k)
H1

≷
H0

γ (2.4)

Where U(k) is the test statistic of the kth frame, and γ is the sensing threshold.

The test statistic depends on the detection algorithm, i.e., for energy detection, it

is the energy of the received signal [12], for entropy detection it is the entropy of

the signal [25].

2.2.1 Performance indicators

The performance of sensing algorithm is measured by three probabilities such as

Probability of false alarm (Pf), Probability of detection (Pd) and Probability of

mis-detection Pm. Pf measures the probability of declaring the presence of signal
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when actually there is no signal. Mathematically,

Pf = Pr(U > λ |H0) (2.5)

Pd: Probability of detection measures the probability of declaring the presence of

signal when actually signal is present.

Pd = Pr(U > λ |H1) (2.6)

It is always aimed to develop sensing algorithms that have high Pd and low Pf .

There exists a number of sensing algorithms to detect the presence of a signal in

the channel. These techniques provide opportunities to the secondary users for

utilizing the vacant spectrum bands opportunistically. The popular techniques are

namely: energy detection, covariance-based detection, Eigen value based detection

and matched filter based detection among many others.

2.2.2 Energy detection

Energy detection is the simplest spectrum sensing technique which can blindly

detect any signal. The earliest work on Energy detection (ED) treats it as a bi-

nary hypothesis problem and derives ROC (Receiver Operating Curve) for various

time-bandwidth products [12]. Closed form equations were given for energy de-

tection over fading channels [26],[27]. Energy detection technique has the lowest

complexity, but it is sensitive to noise variance and signal power [28]. In addition,

ED suffers from a limitation called SNR Wall. It is defined as the SNR up to

which the algorithm can detect the presence of the primary user with the desired

Pd, which cannot be improved by increasing the number of samples [29].

The decision statistic for the energy detector is expressed as the frame energy

as:

U(k) =
1

Ns

Ns∑

n=1

|y(n)|2 (2.7)

Where, U(k) is the energy of the kth frame, k and n are the frame and sam-

ple indices respectively and Ns is the number of samples per frame. It provides

information about the signal at kth frame for a particular band and is used for

detecting PU signal by testing the binary hypothesis. For low SNR conditions,

Ns = O(SNR−2). Thus if the noise statistics are known, then by using a larger
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sensing time signals can be detected at low SNR. Intuitively a longer sensing time

is indicated in low SNR conditions. It implies that if Ns is large, then as per the

Central Limit Theorem, the test statistic can be approximated as a Gaussian [30]:

T (U) |H0 : N (σ2, 2σ4/Ns) (2.8)

T (U) |H1 : N (P + σ2, 2(P + σ2)2/Ns) (2.9)

Where, P , σ2, H0 and H1 represents the signal power, noise variance and null and

true hypothesis respectively. N denotes the Normal distribution. In the case of

Energy detection, the threshold γ can be set as [30]:

Pf = Q

(
γ − σ2

√
(2/Ns)σ2

)
(2.10)

Pd = Q

(
γ − (P + σ2)√
(2/Ns)(P + σ2)

)
(2.11)

γ = σ2(Q−1(Pf )
√
(2/Ns)− 1) (2.12)

Where, Pd is the probability of detection, Pf is the desired probability of false

alarm, Q(.) is the Gaussian tail probability function.

Energy detection is computationally simple and assumes no information of the

signal characteristics. However, it suffers from the ‘SNR Wall‘ limitation, which

says that the detection performance cannot be increased beyond a certain limit

even if the number of samples is increased. It is because the detection threshold

fixing becomes difficult when the noise variance is comparable to the signal energy.

Other problems with energy detection are that it cannot differentiate between

interference and PU signal, and it performs poorly at low SNR [31] and for spread

spectrum signals [32].

2.2.3 Covariance based sensing

The Covariance Absolute Value (CAV) algorithm is based on the concept that the

covariance matrix of an un-correlated signal is a diagonal matrix [16],[33]. Under

the condition of a large number of received samples, the Sample Covariance Matrix

(SCM) of the received signal y(n) is an approximation of the covariance matrix
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Ry(k) :

Ry(k) =




λ(0) λ(1) · · · λ(L− 1)
...

. . . · · · ...

λ(L− 1) λ(L− 2) · · · λ(0)


 (2.13)

where,

λ(l) =
1

Ns

Ns−1∑

n=0

y(n)y(n− l); l = 0, 1..L− 1 (2.14)

T1(k) =
1

L

L∑

a=1

L∑

b=1

|rab| (2.15)

T2(k) =
1

L

L∑

a=1

|raa| (2.16)

γ(k) = T1(k)/T2(k) (2.17)

Where, Ry(k), Ns and λ(l) corresponds to the sample covariance matrix, the

number of samples per frame and the sample autocorrelation respectively. The

SCM is symmetric and Toeplitz. raa and rab are the elements of Ry(k), k is the

frame index and L is a smoothing constant. In the scanned band, γ(k) > 1

indicates the presence of a signal; else there is no signal. For large Ns, λ(l), T1(k)

and T2(k) can be approximated to a Gaussian distribution for which Pf , Pd, and

γ1 can be derived as [16]:

Pf = 1−Q

(( 1
γ1
)(1 + (L− 1)

√
2

Nsπ
)− 1

√
2
Ns

)
(2.18)

Pd = 1−Q

( 1
γ1

+ γLSNR
γ1(SNR+1)

− 1
√

2
Ns

)
(2.19)

where, γ1 =
1 + (L− 1)

√
2

Nsπ

1−Q−1(Pf)
√

2
Ns

(2.20)

The CAV algorithm is a blind method as it does not require any information of

the signal constellation. It removes the need for synchronisation to the incoming

signal which is always difficult for a time-varying channel. One disadvantage of
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this method is that it requires a large number of samples at lower SNR. The

number of samples required is given as [16]

Nc = 2 ∗
(
Q−1(Pf)−Q−1(Pd) + (L− 1)(

√
π)

γL SNR

)2

(2.21)

For example, with Pf=0.1, L=32, γL=1 , and SNR= -20dB the number of samples

required is approximately 3.3 ∗ 107 samples. It can be difficult to obtain in a

real time environment. If the number of samples are limited then the threshold

as given by (2.20) increases from the ideal value and the detection performance

reduces significantly.

2.2.4 Eigenvalue based sensing

This technique is based on the concept that the largest eigenvalue of the Sample

Covariance Matrix corresponds to the signal and the smallest eigenvalue corre-

sponds to noise [34],[35]. in the case of Eigen based sensing, two test statistics ,

T1 and T2 are evaluated as

T1 =
λmax

λmin
≥ γ1 (2.22)

T2 =
ε

λmin
≥ γ2 (2.23)

where γ1 =
(
√
Ns +

√
ML)2

(
√
Ns −

√
ML)2

(
1 +

(
√
Ns +

√
ML)−2/3

(NsML)1/6
F−1
1 (1− Pf )

)
(2.24)

and γ2 =

(√
2

MNs

Q−1(Pf ) + 1

)
Ns

(
√
Ns −

√
ML)2

(2.25)

(2.26)

Where, ε is the signal energy as (3.2), λmax and λmin are the largest and smallest

eigenvalues of the Sample Covariance Matrix (SCM), M is the oversampling factor,

F−1
1 is the Cumulative Distribution Function of the Tracy-Widom Distribution of

Order 1, Pf is the probability of false alarm.

Signal detection is declared if either of (2.22) or (2.23) is satisfied. If (2.22) is used

for detection it is called the Max-Min Eigenvalue (MME) technique and if (2.23)

is used then it is called the Energy with Minimum Eigenvalue (EME) technique.

This is a blind technique as it is based on a test statistic derived from the signal

and no apriori information about the signal characteristics is required. Eigen
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based methods perform well with noise uncertainty. If the signal is correlated,

then the performance is better than energy detection. This method does not

require synchronisation making it a blind method. When the sample size is small

it is difficult to detect closely spaced signals below a certain threshold, which is

a function of noise variance [36]. It is a computationally complex method as the

covariance matrix is decomposed and then the eigen values are computed. Iterative

algorithms to reduce the complexity are proposed in [37].

2.2.5 Cyclostationarity based sensing

The transmitted waveforms have cyclical spectral components which can be used

to detect signals. Cyclostationary features refer to the Fourier Transform of the

Autocorrelation of the signal. Each signal has a unique set of spectral features

which are used for checking the spectrum occupancy. If the autocorrelation of the

signal Ry(t, τ) is periodic as

Ry(t, τ) = Ry(t+ T, τ) (2.27)

where t is the time variable, τ is the autocorrelation lag, then the periodic auto-

correlation function in terms of Fourier series is given as [17],[14],[38],[39]:

Ry(t, τ) =

∞∑

α=−∞

Rα
y (τ)exp(j2παt)dt (2.28)

where Rα
y (τ) = lim

T→∞

1

T

∫

T

y(t+ τ/2)y∗(t− τ/2)exp(−j2παt)dt (2.29)

The Fourier transform of Rα
x(τ) can be expressed as

Sα
y (f) =

∫
∞

−∞

Rα
y (τ)exp(−j2πfτ)dτ (2.30)

Sα
y (f) = lim

∆t→∞

lim
T→∞

∫ ∆t/2

−∆t/2

YT (t, f + α/2)Y ∗(t, f − α/2)dt (2.31)

Sα
y (f) is called the Cyclostationary Spectral Density (CSD) function. If α is zero

then (2.31) reduces to the Power Spectral Density (PSD). Noise contributes only

to the PSD and does not create any distinct peak in the CSD, whereas the CSD

peaks for distinct periodic α of the signal [40]. Signal detection at low SNR is
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possible by comparing the CSD value for the signal to a CSD value computed for

pure noise. The strength of CSD can be affected by fading channel and frequency

offset, due to oscillators or Doppler, and hence it requires synchronisation. Thus

in summary, Cyclostationary detection is not a blind technique, and it requires

high sample rate and thus is computationally complex. Complexity reduction is

proposed using a maximum cyclic autocorrelation selection (MCAS) in [41]. When

the CR is mobile the Doppler frequency shift introduces a Cyclic frequency offset,

which is estimated using a comlex exponential basis model [42].

2.2.6 Matched Filter based sensing

Matched filtering maximizes the SNR at the detector [13]. If y(t) is the transmit-

ted signal, defined over 0 ≤ t ≤ T , then the matched filter that maximizes the

signal to noise ratio at the output of the filter is :

h(t) =

{
y(T − t); 0 ≤ t ≤ T

0 ; elsewhere
(2.32)

Thus a matched filter has an impulse response that is a reversed and time-shifted

version of the input signal. The optimum method for signal detection, but the

details of the transmitted signal must be fully known. It achieves detection in a

short time to achieve a given Probability of False alarm or miss detection at low

SNRs [13]. The matched filter is a coherent detector that requires the prior knowl-

edge at the PU signals. The sensing method is the optimal sensing method and

it maximizes the SNR at the output of the detector. However, the disadvantage

with this method is that it requires prior information about the PU signal at the

SU receiver. It is the advantage with this method is that it achieves detection in

a short time at a low SNR. The test statistics for matched filter detector is

U(t) =

T∑

0

y(t)y(T − t) (2.33)

Where, U(t) is the output of the matched filter, y(t) is the input PU signal. The

test statistic is then compared with a threshold to decide the presence of a signal.

In this method, the Probability of detection and misdetection can be calculated
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using Neyman Pearson criteria as

Pd = Q

(
λ− (U + σ2

w)√
2
N
(U + σ2

w)

)
(2.34)

Pf = Q

(
λ√
2
N
σ2
w

)
(2.35)

Where λ, U and σ2
w are threshold, average PU signal energy and noise variance

respectively. The sensing threshold λ can be expressed as

λ = Q−1(Pf)

√
2

N
σ2
w (2.36)

Apart from these algorithms, Moment based sensing algorithms were reported

in the literature for spectrum sensing [43],[44]. In [28] noise variance was estimated

using the optimal moment pair for improving the performance of energy detection

technique. The estimators were derived for BPSK and QAM constellations. In

[45] a fourth order detector was derived for detection of linearly modulated signals.

2.2.7 Cooperative sensing

In the radio environment, when CR nodes are located far away from the PU or

due to deep fade or shadowing the PU signal strength received at the CR may

be very low for robust detection. In such conditions, it is possible that the CR

may assume that the PU is not present and start transmission. It is called as

the HiddenNode problem. Multipath fading can create deep nulls at a particular

location due to destructive interference of the EM waves. However, a point even at

a small distance away may not experience such a severe fade as the path lengths

are different. For example, the wavelength of a signal at 800 MHz is 37.5 cm.

The signal phase will be 180 degrees out of phase at a distance of 18.75 cm and

the fade would be significantly different. This problem can be avoided by the

combined cooperative decision derived from spatially collected observations from

spatially located CR users. With this the overall detection performance increases.

Thus, cooperative sensing is the alternative sensing approach to nullify the effect

of shadowing, fading and multipath issues [23].

In cooperative sensing, each spatially located CR share the sensing informa-
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tion to a fusion center (FC), wherein the global decision about the presence of

PU is taken. Depending on the way each CR share information, cooperative sens-

ing is classified into three categories: Centralized [46], distributed [47],[48] and

relay assisted [49]. In a centralized cooperative sensing scheme, each CR users

in the network share their local sensing information to an identified fusion center

through a control channel. The fusion center takes the final decision about the

presence of PU by combining all the local sensing information. The FC trans-

mits this to all SU in the network. In a distributed cooperative sensing scheme,

each CR users communicate among themselves and converge to a final decision

about the presence of PU in the scanned band unlike a FC in case of the central-

ized scheme [50]. The relay assisted sensing scheme uses the sensing channel and

control channel dynamically depending on its characteristics and perform sensing

like multihop cooperative sensing. In the current thesis, centralized cooperative

sensing is used.

Cooperative spectrum sensing [51],[52],[21] results in improved sensing time

as well as improved accuracy. In cooperative sensing as more nodes are involved

the detection is more robust. Therefore the periodicity at which individual nodes

sense the spectrum can be increased. Secondly, by cooperating with other nodes,

the PU’s location can be determined. However, there are a few problems with

cooperative sensing like increased computational overheads, an additional control

channel for inter-CR communication and malicious attacks or spoofing to bring

down the network. In the cooperative sensing, multiple radios, spatially located,

are utilized for deciding the presence of a signal. Each radio individually uses signal

processing algorithms mentioned as above subsections and report the local sensing

information to a fusion center/radio. The fusion center uses a fusion algorithm

to combine the data and take the final cooperative decision. The detail about

cooperative sensing can be found in [21]. This is illustrated in Fig 2.2. Various

Fusion strategies were proposed for robust cooperative sensing

1. Spatio-temporal Fusion

In this case, the CBS(Cognitive Base Station) makes a decision every T

seconds based on reports from the CR nodes either in Synchronised or Non-

Synchronised form. In the case of synchronized reporting, the Cognitive

Base Station (CBS) makes a decision every T seconds. The reports from

the CR nodes arrive at different times based on their distance from the CBS

and their processing times. The CR nodes need to ensure that the decisions
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Figure 2.2: Cooperative sensing scenario [53]

are conveyed within the time slot and therefore have to ensure that the time

for sensing, processing, and transmission are well within limits. It is an un-

necessary overhead.

