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INTRODUCTION 

 
Everyday living organisms perform a wide variety of functions which 

are controlled by a multitude of periodic processes. Many of these functions 

are evolutionarily adapted to the continuous changes in environmental 

conditions for which organisms have acquired an endogenous mechanism. 

This mechanism exhibits the characteristics of self-sustaining oscillations 

called biological rhythms.  

A biological rhythm is a biological event or function that is repeated 

through time in the same order with the same interval. These rhythms are 

generated in two ways, (i) exogenous which are directly driven by external or 

environmental cues and (ii) endogenous which are driven by a self sustaining 

oscillator or biological clock, e.g. body temperature, sleep-wake cycle. There 

are various types of biological rhythms based on the length of the period. 

Circannual rhythms are the ones which have a period of 365 days. Hence, 

these are also called yearly rhythms (e.g. gonadal development in some 

species). Circalunar rhythms follow the lunar cycle which have a period of 

about 29 days (e.g. menstrual cycle, reproduction in marine organisms). 

Circadian rhythms have an approximate period of about 24 hour (h) (e.g. 

sleep-wake cycle). Circatidal rhythms occur due to tidal waves and have a 

period of 12.4 h (e.g. activity of crab on shore line). Of all these rhythms, 

circadian rhythms have a major significant effect on organism’s physiology 

(Jagota and Gupta, 2006).  

Circadian rhythms regulate the function of living systems at virtually 

every level of organization from molecular to organismal (Takahashi, 1995). 

In words of a well known scientist, Aschoff, “circadian rhythms establish a 

mirror of the changing external world in the internal milieu and thereby 

prepare the organism for programmed or predictable environmental changes,” 

(1960). Study of biological rhythms and the biological clock is known as 

‘Chronobiology’. Study of circadian rhythms has many important implications 

in human life. 
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Importance of Circadian Rhythms: Human Relevance: 

 

The effect of trans-meridian flight causes jet-lag and continuous 

changes in light-dark cycles that occur in cases of shift workers lead to altered 

circadian rhythms. This alteration results in desynchronization of the 

pacemaker rhythm to the external environment and also affects phase 

alignments between different peripheral clocks (Yamazaki et al., 2000). 

Recent findings on shift-working as well as frequent time zone travelling have 

suggested the disturbances on the circadian system and its effect on health. 

Several reports demonstrated increased risk of breast cancer (Schernhammer 

et al., 2006), colorectal cancer (Schernhammer et al., 2003) and prostrate 

cancer (Kubo et al., 2006). Diseases like heart disease (Fujino et al., 2006) and 

diabetes (Morikawa et al., 2005) are also reported in shift-workers. All these 

effects on shift-workers are explained through the disruption of the circadian 

clock due to phase-shifts in the sleep-wake cycle. The phase-shifts result in 

desynchronization of multiple physiological functions and alter hormonal 

status especially melatonin levels (Anon, 2002).   

Many physiological and behavioral parameters change within a 24 h 

cycle. Understanding the natural rhythm and sampling at different times of the 

day would help in better diagnosis and status of the disease. The efficacy of 

certain drugs is dependent on time of delivery. Optimizing schedules for drug 

administration minimize toxic side effects and increase the therapeutic 

potential (Levi, 1999). There is a circadian variation in the rates of absorption, 

metabolism, target susceptibility and excretion in the beneficial and toxic 

effects of drugs (Edery, 2000). 

 Several disorders such as chronic sleep disturbances, advanced sleep 

phase syndrome (ASPS), delayed sleep phase syndrome (DSPS), manic 

depression, seasonal affective disorders (SAD or Winter depression) are 

associated with altered functions of the circadian timing system (Copinschi et 

al., 2000). These problems can be alleviated by alterations in the light-dark 

schedules (Terman et al., 1995). 

 The rhythms that are generated in the organisms have several intrinsic 

properties. 
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Characteristic features of Circadian rhythms: 

 

Circadian rhythms are ubiquitous in nature. They are found in all plant 

and animal kingdoms including unicellular organisms (Wong and Liao, 2006) 

(Fig. 1). They can be entrained and adjusted to an exact period by zeitgebers (a 

German word which means time givers) so that they are suitable for its 

surroundings. They are affected by light, a major zeitgeber. Rhythms persist 

even in the absence of zeitgebers under constant conditions such as complete 

darkness or complete light and they are said to free-run. The rhythms continue 

to run, but slightly deviates from 24 h as they are not influenced by external 

factors. The natural free-running period is called ‘tau’. The rhythms are 

genetically determined. Their endogenous and free-running nature suggests 

that they generate within an organism which involves a complex molecular 

network. Generation of these rhythms to external cues is pre-adapted driven by 

a circadian timing system.  

     
 

 

 (Dunlap, 1999) 

 

Fig. 1: Circadian rhythms in the universal tree of life 
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The Circadian Timing System: 

 

 The circadian system is comprised of three components, (i) input 

pathways that relay information to the oscillator (ii) the circadian pacemaker 

or clock that is responsible for the generation of rhythms and (iii) output 

pathways that provide temporal information to a wide range of physiological 

and behavioral processes of an organism. The circadian pacemaker or 

biological clock of the circadian timing system governs rhythm generation and 

regulates the phases of biological events within the organism in relation to the 

24 h environmental cycle (Foster, 2002). The suprachiasmatic nucleus (SCN) 

is the circadian pacemaker in mammals. For these events to occur in harmony, 

the circadian system must remain synchronized/ entrained with zeitgebers. 

 

Zeitgebers and Entrainment: 

 

Zeitgebers are the external environmental cues which have the ability 

to reset the clock or central oscillator. Light is one of the most important 

environmental cues (Münch et al., 2005). Other potential zeitgebers are 

magnetic fields, barometric pressure, sound, humidity and social interactions 

(Mrosovsky, 1996). Hence these cues are mainly categorized into photic and 

non-photic stimuli. The time of the zeitgeber is known as zeitgeber time (ZT), 

e.g: in LD: 12:12; ZT-0 is the onset of zeitgeber time (lights on) and ZT-12 is 

the offset of zeitgeber time (lights off). The time determined by a circadian 

oscillator under constant conditions is known as circadian time (CT) i.e in the 

absence of a synchronizing zeitgeber, persistence of rhythmicity. CT-0 is the 

onset of rhythms and CT-12 is the offset of rhythms (Schibler, 2000). These 

external stimuli phase shift and entrain circadian rhythms through distinct but 

interacting mechanisms in the SCN. Phase shift is resetting of a rhythm either 

by advance or delay in the phase of a biological event to the 24 h cycle. Phase-

shifting is an important characteristic feature of circadian clock and a 

fundamental process of all circadian systems from prokaryotes to Homo 

sapiens (Czeisler et al., 1989). The magnitude and direction of phase shifting 

in response to a stimulus depends on the circadian phase of stimulation. The 
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24 h profile for a specific phase resetting stimulus and its characteristic 

features is known as a phase response curve (PRC). These PRCs help in 

understanding the responsiveness and sensitivity of the circadian pacemaker to 

different stimuli (Rosenwasser and Dwyer, 2001).  Phase resetting of the clock 

is important in case of jet-lag, shift workers, people suffering from advanced 

sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS). 

The PRC of light is well established. The intensity and duration of 

exposure to light affects the rhythms. Photic stimulation during late subjective 

day or early subjective night (i.e around subjective dusk) causes phase delays. 

Photic stimulation during late subjective night or early subjective day (i.e 

around subjective dawn) results in phase advances. Photic stimulation in the 

mid-subjective day is ineffective (Rosenwasser and Dwyer, 2001). The PRCs 

of non-photic stimuli are characterized by phase advances during mid-

subjective day and phase delays during mid-subjective night. In addition to 

photic and non-photic cues the pacemaker is also responsive to several 

neurochemicals and neuropharmacological agents. The PRCs of these agents 

resemble PRCs of either photic or non-photic cues. Neurotransmitters and 

neuromodulators like glutamate (Mintz et al., 1999), agonists for 

acetylcholine, histamine, α-adrenaline, substance P (SP) and pituitary 

adenylate cyclase activating polypeptide (PACAP) have been reported to have 

photic like phase shifting effects on the pacemaker. Non-photic like phase-

shifting effects are associated with the neurotransmitters and neuropeptides 

such as serotonin, gamma amino butyric acid (GABA) and neuropeptide Y 

(NPY) (Mistlberger and Holmes, 2000). 

  

The Circadian Visual System:  

 

 As described in Jagota et al., (1999), the circadian visual system is 

anatomically and physiologically distinct from the visual system that results in 

image formation. It consists of a specialized photoreceptive system, subset of 

ganglion cells formed of type III or type W cells. The recipient neurons 

respond to changes in light but do not distinguish the temporal and spatial 

stimuli required for normal vision. Lens of the eye receives light, focuses it on 
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the retina which then conveys the information to the SCN through several 

input pathways. These inputs originate from a specific subset of retinal 

ganglion cells (RGCs) (Moore et al., 1995). The SCN then regulates the 

preoptic, paraventricular and ventromedial nuclei as well as other nuclei. This 

visual system is responsible for synchronization of biological clock with the 

light-dark cycle (Klein et al., 1991), control of pupil size (Lucas et al., 2001), 

acute suppression of locomotor behavior (Mrosovsky, 1999) and melatonin 

release (Cajochen et al., 2000).   

 

Photoreceptors: 

 

Photoreceptors are mainly localized in the retina of the eye (Menaker, 

2003) (Fig. 2). In lower vertebrates, skin also acts as the photoreceptive 

system. Three classes of pigments are considered as photoreceptors for the 

circadian visual system: tetra-pyrrole based heme pigments (Oren, 1996; 

Campbell and Murphy, 1998), cryptochrome (Bouly et al., 2007) and 

opsin/retinal based photopigments (Foster, 1998). Tetra-pyrrole based heme 

pigments are mainly found in humans. Cryptochromes, CRY1 and CRY2 are a 

kind of blue-light photoreceptors present in mammalian retina and SCN (van 

Gelder and Sancar, 2003). They contain a compound called pterin/flavin. 

These photoreceptors absorb light by means of a conjugated derivative of 

flavin. 

 

Fig. 2: Photoreceptors of the circadian timing system. 

 

 

 

 

 

 

 

 

 

(Menaker, 2003) 
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In mammals the photoreceptors for entrainment and phase shifting are 

located in the retina of eye which conveys photic information to the SCN 

(Kennaway, 2002). The receptor is an opsin, vitamin A based pigment called 

melanopsin in rodents (Lucas and Foster, 1999). Melanopsin is exclusively 

expressed in the RGCs. The RGCs with melanopsin form a network of 

dendritic plexes that allows these cells to capture photic stimuli (Provencio et 

al., 2002). Melanopsin containing RGCs are intrinsically photosensitive 

(Berson et al., 2002) and they connect the two lobes of SCN and other areas of 

brain involved in light responses. They play a major role in photic 

entrainment. Apart from conveying photic information to the circadian 

oscillator, melanopsin photoreceptors also contribute to pupillary light reflex 

and acute alterations in motor activity as well as in a broad range of 

physiological and behavioral responses to light (Foster et al., 2003). 