In the case of non-synchronised reporting, the CR nodes send in their deci-

sion as soon as it is available. This results in varying number of decisions

reaching the CBS in T seconds.

2. Hard decision fusion

In this case, the individual nodes decide on the techniques and strategies for

deciding if the PU is present. The node makes a binary hypothesis decision

and sends a value of 1 or 0 to the fusion center. At the fusion center the

fusion can be carried out in two ways: Chair-Varshney log-likelihood ratio

test or M-out-of-N voting.

a) Chair-Varshney Fusion

This is based on the log-likelihood ratio test. The CR node sends in addition

to the binary decision, Probability of False alarm Pf and Probability of Mis-

detection Pm. In addition the apriori probabilities of the events H0 and H1
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given by P (H0) and P (H1) respectively. The Chair-Varshney criterion for

fusion decision,dk is [54]:

dk =

{
1 ;µ ≥ 0

−1 ;µ < 0
(2.37)

where µ = a0 +

N∑

i=1

ak(i)uk(i) (2.38)

ak(i) = log

(
1− Pm(i)

Pf(i))

)
; ifuk = 1; (2.39)

ak(i) = log

(
1− Pf(i)

Pm(i))

)
; ifuk = −1; (2.40)

Alternately a0, ak(i) can be computed at the CR node and then transmitted

to the fusion center. However it is a challenging task to compute Pf and Pm

at the CR node, as it requires reference data in the transmission.

b) K-out-of-M Fusion

Another fusion rule is based on voting. If K out of M number of CR nodes

report H1 then decide on H1. If uk(i) are the decisions reported by the CRs

then the fusion decision dk can be evaluated as:

dk =

{
1 ;µ ≥ K

−1 ;µ < 0
(2.41)

where µ =
M∑

i=1

0.5(uk(i) + 1) (2.42)

Pm =

K−1∑

j=0

M !

(M − j)!j!
P j
d (1− Pd)

M−j (2.43)

Pf = 1−
K−1∑

j=0

M !

(M − j)!j!
P j
f (1− Pf )

M−j (2.44)

where M is the number of CR nodes and Pd, Pm, Pf are the probabilities of

detection, mis-detection and false alarm. If we let K=1 in (2.41), then the

decision is equivalent to the OR rule and the AND rule can be implemented

by letting K = M . Majority voting can be implemented by letting K =

M/2. The OR rule minimises Pm but Pf could be higher whereas the reverse

is true for the AND rule. The majority voting rule is a compromise between
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the two.

3. Soft Decision Fusion

In this fusion method [55], the test statistics are transmitted to the fusion

center and the fusion center takes the cooperative decision. Assume that

the CR nodes send their energy test statistic to the fusion center. The test

statistic at the fusion center is

ξ̂ =
M∑

i=1

wiξi = WΥT (2.45)

where wi are the weights assigned to the ith CR and ξ is the fused test

statistic and ξi are the individual test statistic received from the CR nodes,

W = [w1, w2...wM ] and Υ = [ξ1, ξ2....ξM]. Here the fusion center is free

to use any decision rule: either Likelihood ratio test(LLR) or Equal Gain

Combining(EGC). Performance comparison of hard and soft decision fusion

schemes is studied for a Rayleigh channel for different network parameters

[56].

2.3 Hardware implementation

In literature, although many sensing algorithms were reported, its hardware imple-

mentation and real-time study are limited. A working prototype for experiment-

ing with different spectrum sensing techniques is demonstrated [21]. A Berkeley

Emulation Engine BEE2 testbed with 18 radio cores is developed for configuring

multiple CR users in 2.4 GHz ISM band [21]. An efficient gradient-based wideband

sensing is demonstrated using USRP(Universal Software Radio Processor) boards

in real time. Hardware implementation of Energy detector on a wireless testbed

is reported in [57] wherein sensing time was varied to achieve a predetermined

Pd at low SNR regime. Few studies have focussed on sensing time for a given

modulated signal of finite duration.

2.3.1 Hardware details

FPGA (Field Programmable Gate Array) have high hardware density and operat-

ing speeds making them ideal for implementation of spectrum sensing algorithms.
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The ML 605 FPGA board from Xilinx is a versatile board featuring the Viretex-

6, XC6VLX240T-1FFG1156, FPGA. The detailed features of the ML605 FPGA

Board are listed in [58]. The board has a USB and JTAG interface for download-

ing code and debugging. The code is downloaded into the 32 MB flash. The board

also has a tri-speed 10/100/1000 Mbps ethernet. It ensures a high speed link for

data transfer with the host computer. The board has 512 MB DDR3 RAM and

8Kb I2C EEPROM for storing program data. The board has a 200 MHz oscillator.

Figure 2.3: The test setup for algorithm evaluation including instruments and
ML605 Xilinx FPGA board,ADC/DAC board FMC 150 and Xilinx ISE running
on laptop.

2.3.2 Instrumentation and Hardware test setup

The test setup for the real time evaluation is shown in Fig 6.4. The Vector signal

generator, Agilent 4430B, is capable of generating frequencies from 250 KHz to 1

GHz with a resolution of 0.01 Hz. It is capable of generating both analog and dig-

ital modulations either from internal or external baseband inputs. The generator

is capable of generating AM, FM and Phase modulations from its internal source

with an amplitude accuracy of ±0.2 dB. Modulated signal bandwidths more than

10 MHz can be generated. The signal generator is programmed to generate BFSK

signal from internal source with a data rate of 1 MHz. The signal generator has a

’Symbol Sync’ clock output on the rear panel which is used for symbol synchro-

nisation. This clock is used as the gating clock for the BFSK output and is fed in

parallel to the Tektronix oscilloscope. The output from the FPGA board is the

’detected symbol’ clock which is fed to the other port of the oscilloscope. The noise

generator, Rhode and Schwarz SMBV 100A, can generate additive white Gaussian

noise separately for I and Q channels. The Carrier-to-Noise Ratio (CNR) can be
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adjusted from -30 to + 30 dB in steps of 0.1 dB. The generator is capable of noise

bandwidth from 1 KHz to 120 MHz. The signal and noise are combined using a 3

dB power combiner which can operate from 2 to 500 MHz with an insertion loss

of 1 dB and an amplitude balance of 0.3 dB [59]. It provides inter-port isolation

of 25 dB thus avoiding any interaction between the signal and noise generators.

In our test setup, the SMBV generator is used as a white noise source whose

power is varied to create different SNR at the output of the power combiner.

The real-time test is conducted at a center frequency of 70 MHz. Accordingly, a

bandpass filter is introduced after the power combiner to allow only the frequency

of interest to pass to the signal acquisition board. The filter is a bandpass filter

with center frequency of 70 MHz and a ± -3 dB power bandwidth of ± 3 MHz.

The insertion loss is -5.17 dB. The signal is then fed to the ADC/DAC FM150

[60] which is a FPGA Mezzanine card with two 14-bit Analog-to-Digital convertor

(ADC) and two 16-bit Digital-to-Analog convertor channels capable of 250 and

800 Mega samples per second (Msps). The signal is coupled using a coaxial cable

to the MMCX coaxial connector on the front panel of the FM150. The Virtex-6

FPGA on the ML 605 reads the digitized signal . The binary file of the spectrum

sensing algorithm is downloaded from the laptop which runs the Xilinx ISE IDE.

The algorithm generates a decision about the presence of the signal. This is indi-

cated by changing the state of a discrete output to 1 from 0 which is available on

a SMB connector port connected using a coaxial cable to the second channel of

the oscilloscope. Thus on the oscilloscope, the input signal burst and the detected

signal burst can be observed.
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Chapter 3

Improved energy detection using

noise variance estimation

3.1 Objective

Energy detection is a computationally simple spectrum sensing algorithm for Cog-

nitive Radio. However, it suffers from a phenomenon called SNR Wall, wherein

the energy detector cannot detect a signal if its power is less than the uncertainty

of the noise power, irrespective of sample size. However, if the noise power can be

estimated accurately, the detection probability can be improved by using adaptive

threshold technique. The objective of this chapter is to use two noise variance es-

timators namely: unbiased and Autoregressive Linear Predictor(LP) for adapting

the threshold to improve the performance of energy detection. The estimators are

evaluated for three cases of additive noise : white, blue and red.

3.2 Introduction

The earliest work on energy detection treats it as a binary hypothesis problem

and derives Receiver Operating Characteristic (ROC) for various time-bandwidth

products [12]. Closed form equations were given for energy detection over fading

channels in [26],[27]. The Energy Detection technique has the lowest complexity

but is sensitive to noise variance and signal power [28]. The performance of En-

ergy detection technique deteriorates, if the signal power is less than the noise

power uncertainty. It is defined as the SNRwall, i.e. the SNR up to which the

algorithm can detect the presence of the primary user with the desired Pd, and the

Pd cannot be improved upon by increasing the number of samples. However, the

performance of energy detection can be improved if the noise variance is known

apriori [29]. Noise variance estimation has been investigated in [61],[62],[63]. In

[61] the noise variance is estimated on the basis of the shortest half sample method.

25
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The scatter of the signal is used as a measure of the noise variance. The signal is

sectioned into several groups of sub-samples of varying sizes to estimate the mean

of the shortest half sample and the least median of its amplitude squared. This

method works for a signal with outliers up to 50% of the samples. However, it

does not work well for small sample size and if the outliers are densely distributed

as compared to noise-only samples. In [62] the spectrum sensing error is sought

to be minimized by estimating the noise variance. In this method, the energy in

the kth sub-band of the polyphase Digital Filter Bank (DFB) is computed. The

optimum energy detection threshold is formulated as a constrained optimisation

problem using the Lagrangian multiplier method. The threshold, estimated using

an Autoregressive (AR) model, is updated using the gradient based technique.

The spectrum sensing error for two threshold values is detailed for different sens-

ing error weights. However, there are no details provided for the probability of

detection at various SNRs or the Receiver Operating Characteristic (ROC) which

are critical performance indicators for cognitive radio applications.

Thus there is a need to develop algorithms for improving the performance of

energy detection. Also, as the real-time channel may not encounter white noise

only, there is a need for studying the performance of energy detection in colored

noise environment.

In this chapter, we propose a threshold adaptation scheme based on the esti-

mated noise to improve the detection performance. The noise variance is estimated

using a 2-pole autoregressive filter. The filter parameters are related to the au-

tocorrelation sequence by the Yule-Walker equations. This matrix is Toeplitz,

a matrix in which each element of the main diagonal is constant, which is effi-

ciently inverted using the Levinson-Durbin recursion. The noise variance is then

computed using these filter parameters. The performance improvement is investi-

gated for three different noise types i.e., white, blue and red. Finally, the detec-

tion performance with and without noise estimation are compared. The detection

performance with different weight estimation techniques are compared with and

without noise estimation. Signal node sensing algorithm encounters hidden node

issue and cooperative sensing is preferable in such an environment, at the cost of

increased algorithm and hardware complexity.

In this thesis the single node energy detection using adaptive threshold tech-

nique is extended to cooperative sensing for enhancing the probability of detection.

In the Centralized Spectrum Sensing (CSS), each node measures the energy locally
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and transmits it to a fusion centre. Fusion center aggregates the weighted energy

and compares it with a threshold to find the status of the channel. The weights

associated with each node plays a critical role affect the detection performance.

There exist different methods to find weight values for each node. In this thesis,

we use a heuristic method namely differential evolution algorithm to evaluate the

weight value associated with each node to maximize the probability of detection.

3.3 System model

Figure 3.1: The signal model shows the various components of the chain from PU
transmitter to the SU receiver. The channel effect is multiplicative whereas the
noise is additive.

In wireless communication, the receiver model is shown in the Fig 3.1. Consider

a Binary Frequency Shifted Keyed (BFSK) signal as the received signal y(t):

y(t) = hx(t) + w(t) (3.1)

where x(t) is the transmitted signal and w(t) is a zero mean white noise with

variance σ2, h is the channel gain (a random variable with a known or unknown

probability density function). The sampled signal is denoted by y(n). The channel

is assumed to be flat fading. It is a channel in which the signal has a single path

from source to the receiver and the envelope of the signal fade follows the Rayleigh

distribution. It is called a flat fading channel.
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3.4 Single node spectrum sensing using improved

Energy detection technique

In the case of single node spectrum sensing, a CR user is sensing the spectrum of

interest. In the Energy detection technique, the frame energy is computed as :

U(k) =
1

Ns

Ns∑

n=1

|y(n)|2 (3.2)

where U(k) is the energy for the kth frame, k and n are the frame and sample

indices respectively and Ns is the number of samples per frame. For low SNR

conditions, Ns = O(1/SNR2). In low SNR conditions intuitively a longer sensing

time is indicated. This implies Ns is large, the test statistic can be approximated

as a Gaussian, as per the Central Limit Theorem [29]. The presence of active PU

is decided using the test :

U(k) ≥ λ (3.3)

The threshold γ can be set as [29]:

γ = σ2(Q−1(Pf )
√
(2/Ns)− 1) (3.4)

where Pf is the desired probability of false alarm, Q(.) is the Gaussian tail proba-

bility function, σ2 is the noise power. The main advantage of the energy detector

is that it works irrespective of the signal. However, it depends on an assumption

that the noise power is fully known. In the real radio environment, this is not

the case. Detection at low SNR can be improved by increasing the observation

time i.e., the increase the number of samples. However, it was demonstrated that

there is a phenomenon called SNR Wall which prevents detection of the signal

at arbitrarily low SNR even if the sample size is increased [29]. If σ2 is the noise

power and the range of noise powers lie in the interval (σ
2

ρ
, ρσ2), then

SNRWall = ρ2 − 1/ρ (3.5)

where 0 < ρ < 1. If the noise power can be estimated from the received signal

then detection at lower SNR is possible. Methods of estimating noise power are

detailed in the following sections.
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3.5 Noise variance estimator

3.5.1 Auto regressive variance estimator

Non-Parametric methods of power spectrum estimation are computed using the

FFT (Fast Fourier Transform) algorithm. However, long data series are required

for good frequency resolution. Parametric methods are based on constructing a

model for the generation of the signal with model parameters that can be estimated

from the input data series y(n) [64]. The signal model is assumed as per (3.1) with

h=1 for a channel without fade. The linear filter H(z) is an all−pole filter, which

is characterised by its p coefficients a1, a2, ...ap. The parametric model represented

by (3.6) is called Auto Regressive (AR) model of order p. This model is also called

as the All-Pole model and is well suited for modeling spectra with peaks. In our

case, the BFSK spectrum has two sharply defined peaks, and therefore the AR

model is well suited to model this waveform.

H(z) = 1/A(z) = 1

/{
1 +

p∑

i=1

aiz
−i

}
(3.6)

Where, ai satisfy the following Yule-Walker equations [65]:

p∑

k=1

akRx(|i− k|) = Rx(i); i > 0 (3.7)

where Rx, Ry are the autocorrelation coefficients of x(n) and y(n) respectively

and the relationship between them is as :

Rx(0) = Ry(0)− σ2
w (3.8)

Rx(i) = Ry(i); |i| > 0; (3.9)

The noise variance σ̂2
w is estimated as:

σ̂2
w =

p∑

i=1

ai

{
R̂y(i) +

p∑

k=1

akR̂y(|i− k|)
}/ p∑

i=1

a2i (3.10)

The AR coefficients, ai are obtained by inverting the correlation matrix using

the Levinson-Durbin algorithm. Alternately they can be obtained using the Burg
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method [66] which is based on the minimisation of backward and forward errors

in linear predictors, such that the Levinson-Durbin recursion is satisfied. The

estimator given by (3.10) is labeled as LP estimator.

3.5.2 Threshold adaptation

The detection threshold is adapted as :

γ̂(k) = γ(k)σ̂2
w(k) (3.11)

where, σ̂2
w is the estimated noise power, γ̂(k) and γ(k) are the adapted and original

threshold respectively [67]

3.6 Unbiased estimator

The sample variance σ̂2 is the second sample central moment. It is an unbiased

estimator for the population variance and is given as:

σ̂2 =
1

Ns − 1

Ns∑

i=1

(yi − µ)2 (3.12)

where Ns is the number of samples per frame and µ is the sample mean.

3.7 Colored noise

In general, white noise is assumed for modeling additive noise in the signal. It

has a flat spectrum across all frequencies. Pure white noise is not encountered in

real channels, as it would need to have infinite power to span infinite bandwidth.

Practically, white noise is bandlimited over B Hz and is given by

Sw(f) = σ2; f ≤ |B| = 0; otherwise (3.13)

However, in many cases, the additive noise is not white only. The additive

received noise could have been added due to either thermal or interference noise.

In general, these are called ’colored noise’. Thermal noise, also known as Johnson

noise, is generated by the random motion of electrons. The spectral density of
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thermal noise is given as

Sw(f) =
kT

2
W/Hz (3.14)

where k is the Boltzmann constant, k = 1.38 × 10−23 Joules per degree Kelvin,

T is the absolute temperature in degree Kelvin. As this is only a function of

temperature, its spectrum is flat and can be called as ’white noise’. Three types

of colored noise are frequently encountered in literature: blue, pink, brown or red

noise. Blue noise has a power spectral density which is proportional to frequency.

It increases at the rate of 3 dB/octave, i.e. 10 dB/decade. This kind of noise

is encountered when the thermal noise is induced into the MOSFET gate. The

induced noise increases with frequency. Pink noise is also called flicker noise or 1\f
noise. The frequency spectrum of flicker noise has the same power in frequency

bands that are proportionally wide (logarithmic spacing). It also has a Gaussian

PDF but its PSD is proportional to 1 \ f . It is an important form of noise, in RF

oscillators and it influences the transmitted waveform. Brown or Red noise has a

spectral density that has a power density that decreases at 6 dB per octave with

increasing frequency (density proportional 1 \ f 2) over the frequency range. It

can be generated by simulating Brownian motion and has an underlying Gaussian

PDF but the PSD falls off at 1 \ f 2 rate. The power spectral density can be

expressed as :

Sw(f) =
k

fα
; (3.15)

α = 1 : Pink noise; (3.16)

= 2 : Red noise; (3.17)

where k is a constant and α = 1, 2.

3.8 Cooperative sensing using improved energy

detection

In the cooperative sensing [51],[52],[23],[21], multiple radios are utilized for taking

the decision about the presence of signal. Each radio individually uses signal pro-

cessing algorithms detailed in sections 3.4-3.6 and report to a fusion centre/radio.

The fusion centre uses a fusion algorithm to combine the data and take a decision.
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The hypothesis tests for co-operative sensing, with M nodes in co-operation is

defined as :

H0 : ym(n) = wm(n) , m = 0, 1, . . .,M − 1

H1 : ym(n) = hmxm(n) + wm(n), n = 0, 1, . . ., N − 1
(3.18)

Where, hm is the channel gain of mth node.

A pictorial representation of centralized co-operative sensing is shown in Fig 2.2.

It explains that, each secondary user or CR receives PU signal under multiple

channel conditions. Each CR communicates either the local decision (in case of

hard fusion) or test statistics (in case of soft fusion) to the Fusion Centre (FC).

The FC aggregates the received information from all the CR in co-operation and

takes the final decision.

In this work, the improved energy detection method is used as test statistics.

There are two types of fusion techniques: soft and hard. Although the hard fusion

decision algorithm has computational advantages, it is not reliable. Thus the

current work concentrates on soft fusion logic at the fusion centre.

In the case of soft fusion logic, the weight associated with each CR plays an

important role to achieve a reliable Pd. There are different strategies to evaluate

the weight values such as Log Likelihood Ratio (LLR), Equal Gain Combining)

EGC and Weighted Gain Combingin (WGC). Out of all these, LLR method is the

optimal method. The next subsection details about soft decision fusion technique.

3.8.1 Soft Decision fusion

In this fusion method [55], the test statistics are transmitted to the fusion Base

Station Centre (BSC) for taking the decision. Here the fusion centre is free to use

any decision rule: either Likelihood ratio test or Equal gain combining. Assume

that the CR nodes send their energy test stastic to the fusion BS and it is fused

as

ξ̂ =

M∑

i=1

wiξi = WΥT (3.19)

where wi are the weights assigned to the ith SU and ξ̂ is the fused test statistic

and ξi is the test statistic received from the ith CR nodes and W = [w1, w2...wM ]

and Υ = [ξ1, ξ2....ξM]. The performance of test statistic depends on the weight

values. The weight values can be estimated using different approaches like Log
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Likelihood Ratio (LLR) or Equal Gain Combining (EGC) or Weighted Gain Com-

bining (WGC).

3.8.1.1 Weight estimation using Log Likelihood Ratio test

Assuming that all ξi are independent and Pr(ξi|H1), P r(ξi|H0) are Gaussian and

N is large, then the soft fusion is derived from the Likelihood ratio Test (LRT)

given as:

LRT =

M∏

i=1

Pr(ξi|H1)

Pr(ξi|H0)

H1

≷
H0

λ (3.20)

(3.21)

The weight to each CR can be evaluated using log likelihood ratio test [68]

log10

(
Pr(ξi|H1)

Pr(ξi|H0)

)
H1

≷
H0

λ (3.22)

where, ξi= ξ1, ξ2, ξ3...ξM ( by considering M CR user in cooperation) are the

received test statistic at FC. Equation can be approximated as

M−1∑

i=0

log10

(
exp

( −‖ξi‖
σ2
w,m + σ2

s

+
‖ξi‖
σ2
w,m

))
= ‖ξi‖

(
‖σs‖2

σ2
w,m

(
σ2
w,m + ξi

)
)

(3.23)

Then the detection probability Cd for cooperative sensing can be written as

Cd =

M−1∑

m=0

ξmwm

H1

≷
H0

λ (3.24)

wm =
σ2
s

σ2
w,m(σ

2
w,m + ξm)

(3.25)

where, ξm is the energy of the mth node, σ2
s is the signal variance, σ2

w,m is the

noise variance at the mth node and Cd is the cooperative decision.

3.8.1.2 Equal gain Soft decision Fusion

Estimating ξi at the CR node is a computational burden. Also if the CR nodes

have different capabilities then their estimates of ρi may also vary. One way to

simplify is to set wi=1 in (3.19) which is called Equal Gain soft decision fusion.
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3.8.1.3 Weight estimation using Differential Evolution algorithm

The Differential Evolution (DE) algorithm is a stochastic and population based

optimisation technique. It was proposed by Storn and Price in 1996 [69]. It

belongs to a class of algorithms called metaheuristics, which make no assumptions

about the diffentiability of the function. DE is able to find an optimum value for

intractable problems which are some times non-continuous or noisy. DE algorithm

has been applied to estimate the weights in co-operative sensing using entropy as

test statistic [53]. In the present work, DE is used for estimating weights using

improved energy as test statistic.

Figure 3.2: The flow of the Differential Evolution algorithm.

DE operates in four steps namely : initialisation, mutation, recombination and

selection in an iterative fashion as in Fig 3.2. In this work, DE algorithm is used

to estimate the optimum weight values associated with each CR node in the co-

operative environment, by maximizing the co-operative probability of detection

(3.24). So the weight estimation problem can be defined as :

argmax

(
M−1∑

m=0

ξmθm

)
; θm ∈ [0, 1] such that

M−1∑

m=0

θm = 1 (3.26)

where, ξm is the improved energy of the mth CR node.

The detailed steps to estimate the weights using DE algorithm are :

1. Step 1 : Initialisation Initialise Population size P ; Scale factor F ; Dimension

D. Initialise θi,j for i = 1, 2, ...P and j = 1, 2...D randomly folowing Uniform

distribution within the limits [0,1].

2. Step 2 : Mutation

For each target vector θi,G randomly select four distinct indices i, r1, r2 and
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r3 such that i 6= r1 6= r2 6= r3. Generate a mutant vector as :

vi,G+1 = θr1,G + F (θr2,G − θr3,G) (3.27)

3. Step 3 : Recombination

The parent vector is recombined with the mutant vector to generate a

child/trial vector ui,G+1. The elements of child vector is:

uj,i,G+1 =

{
vj,i,G+1 ; if(rj ≤ Cr) or j = Irand

θj,i,G ; if(rj > Cr) or j 6= Irand

}
(3.28)

4. Step 4 : Selection

The performance of the child vector is compared with the parent vector and

the better one is selected as parent vector for the next generation. All these

steps are continued till stopping criteria is met (maximum generation).

θi,G+1 =

{
ui,G+1 ; if f(ui, G+ 1) ≤ f(θi, G)

θi,G otherwise ; i = 1, 2, ...P

}
(3.29)

5. Step 5 : Report the optimum parent vector (weights), θi.

where, j = 1, 2, ..., D; rj ∈ [0, 1] is the random number; Crossover constant

CR ∈ [0, 1] and Irand ∈ [1, 2, ...D] is a random integer. The performance of

the trial vector is compared with the parent vector and better one selected. The

simulation is run for 60 generations to arrive at the optimum weights for each

node.

3.9 Simulation details

This section presents the set up of for carrying out the simulation. In this work, a

burst of BFSK is created for 450 frames. Each frame consists of 450 real numbers,

called ’bits’, generated randomly. The burst has some initial frames of pure noise

followed by the signal with additive noise (Refer Fig 3.3). Towards the end of the

burst again it is pure noise. The signal is passed through a flat fading Rayleigh

channel and then an additive noise like white, blue or red, is added. The required

SNR is created by scaling the noise and then summing it with the signal. The
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energy is calculated for each frame. The number of samples per bit is varied to

check the detection performance with respect to the sample size.

Energy Detection (ED) threshold is adapted based on the estimated noise

power. The noise power is estimated by using the Unbiased estimator (U/b Est)

and the Linear Predictor estimator (LP Est). The LP estimator is computed as

(3.10). The unbiased estimator is computed over the current and previous 15 bits

as (3.12). Performance of ED algorithm is analyzed with these estimators and

compared with the ED without estimation (denoted as W/o Est) and tabulated.

The simulation parameters of DE algorithms are as follows :

Number of populations P = 20; D = 5; ; F = 0.9; Cr = 0.9 ; maximum

number of generations G = 60.

Figure 3.3: (a) Plot of the computed energy. (b) Plot of the input template (c)
Plot of the output (detected) template.
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Figure 3.4: Plots of the power spectral density for the BFSK waveform with
additive white, blue and red noise and the autoregressive linear prediction estimate.
The PSD of the LP estimator is accurate for white and blue noise but is not well
matched for the red noise case.
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3.10 Results and discussions

This section presents a performance comparison of energy detection (single node

and multinode) using different noise estimation methods for three types of noise

in the single node sensing environment. In the plots that are discussed in this

section, LP, U/b and W/o refer to Linear Prediction Estimator, Unbiased estima-

tor and Without estimator respectively. The one-sided power spectral density for

the BFSK waveform with additive white, blue and red noise is plotted in Fig 3.4.

The Auto Regressive linear prediction estimate is also plotted to demonstrate the

accuracy of the linear prediction estimate.

The detection performance of energy detection with and without noise vari-

ance estimation for additive white, blue and red noise is plotted in Fig 3.5, 3.6

and 3.7 respectively. From Fig 3.5 it is observed that a probability of detection Pd

of 0.9 is achieved at -8, -3 and -2 dB respectively for LP, U/b and W/o estimator

for a sample size of 512. It concludes that modifying the detection threshold, (by

subtracting the estimated variance of the additive noise), the detection probability

improves up to 6 dB in the case of the LP estimator. It is also observed that the

Unbiased estimator is giving a marginal improvement of 1 dB as compared to the

case of energy detection without noise variance estimation.

With reference to Fig 3.4(a), it is observed that the LP estimator models the

peak accurately. Since the LP estimator accurately estimates the noise variance,

the detection threshold is adapted correctly thus improving the probability of

detection. However, the unbiased estimator gives approximately same detection

performance as simple energy detection because it estimates the signal plus noise

variance instead of only noise variance.

The detection performance of energy detection, with and without noise vari-

ance estimation, is plotted in Fig 3.6 for additive blue noise condition. A prob-

ability of detection Pd of 0.9 is achieved at -6, -2 and -1 dB respectively for LP,

U/b and W/o estimator for a sample size of 512. The values are lower compared

to the white noise case as shown in Fig 3.5, but the pattern is similar, with a shift

towards higher SNR. The Unbiased and W/o estimation plots are similar to that

for white noise. The detection performance is lower as the noise is blue which

increases at the rate of 3 dB/octave.

Fig 3.7 is a plot of the detection performance of energy detection, with and

without noise variance estimation, for additive red noise condition.
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Figure 3.5: The probability of detection vs SNR with and without Noise variance
estimators is plotted for additive white noise. The BFSK waveform has a doppler
shift of 200 Hz.
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Figure 3.6: The probability of detection vs SNR with and without Noise variance
estimators is plotted for additive blue noise.

A probability of detection Pd of 0.9 is achieved at +1 dB and +2 dB respec-
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tively for U/b and W/o estimator for a sample size of 512. However, there is no

detection for the LP estimator with red noise. It is observed that the performance

of the U/b and W/o estimator case has reduced by 5 dB and 3 dB respectively as

compared to the white noise results of Fig 3.5.

Linear prediction assumes that the all-pole filter is excited with white noise to

produce a waveform. In our case we are doing the reverse i.e., we are estimating

the filter parameters using the received signal autocorrelations, and the resultant

error should be white noise. It may be seen from Fig 3.4(b)(c), that the assump-

tion of flat white noise for LP estimator is not met in the case of blue and red

noise since their PSD are not flat and hence the estimates have an error. This

resultant error reduces the performance of the energy detection as compared to

the white noise case. However, the error is smaller in the case of blue noise. Thus

it may be concluded that the LP estimator works well with white and blue noise.
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Figure 3.7: The probability of detection vs SNR with and without Noise variance
estimators is plotted for additive red noise.

From the Figs 3.5, 3.6 and 3.7 it is concluded that the Unbiased estimator

works consistently with all types of noise, but the improvement is marginal with

respect to the Energy detection without any estimation. However, it is still able

to detect the presence of signal in the case of additive red noise condition. ED
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without noise power estimation gives the same result with all types of noise.
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Figure 3.8: Detection for the cases of no fade and flat fading Rayleigh channel

The LP estimator is able to estimate the PSD of the BFSK waveform as it

has distinct peaks. However, it also implies that its performance for modulations

which do not have distinct peaks may not be satisfactory. N/d : No detection

The detection performance with respect to sample size for white, blue and red

noise is tabulated in Table 3.1. From the table, it is observed that the LP

estimator outperforms, Unbiased estimator for sample sizes of 64 and higher. The

LP estimator fails to detect for additive red noise irrespective of sample size.