 

The Biological Clock: Suprachiasmatic Nucleus: 

 

 The biological clock is an internal time keeping mechanism capable of 

driving or coordinating a rhythm and synchronizes organism’s internal 

functions to the external cues. In vertebrates including the most primitive 

ones, there are three principal clock structures that interconnect with each 

other and form the central “circadian axis”. They are (i) the retina, (ii) the 

pineal complex (pineal and parietal eye/organ) and (iii) the suprachiasmatic 

nucleus (SCN) of the hypothalamus. These structures control the circadian 

rhythmicity and are capable of sustaining rhythmicity in vitro. The retina is 

found to act as one of the circadian clocks in all vertebrates from pisces to 

mammals (Sakamoto et al., 2000). In pisces and amphibians retina and pineal 

act as main clock structures (Cahill, 2002) whereas in reptiles retina, pineal 

and the parietal eye contain the circadian clocks (Bertolucci et al., 2002). 

Besharse and Iuvone (1983) demonstrated the retina of a vertebrate (Xenopus 

laevis) as an autonomous circadian clock. The retina, the pineal gland and the 

hypothalamic oscillator regulate the circadian rhythms in case of birds 

(Brandstätter, 2002).  
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The principal clock component of the mammalian circadian system 

and the master circadian/biological clock in mammals is the SCN (ref: recent 

review; Jagota, 2006; Meijer et al., 2007). It is a bilateral nucleus present just 

above the optic chiasm at the base of hypothalamus on either side of the third 

ventricle (Morin et al., 2006) (Fig. 3). During development hypothalamic 

primordium gives rise to all types of hypothalamic cells. The SCN is derived 

from the periventricular zone of the anterior hypothalamic region. Altman and 

Bayer (1986) extensively studied neuronal generation of the SCN. In rat, SCN 

is formed from a specialized zone of ventral diencephalic germinal matrix, the 

suprachiasmatic primordia. The neurons of SCN are generated from 

embryonic (E) days E14 to E17 with a peak on E15. The cells generated 

earlier form the ventrolateral division and the later cells form the dorsolateral 

division except those cells which generate on E17 form the most ventral 

portion of the SCN adjacent to the third ventricle called the basal 

suprachiasmatic subnucleus.   

 

(Jagota et al., 2000; Jagota, 2006;  

Reghunandanan and Reghunandanan, 2006) 

 

Fig. 3: The Suprachiasmatic Nucleus 
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Functional development of the SCN occurs in two stages (Buijs et al., 

2006). First is the development of intrinsic rhythmicity like glucose utilization 

(Kalsbeek et al., 2006) and firing rate of SCN neurons (Aguilar-Roblero et al., 

1992). The second stage is the development of SCN as a circadian pacemaker. 

This occurs when SCN develops sufficient afferent, intrinsic and efferent 

connections to function as a neural network. Thus the total development of 

SCN occurs in four stages (i) development of SCN neurons and establishment 

of rhythmic function within the nucleus (ii) development of entraining 

pathways and external regulation of pacemaker function (iii) development of 

SCN projections and coupling of these to effector systems and (iv) maturation 

of effector systems for the expression of circadian function (Moore, 1992).  

 

Cellular Architecture: 

 

The neurons of SCN are the smallest in the hypothalamus as well as in 

the brain. Each nucleus contains about 10,000 small, densely packed neurons, 

approximately 300 µm in diameter in rat (Moore et al., 2002). The volume of 

a single neuron of male adult rat ranges from 0.13 to 0.16 mm
3
 (van den Pol, 

1991). The size of the SCN varies with age and gender (Shirakawa et al., 

2001). The SCN is remarkable for the density of dendrodendritic synapses that 

links the cells together and thus synchronize their activity. These neurons are 

heterogenous in nature (Kuhlman et al., 2003; Lee et al., 2003) and are 

classified according to their neuropeptide content (Abrahamson and Moore, 

2001a).  

 

Sub divisions:  

 

The SCN is subdivided into two main regions in most of the species. 

(i) Dorsomedial (shell) region and (ii) Ventrolateral (core) region based on the 

presence of neuroactive substances and on type of retinal innervation patterns 

(Kriegsfeld et al., 2004). Dorsomedial region cells are smaller than those cells 

in ventrolateral region (van den Pol, 1991) and elongated in shape. These are 
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located along the walls of blood capillaries that course through the SCN. 

Dorsomedial region is characterized by the presence of arginine-vasopressin 

(AVP) containing neurons, but do not receive any visual input. Cells in 

ventrolateral region are spherical in shape. They receive input from retino-

hypothalamic tract (RHT), geniculo-hypothalamic tract (GHT) and retino-

raphe pathway. Large number of neurons in this region contains vasoactive 

intestinal peptide (VIP) as the neuroactive substance (Piggins and Cutler, 

2003). Neurons of SCN exhibit circadian oscillations even after isolation, with 

periods ranging from 20-28 h (Honma et al., 2004). Studies using horizontal 

slices in in vitro conditions revealed morning and evening oscillations in SCN 

(Jagota et al., 2000).  

It consists of large number of neurotransmitters which play an 

important role in its function in addition to AVP and VIP which characterize 

two regions. They include glutamate, NPY, serotonin (5-hydroxytryptamine/ 

5-HT) (Jagota and Reddy, in press), peptide histidine isoleucine (PHI), 

PACAP, oxytocin (OT), gastrin-releasing peptide (GRP) and SP (Jagota, 

2006; Reghunandanan and Reghunandanan, 2006). In addition to these, SCN 

also contains GABA, angiotensin II, neurotensin (NT), bombesin (BBS), 

calcitonin gene-related peptide (CGRP), cholecystokinin (CCK), enkephalin 

(ENK), somatostatin (SS), thyrotropin releasing hormone (TRH) and VGF (a 

protein induced by nerve growth factor) (Madeira et al., 2004). 

 Inspite of its heterogenous nature of neuronal cell types, neurochemical 

organization and function of SCN is able to regulate and synchronize overt 

rhythms suggesting the strong coordination among the neurons (Jagota, 2006). 

The central pacemaker itself shows circadian rhythms of metabolic (Perreau-

Lenz et al., 2004) and electrical activity (Rohling et al., 2006; Brown et al., 

2007). Individual SCN neuron functions as independent oscillator, but at tissue 

level SCN neurons synchronize by a robust intercellular coupling mechanism 

(Herzog and Schwartz, 2002). There are evidences for neurons of core 

projecting to the shell on the ipsilateral side but not for shell to core 

projections for either ipsilateral (Moore et al., 2002) within a single nucleus or 

contralateral. Neurotransmitters most importantly GABA and others like VIP, 
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GRP, prokineticin 2 etc. are required for the synchronization of circadian 

rhythms (Hastings and Herzog, 2004) and development of action potentials 

(Yamaguchi et al., 2003) in SCN. Neurons of SCN exhibit circadian 

rhythmicity of firing rate (Klisch et al., 2006) based on day-night modulations 

of calcium (Ca
2+

)
 
currents (Pennartz et al., 2002). Other neurotransmitters like 

nitric oxide, in the ventrolateral region also acts as a link between ventrolateral 

and dorsomedial subdivisions of SCN (Reuss et al., 1995).  

   In addition to intra-SCN communication, SCN shows contralateral 

shell to shell and core to core connection between the nuclei (Moore et al., 

2002). The two nuclei of SCN neurons communicate with each other in many 

ways. Several studies showed that axons of the neurons containing AVP, GRP, 

VIP, GABA and SS cross between the paired SCN. Serotonergic and tyrosine 

hydroxylase containing neuronal axons are also found to couple the two lobes 

of SCN. In addition, axons originating outside the SCN seem to cross the 

midline of the two SCN (Card et al., 1981). The neurons receive input signal, 

generate rhythms which have slightly different periods and phases. The 

average of all these pacemakers constitutes the output signal of SCN (Liu et 

al., 1997). The input signals to the SCN neurons come from the specialized 

visual system called circadian visual system. 

 

Afferent Pathways of the SCN: 

 

Of all the stimuli, light is one of the most important stimuli, which 

entrains the clock. The SCN receives information about the presence, intensity 

and timing of light via the retina and the optic nerve. In mammals it receives 

neural innervations from three sources, the retina, the intergeniculate leaflet 

(IGL) of the lateral geniculate nuclei and the raphe nuclei (Rosenwasser and 

Dwyer, 2001; Jagota, 2006) (Fig. 4).  

 

Retino-hypothalamic tract: Retino-hypothalamic fibers make monosynaptic 

contact with SCN neurons and deliver photic information to the SCN directly 

(Colwell and Menaker, 1996; Ebling, 1996). In rat RHT innervates SCN the 

day after birth. Glutamate and PACAP are the principal neurotransmitters of 
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this pathway (Reghunandanan and Reghunandanan, 2006). Light reaches 

RGCs through lens. Axons of RGCs target neurons containing glutamate in 

the ventrolateral region of the SCN resulting in secretion of glutamate. This 

glutamate acts on cells expressing amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) or kainate receptors and smaller population 

of cells expressing N-methyl D-aspartate (NMDA) receptors. Glutamate plays 

a critical role in photic regulation of circadian rhythms. Co-localization of 

PACAP in glutamate containing RGCs is involved in relaying photic 

information by potentiating the action of glutamate on the SCN (Minami et al., 

2002).  
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Fig. 4: Afferent and Efferent Pathways of the SCN 

 

 

Geniculo-hypothalamic tract: This is a major indirect photic input pathway 

from IGL to SCN (Card et al., 1991). Retina conveys input signals to IGL via 

a separate branch of RHT that overlaps with the RHT terminals in the SCN. 

This pathway is involved in mediating photic as well as non-photic responses 

such as motor activity necessary for entrainment of circadian rhythms (Menet 
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et al., 2001). NPY and GABA are the neurotransmitters involved in 

transmitting the information from IGL to the SCN (Reghunandanan and 

Reghunandanan, 2006). Neuronal activity of SCN and suppression of firing 

rate of SCN neurons are under the control of NPY (Cutler et al., 1998). 

 
Retino-raphe-SCN pathway: This is one of the major input pathways that use 

serotonin as the neurotransmitter in neurons leading to the SCN. The most 

important afferent inputs terminating in the SCN are the serotonergic neurons 

(Morin and Allen, 2006). The SCN receives one of the densest serotonergic 

terminal plexus of the brain. The axons of RGCs receive light information and 

some of these neurons project into raphe nucleus of brain stem where 

serotonergic neurons originate. These serotonergic neurons project and 

terminate in the ventrolateral region of the SCN which contain VIP neurons 

(Moore and Speh, 2004). Serotonin acts on 5-HT2C receptors of the excitatory 

interneurons of the SCN. Interneurons synapse with clock cells and reprogram 

the stimulus. There are evidences for the projections from the SCN to raphe 

nuclei (Bons et al., 1983). 

 

Efferent pathways from the SCN: 

 

 There are two efferent pathways by which SCN regulates the 

individual circadian rhythm, neural and humoral signals that either drive 

output rhythm directly or synchronize peripheral oscillators with the day-night 

cycle (Yamazaki et al., 2000). 