The effect of Rayleigh fading on the improved energy detection performance is

also investigated. Fig 3.8 shows the results with and without Rayleigh fading for

the additive white noise channel. It is observed that the detection performance

is not affected with or without fade. LP and Unbiased estimators are giving

consistent results with or without fade. The performance of energy detection

without noise estimation is less by 1dB with fade. The consistent performance

could be attributed to the fact that the simulated Rayleigh channel simulated

has a flat fading (single path) channel which introduces only a gradual change in

the envelope. The amplitude variations induced by the fading seem to have little

impact on the computed energy. It may be concluded that the flat fading Rayleigh
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Table 3.1: Detection performance at different sample sizes

Sample size SNR, White Noise,dB SNR, Blue Noise,dB SNR, Red Noise,dB

U/b est LP est W/o est U/b est LP est W/o est U/b est LP est W/o est

16 +4 N/d +8 2 N/d +10 +6 N/d +9

32 +4 +10 +6 +2 N/d +6 +4 N/d +8

64 +2 0 +4 0 +2 +4 +2 N/d +6

128 0 -2 +2 0 -2 +2 0 N/d +3

256 -2 -5 0 0 -4 +1 +1 N/d +3

512 -2 -7 +1 -2 -6 0 +1 N/d +2

1024 -4 -10 -2 -2 -7 -2 +1 N/d +2

channel has a small effect on the detection performance.

The detection performance for BFSK signal with different noise variances is

plotted in Fig 3.9. From the figure, it is observed that the unbiased esimator

fails to detect the signal irrespective of SNR for larger noise variances. It gives

the same performance as the detection without estimation. However, the LP

estimator outperforms other estimators in detection performance. It shows that

noise variance estimation makes energy detection algorithm robust.

The detection performance, for a single node and multi-node cooperative sens-

ing is shown in Fig 3.10. The results are for cooperative sensing with 5 nodes. The

results for four combining schemes namely: Log Likelihood Ratio (LLR), Equal

Gain Combining (EGC), Weighted Gain Combining (WGC) and Differential Evo-

lution (DE) are plotted. The figure shows two groups of plots marked with est

and w/o est denoting energy detection with and without noise variance estimation

respectively. From the plots it is observed, that in both groups the cooperative

sensing performance is better than a single node. Secondly, the performance of

both single node and cooperative sensing improve with noise variance estimation.

The improvement is between 10 to 12 dB. It is also observed that the four com-
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Figure 3.9: Detection performance for BFSK with additive white noise for two
cases of noise variance. It is observed that the LP estimator is able to detect
the BFSK signal with additive noise of different variance whereas the other two
methods fail.

bining schemes give similar performance in both groups. It may be due to the low

number of nodes in cooperation in sensing. The advantage with DE based weight

estimation is that it does not require any noise variance estimation, whereas other

techniques require noise variance estimation.

Fig 3.11 is a comparison of single and multinode detection under conditions

of constant additive noise and variable additive noise. The required SNR in the

simulation can be created either by keeping the additive noise power constant and

scaling the signal power or by adding variable noise keeping signal power constant.

The first case is encountered in radio frequency bands where the channel noise is

constant and the SNR is only a function of signal attenuation from the trans-

mitter to the receiver. The second case is encountered in radio bands with many

transmitters like TV and FM stations that introduce variable noise into the CR

receiver. From the figure, it is observed that in the case for constant noise, single

and multinode sensing perform equally well, whereas in the case of variable noise

multinode combining perform better than a single node. This is attributed to

better noise variance estimation when noise power is variable and has significant

power.

Fig 3.12 is a plot of the Complementary ROC for multinode sensing for two

combining methods namely WGC and LLR. The performance of each combining
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Figure 3.10: Detection performance with respect to received signal SNR for single
node and multi-node cooperative sensing with LLR, EGC, DE and WG combining.
The plots for the four combining schemes with LP noise variance estimation and
without estimation are compared with single node performance.

Figure 3.11: The probability of detection for Single node and multinode coopera-
tive sensing. Plots for two methods of fusion namely, LLR and DE are shown. In
both cases noise variance is estimated.

method is investigated for two conditions namely with and without LP noise vari-

ance estimation. It is observed that at Pm=0.01, the probability of false alarm,
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is 0.3 and 0.1, in the cases of without and with noise variance estimation respec-

tively. It is noted from the plots that the improvement is roughly 3 dB or better

at all Pf greater than 10−2. So it may be concluded that multinode combining

with noise variance estimation improves the performance.

Combining with noise variance estimation is plotted in Fig 3.13.The Com-
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Figure 3.12: Complementary ROC for multi-node cooperative sensing using
Weighted Gain (WG) and Log Likelihood Ratio (LLR) combining. The plots for
the two combining schemes, WGC and LLR , with and without LP noise variance
estimation are shown.

plementary ROC of a single node and multinode sensing. It is observed that

multinode sensing outperforms the single node sensing for obvious causes. The

simulation is carried out for 5 nodes. It is observed that the plots for LLR and

EGC are coinciding. In the case of EGC the weights for all nodes is 0.2. Differ-

ential Evolution algorithm is used for evaluating optimum weight. In this case as

the number of nodes is low, the optimised weights tend to the EGC value of 0.2.

In the case of LLR where the weights are in inverse proportion to the SNR of

the received signal, the weights are more optimum thus yielding a better perfor-

mance.However, the use of DE algorithm eliminates the need for noise variance

estimation for determining weights.

Fig 3.14 is a plot of the ROC single and multinode sensing. Three methods

of combining are investigated namely EGC, LLR and DE. It is observed that the

multinode methods give improved performance as compared to single node. The
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Figure 3.13: The Complementary Receiver Operating Characteristic (CROC) for
single node and multi-node cooperative sensing with noise variance estimation.For
multinode cooperative sensing three methods of combining are used namely Dif-
ferential Evolution (DE), Equal gain combining (EGC) and Log Likelihood Ratio
(LLR). The SNR is -12 dB.

performance of EGC and DE are almost similar. DE performance is better when

the number of nodes is large. In this simulation with 5 nodes DE tends to EGC

performance. LLR performance is the best among all the combining methods.

3.11 Conclusions

Two different noise power estimation techniques were been studied to improve

the performance of Energy detection. It is shown that the LP estimator gives

improved performance for white and blue noise, of the order of 6 dB or more.

However its performance is weak in the case of red noise. The Unbiased estimator

works uniformly for all types of noise but the improvement over simple energy

detection is not significant. It is shown that the LP and unbiased estimators

perform satisfactorily even with Rayleigh fade which is expected in the real world.

The study indicates that the energy detection with these improvements could

be used in situations where the noise type is known apriori to be white or blue.

The effect of noise variance estimation on multi-node cooperative sensing has
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Figure 3.14: Receiver Operating Characteristic (ROC) for single node and multi-
node cooperative sensing with noise variance estimation. For multinode cooper-
ative sensing three methods of combining are used namely Differential Evolution
(DE), Equal gain combining (EGC) and Log Likelihood Ratio (LLR). The SNR
is -12 dB.

been investigated. It is demonstrated that the detection performance and ROC

improve significantly with noise variance estimation, regardless of the combining

scheme used at the fusion centre. The performance for single node is compared

with the cooperative sensing to demonstrate the improvement. On an average

an improvement of 3 dB or better is obtained in multinode sensing with noise

variance estimation.
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Chapter 4

SNR estimation for spectrum

sensing

4.1 Objective

The objective of this chapter is to discuss the importance of SNR estimation in

Spectrum sensing. The algorithm for Blind SNR estimation using Covariance

technique is elaborated.

4.2 Introduction

SNR estimators play a significant role in wireless receiver functionality, i.e., equal-

ization, signal detection, spectrum sensing, turbo decoding, etc. [70],[71]. Error

in SNR estimation degrades the receiver performance. Different techniques for

estimating the SNR are reported in [43],[72],[73],[74]. It was demonstrated that

the best estimator for a given scenario depends on the number of samples per

symbol, block length, type of modulation and the SNR range of interest [43]. In

general, SNR estimators are classified as either Data Aided (DA) or Non-Data-

Aided (NDA). In the DA scheme, pilot symbols are transmitted along with the

data symbols. It decreases the bandwidth efficiency. NDA schemes have been

proposed to overcome this drawback [75]. It was suggested that Maximum Like-

lihood (ML) technique and Moment-based technique are preferred choice for DA

and NDA estimators respectively [76],[77],[44]. Moments of the received signal are

used to estimate the SNR of the QAM (Quadrature Amplitude Modulated) signal

[78]. In [78], a low order moment is used to estimate the SNR whereas a higher

order moment is used for minimizing the variance of the estimate. Different ML

estimators namely PDA MLE, NDA MLE, Joint Pilot and Data Aided MLE and

Estimation using Data Statistics (EDS) were investigated for SNR estimation of

Non-Coherent M-ARY FSK signal [79],[80]. The ML estimator is derived for Data

49
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Aided and Data cum Pilot Aided scheme for Rayleigh and Rician fading channels,

with an assumption that the receiver system is entirely synchronous [81],[82]. This

assumption may not be valid in practical scenarios. The drawbacks of the tech-

niques as mentioned above are that (i) they work for positive and high SNR only

(ii) need a large number of samples to obtain a small Normalised Mean Square

Error (NMSE) (iii) their performance depends on the rate at which the pilots

are repeated (iv) require prior knowledge of the signal characteristics.Eigen value

based SNR estimation is proposed with parameters like sample size, number of

eigen values optimised using Particle Swarm Optimization (PSO) [83]. The SNR

of Linear FM modulated signal is estimated by fitting the Fourier series to the

main lobe of the autocorrelation [84].

Most of the reported algorithms successfully estimate the positive SNR only.

However, limited studies exist for estimating negative SNR. When specified in dB,

the Signal to Noise Ratio (SNR) is said to be negative when it is less than unity.

In tactical communications, M-ARY FSK modulation is used due to its low

design complexity. It is not sensitive to non-linearity in power amplifiers. Hence,

M-ARY FSK modulation is the preferred modulation choice for low power and

low data rate applications. Therefore we have investigated the SNR estimation

of an M-ARY FSK signal in Rayleigh and Rician fading channels. The proposed

algorithm is a blind SNR (Signal-to-Noise-Ratio) estimation algorithm. The SNR

is estimated by comparing the test statistic of the received signal with a calibrated

signal. The estimated SNR is the value of the SNR that minimizes the difference

between the computed and calibrated test statistics. The test statistic of both the

received and calibrated signal is calculated using the Sample Covariance Matrix

(SCM). The proposed algorithm first detects the presence of a signal in the channel,

and if a signal is detected then, it estimates the SNR. However, if the signal

detection is not necessary, then the proposed method can independently estimate

the SNR of a signal. The algorithm estimates both positive and negative SNR.

The proposed method determines a test statistic of the received signal by

computing its Sample Covariance Matrix [16]. The test statistic is compared with

pre-stored test statistic of a calibrated signal to determine the SNR of the received

signal. Initially during calibration, an M-ARY FSK signal at different SNR is

created by adding White Gaussian Noise (WGN). The test statistic derived from

the SCM of this calibrated signal is approximated by an exponential function with

three unknown parameters. The unknown parameters are evaluated and stored
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in a lookup table. The estimated SNR of the received signal is the SNR that

corresponds to the minimum error between the computed and stored test statistic.

Further, the proposed method inherently detects the presence of the signal during

the SNR estimation process. The advantage of this approach is that it can be used

for both signal detection and SNR estimation without extra computational cost.

4.3 SNR estimation algorithm

Consider an M-ARY FSK signal as:

y(n) = α(n)x(n) + w(n); (4.1)

where, x(n) and y(n) are the transmitted and received signal respectively. w(n)

is complex white Gaussian noise with zero mean and unit variance, α(n) is the

channel gain with a Rayleigh (zero mean) or Rician (non-zero mean) distribution

with unit variance and n is the time index. In the proposed SNR estimation

algorithm, the test statistic γ is based on the Covariance Absolute Value (CAV)

[16]. It is the ratio of two random variables T1 and T2, where T1 and T2 are the sum

of all the elements and sum of all the diagonal elements of the covariance matrix

of the received signal respectively. The T1 and T2 are scaled by a smoothing factor

L that defines the number of lags selected for computing the autocorrelation.

Equations (2.13-2.20) are applicable. The test statistic γ(k) is used to (i) detect

the presence of a signal and (ii) estimate the SNR.

4.3.1 Signal detection

The presence of a signal is determined by detecting the rising and falling edges

of the signal burst. The rising − edge of the signal burst is determined if γ > β,

where β is a threshold defined as (2.20)

β =
1 + (L− 1)

√
2/Nsπ

1−Q−1(Pf)
√

2/Ns

(4.2)

where Pf and Q−1(.) define the probability of false alarm (for signal detection)

and inverse Q function respectively. For detecting the falling− edge of the signal
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burst, let us define δ(k) as

δ(k) = γ(peak)− γ(k) (4.3)

where γ(peak) is the peak value of γ, upto frame k, of the signal burst. A Moving

Average (MAV) Filter of window width W is applied to δ(k) to remove the effect

of outliers. The output of filter is

δMAV (k) =
1

W

(W−1)/2∑

q=−(W−1)/2

δ(k + q) (4.4)

The falling − edge is determined when δMAV (k) > τ , where 0 < τ < 0.5 . For

a BFSK signal, with signal burst duration from frame number 50 to 250, the

relationship between γ, γ(peak) and δMAV is shown in Fig 4.1 . From this figure,

it is observed that γ starts increasing from frame number 50, at the rising− edge

of the burst, and starts decreasing from frame number 250, indicating that the

falling − edge has occured. Correspondingly δMAV decreases to a value close to

zero after the rising − edge and increases in value after the falling − edge. In

Fig 4.1 it is seen that the value of δMAV is almost zero after the rising − edge till

the falling−edge of the burst, after which it starts to increase in value. To ensure

quick detection of the falling edge the value of τ is set as close as possible to zero.

A value of β/100 is found to be optimal, where β is the threshold calculated as

per (4.2). Fig 4.2 plots γ vs. frame number for different burst widths for a BFSK

signal at an SNR of -8 dB. From this figure, it is observed that regardless of the

width of the signal burst, the envelope of γ follows the same trajectory for a given

SNR. The rising− edge is the same for all the curves, whereas the falling− edge

depends on the width of the signal burst. It shows that the envelope of γ for a

particular SNR is fixed and can be stored in a lookup table.

4.3.2 Approximation of test statistic

The test statistic γ can be approximated to an exponential function with few

unknown coefficients as :

γ̂(p, k) = γ(p, 0) + A(p, 0) ∗ exp(R(p, 0) ∗ k); (4.5)

ǫ(p, k) = |γ̂(p, k)− γ(k)|; (4.6)
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Figure 4.1: Plot of γ, γ(peak) and δMAV for a BFSK burst starting at frame 50
and ending at frame 250. The smoothing factor L is 32, number of samples per
frame is 512 and SNR is -8 dB.

where p and k correspond to the index of SNR and frame respectively. γ̂(p, k) is

the estimated value of the test statistic for the kth frame signal with SNR index p.