 
Neural pathway: The SCN is composed of different neuronal elements, each 

having its own specific function. The functional output of the SCN is mainly 

dependent on intensive interconnection and interaction among the 

heterogeneous neuronal elements within the SCN. Neural pathway is the 

communication across synapses. Neural outputs of the SCN primarily reach 

nearby sites such as hypothalamic and thalamic nuclei from the SCN, 

particularly to the medial preoptic nucleus, the medial part of the 

paraventricular nucleus (PVN) of the hypothalamus, the anterior part of the 
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PVN of thalamus, the medial part of the dorsomedial nucleus of 

hypothalamus, and the sub-paraventricular zone (Saper et al., 2005). This 

pathway regulates body temperature, locomotor activity and hormonal levels 

which occur through the nervous projections to other nuclei of the 

hypothalamus and other brain regions. The SCN also sends signals to the 

periphery through autonomic nervous system, via PVN (Buijs and Kalsbeek, 

2001) e.g: Sleep-wake cycles are regulated by the projections of the SCN to 

the dorsomedial hypothalamus and the posterior hypothalamic area 

(Abrahamson et al., 2001b; Aston-Jones et al., 2001). Secretion of melatonin 

from the pineal gland is regulated by SCN through adrenergic signalling 

(Gillette and Mitchell, 2002). In addition to controlling the rhythms of nearby 

target sites SCN also controls the output rhythms of different organs by means 

of humoral pathway.  

 
Humoral pathway: This is a non-neuronal pathway which communicates via 

diffusible signals that can travel in extracellular spaces and/or cerebrospinal 

fluid (CSF) and through circulation. Cells of SCN release several peptides like 

AVP, VIP, GRP, Prokineticin 2 and SS into extracellular spaces and CSF 

(Reghunandanan and Reghunandanan, 2006). A diffusible molecule 

transforming growth factor (TGFα) synthesized rhythmically in the SCN 

controls the activity rhythms by the SCN (Silver et al., 1996).  

Thus regulation of physiological and behavioral rhythms of an 

organism involves either neural or humoral outputs or both the outputs from 

the SCN. The circadian rhythms of the peripheral clocks located in different 

organs are mainly controlled by the humoral output of the SCN. 

 

Peripheral clocks: 

 

 The central pacemaker, SCN regulates the functions of other peripheral 

organs of the body through its efferent pathways. Peripheral clocks are located 

in heart, intestine, kidney, liver, lungs and gonads. These peripheral organs 

also contain their individual circadian clock that is similar to the one present in 

SCN neurons, but only the SCN shows self-sustainity. Though peripheral 
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clocks generate circadian rhythms by similar mechanisms as that of the SCN 

which exhibit same phase relationship (Balsalobre et al., 1998), the events that 

take place in peripheral clocks are not identical to those occurring in SCN 

neurons (Oishi et al., 2000). Peripheral clocks exhibit 4 h delay in their 

circadian gene expression as compared to SCN, suggesting that there is a 

master-slave relationship between the SCN (master/central clock) and 

peripheral clocks (Balsalobre et al., 1998). Oscillations of peripheral clocks 

(2-7 days) dampen very rapidly as compared to SCN (approximately one 

month) in vitro (Yamazaki et al., 2000). The major difference between the 

central and peripheral clocks is that SCN generates, regulates and entrains 

rhythms to external cues independently whereas peripheral clocks require 

SCN output signals to entrain their circadian rhythms (Balsalobre, 2002) 

which are under the control of SCN. 

Generation and entrainment of rhythms is a very complex process that 

involves a large number of neurotransmitters (serotonin, glutamate, GABA, 

acetylcholine) a variety of gene expression (clock related genes) and many 

biochemical processes like phosphorylation. Among many neurotransmitters, 

serotonergic neurotransmission is important in mammalian circadian clock 

function and it is implicated in both photic and non-photic regulation of 

circadian rhythms (Jiang et al., 2000). 

 

The Pineal Gland: 

 

 The circadian clock passes on the information to the target organs by 

efferent pathways through effector follower system. Pineal gland is an 

important effector follower system in vertebrates and a neuroendocrine gland 

which secretes the hormone, melatonin (Ganguly et al., 2002). It originates 

from neural tube and is located at the border between mesencephalon and 

diencephalon of brain. Lower vertebrates have a single pineal originated 

intracranially (Fejér et al., 2001). The pineal gland acts as a central clock in a 

wide range of non-mammalian vertebrates (Wang and Tong, 2004). In reptiles 

the circadian organization is multi-oscillatory in nature. The retinae, the 

pineal, the parietal eye and possibly, SCN of the hypothalamus contain 
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circadian clocks. In these animals, retinae of lateral eyes, pineal and parietal 

eye all contain photoreceptors (Tosini et al., 2001). Birds have a single pineal 

located intracranially and developed from epithalamus region (Fejér, et al., 

2001). Many of the clock genes are found in avian pineal gland. The temporal 

profiles of clock gene expression of avian pineal gland are more similar to 

those observed in the mammalian SCN (Wang and Tong, 2004). The chick 

pineal gland contains intrapineal photoreceptors and hence it is directly light 

sensitive (Korf et al., 1998). Mammalian pineal gland is composed of five cell 

types: (a) pinealocytes (b) interstitial cells, (c) perivascular phagocytes, (d) 

neurons, and (e) peptidergic neuron-like cells (Møller and Baeres, 2002). 

Pinealocyte contains the enzymes required for the synthesis of melatonin. 

Mammalian pinealocytes are derived evolutionarily from the pineal 

photoreceptors of lower vertebrates. It mainly consists of large cone shaped 

pinealocytes. Interstitial cells are smaller than pinealocytes, star shaped cells 

with long and slender processes. Phagocytic cells are mostly confined to 

perivascular spaces. Neurons in the pineal gland are parasympathetic neurons. 

Peptidergic-neuron like cells are found to be immunoreactive to vasopressin 

(Badiu et al., 1999) and oxytocin (Badiu et al., 2001). In mice, the clock 

proteins that are required for normal rhythm generation by the SCN are also 

found to be present in pineal gland (Karolczak et al., 2004).   

The activity of the pineal gland is regulated by environmental light 

acting via the nervous system (Zawilska et al., 2006). The most important 

function of mammalian pineal gland is to transmit light information into 

chemical message to the rest of the organs of the organism. Hence it is called 

as a neuroendocrine transducer which converts a neural signal to a hormonal 

signal (Pandi-Perumal et al., 2006). The neural input to the gland is NE and 

the output is melatonin (Brzezinski, 1997). Axons of SCN neurons innervate 

into the hypothalamic PVN. Fibers from PVN synapse with the neurons of 

intermediolateral (IML) column of the spinal cord. The neurons of PVN also 

innervate the superior cervical ganglia (SCG). The peripheral sympathetic 

tract arising from the SCG innervates the pinealocytes. Thus endogenous 

circadian rhythm of melatonin is generated in the SCN and entrained 
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principally by the light-dark cycle acting via RHT (Arendt, 1998). Melatonin 

produced in the pineal gland plays an important role in transducing the signal 

of darkness throughout the body. It also forms a feedback loop with the SCN 

(Masana et al., 2000).   

 

Molecular events in a SCN neuron: 

 

The molecular basis of circadian timing forms an important model for 

understanding the cellular and molecular events connecting genes to 

behaviour. The molecular clockwork in SCN is cell autonomous in nature. 

Light-dark cycle influences the induction and expression of clock genes and 

thus the generation of rhythms. The light information received by the retina of 

the eye is conveyed to the SCN via RHT through glutamate. When glutamate 

binds to its receptors in the SCN, there is an increase in intracellular Ca
2+

 

levels which results in the activation of CaMKII as well as mitogen activated 

protein kinase (MAPK). The enzyme in turn activates nitric oxide synthase 

(NOS). Then NOS increases nitric oxide levels and guanynyl cyclase activity 

which later induces cyclic GMP (cGMP) dependent kinases (cGKs). The 

MAPKs and cGKs phosphorylate cyclic AMP response element binding 

(CREB) protein. Brief exposure to light during subjective night dramatically 

and rapidly increases CREB phosphorylation in the SCN (within 10 minutes 

(min) after light onset). CREB then binds to cAMP response elements (CRE) 

containing immediate early genes (IEGs) such as c-fos.  The expression of late 

response genes such as clock genes is later induced by c-fos (Golombek et al., 

2004). Thus when a cell is stimulated, the first wave of gene transcription at 

the molecular level involves IEG activation. 

The IEGs are the genes whose transcription is activated rapidly and 

transiently within minutes of stimulation (Greenberg et al., 1992). These 

include c-fos, jun, ngfi-A etc. Transcriptional induction is independent of new 

protein synthesis but shut off of transcription requires new protein synthesis. 

The mRNAs transcribed from these genes often have a very short half-life 

(Sheng and Greenberg, 1990). The proteins encoded by the IEGs are deoxy 

ribonucleic acid (DNA) binding proteins. Different effects of various 
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extracellular stimuli on cell physiology are mediated by activation of distinct 

subsets of IEGs (Bartel et al., 1989). Recent reports suggest that IEGs are 

involved in the phase-shifting response to light. There is a relationship 

between the IEG expression and phase-responsiveness of the circadian 

pacemaker in the SCN as changes in mRNA levels of these genes are 

necessary for phase-shifting response. This shows that IEG expression is part 

of the molecular pathway responsible for the behavioral changes (Sutin and 

Kilduff, 1992). Once translated the protein products of these IEGs re-enter the 

nucleus and form various complexes, collectively termed as activator protein-1 

(AP-1) which bind in a sequence specific manner to recognition sites on many 

different genes, thereby regulating the transcription of ‘late response’ target 

genes. 

The c-fos is one of the IEGs that convey light-responsive signals to the 

SCN. It is a member of fos proto-oncogene family which also includes fos-like 

genes fra-1, fra-2 and fos B (Milde-Langosch, 2005). The expression c-fos is 

involved in entrainment to the environmental light-dark cycle (Schwartz et al., 

2000). The c-fos is transiently induced by growth factors, hormones, 

neurotransmitters and other extracellular signals in a wide variety of systems 

(Müller, 1986). It has been associated with a variety of physiological functions 

including proliferation, differentiation and neural excitation (Morgan and 

Curran, 1991). In different cell types the expression of c-fos gene is regulated 

by three intracellular messenger systems: the Ca
2+

/phospholipid-dependent 

protein kinase C (PKC), cyclic adenosine-3′, 5′-monophosphate (cyclic 

AMP/cAMP) and Ca
2+

/calmodulin dependent protein kinase II (CaMKII) 

(Morgan and Curran, 1986).  

In the rodent brain, c-fos is anatomically restricted to neural elements 

involved in the photic entrainment of circadian rhythms (Schwartz et al., 

1995). Apart from the SCN, the only structure in which light pulses induce c-

fos is the IGL. It is used as an in vivo marker of the SCN intrinsic rhythmicity 

and photic sensitivity. 

The genes c-jun, jun-B and jun-D are structurally related to c-fos and 

encode a family of proteins that belong to a large class of DNA-binding 
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proteins (Bohmann et al., 1987). They are defined by a common structural 

motif (bZIP) which is composed of a leucine repeat domain (α helix with 

leucine residues spaced 7 aminoacids apart) (Landschulz et al., 1988) and a 

domain consisting of highly basic aminoacids of approximately 30 residues 

lying immediately N-terminal to the leucine repeat. Proteins of this class form 

dimers when their leucine repeat domains associate as a coiled coil (the 

leucine zipper) allowing the basic domains to contact DNA for sequence-

specific binding (Kouzarides and Ziff, 1988). The bZIP motifs of the Jun 

proteins are located at their C-terminal regions and appear to be conserved, 

whereas their N-terminal parts are believed to be responsible for 

transcriptional activation. Two regulatory elements within the promoter region 

of c-fos gene mediate second messenger effects on c-fos transcription. 

Calcium and cAMP converge to form calcium/cAMP response element 

(Ca/CRE) (van Haasteren et al., 1999). This is located 60 bp upstream of the 

transcription start site of c-fos gene. In addition to the above, serum and 

growth factors act through serum response element (SRE) 300 bp upstream of 

c-fos start site (Gilman, 1988). 