γ(p, 0), A(p, 0) and R(p, 0) are the fitting coefficients for pth SNR of the calibration

signal, ǫ is the error between estimated and computed value of γ. The computed

test statistic and the exponential curve fit for a BFSK signal of -8 dB SNR is

plotted in Fig 4.3. From this figure, it is observed that the approximation is in

reasonable agreement with the true value of γ. The coefficient values are stored

in a lookup table for the pth SNR. The curve fitting statistics for the Non-Linear

Curve fit (exponential) are also shown in Table 4.1. The Adjusted R2 indicates

the accuracy of the curve fitting. A value close to unity indicates good agreement

between the true and curve fitting value. The Adjusted R2 values for SNR between

-20 dB and +20 dB are shown in Table 4.1. This table is used to estimate the

SNR of the received signal.
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Figure 4.2: Plot of γ for a BFSK burst at -8 dB SNR. The number of samples is
512. The four traces correspond to four signal burst widths. The rising− edge is
fixed at frame number 50 and the falling− edges are at frame numbers 125, 175,
225 and 275 respectively.

4.3.3 System model

The algorithm steps for estimating the SNR of an unknown received signal are

shown in Algorithm1. The Normalised Mean Square Error (NMSE) is used as the

metric for measuring the accuracy of the estimation algorithm. It is given as

NMSE(η̂) =
E[(η − η̂)2]

η2
(4.7)

where η and η̂ are actual and estimated SNR respectively.

4.4 Partially Data Aided ML estimator for M-

ARY FSK

Consider an M-ARY FSK transmission with M = 2m symbols in the constellation

where, m is a positive integer. This signal is corrupted by complex Gaussian noise



4.4. PARTIALLY DATA AIDED ML ESTIMATOR FOR M-ARY FSK 55

0 100 200 300 400 500
0

2

4

6

8

Frame Number

    value for -8 dB
 exponential fit 

Figure 4.3: Exponential curve fit of γ for -8 dB SNR. The signal burst starts at
frame number 54 and ends at frame number 375.

and Rayleigh fading independently. The received signal after matched filtering

and squaring is given as [79]

yn = |snαn + wn|2 (4.8)

In the data aided MLE technique, the SNR is estimated as

η̂DA =
(M − 1)

∑g
n=1 y1,n −

∑M
m=2

∑g
n=1 ym,n∑M

m=2

∑g
n=1 ym,n

(4.9)

where g = [1, 0, ..., 0, ..., 0] T and s = [0, 0, ...1, ..0] T are the pilot and data symbols

respectively. The NMSE is calculated as (4.7). The received symbols from M

branches are y(m,n) where m and n are the branch and time index respectively.

wn is a random variable that follows Gaussian distribution whereas αn follows

Rayleigh distribution. The performance of the proposed algorithm is compared

with this Partially Data Aided ML Estimator.
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Input: No. of samples, Number of calibrated SNR values pmax, Maximum
number of frames for analysis kmax, Lookup Table values
(γ(p, 0), A(p, 0), R(p, 0))

Output: η̂ as the estimated SNR
Compute the covariance matrix of the kth frame received signal using (2.13)
Compute the test statistic γ(k) and δMAV (k) as (2.17) and (4.4)
respectively.
Compute β as (4.2)
Initialise kcount=0
for k =1 to kmax do

for γ(k) > β & δMAV < τ do
kcount← kcount+ 1
for p = 1 to pmax do

Compute γ̂(p, k) as (4.5), using lookup table
choose popt that minimises (4.6)

end
ρ(k)← popt
ρsum ← ρsum + ρ(k)

end
η̂ ← ρsum/kcount

end
return η̂

Algorithm 1: Proposed SNR estimation algorithm

4.5 Simulation results and discussions

This section presents numerical simulation results and performance analysis of

the proposed SNR estimator. The simulations are carried out for Rayleigh and

Rician fading channels for M = 2, 4 and 8 FSK modulation. A complex baseband

M-ARY FSK signal s(n) is generated and its standard deviation is computed as

(4.11). s(n) is scaled as (4.10) to generate x(n). The complex Gaussian noise

w(n) is added to x(n) obtain the required SNR as (4.1).

x(n) =
σw

σs

√
10SNR/10 s(n) (4.10)

σs =
1

Ns − 1

Ns∑

n=1

(s(n)− µs))
2 (4.11)
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Table 4.1: Exponential Curve fitting statistics

SNR (dB)
Number
of Points

Degrees
of Freedom

Adj.R2

M=2
Adj.R2

M=8
-20 66 63 0.98384 0.95358
-16 66 63 0.99765 0.99674
-12 66 63 0.99756 0.99579
-8 66 63 0.99923 0.99846
-4 66 63 0.99953 0.99848
0 66 63 0.99904 0.99679
4 66 63 0.99676 0.99473
8 66 63 0.98956 0.98939
12 66 63 0.97544 0.98428
16 66 63 0.96204 0.9796
20 66 63 0.96675 0.96517

where SNR is the signal to noise ratio in dB, µs, σs and σw are the sample mean,

standard deviation of the signal and noise respectively. The scaled signal x(n)

is multiplied with channel gain α(n), which is drawn from a Rayleigh or Rician

distribution.

For simulation, 450 frames of M-ARY FSK, each with 512 number of samples

(Ns) are generated. The frames slide into the input buffer with time. Initially,

the buffer has only zeros, then as the frames are received, the buffer fills up until

maximum buffer size is reached. The sample covariance matrix for each frame of

the received signal is computed as (2.13). For signal detection, the rising and

falling edges of the signal burst are detected as discussed in subsection 4.3.1.

The number of frames between the two detected edges is termed as the detected−
burst−width. The ratio of detected− burst−width to the actual− burst−width

gives the probability of detection (Pd). For simulation purpose, the threshold β

is calculated as (4.2) for Pf = 0.1. The moving average filter window width W

and τ are chosen as 16 and β/100 respectively, where β is the threshold calculated

as per (4.2). The probability of detection Pd for each SNR is computed using

multiple simulation runs and is plotted in Fig 4.4. This figure demonstrates that

the proposed method can detect the M-ARY FSK signal up to -8dB SNR with Pd

of 0.9, using 512 samples. However, it can detect the signal at much lower SNR if

the number of samples are increased.

The Normalised Mean Square Error (NMSE) for a -8dB SNR M-ARY FSK

(M=2,4 and 8) signal burst for Rician and Rayleigh flat fading channel are plotted
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in Fig 4.5 and Fig 4.6 respectively. From these figures, it is observed that for the

complete burst duration, the NMSE is less than 10−2 for M=2 and 4 whereas it

is almost constant, i.e., 10−1 for M=8. It can be analyzed by referring to Fig 4.7,

that plots γ vs. frame number for different values of M for a -8 dB BFSK signal.

The exponential curve fitting coefficient values for M=2 and 4 are close to each

other whereas it is different for M=8. From figures 4.5 - 4.7, it can be concluded

that the curve fitting technique works satisfactorily for both types of fading in the

case of M=2 and 4 but not for M =8. Hence, the fitting coefficients for M=8 need

to be re-evaluated for accurately estimating the SNR of an 8FSK signal. The test

statistic for M=8 is re-evaluated and tabulated in Table 4.2.
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Figure 4.4: Pd vs SNR for M-FSK signal in Rayleigh flat fading channel
.

The performance of the proposed algorithm is compared with the PDA MLE

SNR estimator for an M-ARY FSK (M =2,4,8) signal. Fig 4.8 is the PDA-ML

estimator result for the signal with Rayleigh fading and a Doppler of 20 % of the

frequency deviation for SNR ranging from 0 dB to +25 dB. From this figure, it

is evident that the PDA MLE SNR estimator gives satisfactory performance for

high and positive SNR. The NMSE is approximately 10−2 to 10−3 , over a narrow

range of SNR. However, the NMSE shows a dip at an SNR of 7 dB whereas it is

expected to decrease monotonically with increasing SNR. This may be explained

as follows: (4.9) is derived for Rayleigh fading with no Doppler [79]. However,

when Doppler is added to Rayleigh fading, the joint pdf of signal and noise is no
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Table 4.2: Curve fitting values for M=2 and M= 8

M SNR(dB) γ(p, 0) R(p, 0) A(p, 0)
8 -20 1.107 -0.030 -0.577
2 -20 1.174 -0.046 -2.584
8 -16 1.382 -0.020 -1.155
2 -16 1.540 -0.023 -2.133
8 -12 1.805 -0.025 -3.034
2 -12 2.253 -0.023 -4.637
8 -8 2.898 -0.024 -7.170
2 -8 3.926 -0.027 -12.548
8 -4 4.978 -0.031 -22.067
2 -4 7.362 -0.031 -33.86
8 0 8.470 -0.038 -56.091
2 0 12.960 -0.039 -98.694
8 4 12.465 -0.055 -215.244
2 4 19.277 -0.059 -431.955
8 8 15.844 -0.092 -2051.714
2 8 24.829 -0.092 -3195.228
8 12 18.056 -0.172 -176843.206
2 12 28.434 -0.167 -206061.424
8 16 19.267 -0.344 -2.03E+09
2 16 30.434 -0.361 -8.10E+09
8 20 19.860 -0.685 -2.17E+17
2 20 31.540 -0.735 -5.07E+18

more exponential (Eqn 4 of [79]) and the estimator given by (4.9) is mismatched.

From figures 4.5 - 4.7, it is clear that the fitting coefficients for M=2 are not

suitable for estimating the SNR of an 8FSK signal. Thus, we explored the use of

M=8 fitting coefficients (Table 4.2) and estimated the SNR of the 8FSK signal

using both the fitting coefficient sets, i.e., M=2 and 8. The NMSE for SNR range

-20 to +20 dB (flat fading Rayleigh channel) is plotted in Fig 4.9. It is observed

that when the SNR of the 8FSK signal is estimated using M=8 fitting coefficients,

the NMSE improvement is significant and is consistently below 10−2 for the SNR

range of -20 to +20 dB.
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Figure 4.5: Normalised Mean Square Error for M-ARY FSK for M=2,4,8 for -8
dB SNR under Rician fading with a K factor of 10. The signal burst starts at
Frame number 54 and ends at Frame number 375. The number of samples is 512.
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Figure 4.9: Normalised Mean Square Error for 8FSK for Rayleigh flat fading with
lookup table generated from M=2 and M=8 curve fitting.
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Figure 4.6: Normalised Mean Square Error for M-ARY FSK for M=2,4,8 for -8
dB SNR under Rayleigh flat fading. The traces for M=2 and 4 are less than 10−2

for the duration of the pulse. For M=8 it is almost constant at 10−1 as the γ curve
is significantly different.
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Figure 4.10: Normalised Mean Square Error for M=2,4 and 8 for Rayleigh flat
fading with lookup table generated from M=2 and M=8 curve fitting.
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Figure 4.7: Plot of γ for BFSK for -8 dB SNR with Rician fading with K factor
of 10. It may be noted that the curve for M =2 and 4 are similar but for M=8
the trace is different. The curve fitting for M=2 holds for M=4 but not for M =8
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M=2, Rician, K=10 
M=2, Rayleigh, Doppler

Figure 4.11: Normalised Mean Square Error for BFSK for Rayleigh fading with a
Doppler of 20% of frequency deviation and Rician fading with a Doppler of 20%
of frequency deviation and K =10.
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Figure 4.8: Partially Data Aided ML estimation of SNR for M-ARY FSK for M
=2,4,8 for flat fading Rayleigh channel with a Doppler of 20 % of the frequency
deviation.

We also estimated the SNR of the M-ARY FSK signal for M=2,4 and 8 using

the fitting coefficients of M=2,2 and 8 respectively, and the NMSE is plotted in

Fig 4.10. This figure attests that in all the three cases, the proposed algorithm

performs well in the entire range of SNR. The NMSE is better than 10−2 for both

negative and positive SNR.

In figures 4.5 - 4.6, the simulation assumed a flat fading Rayleigh channel i.e.;

it is frequency flat with no Doppler shift. This shows up in the anomalous result

that the performance of Rayleigh channel is as good as for the Rician channel.

Fig 4.11 is a plot of the NMSE with Doppler shift of 20% of frequency deviation

for Rayleigh and Rician channels(K=10). From this figure, it can be observed that

for negative SNR, the performance in Rayleigh Channel is almost the same as for

the Rician channel. This is because, at negative SNR, the Rician distribution has

almost the same pdf (probability density function) as the Rayleigh distribution.

However, at positive SNR, the NMSE in Rician fading gives better performance

than Rayleigh fading due to the K factor.



64 CHAPTER 4. SNR ESTIMATION FOR SPECTRUM SENSING

4.6 Conclusions

SNR estimation for Rayleigh and Rician fading channels for M-ARY FSK signal

with AWGN has been presented. The SNR was estimated using the test statistics

of the signal. The proposed algorithm has an inherent feature of signal detection

along with SNR estimation. The proposed algorithm gives satisfactory perfor-

mance compared to PDA MLE for a wide range of SNR. The performance of the

algorithm is evaluated under both Rayleigh and Rician channel fading conditions.

The proposed method achieves NMSE better than 10−2 over an SNR range of -20

to +20 dB for M=2,4 and 8 whereas PDA MLE achieves an NMSE of 10−2 to

10−3 for positive SNR only.



Chapter 5

Real time implementation of

spectrum sensing algorithms on

Virtex 6 FPGA

5.1 Objective

Limited studies were reported on the hardware implementation of sensing algo-

rithms. This chapter presents a systematic evaluation methodology for real-time

implementation of spectrum sensing algorithms on FPGA. It consists of four steps

i.e., floating point simulation, fixed point simulation, hardware-in-loop simulation

and real-time test with instruments. The performance of Energy detection and

CAV sensing algorithms are evaluated using this methodology. It further details

SNR calibration and signal processing at baseband level.

5.2 Introduction

In addition to an enormous effort on the theoretical investigation of spectrum sens-

ing algorithms, limited work on hardware implementation has been reported as

well [85],[86],[87],[88]. As the primary function of CR is to detect vacant spectrum

bands, it requires reconfigurable hardware platform. Software Defined radio is one

such platform that enables implementation of CR functionalities. In SDR, radio

communication is controlled by software defined protocols in contrast to hardware

implementations [89]. Several works addressed experimental results with differ-

ent test beds of energy detection and traced the effect of the noise uncertainty

[90],[91],[92]. Different type of SDR platforms are used for evaluating the perfor-

mance of spectrum sensing algorithm [93]. GNU radio along with USRP is the

most popular among all [94],[95]. Apart from the SDR platform, other platforms

such as the Helio board that houses Cyclone-V FPGA is reported. It executes a

65
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GNU radio application to control the RF switch and it receives the digitized I/Q

samples [96]. Berkeley Emulation Engine is being used to check the performance

of energy detection method [57]. The block diagram of real-time spectrum sensing

architecture is :

Figure 5.1: Block diagram of spectrum sensing architecture. The first block is a
mixer for downconverting to IF, G1 and G2 are the Low Noise Amplifier(LNA)
gains, LPF is a low pass filter, ADC is the Analog to Digital convertor and FPGA
is a Field Programmable Gate Array.

Apart from the implementation of energy detection algorithm on the USRP

platform, covariance based spectrum sensing with maximum eigen value detec-

tion is implemented in white space device (WSD) [97]. Power spectral density

based sensing algorithm is implemented on the USRP platform [98]. Energy de-

tection based spectrum sensing to sense TV band was implemented using Memec

development board that uses Virtex-4 FPGA and Humax F3-Fox-T was used as a

TV receiver [87]. Although energy detection algorithm does not work effectively

for low SNR signals (where the variation of the noise floor exists) it is a popular

method because of its low algorithmic complexity. The present work contributes in

real-time implementation and validation of the Covariance Absolute Value (CAV)

and energy detection algorithm on a Virtex-6 FPGA. The detection probability is

evaluated at different signal to noise ratio (SNR) and reported.

5.3 Algorithm evaluation methodology

It is often encountered that performance predicted by simulation is not realised

on actual target hardware. The difference in performance is due to the inadequate

modeling of noise variance or finite word effects. Therefore, there is a need to

evaluate algorithms in a structured manner so that comparison of efficiency, among

competing spectrum sensing algorithms, could be made. This section presents a



5.3. ALGORITHM EVALUATION METHODOLOGY 67

detailed methodology for validating sensing algorithm on hardware platform. The

methodology involves four different stages that are detailed below.

5.3.1 Step 1: Matlab Simulation

In the first step, the functionality of the sensing algorithm is simulated in floating

point environment, using MATLAB tool. The Binary Frequency Shifted Keying

(BFSK) modulation technique is used as modulation type. BFSK is a modulation

in which the binary numbers are mapped to either a frequency deviation of +δf or

-δf. This results in a constant envelope signal which is ideally suited for wireless

communication. In BFSK the transmitter amplifier non-linearities do not cause

significant degradation in the BER (Bit Error Rate). The test signal is a complex

number of the form a+ jb. Similarly, complex white noise, whose variance can be

changed, is generated for the same number of samples. The test signal for sensing

is created by gating the BFSK signal with white noise. The gating is done such

that BFSK signal is present in between two noise frames at the beginning and end

of the frame. The durations of the frame can be varied to create different signals

for simulation. This type of signal is created to mimic the transmission of a burst

by the Primary User (PU). The noise in the receiver is assumed to be thermal

noise given as:

W (dBm) = kTB (5.1)

Where, k is the Boltzmann constant, 1.38∗10−23 J/K , T is the noise temperature

of the receiver and B is the signal bandwidth. Thus the noise is known for a given

temperature and bandwidth. For example, the noise power for a temperature of

290 K and 1 MHz bandwidth is -114 dBm. The signal from the transmitter suffers

attenuation and fade as it passes through the channel. The path loss PL is given

as

PL(dB) = 20log10(4πd/λ) (5.2)

Where, λ and d are the wavelength and distance in meters respectively. Therefore

to create different SNR, the signal level is scaled and added to the noise. The

BFSK signal corrupted with additive white Gaussian noise is generated as (5.3)

where, s(n) and x(n) are the baseband and scaled baseband signal respectively.
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The received signal y(n) is generated as

y(n) = x(n) + h(n)w(n) (5.3)

where,

x(n) =
σw

σs

√
10SNR/10 s(n) (5.4)

σs =
1

Ns − 1

Ns∑

n=1

(s(n)− µs))
2 (5.5)

σw =
1

Ns − 1

Ns∑

n=1

(w(n)− µw))
2 (5.6)

(5.7)

Where, SNR is the signal to noise ratio in dB, µs, µw are the sample mean, σs

and σw are the standard deviation of the signal and noise respectively. The scaled

signal x(n) is multiplied with channel gain h(n). The signal with a fixed SNR is

generated using Simulink model as shown in Fig 5.2.

The channel gain is a random variable which could be drawn from a Rayleigh

or Rician distribution. In this evaluation the channel is assumed flat fading and

therefore assumed as unity. During simulation, 450 random length frames, of

BFSK modulated signal, is generated. Each frame has 512 samples. The SNR is

varied from -20 dB to +10 dB. The algorithms are implemented using floating point

precision. This step of simulation allows us to work with large amounts of data

and good visualisation to optimise the algorithm to get the desired performance.

5.3.2 Step 2: Simulink simulation with Sysgen blocks (Fixed

point simulation)

In the real-time environment, all the signal samples are not available at one time.

The signal samples are processed sequentially. Therefore in Simulink the parallel

data needs to be serialised to model the arrival of sequential samples and processed

using a TDM (Time Division Multiplexing) approach. In this step, a Simulink

model is created using Xilinx Sysgen blocks.

The Sysgen blocks are optimised RTL blocks, that gives cycle and bit perfect

fixed point outputs. The top-level block diagram of the energy detection algorithm



5.3. ALGORITHM EVALUATION METHODOLOGY 69

is shown in Fig. 5.3. The System generator specifies the simulation parameters and

system control. The Resource Estimator token is added to provide an estimate of

the resources required on the FPGA to implement the model. It gives an estimate

of the number of multipliers, flip-flops, block memory (BRAM) and lookup tables

(LUT) required. The blocks shown in yellow colour are the Gateway blocks. These

are placed between the Simulink and the Sysgen blocks. The Simulink model with

sysgen blocks is built for the real-time algorithm. By using sysgen blocks there is

greater predictability of the final real-time performance. The Resource estimator

block enables to get the hardware resources required to implement the model. The

Resource estimation for the energy detection algorithm is tabulated in Table. 5.1.

The Sysgen blocks run the equivalent fixed point simulation of sensing algo-

rithms, whereas MATLAB simulation results are on floating point environment.

5.3.3 Step 3: Hardware Co-Simulation

The sensing is performed using ML605 Xilinx FPGA board [99]. It hosts a high

performance Virtex-6 XC6VLX240T-1FFG1156 FPGA, 16 MB flash and 512 MB

of DDR3 flash. It communicates with the computer on 10/100/1000 Tri speed

Ethernet. The master clock runs at 200 MHz differential. A FMC 150 (FPGA

Mezzanine Card) board with ADC and DAC features is plugged into the ML605

board. The FMC board has two channels of 14 bit ADC that can give up to 250

Msps. It has two channels of 16 bit DAC. The specifications of the FMC board

are given in [60].

The System generator block is configured for co-simulation mode for the FPGA

board ML605. The data flow between Simulink and the board are shown in

Fig. 5.4. System generator is run to generate the bit stream for Virtex-6 FPGA us-

ing the ISE development tool. The bitstream is downloaded to the board through

the JTAG interface. The JTAG interface is used for programming the FPGA and

for debugging via the Chipscope analyser tool. The algorithm is now ported on

to the FPGA and validated using hardware-in-loop simulation technique. The

algorithm now runs on the FPGA with the inputs coming from the Simulink and

outputs is viewed on Simulink. The results are compared with the simulation

results of step 2.

The 14 bit ADC and 16 bit DAC on the FMC150 daughter card can operate

at 250 and 800 Msps respectively. System Generator creates input and output
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Figure 5.2: Block diagram of creation of Signal to Noise ratio in Xilinx System
Generator. The signal is scaled and noise added to both In-phase and Quadrature-
phase signals.

Figure 5.3: High level schematic of ED implementation using SYSGEN blocks.
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Figure 5.4: Data flows between Simulink and ML605 FPGA board for hardware
co-simulation.

Table 5.1: FPGA resource estimation for energy detection

Number of Comparators Qty
12-bit comparator greater 4
13-bit comparator greater 50
17-bit comparator greater 2
18-bit comparator greater 6
25-bit comparator greater 2
38-bit comparator lessequal 2

Number of Multiplexers Qty
12-bit 2-to-1 multiplexer 2
13-bit 2-to-1 multiplexer 50
25-bit 2-to-1 multiplexer 2
27-bit 2-to-1 multiplexer 2
29-bit 2-to-1 multiplexer 2
30-bit 2-to-1 multiplexer 2
38-bit 2-to-1 multiplexer 3
69-bit 2-to-1 multiplexer 3

16x16-bit multiplier 2
27-bit adder 2
Flip-Flops 21383
16x16-to-33-bit MAC 2

FIFO buffers as the Ethernet/PCIe interface does not have enough bandwidth to

transfer the data converter samples, typically in Mega samples/sec, directly to and

from the board. Therefore in hardware co-simulation, the data is transferred in

burst mode from Simulink to FPGA and back. Samples arriving from the FPGA

are first buffered in FIFO and when it is full, the data is transferred to Simulink

with a data-valid signal. This may lead to discontinuity in samples, however by

implementing large FIFO,16K words for both receive and transmit, the algorithm

can be run for a enough time for evaluation purpose.
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5.3.4 Step 4: Real time test with instrumentation

In this stage, the performance of sensing algorithms are tested in real-time using

a RF signal generator. Fig. 5.5 is a block diagram of the test setup for real-time

evaluation. The RF signal from the signal generator is burst modulated using an

external symbol clock. The signal generator is set to pulsed mode, with BFSK

modulation, a pulse period of 0.5 ms with a duty cycle of 50%. The required SNR

is created by suitably attenuating the noise power in the noise generator as shown

in Fig. 5.6. The noisy signal is fed to the FMC150 ADC/DAC board on FMC

connector ML605 FPGA board. The ADC samples are processed by the algorithm

running on the FPGA. The detection output is a discrete signal whose state is

high if the signal is present, otherwise, it is zero. This discrete signal is connected

to Channel A of the oscilloscope. The symbol clock is also fed to Channel B of the

oscilloscope. Therefore Channel 1 and Channel 2 show the actual burst and the

detected burst waveforms respectively. The ratio of the burst durations observed

on the oscilloscope is used to calculate the Pd. The experimental setup is shown

in Fig. 5.6.

Figure 5.5: Functional setup for Real time performance evaluation.

A BFSK signal of bandwidth 200 KHz centered at 70 MHz is generated using

Agilent 4430B signal generator. Random noise of fixed power is generated using

a noise generator (RS SMBV 100A). The signal power is combined with the noise

power in a power combiner (Pasternak 2000). The signal of the desired SNR is

generated by keeping the noise power fixed while varying the signal power to the

combiner using an attenuator. The test conditions of the signal and noise are

given in Table 5.2.

The resultant signal of desired SNR is input to an analog bandpass filter of centre

frequency 70 MHz with a bandwidth of 10 MHz. The filtered signal is input to
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Figure 5.6: Realtime Spectrum Sensing algorithm evaluation Setup : (1) Noise
Generator RS SMBV 100A, (2) Signal Generator Agilent 4430B, (3) Paster-
nak 2000 Power Combiner, 70 MHZ BPF (4) Xilinx ML605 with Virtex-
6 XC6VLX240T-1FFG1156 FPGA and FMC-150 ADC/DAC add-on card,
(5)Simulink and ISE running on Laptop

an Add-On FMC 150 Mezzanine card [60] on the ML605 FPGA board [99]. Here

it is sampled at 61.44 MHz. This results in an aliased signal at 8.56 MHz. The

signal of interest is extracted by applying this to a digital bandpass filter centred

at 8.56 MHz with a bandwidth of ± 3 MHz. The rate reduction is obtained by

decimating the signal by a factor of 10. Due to the rate reduction the signal is

effectively resampled with a sampling frequency of 6.144 MHz thus resulting in the

signal getting translated to an Intermediate Frequency (IF) of 2.416 MHz. This

input is fed to a mixer with a local oscillator frequency of 2.416 MHz. The local

oscillator (for converting the IF signal to baseband) is generated by a high accuracy

Direct Digital Synthesizer (DDS). The DDS consists of a phase accumulator which

drives a high frequency Digital-to-Analog (DAC) Converter. Sine waves, with

micro Hertz precision, can be produced by incrementing the accumulator with

small phase steps and resetting it every 2π radians. The resulting baseband signal

is low pass filtered with a corner frequency of 200 KHz. It is followed by a rate

decimation by a factor of 10 for generating the baseband I(n) and Q(n) samples

at 614.4 KHz rate. The signal flow is shown in Fig. 5.8.
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Figure 5.7: Flow chart of CAV implementation on Virtex 6 FPGA
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Table 5.2: Signal capture conditions

sl Description Conditions
1 Signal frequency 70 MHz
2 Signal power level -20 dBm
3 Noise Band width 6 MHz
4 70 MHz Bandpass filter +/- 3 MHz @ - 3dB
5 70MHz BPF loss -5.17 dB
6 Power Combiner loss -3 dB
7 FFT 64 K
8 Sample rate 61.44 MHz
9 Aliased frequency 8.56 MHz

Figure 5.8: Intermediate frequency to Baseband signal processing

Figure 5.9: 64 K FFT of the noisy signal at an SNR of -11.5 dB
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Table 5.3: SNR calibration : Actual vs Computed on FPGA

At Power Combiner After FFT
Signal
Generator
power,
dBm

Noise
Generator
power,
dBm

Input
SNR,
dB

Computed
Signal
Power,
dBm

Computed
Noise
Power,
dBm

Computed
SNR,
dB

-20 -8.27 -11.73 -28.17 -16.69 -11.48
-20 -13.27 -6.73 -28.17 -21.63 -6.54
-20 -18.27 -1.73 -28.17 -26.81 -1.36
-20 -23.27 3.27 -28.17 -31.73 3.56

5.4 SNR calibration

Calibration is carried out to ensure that the noise added to the signal is resulting

in the desired SNR. To validate this, a 64K FFT is computed on the sampled

data and the SNR is computed. The 64K FFT of the captured signal at SNR

of -11.5dB is shown in Fig. 5.9. This figure indicates that the 70 MHz carrier is

positioned at 8.56 MHz as expected. The agreement between actual and computed

SNR is less than 0.4 dB as listed in Table 5.3.

5.5 Simulation and real-time test results

For algorithm simulation, random burst of a BFSK modulated signal of 450 frames,

of 512 samples each, are created. The modulated signal power is normalised to

unity. Flat Rayleigh fading is added to the signal, and the necessary SNR is

created by adding random noise, of unit variance, to the scaled signal power. The

SNR is varied from -20 dB to +10 dB. The I(n) and Q(n) is generated from the

received signal, and the test statistics are computed for energy and CAV detection.

The leading and trailing edges of the burst are detected. The first and second edges

are indicating that the channel is occupied or vacant respectively. The number of

frames between the two detected edges is the sensed length. The ratio of sensed

length to total burst length gives the probability of detection (Pd). For the CAV

simulation, the sample covariance matrix is computed and the ratios of T1 and

T2 is computed. Rising and falling edges are detected when T1/T2 > 1.1 and <

0.8 respectively.
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Table 5.4: Detection sensitivity vs number of sample per frame

Number
of samples

ED CAV

32 +2 –
64 0 -12
256 -4 -15
512 -4 -16
1024 -6 -16
2048 -8 -16

For the real-time burst generation, the signal generator is set to pulsed mode,

with BFSK modulation. The gating clock is set to 1 KHz and this is fed to the

external trigger of the signal generator. The output is therefore pulsed with an

ON time of 0.5 ms and an OFF time of 0.5 ms. This gating clock is fed to the

Channel A of the oscilloscope. The FPGA executes the sensing algorithm and

outputs a discrete which goes high on the rising edge and goes low on the falling

edge of the burst. This is fed to Channel B of the Oscilloscope. This is shown in

Fig. 5.10. The ratio of the ON time of the input pulse and detected pulse is used

to calculate the Pd. The detection sensitivity of the two schemes as a function of

number of samples is tabulated in Table 5.4.It is observed that beyond 512 samples

there is little improvement in sensitivity. Therefore all real-time implementations

were carried out for a frame size of 512 samples.