 Light induced expression of c-fos is restricted to retinorecipient 

(Edelstein et al., 2000) ventrolateral part of SCN. Transcription of c-fos 

reaches its peak levels within 30 min after stimulation. It encodes a nuclear 

phosphoprotein c-Fos which is a part of a sequence-specific DNA binding 

protein complex AP-1, that regulates transcription of a gene containing AP-1 

binding site. It doesn’t bind to the AP-1 DNA site on its own (Halozonetis et 

al., 1988). It forms dimer with the members of another family of IEG, like Jun 

(Chiu et al., 1988) interacts with DNA at AP-1 binding sequences and 

modulates the transcription of specific target genes. It preferentially binds to 

the DNA consensus sequence TGA (C/G) TCA when it is complexed with 

protein Jun (Rauscher et al., 1988). Both c-Fos and Jun of the heterodimer are 

responsible for transcriptional activation (Angel et al., 1989). Dimerization of 

c-Fos with c-Jun enhances the transcription of downstream genes, whereas 

dimerization of c-Fos with Jun-B inhibits the transcription (Diamond et al., 

1990). This c-Fos-Jun complex is also found to act at the cAMP response 
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element (CRE) present on the DNA of many genes (Ryseck and Bravo, 1991). 

Understanding the cellular events occurring in the entrainment of circadian 

rhythms by c-fos is important as it is a component of a DNA-binding complex 

that regulates transcription of many target genes and plays a role in coupling 

external stimuli to long term cellular responses in other signal transduction 

programs (Morgan and Curran, 1988).   

 Clock genes are responsible for the generation and regulation of 

rhythms which include Circadian locomotor output cycles kaput (Clock), 

Brain-muscle-Arnt (Aryl hydrocarbon receptor nuclear translocator)-like-

protein 1 (Bmal1 also called Mop3), Period (Per) 1, 2 and 3, Cryptochromes 

(Cry 1 and 2), Timeless (Tim), Differentiated embryo chondrocyte expressed 

genes (Dec 1 and 2), Rev-erbα and Rorα. Most of these clock genes are 

expressed in a well coordinated manner within a circadian cycle. Mutations in 

clock genes affect the persistence and period length of circadian rhythmicity. 

In mammals, molecular clock work of SCN consists of interacting positive and 

negative transcriptional/translational autoregulatory feed back loops (Albrecht, 

2004; Ko and Takahashi, 2006) (Fig. 5). 
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Fig. 5: Molecular events in a SCN neuron 
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Positive feed back loop: The Clock in mammals is expressed at constant levels 

throughout the day (Balsalobre, 2002). It was the first clock gene cloned in 

mammals (King et al., 1997). The two genes, Clock and Bmal1 belong to the 

members of the basic-helix-loop-helix (bHLH)-PER-ARNT-Single minded 

(SIM) (PAS) family of proteins and constitute the positive loop. Bmal1 

transcription starts in the dark phase and its mRNA peaks from CT-15 to CT-

18 and there occurs a 4 to 6 h delay in its protein rhythm. Increased 

availability of BMAL1 promotes CLOCK-BMAL1 heterodimerization which 

occurs at the start of the circadian cycle (CT-0). In the heterodimer, BMAL1 

binds to E-box enhancer elements (Hogenesch et al., 1998; Takahata et al., 

1998) with a specific nucleotide sequence CACGTG (Darlington et al., 1998) 

present in the promoter region and CLOCK is essential for the transcriptional 

activation (Gekakis et al., 1998) of several clock genes such as three Per1, 2 

and 3, (Takumi et al., 1998) two Cry1 and 2, (Okamura et al., 1999) two Dec1 

and 2, (Honma et al., 2002), Rev-erbα (Preitner et al., 2002) and probably 

Rorα (Sato et al., 2004) genes. The protein product of Rorα induces Bmal1 

transcription (Sato et al., 2004), whereas Rev-erbα represses Bmal1 

transcription. Each of the Per gene mRNAs exhibit distinct temporal profiles, 

Per1 mRNA rhythm peaks from CT- 4 to 6, Per3 mRNA from CT- 4 to 8, 

Per2 at CT- 8 and Cry1 at CT- 10. 

 
Negative feed back loop: Translation of PER and CRY proteins form 

multimeric complexes which then translocate into nucleus. In the nucleus, 

PER and CRY proteins act as negative regulators by directly interacting with 

CLOCK: BMAL1 heterodimer at mid circadian day (CT-12) to inhibit their 

own transcription. At the same time PER2 contributes to rhythmic 

transcription of Bmal1, which expresses a phase opposite to Per/Cry. 

Availability of BMAL1 appears to be rate-limiting and critical step in the 

clock work to start a new circadian day (Reppert and Weaver, 2001). The 

stability of PER2 is under the control of CRY proteins (Yagita et al., 2002). 

Transcription of Rev-erbα is negatively regulated by PER and CRY proteins 

(Preitner et al., 2002).  
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The genes Cry1 and Cry2 in mammals are homologous to plant and 

Drosophila cryptochromes which act as blue-light photoreceptors. The CRYs 

are pterin/flavin-containing proteins that are structural homologs of the DNA 

repair enzyme DNA photolyase, but they lack DNA repair activity (Cashmore 

et al., 1999). Dimerization of CRY1 and CRY2 with PER proteins help in the 

nuclear translocation of PER proteins (Kume et al., 1999) and the resulting 

complex regulate their own expression (Shearman et al., 2000). Homologs of 

Per genes are Drosophila period genes. There is a PAS domain on PER 

proteins that allow them to form a heterodimer with CRYs (Shearman et al., 

2000). They do not bind to DNA on their own as they lack DNA-binding 

motifs (Shearman et al., 1997). Mammalian homolog of Drosophila clock 

gene, Tim is also believed to play a role in the clock mechanism by interacting 

with PER (Barnes et al., 2003). However, its function in mammalian clock is 

not yet clear but knock out of this gene was found to be embryonic lethal 

(Gotter et al., 2000). The function of CLOCK/BMAL-1 is inhibited by Dec 

genes (Kawamoto et al., 2004).  

Once synthesized, protein products of these clock genes undergo post-

translational modifications which determine their stability and thus 

concentration in the cytoplasm, interaction with other proteins and their 

cellular location. Translational mechanisms like phosphorylation (Lee et al., 

2001), degradation (Vielhaber et al., 2000) and nuclear translocation (Yagita 

et al., 2002) controls the period of oscillations of clock proteins. Clock 

proteins such as CLOCK, BMAL1, PER 1 and 2, CRY 1 and 2 undergo 

phosphorylation by casein kinase Iε (CkIε) and also by casein kinase Iδ (CkIδ) 

probably (Kondratov et al., 2003). The enzyme, CkIε is an ortholog of 

Drosophila DOUBLETIME (DBT). In addition to CRYs, phosphorylation 

state of PER 1 by CkIε alters its cellular location (Takano et al., 2000). Other 

kinases such as MAPKs and glycogen synthase kinase-3 (GSK3) also 

phosphorylate clock proteins (Sanada et al., 2004). CaMKII and MAPKs are 

involved in Per expression. Expression of many of these clock genes are 

regulated by external cues which are conveyed by several neurotransmitters 

via different afferent pathways to the SCN.  
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Serotonin: 

 

Serotonin (5-Hydroxytryptamine (5-HT)), a biogenic amine is a 

neurotransmitter found in a wide variety of sites in the central and peripheral 

nervous systems (CNS and PNS) (Jacobs and Azmitia, 1992). It was first 

isolated from serum (sero) as a vascular constricting factor (tonin) (Azmitia, 

2002). Hence it is called ‘Serotonin’. It is mainly synthesized by the reticular 

neurons that arise from ancient groups of cell bodies in the brain stem known 

as raphe nuclei. Some of the raphe cells contain 5-HT and SP, a neuroactive 

peptide whereas other raphe nuclei contain 5-HT and leu-enkephalin or met-

enkephalin/thyrotropin releasing hormone (TRH).  

Serotonergic neurons are one of the first brain stem neurons to emerge 

early in the development of brain and spinal cord, two weeks after gestation 

and first neurons to differentiate in the brain stem raphe of rats. Raphe neurons 

synthesize 5-HT one day after their generation. A glial functional protein, S-

100β stimulates growth of serotonergic neuron system. It acts as serotonergic 

neurotrophic factor. Levels of S-100β exhibits clear circadian variation. It 

even influences most aspects of neural development including neuronal cell 

division, migration, morphogenesis and synapse formation (Lipton and Kater, 

1989). 

These neurons diffuse throughout the brain and thus affect various 

brain functions (Morin, 1999) (Fig. 6). Serotonergic fibers interact in complex 

 

 

(Morin, 1999) 

Fig. 6: Distribution of Serotonergic neurons in rodent brain 
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ways with various cell types like neurons, glial cells, endothelial cells, 

ependymal cells and others through their receptors. It also interacts with many 

other neurotransmitters, either directly through neurons that use both serotonin 

and other neurotransmitter or by serotonin neurons influencing neurons that 

primarily use these other neurotransmitters (Azmitia, 2002). 

 

Synthesis of Serotonin: 

 

 Serotonin is synthesized from an indole based essential aminoacid, L-

tryptophan (Fig. 7). This aminoacid is obtained from dietary sources, contains 

an indole ring which is unique in light absorbing properties. It is the least 

common aminoacid in natural proteins. This is one of the essential aminoacids 

required for de novo protein synthesis. It helps in creating a highly lipophilic 

environment in the protein folds. It is also necessary for the synthesis of 

kynurenic acid (a neuronal antioxidant) and the reducing cofactors 

nicotinamide adenine dinucleotide reduced (NADH) and nicotinamide adenine 

dinucleotide phosphate reduced (NADPH) transfer of tryptophan to the brain 

competes with several other neutral aminoacids such as phenylalanine, 

tyrosine, methionine, threonine, leucine, isoleucine and valine. Most effective 

competitor of tryptophan is phenylalanine (Azmitia, 2002). Tryptophan passes 

through the blood brain barrier by a carrier protein called neutral amino acid 

carrier (NAAC).  

 

 

 

(Azmitia, 2002) 

 

Fig. 7: Biosynthesis of Serotonin  
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Tryptophan hydroxylase (TPH), rate limiting enzyme involved in the 

synthesis of serotonin (Garau et al., 2006). The enzyme, TPH converts 

tryptophan to 5-hydroxytryptophan (5-HTP) in the presence of oxygen and a 

pteridine cofactor, tetrahydro-biopterin (BH4). It is found only in cells that 

synthesize 5-HT (Boadle-Biber, 1993), the raphe neurons, the pineal gland and 

enterochromaffin (EC) cells of the gastro-intestinal (GI) tract and thus controls 

serotonin levels. It exists in two isoforms, TPH1 and TPH 2. The isoform 

TPH1 is found in pineal and gut whereas TPH2 is found in brain (Sakowski et 

al., 2006). Enzyme contains 444 aminoacids with a molecular weight of 51 

kDa and is 50% homologous with tyrosine hydroxylase, the rate limiting 

enzyme in catecholamine biosynthesis (Azmitia, 2002). The enzyme aromatic 

L-aminoacid decarboxylase (AADC) converts 5-HTP into serotonin. This 

enzyme is present both in serotonergic and catecholaminergic neurons (Frazer 

and Hensler, 1993). 

The activity of tryptophan hydroxylase is regulated by the post 

translational modification, phosphorylation of the enzyme. This 

phosphorylation is carried out by CaMKII and cyclic adenosine monophoshate 

(cAMP)-dependent protein kinase (Banik et al., 1997). These enzymes get 

activated whenever serotonergic neurons are firing. The phosphate ion is 

obtained from adenosine triphosphate (ATP) (Azmitia, 2002). 

 

Serotonin storage, release and uptake: 

 
Once synthesized, serotonin is stored in synaptic vesicles, located near 

the axonal release sites. Before it is stored in the vesicles, 5-HT is protected 

from its degradative enzyme in the cytosol by a 5-HT binding protein (Tamir 

and Gershon, 1979). A transporter protein called vesicular monoamine 

transporter 2 (Vmat 2) packages 5-HT into synaptic vesicles. These vesicles 

contain a specific protein called serotonin binding protein (SBP) that binds 5-

HT with high affinity. The binding of 5-HT to SBP depends on the 

phosphorylation status of SBP (Aldersberg et al., 1987). When action potential 

reaches the terminals and calcium enters the cell, a kinase called SBP-kinase, 

whose activation is Ca
2+ 

dependent phosphorylates SBP. Phosphorylated SBP 
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inhibits the binding of 5-HT to it. Under this condition, vesicles fuse with the 

plasma membrane and 5-HT along with SBP is released into extracellular 

matrix by exocytosis (Sanders-Bush and Martin, 1982) and interacts with 14 

distinct receptors. The release of 5-HT in the SCN is photically regulated. The 

activity of 5-HT is terminated by binding of 5-HT molecules to specific 

transporter proteins, 5-HTR located on serotonergic neurons. It is a plasma 

membrane glycoprotein that controls the synaptic concentration of 5-HT by 

selectively removing 5-HT from the synaptic cleft. Glial cells are also capable 

of taking up serotonin by a high-affinity transport system. High affinity 

transporter of serotonin (SERT) and Vmat 2, transporters of 5-HT are present 

in non-serotonergic neurons allowing them to capture 5-HT that is released or 

leaked out from the 5-HT producing neurons. The uptake of serotonin is an 

active process i.e. temperature dependent and requires external Na
+ 

and Cl
-
. 

                  

Catabolism of Serotonin: 

 
 Serotonin that is synthesized is either converted to melatonin, a 

neurohormone or it is first degraded to 5-hydroxyindole acetaldehyde (5-HIA) 

by the enzyme monoamine oxidase-B (MAO-B) in brain (Fagervall and Ross, 

1986). This is again either reduced to 5-hydroxytryptophol by the NADH-

dependent aldehyde reductase or oxidized to 5-hydroxyindole acetic acid (5-

HIAA) by the enzyme NAD
+ 

dependent aldehyde dehydrogenase. Oxidation 

or reduction of 5-HIA depends on the NAD
+
/ NADH ratio present in the 

tissue. The primary metabolite of serotonin in brain is 5-HIAA (Azmitia, 

2002). 

 

Serotonergic Receptors:  

 

Once released into extracellular matrix, serotonin acts on distinct 

receptors to exert its diverse physiological functions. Fifteen genes have been 

known to encode 5-HT receptors in mammalian brain (van Hooft and Yakel, 

2003). Two are 5-HT gated ion channel receptors (5-HT3A and 5-HT3B) and 

the rest are G-protein coupled receptors (Raymond et al., 2001). Many of 

these receptors are broadly distributed throughout the central nervous system 
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(Uphouse, 1997). They are found on all types of neurons, glial cells and 

astrocytes. Of the multiple receptor subtypes described, binding sites have 

demonstrated the presence of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT5A and 

5HT7 receptors in the SCN.  

The 5-HT1A receptors are expressed early in the embryonic life mainly 

in the raphe neurons, hippocampus and transiently expressed in motor neurons 

and cerebellum after birth (Talley et al., 1998). Activation of these receptors 

stimulates neurogenesis in dentate gyrus and in subventricular zone (Brezun 

and Daszuta, 2000). 5-HT1B receptors are expressed early in development. 

They are expressed in raphe nucleus, striatum, cerebellum and the RGCs 

(Boschert et al., 1994). They are localized presynaptically on axon terminals 

and modulate the release of glutamate in relation to incoming neural activity. 

They affect axon growth (Lotto et al., 1999). In mammals these receptors 

inhibit cAMP production and calcium entry in axon terminals (Chen and 

Regehr, 2003). 

 Serotonin’s effect on circadian rhythm generation and regulation has 

been extensively studied. Serotonin’s effect on photic responses in SCN and 

IGL are mediated by 5-HT1A/ 7 and 5-HT1B receptors. Also 5-HT5A receptors 

are present in the four important components of the circadian timing system, 

the SCN, IGL, DRN and MRN of syrian hamster. Immunoreactivity of 5-HT5A 

receptor is co-localized with serotonin immunoreactivity. This receptor plays 

an important role in the serotonergic regulation of circadian time keeping and 

it also acts as a presynaptic autoreceptor regulating serotonergic neuronal 

activity (Duncan et al., 2000). In the SCN, 5-HT7 receptors mediate 

serotonergic induction of phase shifts (Lovenberg et al., 1993).   

 

Physiological functions of serotonin:  

 

 Serotonin exhibits wide range of biological and behavioral functions, 

including aggression, appetite, sex, locomotor activity, learning and memory, 

sleep, thermoregulation, cerebral blood flow, hormonal secretion (Azmitia and 

Whitaker-Azmitia, 1991) than any other neurotransmitter in brain which is 

mediated through its receptors. It is involved in peristaltic movement and 
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initiating secretory reflexes in the gastrointestinal tract. Serotonin is implicated 

in a variety of illnesses such as depression (Graeff et al., 1996), attention 

deficit disorders (Saudou et al., 1994), Alzheimer’s disease, anorexia nervosa, 

bulimia, autism, schizophrenia. Serotonin is also the precursor of melatonin, 

the internal zeitgeber. 

  

Serotonin and SCN: 

 

Serotonergic neurons innervate the SCN from the midbrain raphe 

nuclei that terminate predominantly in the retinorecipient ventrolateral region 

of the SCN. They form one of the important afferent pathways to the SCN 

implicated in the modulation of circadian rhythms (Varcoe et al., 2003). 

Plexus formation of serotonergic fibers in the SCN occurs between 5 to 14 

days after birth. Serotonin is known to exert multiple actions on SCN neurons. 

It regulates SCN neurons by both pre- and post-synaptic inhibitory 

mechanisms (Jiang et al., 2000). (i) It inhibits the release of glutamate mainly 

from RHT in the presynaptic terminals. (ii) 5-HT reduces spontaneous and 

evoked release of GABA from presynaptic terminals. (iii) 5-HT acts directly 

on the post-synaptic membranes inducing inhibitory action in a subpopulation 

of SCN neurons. (iv) It induces an excitatory inward current in a subset of 

SCN neurons. All these actions of serotonin in the SCN are mediated by 

several receptors which include 5-HT1A, 5-HT1B and few 5-HT1C and 5-HT2C 

(Prosser et al., 1993). Thus serotonin is involved in phase resetting of the 

clock.  

 

Melatonin: 

  

Melatonin is an ancient hormone, found even in some single-cell 

organisms and in some plants. Melatonin has been associated with aging as its 

levels are known to decline upon aging (Rúzsás and Mess, 2000). It is widely 

used to both characterize and to treat the circadian rhythm disorders (Arendt 

and Skene, 2005) such as jet lag syndrome. Melatonin, a derivative of 

serotonin is a neurohormone produced by the pineal gland. This was 
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discovered by Lerner et al., in 1959 from bovine pineal glands in search of the 

amphibian skin-lighting factor. Melatonin (‘mel’ from melanin and ‘tonin’ 

means ‘to contract’). Melatonin is a low molecular weight (232.3 Da) 

lipophilic indoleamine hormone. It is diffusible, rapidly carried by blood and 

cerebrospinal fluid to all tissues of the organism (Moore, 1996). 

 

Synthesis of Melatonin: 

 
Melatonin is synthesized from serotonin (Fig. 8). Serotonin is 

converted to N-acetyl serotonin (NAS) by the enzyme N-acetyl transferase 

(NAT) in the presence of acetyl coenzyme A (acetyl CoA). The enzyme 

hydroxy indole-O-methyl transferase (HIOMT) converts NAS to melatonin 

(N-acetyl 5-methoxytryptamine) in the presence of S-adenosyl methionine 

(Ganguly et al., 2002). The rhythmic nature of the synthesis and secretion of 

pineal melatonin are controlled by the light-dark environment, acting through 

the hypothalamic SCN. Apart from pineal gland, melatonin is also synthesized 

in retina, harderian gland and gastrointestinal tract (Huether, 1994).  

 

 

                                              (Ganguly et al., 2002) 

Fig. 8: Synthesis of melatonin 
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A multisynaptic neural pathway from the SCN to the pineal gland 

controls production of melatonin (Chen and Baler, 2000) (Fig. 9). Its synthesis 

is driven by the circadian rhythm in NAT also called arylalkylamine N-

acetyltransferase (AANAT) (Illnerová et al., 1983). The NAT rhythm is 

controlled by the SCN which in turn is regulated by light-dark cycle (Klein 

and Moore, 1979). Projections from SCN innervate PVN of the hypothalamus. 

Cells from PVN innervate the SCG of the spinal cord. Noradrenergic cells 

from SCG innervate the pinealocytes of the pineal gland. This sympathetic 

innervation is known to mediate all biochemical and physiological functions 

of pineal gland which releases NE. NE release is low during the day and high 

at nights (Chen and Baler, 2000). NE when released interacts with α1-

adrenergic receptors on the pinealocytes, activates phosphoinositide pathway 

and enhances intracellular calcium concentration (Vacas et al., 1985). This 

results in potentiation of β1-adrenergic receptors on the pinealocytes which 

increases intracellular cAMP levels, NAT activity resulting in melatonin 

synthesis (Schomerus and Korf, 2005).  

 

 

RHP: Retino-hypothalamic projection; OC: Optic chiasm; SCN: Suprachiasmatic nucleus; 

PVN: Paraventricular nucleus; MFB: Median forebrain bundle; RF: Reticular formation IML: 

Intermediolateral cell column; SCG: Superior cervical ganglia; ICN: Inferior carotid nerve; 

NC: Nervi conari; P: Pineal gland. 

(Ganguly et al., 2002) 

 

Fig. 9: Regulation of melatonin synthesis 
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Melatonin secretion is rhythmic, with peak levels occurring in the 

night irrespective of animal’s diurnal or nocturnal activity (von Gall et al., 

2002). Melatonin synthesized during night in the pinealocytes does not have 

any storage site and directly enters into the blood stream through passive 

diffusion. Thus the circulating melatonin parallel’s the activity of pineal gland. 

This is the major route of transport of endogenous melatonin to its target sites.  