5.6 Results and discussion

The two algorithms namely ED and CAV are implemented on the FPGA and the

SNR vs Pd results are shown in Fig. 5.11. It is observed that Pd = 0.9 is achieved

at SNR of -3 and -17 dB for ED and CAV algorithms respectively. For energy

detection the threshold is fixed and is a function of required Pf and the number of

samples per frame [57]. Therefore the detection performance falls suddenly below

-3 dB SNR when the frame energy falls below the threshold. The SNR Wall

phenomenon is valid for energy (radiometer) detection [30]. The sensing (locking)

time for the two algorithms is shown in Fig. 5.12 plots. The ED and CAV take

approximately 2-3 ms for execution. The processing time changes sharply and

becomes large at the SNR where the algorithm starts failing. 2-3 ms delay is not

significant considering that a burst lasts for tens of seconds. This result indicates
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Figure 5.10: Real time spectrum sensing capture on digital oscilloscope

that about 1000 channels can be scanned in the 2 seconds allowed by the IEEE

802.22 standard [100]. The performance of CAV and ED algorithms for Matlab

simulation, Simulink with SYSGEN blocks, Hardware Cosimulation and in Real

time (RT) are shown in Fig. 5.13.

From this figure it is inferred that Pd = 0.9 occurs at SNR of -8 and -18 dB

for ED and CAV algorithms respectively. The degradation from simulation to

real-time is 5 dB for ED and less than 1 dB for CAV indicating its robustness. It

is clear that the degradation in sensitivity from algorithm simulation to real-time

can range from 1 to 5 dB. This margin has to be built into the system design

to ensure reliable performance. Table 5.5 gives the resource utilization on the

FPGA for the real-time implementation of the two algorithms. As expected the

ED utilizes the least-resources followed by CAV. Fig. 5.14 shows the performance

of ED and CAV algorithms for BFSK and DVBT signals. ED performs identically

for BFSK and DVBT whereas CAV detects BFSK but fails to detect the DVBT

signal. This can be attributed to the lack of correlation in the DVBT signal.
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Figure 5.11: Pd vs SNR Comparison of two schemes in real-time on FPGA with
pulsed input.
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Figure 5.12: Sensing time vs SNR of the pulsed signal in real-time on FPGA
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Figure 5.13: Pd vs SNR Comparison of ED and CAV schemes in all four stages
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Figure 5.14: Pd vs SNR for ED and CAV for BFSK and DVBT. Note that ED
works for both BFSK and DVBT whereas CAV fails in the case of DVBT , due
to lack of correlation.
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Table 5.5: Resource utilization on FPGA

Resource on Virtex 6 FPGA Available Utilization Percentage
CAV ED CAV ED

Number of Slice Registers 301,440 8,442 1800 2 1
Number of Slice LUTs: 150,720 8,502 1401 5 1
Number of occupied Slices: 37,680 2,552 519 6 1
Number of bonded IOBs: 600 76 25 12 4
Number of RAMB36E1/FIFO36E1s 416 0 0 0 0
Number of RAMB18E1/FIFO18E1s: 832 1 1 1 1
Number of DSP48E1s: 768 129 44 16 5

5.7 Conclusions

The CAV and ED algorithms are implemented on Virtex-6 FPGA. From the sim-

ulation and implementation results, it is concluded that the sensing time varies

between 2 to 4 milliseconds within their SNR range of detection. Simulation on a

DVBT signal demonstrates that ED algorithm can achieve SNRwall of -8dB SNR,

whereas CAV fails to detect, due to lack of correlation in the signal. However,

when the signal is correlated, CAV outperforms the ED algorithm. The FPGA

resource utilization is lower for ED compared to CAV. We have implemented two

spectrum sensing algorithms on a Virtex-6 FPGA and have demonstrated a cali-

bration method for proper evaluation of spectrum sensing algorithms in real-time.

We have shown that real-time results could be many dB off from the simulation

for ED whereas CAV performance is consistent. However, CAV would fail if the

signal lacks correlation whereas ED algorithm would still perform.
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Chapter 6

Spectrum sensing with envelope

tracking and signal moment

6.1 Objective

The objective of this chapter is to develop an algorithm for improving the detec-

tion using a time domain approach. The approach is based on the concept that

whenever the PU starts transmitting, a step change occurs in the signal strength.

If this could be captured using envelope tracking, then detection is possible. To

make the algorithm more robust, the signal moment could be tested against a

threshold to confirm the change is signal strength. The detection performance is

compared with the ED algorithm. Real-time validation results are also presented.

6.2 Introduction

In the case of Covariance Absolute Value (CAV) algorithm, detection is achieved

by exploiting the correlation in the sample covariance matrix [16]. The CAV algo-

rithm performs well for low SNR. However, it gives satisfactory performance only

if the signal is correlated. Although the CAV technique works at low SNR, it re-

quires a large number of samples which implies longer sensing time. However, CAV

is efficient for sensing correlated signals whereas ED suffers from SNR Wall limi-

tation. Other approaches for spectrum sensing include Discrete Wavelet transform

and Cyclostationary technique [19],[101]. These techniques assume apriori knowl-

edge of the signal. Hardware implementation of Energy detector on a wireless

testbed is reported in [57] wherein sensing time was varied to achieve a predeter-

mined Pd at low SNR regime. Hardware implementations of spectrum sensing

algorithms are also reported on testbeds such as WSD, BEE2, USRP, and SDR

[102],[103]. Few studies have focussed on sensing time for a given modulated signal

of finite duration. Moment-based sensing algorithms were reported in the liter-

83
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ature for spectrum sensing [43],[44]. In [28] noise variance was estimated using

the optimal moment pair for improving the performance of the energy detection

technique. The estimators were derived for BPSK and QAM constellations. In

[45] a fourth order detector was derived for detection of linearly modulated sig-

nals. In [104] the authors assumed that the sum of interference is Gaussian, based

on the Central Limit Theorem, whose kurtosis is zero. So the kurtosis is used

as a test statistic to detect the signal. Generally, these detectors are tuned for a

particular constellation. A pth order detector for detection in independent Laplace

noise for non-fading channels is investigated in [105]. A novel time-domain algo-

rithm, named M4-Edge, is proposed to overcome the limitations of CAV and ED

algorithms. The proposed algorithm tracks the envelope of the signal burst, of the

primary user, in the time domain. The fourth central moment of the envelope is

evaluated and compared with a threshold to detect the rising and falling edges of

the burst and hence detecting the presence of the signal. Further, the algorithm is

implemented on a Xilinx Vertex-6 Field Programmable Gate Array development

board for evaluating its real-time performance. In real-time, the performance of

the proposed algorithm is compared with ED and CAV algorithm by consider-

ing both BFSK and DVBT signal corrupted by Additive White Gaussian Noise

(AWGN) and flat fading, as the Primary user signal to be sensed. The probabil-

ity of detection, sensing time and resource utilisation are used as the metrics for

measuring the efficiency of the algorithms.

6.2.1 M4-Edge

The algorithm is based on the idea that the presence of a signal can be declared by

detecting the rising− edge and falling− edge of the signal burst. The algorithm

has three steps namely:

6.2.1.1 Envelope tracking

The envelope of the Mean, mean tracking, Upper, maxima tracking and Lower,

minimum tracking, of the frame envelope of the signal burst is computed and

tracked. They are denoted as Uµ ,UU and UL envelopes. The envelope tracking

should react fast when there is an increase/decrease in the envelope, to reflect the

start/end of the signal, and decay/ramp slowly when the signal falls/rises for a

small duration, either due to fade or due to outliers in the additive noise[106].
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1.The frame envelope is computed as:

U(k) =

Ns∑

n=1

(s(n)) (6.1)

Where, k is the frame number, s(n) is the nth sample of the input signal, Ns is

the number of samples per frame.

2. Initially the Um, UU and UL are set as:

UU(k) = Um(k) = UL(k) = U(k); 0 < k < p; (6.2)

3. The mean envelope, µ is given as:

Uµ(k) =
1

p+ 1

k∑

k−p

U(k) (6.3)

where, p is the number of frames over which the mean is computed. Thus µ(k)

tracks the mean envelope of the received signal.

4. From the p + 1th frame, the value of the Upper envelope, UU is set to

latest computed value of the envelope U(k), in case of an increase in the envelope

compared to the previous value(fast-attack). Otherwise, the Upper envelope is

allowed to decay slowly with a recursive low-pass filter of first order as per:

δ(k) = |Up(k)| − |UU(k − 1)| (6.4)

|UU(k)| = |Up(k)| ; δ(k) > 0 (6.5)

UU(k) = UU(k − 1)α− Up(k)(1− α) ; δ(k) ≤ 0 ; 0 < α < 1 (6.6)

The envelope value, UU is censored for removing outliers induced by noise, as

follows:
if |UU(k)|/|UU(k − 1)| > β

then |UU(k)| = β Uµ(k)

else |UU(k)| = |UU(k)|; 0 < β < 2;

(6.7)

where, β is a censoring constant.

5. From the p+1th frame, the value of the Lower envelope, UL is set to latest com-

puted value of the envelope U(k), in case of an decrease in the envelope compared

to the previous value (fast-attack). Otherwise the Lower envelope is allowed to



86 CHAPTER 6. SPECTRUM SENSING WITH SIGNAL MOMENT

ramp up slowly with a recursive low-pass filter of first order as per:

γ(k) = |UL(k − 1)| − |Up(k)| (6.8)

|UL(k)| = |Up(k)| ; γ(k) > 0 (6.9)

UL(k) = UL(k − 1)α + Up(k)(1− α) ; γ(k) ≤ 0 ; 0 < α < 1 (6.10)

6. The envelope value UL is censored for removing outliers induced by noise, as

follows:
if |UL(k − 1)|/|UL(k)| > β

then |UL(k)| = Uµ(k)/β

else |UL(k)| = |UL(k)|
(6.11)

The detailed steps are shown in Algorithm 2. Fig. 6.1 plots the envelope tracking

of the M4 EDGE algorithm at an SNR of -10 dB . It is clear that the envelopes

are tracked even at low SNR because of the peak holding,first order filtering and

censoring. From the figure it may be inferrred that though the computed envelope

looks entirely random in amplitude , the algorithm is able to track the signal burst.

6.2.1.2 Moments

In general the pth central moment of a random variable y is given by

Mp(y) = E [(y − µ)p] (6.12)

where, E[.] and µ denotes expectation value and sample mean respectively. The

value of p as two or four corresponds to Variance and 4th Central Moment of the

random variable y respectively. Even and odd central moments give information

about the broadness and skew of the distribution respectively. In this step the

fourth central moments of the Upper, Lower and Mean envelopes are computed

and denoted as M4U and M4L and M4µ respectively.

6.2.1.3 Decision

The burst of BFSK signal has a rising and a falling edge. Our aim is to detect the

rising and falling edges and compare it with the transmitted burst. The presence

of an edge is declared if the test statistic is greater than a threshold. Since this is

a time domain approach for detection, intuitively the threshold must be dynamic
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Input: α, β, ρ, λ, Frame envelope UP , Frame number, SNR, p, k
Output: risingedge, fallingedge
for SNRcount = 1 to SNRmax do

Compute frame envelope as (6.1)
For first p frames , set Mean(Uµ), Upper(UU), Lower(UL) envelopes as
(6.2)
Compute the Mean(Uµ) as (6.3)
Compute Upper(UU ) and apply censoring as (6.6) and (6.7) respectively.
Compute Lower(UL and apply censoring as (6.10) and (6.11)
respectively.
Compute the test statistics M4U and M4L and M4µ as (6.12)
Set threshold ρ as (6.13)
Initialise kcount, edgecount=0
for kcount =1 to kmax do

for M4µ(k) > ρ and M4U (k) > ρ OR M4L(k) > ρ do
edgecount ← edgecount+ 1
if edgecount > 1 then

fallingedge ← kcount
else

risingedge ← kcount
end

end
kcount← kcount+ 1

end
SNRcount ← SNRcount + 1

end
return risingedge, fallingedge

Algorithm 2: M4-Edge detection algorithm

and related to the mean of the signal. The threshold ρ is set as:

ρ = Uµ(k)λ

if M4µ(k)/Uµ(k) > 1; then λ = 1

else 0 < λ < 1

(6.13)

where, λ is optimised by simulation.

The following conditions must be satisfied for at least 5 frames for declaring

the detection of an edge:

M4µ(k) > ρ

M4U (k) > ρ OR M4L(k) > ρ
(6.14)
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Fig. 6.2 shows the input and output templates which are used to compute Pd. The

first and second detected edge namely rising and falling edges of the burst are

detected and their difference is denoted as the ‘detected burst length’. The ratio of

‘detected burst length’ to ‘actual burst length’, known apriori during simulation, is

termed as Probability of Detection (Pd). The samples for which there is no signal

but is detected as present gives the Pf .
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Figure 6.1: Envelope tracking at an SNR of -10 dB (upper figure) and -16 dB
(lower figure). The signal burst is between frames 50 and 375. The envelope
tracking alrogithm is able to track the signal burst at an SNR of -10 dB, but is
not able to track at -16 dB.
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Figure 6.2: Plots of the actual burst length and detected burst length.

Figure 6.3: High level schematic of M4-Edge implementation using SYSGEN
blocks.



90 CHAPTER 6. SPECTRUM SENSING WITH SIGNAL MOMENT

Figure 6.4: Real-time Spectrum Sensing evaluation Setup: (1) Noise Genera-
tor RS SMBV 100A, (2) Signal Generator Agilent 4430B, (3) Pasternak 2000
Power Combine, 70 MHZ BPF and attenuator, (4) Xilinx ML605 with Virtex-6
XC6VLX240T-1FFG1156 FPGA and FMC-150 ADC/DAC add-on card, (5) ISE
running on Laptop

6.3 Hardware details, calibration and signal pro-

cessing

6.3.1 Hardware details

In this work, the sensing is performed using the ML605 Xilinx FPGA board [99]. It

hosts a high performance Virtex-6 XC6VLX240T-1FFG1156 FPGA, 16 MB flash

and 512 MB of DDR3 flash. It communicates with the computer on 10/100/1000

Tri-speed Ethernet. The master clock runs at 200 MHz differential. A FMC 150

(FPGA Mezzanine Card) board with ADC and DAC features is plugged into the

ML605 board. The FMC board has two channels of 14 bit ADC that can give up

to 250 MSPS. It has two channels of 16 bit DAC. The specifications of the FMC

board are given in [60].
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6.3.2 Simulation and Real-time test results

For simulation, 450 frames of a random burst of a BFSK modulated signal is

generated. Each frame consists of 512 samples. The start and end of a burst

are detected using the rising and falling edges. The modulated signal power is

normalised to unity. Flat Rayleigh fading is added to the signal and the necessary

SNR is created by adding random noise, of unit variance, to the scaled signal

power. The SNR is varied from -20 dB to +10 dB. The constant λ and α is set to

0.2 and 0.99 respectively. β is set to 1.03 and 0.97 for upper and lower envelopes

respectively. The high level schematic of M4-Edge implementation using Sysgen

block is shown in Fig. 6.3

The test setup for real-time evaluation of M4-Edge algorithm is shown in Fig. 6.4.