 

Melatonin Receptors: 

 
 Melatonin has three types of receptors which belong to two distinct 

classes of receptors, the seven transmembrane G-protein coupled receptor 

superfamily (MT1, MT2) (Dubocovich and Markowska, 2005) and the quinone 

reductase enzyme family (MT3). This makes their function unique at the 

molecular level. In mammals majority of melatonin receptors reside in the 

SCN (Reppert et al., 1996). The sensitivity of receptors to specific cues 

fluctuates throughout a 24 h cycle and their sensitivity can be modulated in a 

homologous fashion, i.e. by melatonin and in a heterologous fashion, i.e. by 

other cues such as photoperiod and estrogen. Melatonin receptors also exhibit 

variation in their density throughout the 24 h cycle which is out of phase with 

circulating melatonin levels. MT1 and MT2 receptors couple to multiple and 

distinct signal transduction cascades and their activation lead to unique 

cellular responses (Witt-Enderby et al., 2003). Melatonin has highly sensitive 

and specific binding sites in mammals (Vanĕček et al., 1987). There is a great 

variability in the distribution of melatonin receptors in mammalian brain 

(Carlson et al., 1991). The SCN contains high affinity melatonin binding sites 

and pars tuberalis is the most intensely labeled site for melatonin receptors 

(Weaver et al., 1989) in most of the mammalian species including humans. In 

addition to SCN and pars tuberalis, melatonin receptors are also found in 

dorsomedial and ventromedial hypothalamic nuclei, anterior hypothalamus, 

medial preoptic area, paraventricular thalamic nuclei, hippocampus, cerebral 

cortex, area prostrema, amygdala and retina of brain (Morgan et al., 1994).  

 Melatonin released from the pineal activates high affinity melatonin 

receptors which are located in the SCN and pituitary pars tuberalis. These two 
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receptor subtypes show 60% homology at the aminoacid level (Reppert et al., 

1995). Melatonin has high affinity for MT1 receptors. It is present in 

picomolar concentrations. Activation of MT1 receptors inhibits adenylase 

cyclase activity in target cells thus inhibiting cyclic AMP production and 

activates phospholipase Cβ. This is involved in the retinal function, circadian 

rhythms and reproduction. There are two MT1 isoforms, MT1a and MT1b. The 

MT1a is expressed in hypophysial pars tuberalis and SCN, the sites of 

reproductive and circadian actions of melatonin respectively. The MT1b is 

expressed mainly in retina and to a lesser extent in brain. Melatonin has low 

affinity for MT2 receptors. MT2 receptor mRNA is also present in rodent SCN 

(Wan et al., 1999) and hippocampus as well as in human retina and brain 

(Hunt et al., 2001). MT2 receptor is present in nanomolar concentrations. 

Activation of these receptors is coupled to the stimulation of phophoinositide 

hydrolysis. Melatonin receptors present in the SCN regulate circadian 

rhythms. High affinity melatonin receptors are also present in pars tuberalis of 

pituitary, a relay ‘station’ between the central and peripheral nervous systems. 

Melatonin affects the endocrine system through pars tuberalis (Morgan, 2000). 

These receptors regulate reproductive function (Lincoln et al., 2003). 

Receptors in peripheral tissues regulate cardiovascular function, body 

temperature etc. (Brugger and Herold, 1995). In CNS, melatonin may modify 

neurotransmitter function.  

Melatonin also acts at intracellular sites. Intracellularly, melatonin 

binds to cytosolic calmodulin with high affinity (Benίtez-King et al., 1993) 

and may directly affect calcium signaling by interacting with target enzymes 

like adenylate cyclase and phosphodiesterases and also with structural proteins 

(Valenti and Giusti, 2002). 

 

Physiological functions of Melatonin: 

 
 Melatonin activates membrane receptors and putative cytoplasmic and 

nuclear sites to mediate a variety of physiological responses. Its physiological 

effects are pleiotropic and it is regarded as “regulator of regulators” (Reiter, 

1991). Melatonin has a wide range of biological effects ranging from 
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physiological to behavioral responses of an organism. The primary 

physiological function of melatonin is to convey information concerning the 

daily cycle of light and darkness to body physiology (Claustrat et al., 2005). 

The most important role of melatonin is the modulation of sleep-wake cycle. 

Melatonin is a potent free radical scavenger of highly toxic radicals and other 

oxygen centered radicals (Karasek and Reiter, 2002). Thus it has protective 

effects against oxidative stress and provides protection from diseases that 

cause degenerative, proliferative changes by shielding macromolecules 

especially DNA. Thus it plays an important role in cellular aging, especially in 

the brain. Melatonin stimulates production of interleukin 4 (IL-4) in bone 

marrow T-helper cells and granulocyte-macrophage colony stimulating factor 

(GMCSF) in stromal cells. It protects bone marrow cells from apoptosis 

induced cytotoxic compounds. It is an anti-cancer agent. It has a wide 

spectrum of metabolic and other physiological effects including hypothermic, 

sedative, hypnotic, analgetic, myorelaxing, cardio- and neuroprotective effects 

(Vijayalaxmi et al., 2002). Physiological functions like metabolism, behavior 

and reproduction of many vertebrate species depend upon the changes in day 

length. Melatonin is also known to regulate reproduction, the most important 

physiological role of melatonin (Underwood and Goldman, 1987). 

 

Metabolism of Melatonin: 

Melatonin is metabolized in liver. Circulating plasma melatonin has a very 

short half-life and 90% of this gets cleared in liver (Huether, 1994) (Fig. 10). 

Melatonin hydroxylase converts melatonin to 6-hydroxymelatonin that is then 

converted to a sulfate (60-70%) or glucoronide (20-30%) for urinary excretion 

(Webb and Puig-Domingo, 1995). In tissues, especially in the central nervous 

system melatonin undergoes pyrrole ring cleavage. The primary cleavage 

product is N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), which is 

deformylated, either by arylamine formamidase or hemoperoxidases to N1-

acetyl-5-methoxykynuramine (AMK). Other oxidative catabolites are cyclic 3-

hydroxymelatonin (c3OHM), which can also be metabolized to AFMK. 

Additional hydroxylated or nitrosated metabolites also appear and represent 
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minor quantities. AFMK and AMK also form metabolites by interactions with 

reactive oxygen and nitrogen species (Hardeland et al., 2006). 

 

  

(Huether, 1994) 

 

Fig. 10: Metabolism of Melatonin 

 

Melatonin and SCN:  
 

  In the rodent brain, SCN is a major site of melatonin binding 

(Dubocovich et al., 1996; Gillette and McArthur, 1996). Melatonin inhibits 

neuronal firing in SCN, most effectively observed at times of high SCN 

neuronal activity (subjective day time) as well as in the subjective night, when 

melatonin levels are normally high (van den Top et al., 2001). This 

suppression of neuronal activity by melatonin is important for SCN’s 

sensitivity to entraining agents (von Gall et al., 2002). In the SCN, melatonin 

inhibits phosphorylation of the transcription factor CREB induced by PACAP 

(Kopp et al., 1997) by MT1 receptor (von Gall et al., 2000), but does not affect 

glutamate induced CREB phosphorylation (von Gall et al., 1998). Melatonin 

can entrain circadian rhythms whose effect is time dependent restricted to 

dusk (Weaver, 1999). PRC studies by some workers showed that melatonin is 
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most effective if administered at CT-11 (Cardinali et al., 2002). Generally 

melatonin levels peak at mid-night. This suggests that endogenous melatonin 

may contribute to circadian organization but exogenous administration of 

melatonin can be used as a pharmacological tool for resetting the clock related 

disorders. 

 

Mode of action of Melatonin: 

 

Melatonin’s action is mediated by several mechanisms. It acts by 

binding to neural and non-neural membrane receptors (Dubocovich, 1995), by 

binding to calmodulin (Benίtez-King and Antόn-Tay, 1993) and to nuclear 

proteins (Steinhilber et al., 1995). Melatonin when it binds to its receptors, 

there is an influx of Ca
2+

 which then activates calmodulin by binding to it. 

This Ca
2+

-calmodulin complex binds to CaMKII and activates it. CaMKII also 

gets autophosphorylated and both forms phosphorylate intracellular targets 

such as tryptophan hydroxylase, synapsin I and c-fos. 

 

Ca
2+

/Calmodulin- dependent protein Kinase II: 

  

 The enzyme CaMKII is a member of a family of Ca
2+

/calmodulin-

regulated protein kinases which also include Ca
2+

/calmodulin-dependent 

protein kinase I, III and myosin light chain kinase and phosphorylase kinase 

(Nairn et al., 1985). It is also known as synapsin kinase (Kennedy et al., 1983) 

and glycogen synthase kinase (Payne et al., 1983). It is a multifunctional 

serine / threonine protein kinase and is one of the most abundant protein 

kinases in the mammalian brain (McGuinness et al., 1985). In addition to 

brain, CaMKII is also found in liver (Payne et al., 1983), Woodgett et al., 

1983), heart (Iwasa et al., 1986), pancreas (Wang et al., 2005), lungs 

(Schulman et al., 1985), parathyroid (Kinder et al., 1987), mammary gland 

(Brooks and Landt, 1985) and intestinal brush border tissue (Reiker et al., 

1987) of mammals. Many of its substrates are involved in neuronal signaling. 

CaMKII modulates both neurotransmitter synthesis and release (Erondu and 

Kennedy, 1985). 
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Subcellular Distribution: 

 
 Subcellular distribution of CaMKII varies from tissue to tissue. There 

are two pools of CaMKII, cytosolic and a particulate pool where the enzyme is 

associated with certain membranes and cytoskeletal structures like post 

synaptic density (PSD). This PSD is found to be rich in CaMKII as compared 

to other subcellular regions (Rostas and Dunkley, 1992). Rostas and Margrie 

(1997) suggest that both cytosolic and particulate CaMKII exist in dynamic 

equilibrium in vivo, actively regulated by unknown intracellular control 

mechanisms which in response to many developmental, physiological and 

pathological stimuli alter the proportions in these fractions. In the neuron, 

CaMKII is distributed in the spines, somata, axons, dendrites and nerve 

terminals, with little in the nuclei (Ouimet et al., 1984). There are five 

isoforms of CaMKII in the rat α, β, β’, γ and δ. The aminoacid sequence of 

these isoforms is highly conserved. The α and β isoforms are primarily 

expressed in brain (Saha et al., 2006) whereas γ and δ isoforms are expressed 

in various tissues (Tobimatsu and Fujisawa, 1989).  

 

Structure of CaMKII: 

 

The CaMKII is a heteropolymer with different subunits ranging from 

50-62 kDa depending on the type of tissue and species. The subunits have 

regulatory as well as catalytic functions. In the rat brain, all subunits contain 

ATP binding, catalytic activity and calmodulin binding domains (Colbran et 

al., 1989). All of them exhibit 91% homology at N-terminal end, 76% 

homology at C-terminal region and comparatively less homology in the central 

region (Bulliet et al., 1988). ATP binding domain and catalytic activity of the 

enzyme reside in the N-terminal region whereas calmodulin binding domain is 

located between aminoacid residues 290 and 314 in  α subunit. The C-terminal 

region may be involved in its subcellular localization (Colbran et al., 1989). 

The determinants for substrate specificity of CaMKII lie in the three arginine 

residues at N-terminal region (Payne et al., 1983).  
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CaMKII activation and regulation: 

 

 Protein kinases are known to be regulated by a number of mechanisms 

such as activators like cyclic nucleotides and Ca
2+

, proteins and peptides 

(Beale et al., 1977), substrates (Miyamoto et al., 1973) and phosphorylation 

(Geahlen et al., 1981) etc.  CaMKII requires Ca
2+

/calmodulin for its activity 

(Fig. 11). In the presence of Ca
2+

/calmodulin, CaMKII undergoes 

intramolecular autophosphorylation (Kuret and Schulman, 1985) before 

phosphorylating any exogenous substrate (Kwiatkowski et al., 1988). The 

inactive CaMKII attains partially Ca
2+

-independent form which is completely 

reversible by treatments with phosphoprotein phosphatases (Lai et al., 1986). 