The CAV and ED algorithms have also been implemented on the ML605 FPGA

board, details of which are given in Chapter 5.

6.4 Results and discussions

Fig. 6.5 is a plot of the fourth central moments of the Upper, Mean and Lower

envelopes for a BFSK signal for a duration of 450 frames. Each frame has a length

of 512 samples. The trace with the caption Signal Burst is a plot of the signal

presence viz. the signal is present between frame number 50 to 375 and absent

elsewhere. From this figure, it is observed that at the start and end of the signal

burst, the moments are much greater than the threshold. Secondly, the moments

have small values for the rest of the burst. The first and second instances, where

the threshold is exceeded, are detected as the rising and falling edges of the burst

respectively. It is also observed that the peak of the moments occurs with delays

with respect to the rising and falling edges. The time constants used for envelope

tracking introduce these delays. The values of the time constants are optimised to

ensure to ensure a low Pf . The trace captioned threshold is the decision threshold,

in the M4-Edge algorithm, for deciding between the binary hypotheses H0, signal

absent, and H1, signal present. It is observed from the figure that the threshold

is not constant but is adapted dynamically. It is also observed that the threshold

increases at the rising and falling edges and elsewhere it is greater than the the

moments. The first figure depicts a high SNR of + 10 dB wherein the moments

are far greater than the threshold. The second one is at an SNR of -16 dB wherein
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Figure 6.5: Plot of the Fourth Central Moment for SNR of -10 dB and -16 dB
shown in upper and lower figures respectively. The signal burst begins at frame
number 50 and ends at frame number 375. In the upper figure,note the delay in
the M4 peaks from the leading edge and falling edge of the signal burst. This
delay is due to the time constants used for envelope tracking.
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Figure 6.6: Pd vs SNR Comparison of three schemes in real-time on FPGA with
pulsed input. Pf = 0.1

the moment at the rising edge is absent and the moments at the falling edge are

below the threshold.

Three algorithms namely Energy detection, CAV and M4-Edge are implemented

on the Virtex-6 FPGA and evaluated their real-time performance. Fig. 6.6 is a

plot of the SNR vs Pd for BFSK signal. From this figure, it is observed that the

ED, M4-Edge and CAV algorithms reach a Pd of 0.9 at an SNR of -3, -12 and -17

dB respectively.

For energy detection, the threshold is fixed and it is a function of only the

number of samples per frame. Therefore the detection performance falls sud-

denly below -3 dB SNR when the frame energy falls below the threshold. The

SNR Wall phenomenon [30] is valid for energy (radiometer) detection. However,

in our proposed algorithm the change in the variance at the start and end of the

burst is magnified to detect the burst. So this algorithm will work as long as

the magnification produces a value significantly above the selected threshold. Al-

though the proposed M4-Edge algorithm detects the signal upto SNR of -12 dB

as compared to -17 dB for CAV, it does not require a signal to be correlated.

Fig. 6.7 plots the sensing time of all the three considered algorithms. The ED and

CAV take about 2-3 mS whereas the M4-Edge averages about 4 mS for faithful
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Figure 6.7: Sensing time vs SNR of the pulsed signal in real-time on FPGA. The
sensing times are 2- 3 mSec for ED and CAV and 4 mSec for M4-Edge. The signal
processing load for M4 edge is more and hence the larger processing delay.

detection. The processing time changes sharply and becomes large at the SNR

where the algorithm starts failing. Considering the fact that in normal condition

the burst to be detected will last for tens of seconds this delay is not significant.

The result indicates that about 1000 channels can be scanned in 2 seconds, the

Channel Detection time as per IEEE 802.22 standard.

Fig. 6.8 is a consolidated plot for the three algorithms using the 4 step method-

ology. The plot shows the results of each algorithm in four environment namely

MATLAB, SIMULINK, HW Co-simulation and Real time (RT). Real time refers

to the results obtained in real-time using FPGA board. From this figure, it is

inferred that ED, M4 EDGE and CAV algorithm can detect SNR of -8, -15 and

-18 dB respectively with Pd =0.9 in a simulation environment (MATLAB). The

degradation from simulation to real-time is 5 dB for ED, 3 dB for M4 EDGE and

less than 1 dB for CAV indicating its robustness. It is clear that the degradation

in sensitivity from Matlab simulation to real-time can range from 1 to 5 dB. This

margin has to be built into the sensing system to ensure reliable performance.

Table 6.1 gives the FPGA resource utilization for the real-time implementation of

the three algorithms. As expected the ED utilizes the least-resources followed by

CAV and M4-Edge. The resource usage of the M4-Edge can be explained by the

need to track the envelopes, implement the censuring and decay equations and
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Figure 6.8: Pd vs SNR Comparison of three schemes in all four stages. This plot
is combination of four plots. Note the spread of the traces , going from simulation
to Real time. Pf =0.1

calculate the moments. Fig. 6.9 is a plot of Pd as a function of SNR for Energy

detection, CAV and M4-Edge algorithms for a DVBT (Digital Video Broadcast

Terrestrial) signal. DVBT signal is an uncorrelated signal and used for compar-

ing the algorithm efficiency. ED and M4-Edge perform identically for BFSK and

DVBT whereas CAV detects BFSK and fails to detect the DVBT signal. It can

be attributed to the lack of correlation in the DVBT signal. The CAV algorithm

fails to give a good result for an uncorrelated signal (DVBT) as compared to the

M4-Edge algorithm. Detection is achieved with a smaller number of samples by

M4-Edge as compared to the ED technique (refer Fig.4 of [29]). The fourth cen-

tral moment gives the sharpest peak and performance is consistent even at -12 dB

SNR. We have also investigated the performance of the proposed algorithm with

higher moments. However, as the order of the moment increases the peak tends to

have a saddle like structure with multiple maxima and minima and thresholding

becomes difficult at low SNR.
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Table 6.1: Resource utilization of different algorithms on FPGA

sl Resource on Virtex 6 FPGA Available Utilization Percentage
CAV M4 EDGE ED CAV M4 EDGE ED

1 Number of Slice Registers 301,440 8,442 24,214 1800 2 8 1
2 Number of Slice LUTs: 150,720 8,502 23,723 1401 5 15 1
3 Number of occupied Slices: 37,680 2,552 6,677 519 6 17 1
4 Number of bonded IOBs: 600 76 95 25 12 15 4
5 Number of RAMB36E1/FIFO36E1s 416 0 0 0 0 0 0
6 Number of RAMB18E1/FIFO18E1s: 832 1 1 1 1 1 1
7 Number of DSP48E1s: 768 129 362 44 16 47 5

6.5 Conclusions

The sensing time for all three algorithms varies between 2 to 4 milliseconds within

their SNR capability envelopes. The FPGA resource utilization is lowest for ED

and highest for the M4-Edge algorithm. The proposed algorithm outperforms ED

and has equivalent performance to CAV in Signal-to-Noise-Ratio (SNR) range of

-12 to +10 dB. The proposed algorithm has the additional benefit that it performs

well when the signal is not correlated. The experimental results reveal that, in

the case of the (Digital Video Broadcast Terrestrial) DVBT signal, the proposed
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M4-Edge algorithm detects the signal with a probability of detection 0.9 at -12dB

SNR, whereas CAV algorithm fails to detect, due to lack of correlation in the

signal.

The proposed M4-Edge algorithm has shown performance better than ED and

comparable to for correlated signal. However, CAV would fail if the signal lacks

correlation whereas the proposed algorithm would still perform.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

This thesis has focussed on four facets of the spectrum sensing problem namely:

improved Energy detection using noise power estimation, SNR estimation using

covariance method, detection using envelope tracking and signal moment and real-

time evaluation of the ED, CAV and M4-Edge algorithms on a Virtex 6 FPGA.

Two different noise power estimation techniques, namely Unbiased and LP,

have been studied for improving the performance of Energy detection. It is shown

that the LP estimator gives superior performance for white and blue noise, how-

ever its performance is weak in the case of red noise. The Unbiased estimator

works uniformly for all types of noise but the improvement over simple energy

detection is not significant. We have shown that the LP and unbiased estimators

perform satisfactorily with Rayleigh fade which is expected in the real world. The

study indicates that energy detection with these improvements could be used in

situations where the noise type is known apriori to be white or blue.

The probability of energy detection with LP estimator is 5 and 6 dB better

than the Unbiased estimator, and W/o estimation respectively, for additive white

noise. The LP estimator outperforms the unbiased estimator at all sample sizes.

For white noise, the Unbiased and W/o estimation performance is similar.

The detection performance of the LP estimator is better than the Unbiased and

W/o estimation for additive blue noise. The PSD for blue noise increases at the

rate of 3 dB/octave. The LP estimator implements an inverse filter whose input is

the signal autocorrelation and the output should be white. However, in the case

of blue noise this condition is not met, and the LP estimate has an error resulting

in lower Pd.

LP estimator works well with white and blue noise. However, it does not

perform well with red noise. As the power in red noise falls off at the rate of

6 dB/octave, the LP estimator sees a varying noise, unlike the white noise case

99
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Table 7.1: Detection performance at sample size of 512

Estimator White Noise (dB) Blue Noise(dB) Red Noise(dB) Rayleigh fade(dB)

Unbiased -2 -2 +1 -4

LP -7 -6 No detection -8

ED +1 0 +2 -2

where the power is the same at all frequencies. The LP estimator is based on

the assumption that the all-pole filter produces the waveform when excited with

a white noise input. Therefore the noise power estimate is not accurate.

Unbiased estimator works well with all types of noise, but the improvement is

marginal with respect to W/o estimation. However, it is still able to detect in

the case of additive red noise. ED without noise power estimation gives the same

result irrespective of noise types.

The effect of Rayleigh fading has been investigated. Both estimators are con-

sistent for a channel with and without fading. ED performance is marginally less

with fade. The consistent performance could be attributed to the fact that the

Rayleigh channel simulated is a flat fading (single path) channel, which introduces

only a gradual change in the envelope. The amplitude variations induced by the

fading have little impact on the computed peak energy.

The LP estimator is able to estimate the PSD in both cases, with and with-

out fade, as the BFSK waveform has distinct peaks. However, it also implies

that its performance for modulations that do not have distinct peaks may not be

satisfactory. The results are summarised in the table 7.1.

The effect of noise variance estimation on multi-node cooperative sensing was

also investigated. It was demonstrated that the detection performance and ROC

improve significantly with noise variance estimation, regardless of the combining

scheme used at the fusion centre. The performance for single node is compared

with the cooperative sensing to demonstrate the improvement. On an average

improvement of 3 dB or better was obtained in multinode sensing with noise

variance estimation.

SNR estimation for Rayleigh and Rician fading channels for M-ARY FSK sig-

nal with AWGN is presented. The proposed algorithm has an inherent feature

of signal detection along with SNR estimation. It gives satisfactory performance
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compared to PDA MLE for a wide range of SNR. The performance of the algo-

rithm was evaluated under both Rayleigh and Rician channel fading conditions.

The proposed method achieved NMSE better than 10−2 over an SNR range of -20

to +20 dB for M=2,4 and 8 whereas PDA MLE achieves an NMSE of 10−2 to

10−3 for positive SNR only.

The numerical results demonstrated that the Normalized Mean Square Error

(NMSE) of the proposed algorithm is better than the PDA MLE. The NMSE is

consistently less than 10−2 over the SNR range -20 dB to +20 dB using 512 sam-

ples. Further, the algorithm can detect the presence of a signal with a probability

of detection 0.9 up to -8 dB SNR without any extra computation. However, the

detection performance can be improved by increasing the number of samples. The

proposed algorithm can be used for signal detection and SNR estimation for a

broad range of SNR.

The performance of the ED and CAV algorithms, was compared, in the real-

time testbed, by considering both BFSK and DVBT signal corrupted by Additive

White Gaussian Noise (AWGN) and flat fading. The details of the software imple-

mentation and firmware are detailed. The implementation results were analysed

based on the parameters like sensing time and logic blocks utilisation. Further,

the algorithms were implemented on a Xilinx Virtex-6 Field Programmable Gate

Array development board for evaluating their real-time performance.

The sensing time for all three algorithms varies between 2 to 4 milliseconds

within their SNR capability envelopes. The FPGA resource utilization is lowest

for ED and highest for the M4-Edge algorithm. The M4-Edge algorithm outper-

forms ED and has equivalent performance to CAV in Signal-to-Noise-Ratio (SNR)

range of -12 to +10 dB. It has the additional benefit that it performs well when

the signal is not correlated. The experimental results reveal that, in the case of

the Digital Video Broadcast Terrestrial (DVBT) signal, the M4-Edge algorithm

detects the signal with a probability of detection 0.9 at -12dB SNR, whereas

CAV algorithm fails to detect, due to lack of correlation in the signal. M4-

Edge algorithm has shown performance better than ED and is comparable to CAV

algorithm for correlated signal. However, CAV fails if the signal lacks correlation

whereas the M4-Edge algorithm still performs. A systematic approach to evaluate

the real-time performance of spectrum sensing algorithms is demonstrated.

Two spectrum sensing algorithms were implemented on a Virtex-6 FPGA and

a calibration method for proper evaluation of spectrum sensing algorithms in real-
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time was implemented. The real-time results are many dB off from the simulation

result in case of ED, whereas CAV alogorithm gives consistent performance.

The probability of detection, sensing time and resource utilization were used

as the metrics for measuring the efficiency of algorithm. It was concluded that

ED consumes less resource whereas M4-Edge algorithm detects presence of signal

with Pd=0.9 up to -12 dB.

7.2 Future work

1. It is required to use off-the-air RF signals to test spectrum sensing algo-

rithms. The signal received suffers attenuation and multipath fading in the

channel. The receiver front-end adds noise to the signal. Synchronisation to

the carrier frequency is also required. So there is a need to study the impact

of these factors on the detection performance of spectrum sensing algorithms.

2. A variety of algorithms are available for spectrum sensing with varied imple-

mentation complexity. However, if the channel SNR is known then the most

suitable and low complexity algorithm can be used which could improve de-

tection time. So adaptation of spectrum sensing algorithm with respect to

channel SNR is an area of study.

3. Compressive sensing is a new area of research for spectrum sensing. It re-

quires a large bandwith receiver which can analyse a large number of channels

in one capture. Since channel occupancy is very low, the resulting matrix

has a sparse nature. This sparse nature is exploited to reduce the number

of samples required for detection. Implementation of compressive sensing is

an area of study.

4. Cognitive radio assumes an underlying SDR platform. The cognitive engine

decides on the strategy to implement: waveform, power or algorithm, to

achieve robust detection. Therefore future study is required for real-time

implementation and testing on an SDR platform.
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