In the presence of phosphatases and ATP, enzyme phosphorylates a suitable 

substrate, thus regulating different physiological processes.  

Stimulus response coupling Plasma membrane

Ca2+
Melatonin

Ca2+

CaM CaM

Inactive Active

CaMKII

CaMKII
CaM

P

Ca2+

CaMKII

Tryptophan hydroxylase, c-Fos
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ActiveInactive

Ca2+ insensitive
Active

CaM

β Sub unit

α Sub unit

Ca2+

 

(Ikeda et al., 1991) 

 

Fig. 11: Mode of action of CaMKII 
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  Activation and inactivation of the enzyme is regulated by the 

regulatory domain. The regulatory domain contains calmodulin-binding 

domain and inhibitory domain. Calmodulin-binding domain spans from 295-

315 amino acid residues in the α subunit (Hanley et al., 1987). Inhibitory 

domain is located within 281-309 residues, close to the calmodulin-binding 

domain which supresses the kinase activity in the absence of Ca
2+

/calmodulin 

(Kelly et al., 1988). 

Ca
2+

/calmodulin when binds to calmodulin-binding domain of the 

enzyme induces conformational changes which disrupts interaction of 

inhibitory domain at ATP-binding site making the enzyme active. Once ATP 

binds to its respective site kinase will either undergo autophosphorylation or 

phosphorylate exogenous substrates (Colbran et al., 1989). The 

phosphorylated enzyme remains active until it is dephosphorylated even after 

a decrease in Ca
2+

 levels suggesting its active role for a longer duration to 

transient increase in intracellular Ca
2+

 levels (Ochiishi et al., 1993). Inhibitory 

domain blocks ATP binding site that is competitive and also 

autophosphorylation site (Thr
286

) thus making the enzyme inactive (Kelly et 

al., 1988). 

 

Physiological functions of CaMKII:  

 

The CaMKII plays an important role in the regulation of the synthesis 

and secretion of neurotransmitters, receptor function, structural modification 

of cytoskeletal proteins, microtubule assembly/disassembly, axonal transport 

and in long term potentiation in the brain (Soderling, 1990). This kinase 

phosphorylates many proteins in vitro which include synapsin (Kennedy et al., 

1983), tyrosine hydroxylase (Vulliet et al., 1984), tryptophan hydroxylase 

(Yamauchi and Fujisawa, 1984) and glycogen synthase (Payne et al., 1983). It 

also regulates expression of IEGs like c-fos and phosphorylation of many 

proteins and enzymes required for their activation. Thus it acts as one of the 

important enzymes essential for the generation of rhythms. 

 SCN is rich in CaMKII and it is known to be involved in transmission 

of photic information (Weber et al., 1995) and phase resetting of the circadian 
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clock upon light exposure (Agostino et al., 2004). Recent studies have shown 

high frequency oscillations in Ca
2+

 in SCN neurons in brain slices. These 

oscillations alter membrane potential of the SCN neurons that result in 

membrane depolarization and spontaneous firing of SCN neurons. 

Phosphorylation of CaMKII is rhythmic both under free-running and entrained 

conditions with peak levels during the subjective day (Agostino et al., 2004). 

 

Aging: 

 

Aging is the most important factor that influences or alters the 

functioning of the circadian timing system. Aging is the progressive 

deterioration in the functions of an organism (Karasek and Reiter, 2002; 

Jagota, 2005). These functions are governed by a number of complex 

interactions among the biochemical, morphological and anatomical aspects of 

an organism and thus the process of aging is multifactorial. There seems to be 

a reduction in the complexity of physiological and behavioral control systems 

with increase in age and in disease conditions (Lipsitz and Goldberger, 1992) 

due to loss or defect in the control systems (Vaillancourt and Newell 2002). 

Aging causes many structural, biochemical, functional and 

neurochemical changes (Hussain and Mitra, 2000). Biochemical changes like 

accumulation of pigment called lipofuscin occurs with age. Lipofuscin is a 

byproduct of autophagia and lipid peroxidation which might interfere with 

intracellular function. Masses of fibrous substances, neurofibrillary tangles 

and neuritic plaques are found extracellularly and intracellularly with normal 

aging. Some workers have reported an increase in transcription of glial fibric 

acidic protein (GFAP) mRNA in the brain of aging humans and rats (Nichols 

et al., 1993) that results in the increased amount of GFAP protein. In addition 

to these various changes, blood-brain barrier also shows increased 

permeability leading to increased drug sensitivity and susceptibility to 

pathological conditions. 

Neurological changes upon aging have been attributed to the loss of 

neurotransmitters, their receptors and responsiveness to neurotransmitters 

(Arivazhagan and Panneerselvam, 2002) (Fig. 12). Degeneration of 
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monoaminergic neurons (Watabe et al., 2005) and alterations in the 

metabolism of brain monoaminergic neurotransmitters (Slotkin et al., 2000) 

were also demonstrated in the aging brain. Neuroendocrine changes occur 

with aging (Ferrari et al., 2000) and are characterized by changes in pulse, 

amplitude and irregularity in the periodicity of hormone and neurotransmitter 

releases that respond to various physiological and behavioral functions 

(Matsumoto et al., 2000). Several reports suggest that alteration of 

neurotransmitter metabolism might control the process of aging (Goldberg et 

al., 2004) by the agents that stimulate hypothalamic neuroendocrine 

transducer cells (Samorajski, 1977). The selective cell death in the brain is 

also implicated in progressive loss of function, behavioral changes and the 

onset of age-related diseases. In addition, enzymatic (protein kinases) and 

metabolic alterations are also present with aging (Jin and Saitoh 1995).  

 

 

 

 

 (Smith et al., 2005) 

 

Fig. 12: Decline in the activity of brain during aging 

 

The most widely accepted theory of aging is oxidative stress due to 

increased free radical generation and several reports suggest a close 

connection between aging, age-related pathologies and oxidative stress 
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(Balaban et al., 2005). Recent studies suggest that clock proteins such as 

BMAL1 and PER are directly involved in regulation of free radical levels in 

cells and thus control aging (Kondratov, 2007). Many metabolic processes are 

associated with aging and changes in the metabolic processes induced by 

metabolic diseases like diabetes and obesity also contribute to the aging 

process. Recently it was demonstrated that circadian system is actively 

involved in synchronization of metabolic processes and the control of 

mammalian energy balance (Kondratov, 2007).  

 

Aging and Circadian rhythms: 

 
 Aging affects the circadian timing systems of wide range of animals 

from invertebrates to vertebrates. Aplysia, a mollusc exhibits reduced rhythm 

amplitude in optic nerve impulse frequency with aging (Sloan et al., 1999). In 

mammals, old mice show delayed activity onsets, take longer time to for phase 

resetting. They exhibited increased fragmentation in their wheel running 

activity (Weinert and Waterhouse, 1999). There were disruptions in the phase 

shifting ability of mice and hamsters to photic (Benloucif et al., 1997a) and 

non-photic stimuli (Van Reeth et al., 1993) as a consequence of aging. In older 

rats, there was reduced amplitude in circadian drinking behavior (Burwell et 

al., 1992), locomotor activity rhythms (Dawson et al., 1987) and body 

temperature rhythms (Li and Satinoff, 1995). In aged individuals, rhythms are 

less precise, shorter in period, smaller in amplitude, slow in resynchronization 

to external stimuli (Sharma, 2001). 

The circadian clock properties are altered with aging. There is 

desynchronization of rhythms and the efficacy of input and output pathways to 

and from the circadian pacemaker and the functioning of the central 

pacemaker. Aging results in neuronal deterioration (Mirmiran et al., 1992), 

decrease in protein levels (Laitinen et al., 1992), changes in the rhythms of 

glucose (Van Cauter et al., 1997), and a reduction of dendritic surface (Swaab 

et al., 1985). All these changes lead to the aperiodic pattern of firing of 

circadian rhythms in the SCN neurons (Satinoff et al., 1993). It has been 

demonstrated that Bmal1 null mutant mice show early signs of aging. It is an 
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important protein required for normal tissue homeostasis in mice (Kondratov 

et al., 2006). Mice mutant for Per1 and Per2 showed early onset of aging with 

faster decline of fertility and loss of soft tissue (Lee, 2005). Witting et al., 

(1993) correlated age-related changes in circadian rhythmicity with decreased 

sensitivity of the circadian system to light. According to Aujard et al., (2001), 

there are several hypotheses to explain the observed decrease in sensitivity to 

light in the SCN with aging: (1) a modification in the kinetics of the activation 

of signaling pathways in the SCN; (2) a reduction in the amplitude of photic 

information transmitted by the retina to the clock; (3) age-related changes 

within the clock mechanism of the SCN itself. There are several evidences of 

aging affecting SCN function. These were demonstrated by previous studies 

which showed disruption of circadian and seasonal rhythms in vasopressin and 

a progressive loss of vasopressinergic cells with aging (Hofman and Swaab, 

1995). The functional activity of the SCN is also altered with a loss of 

day/night differences in vasoactive polypeptide mRNA levels of aged rats 

(Kawakami et al., 1997), alteration in glucose utilization (Wise et al., 1988), 

and in cAMP-response element-binding protein phosphorylation (Zhang et al., 

1996). 
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Objectives of our study: 

 

i. Age induced changes in serotonin rhythms in brain and SCN of rat 

 

ii. Effect of melatonin administration on age related changes in 

serotonin rhythms in the SCN of rat. 

 

iii. Age induced changes and the effect of melatonin administration on 

N-acetyl transferase (NAT) activity rhythms in the SCN of rat. 

 

iv. Age induced changes and the effect of melatonin administration on 

Ca
2+

/Calmodulin-dependent protein kinase II (CaMKII) activity 

rhythms in SCN and Pineal gland of rat. 

 

v. Age induced changes and the effect of melatonin administration on 

c-Fos levels in the SCN and Pineal gland of rat. 
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INTRODUCTION: 

 

Neurotransmitters behave as growth regulators (Lauder, 1993) during 

specific developmental periods (Brezun and Daszuta, 2000) and modulate the 

construction and plasticity of brain circuits during development (Gaspar et al., 

2003). Serotonin is the neurotransmitter found to be present in most organisms. 

Serotonin is synthesized in neuronal as well as non-neuronal tissues like pineal 

gland, enterochromaffin cells of the gut, neuroepithelial bodies of the lung 

(Azmitia, 2002). The rate limiting enzyme, tryptophan hydroxylase (TPH) is 

involved in the synthesis of 5-HT in the neuronal and non-neuronal tissues 

(Walther et al., 2003). Serotonin affects morphogenesis of gastrointestinal tract, 

cardiovascular system and craniofacial organization through its 5-HT2B receptor 

in rat, mouse and chicken (Gaspar et al., 2003).  

 

Serotonergic neurons are the first neurons to be generated, on embryonic 

(E) days 10-12 in mouse and in primates during the first month of gestation 

(Levitt and Rakic, 1982). Neurons containing 5-HT are known as B1-B9 cell 

groups (Dahlstrom and Fuxe, 1964). There are around 20,000 serotonergic 

neurons as compared to the total 10
10 

neurons in the central nervous system of rat 

(Jacobs and Azmitia, 1992). These neurons are located in the raphe nuclei, on the 

midline of rhombencephalon (Dahlstrom and Fuxe, 1964). Neurons of raphe 

nuclei synthesize serotonin, one day after their generation and profusely extend 

through their axons to the rostral and caudal ends which project into forebrain 

and spinal cord respectively (Lidov and Molliver, 1982). Several reports suggest 

that maternal serotonin determines normal development of fetus (Côté et al., 

2007).  

 

Serotonin in Nervous system development: 

 

Development of nervous system arises from the ectoderm of the three 

germinal layers (Jessell and Sanes, 1991). It is a series of events that involves 

neuron formation, migration, differentiation, death, synapse formation, process 

elimination and establishment of function (Moore, 1992). Serotonin (5-
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hydroxytryptamine, 5-HT) was the first neurotransmitter known to act as a 

developmental regulator (Levin et al., 2006) especially nervous system 

development (Richerson, 2004; Sodhi and Sanders-Bush 2004). Serotonergic 

neurons are one of the first neurons to emerge and differentiate in the brain of 

many species (Djalali et al., 2005). 5-HT regulates development of its own 

neurons (autoregulation) as well as development of target tissues (Whitaker-

Azmitia, 2001). It also acts as a trophic factor and influences functional state of 

neurons in the central nervous system (Djavadian, 2004). Development of several 

neural networks depends on the action of serotonin on various multiple, hetero- 

and autoreceptor subtypes (Lesch, 2001). 5-HT receptors are expressed early in 

embryonic life and are regulated dynamically during pre- or postnatal 

development. 5-HT acts on different target receptors at different times and in 

different tissues during development (Gaspar et al., 2003). Each and every type 

of neuron (motor neurons, neurosecretory neurons, ganglion neurons and 

different types of inter-neurons) receives serotonergic signals and has 5-HT 

receptors. Its receptors are located on glial cells including astrocytes, 

oligodendroglial cells and microglial cells. Serotonin is involved in a number of 

developmental events like cell division (Eddahibi et al., 1999), neuronal 

migration (Lipton and Kater, 1989), neural differentiation (Azmitia, 2001), axon 

outgrowth (Lesch, 2001), synaptogenesis, synaptic modeling, maturation of 

synapses (Zhang, 2006), enhancement of synapse refinement in brain (Bethea and 

Sikich, 2007) and regulation of spontaneous activity (Zhang, 2006). Because of 

its diverse cellular targets and its receptors, serotonin is involved in an enormous 

number of functions like appetite, hormonal secretion, locomotor activity, 

learning and memory (Buhot et al., 2000), mood (aggression and anxiety) and 

sleep (Azmitia and Whitaker-Azmitia, 1991). Alteration in serotonin homeostasis 

cause permanent changes to adult behavior and modify the fine wiring of brain 

connections that lead to the pathophysiology of the brain (Gaspar et al., 2003). 

Thus, serotonergic system has been implicated in a variety of illnesses such as 

depression (Graeff et al., 1996), attention deficit disorders (Saudou et al., 1994), 

anorexia nervosa, bulimia, autism (Whitaker-Azmitia, 2001) and pathological 
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conditions like Alzheimer’s disease, Schizophrenia and hepatic encephalopathy 

(Azmitia, 2002).  

 

Serotonin in Brain: 

 

Serotonin is extensively distributed in the central nervous system (Jacobs 

and Azmitia, 1992). In the brain it is present in the raphe nuclei of brain stem. 

These neurons branch out profusely to every area of the brain and spinal cord by 

extensive and diffuse collateralization of their axons and have multiple cellular 

targets. It plays an important role in regulating the development and maturation 

of mammalian brain through the release of an astroglial protein, S100β. This 

protein plays a role in neurite extension, microtubule and dendritic stabilization 

which are key elements in the production of synapses (Mazer et al., 1997). 

Serotonergic fibres innervate different types of cells such as ependymal cells that 

line the ventricles, choroid plexus which make cerebrospinal fluid and endothelial 

cells that form blood vessels (Azmitia, 2002). In the brain the endocrine centres, 

the pituitary and the pineal gland (Boadle-Biber, 1993) also receive serotonin. 

Serotonin has multiple physiological functions as a neurotransmitter to a growth 

factor (Buznikov et al., 2001). It acts as a neuroprotective agent in cortical 

neurons (Stankovski et al., 2007). Serotonin plays a critical role in the initiation 

of neurogenesis in hippocampus which is associated with learning, memory and 

responsible for emotional responses (Chen et al., 2007). Serotonin plays an 

important role in many physiological functions. All these functions are 

determined by the identity of cells and tissues which is defined by the genes they 

express, the time and order of their expression that are under circadian clock, 

SCN (Hastings et al., 2003).  

 

Serotonin in SCN: 

 

 Serotonin is an important regulator of the mammalian circadian clock 

(Garau et al., 2006). Malek et al., (2005) suggested that 5-HT synthesis and 

release in the median raphe nuclei within the circadian system is under the 

control of the SCN directly or indirectly. Circadian 5-HT synthesis in 
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serotonergic neurons projecting to the circadian system is due to the rhythmic 

transcription of the tph2 gene in the raphe nuclei (Malek et al., 2005). Serotonin 

and its agonists have various phase resetting affects on the SCN (Graff et al., 

2007). Serotonergic neurons modulate the phase of the circadian clock and this is 

affected by the amount of prior serotonin signaling present in the SCN. This 

signaling alters the density of surface 5-HT receptors on SCN neurons (Prosser et 

al., 2006). Non-photic phase-shifting of mammalian circadian rhythms is partly 

mediated by serotonin acting in the SCN (Duncan et al., 2005). Serotonin 

modulates the effects of light on circadian behavior by acting on 5-HT1B 

receptors on retinohypothalamic (RHT) terminals in the SCN (Sollars et al., 

2006). In the SCN, serotonin has a long lasting effect on differentiation of VIP 

and vasopressin (VP) and 5-HT is involved in the release of these peptides in the 

SCN (Mirochnik et al., 2005). It is known to stimulate glutamate release which is 

involved in arginine-vasopressin release, one of the important input pathways 

from the SCN (Isobe and Nishihara, 2002). Rhythms in serotonin synthesis and 

release in the SCN of rat has been studied earlier (Barassin et al., 2002). Its 

afferents are known to modulate VIP and gastrin releasing peptide (GRP) 

expression in the ventrolateral neurons of the SCN by activating the 5-HT1B 

receptor in the RHT (Hayashi et al., 2001). 

 

Role of serotonin in Circadian rhythms:  

 

 Serotonin is one of the important neurotransmitters with a wide variety of 

physiological functions in an organism. It is involved in the input pathway of 

circadian system and rhythm modulation. Regional distribution of extracellular 5-

HT and 5-HIAA concentrations had been studied earlier by Adell et al., (1991). 

The presence of serotonin in discrete areas of rat brain had been demonstrated 

earlier (Saavedra, 1977). 

 SCN is one of the important target areas of serotonergic projection. 

Serotonin is one of the principal neurotransmitters that convey information about 

external cues through retino-raphe pathway to the SCN. 5-HT influences many 

aspects of circadian rhythms, including phase shifts, onset of locomotor activity, 
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period length, integrity of rhythms during exposure to constant light (Duncan et 

al., 2000) and also in modulation of circadian rhythms in response to photic 

(Pickard and Rea, 1997) and non-photic stimuli (Cutrera et al., 1994). SCN 

receives serotonergic projection from median raphe nucleus (Challet et al., 1998). 

In the SCN, increase in 5-HT release results in behavioral arousal during the 

subjective day (Grossman et al., 2000). Disruption in serotonergic projections to 

the SCN has been shown to affect circadian behavioral and neuroendocrine 

rhythms in rodents (Morin and Blanchard, 1991). 

Serotonergic neurotransmission is an important element in the 

neurochemical basis of circadian rhythm generation. Serotonin also plays an 

important role in the development of nervous system. In this chapter, serotonin 

daily rhythms in brain and SCN in various age groups were studied. 

 

MATERIALS and METHODS: 

 

Male Wistar rats of different age groups (15, 30, 60, 90, 120, 180, 270, 

365, 545 and 730 day old) were taken and maintained under laboratory 

conditions, 06.30h (ZT-0)-18.30h (ZT-12) light phase; 18.30h (ZT-12)-06.30h 

(ZT-24) dark phase, two weeks prior to the experiments. All rats were kept 

individually in polypropylene cages at room temperature (20+2
o
C) with relative 

humidity (55+6%). Food and water were supplied ad libitum. Dim red light was 

used for handling the animals in the dark. Cage changing was done at random 

intervals. Serotonin levels were measured at various time points (ZT-0, 6, 12, 18 

and 24) in the rat brain and SCN by spectrofluorimeter (Hitachi, F-4010).  

 

1) Brain tissue preparation: 

 

Rats were decapitated and brains were removed carefully. 

 

2) SCN tissue preparation: 

 

 Rats were decapitated and brains were removed carefully. 500µ brain 

slices were made using tissue chopper and SCN tissue was carefully punched out 
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with the help of a sharp scalpel (Gillette, 1986; Prosser and Gillette, 1989). 

All chemicals and reagents used in this study were of analytical grade. 

Standard serotonin was obtained from Sigma chemicals.  

 

3) Fluorimetric determination of Serotonin: 

 

5% tissue homogenate (cold acetone/1N formic acid 95:5 v/v) was made 

from each sample by using tissue homogenizer (Remi, RQ 127A). 40µl of 

homogenate was taken and 80µl of 0.01N HCl containing 0.01% of ascorbic acid 

was added and kept for 30 minutes (min) at 0
o
C for extraction. This was 

centrifuged at 1600 rpm for 10 min at -10
o
C in a refrigerated centrifuge (Remi, C-

24). Supernatant was taken and to it 160µl of freshly made heptane/chloroform 

(8:1 v/v) was added and centrifuged at 1000 rpm for 5 min. Aqueous layer was 

taken and evaporated to dryness by passing nitrogen gas, obtained locally. To the 

residue obtained, 40µl of 0.1N HCl containing 0.5% ascorbic acid, 84µl of 2% 

EDTA, 0.04g of NaCl and 160µl of butyl acetate were added. Contents were 

shaken for 5 min and then centrifuged at 2500 rpm for 10 min. 

Aqueous layer was taken and to 40µl of aqueous layer, 3µl of 2M Na2CO3 

was added to set the pH at 9.8. Then 100µl of NaCl saturated butanol was added, 

mixed well and then centrifuged at 2000 rpm for 5 min. Butanol layer was 

transfered to tubes containing 1ml of borate buffer and centrifuged for 5 min at 

2000 rpm. 80µl of butanol layer was taken from the above and 140µl of heptane 

and 40µl of 0.1 N HCl were added and centrifuged at 2000 rpm for 10 min. 

Aqueous layer containing serotonin was made 3N by adding 10N HCl and its 

fluorescence was measured by spectrofluorimetry with an excitation at 300 nm 

and emission at 545 nm (Fischer and Aprison, 1972; Jagota and Habibulla, 1992) 

(Fig. 13). 

 

4) Protein Estimation: 

 

Protein estimation for brain samples was done by Lowry’s method (Lowry et al., 

1951). 20µl of 5% homogenate was used for the protein estimation of each brain 

sample studied (15, 30, 60, 90, 120, 180, 270, 365, 540 and 730 day old). Each 
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sample was made to 500µl by adding double distilled water. To this 0.1ml of 2N 

NaOH was added and incubated for 10 min at 100°C in water bath. Then 1ml of 

freshly made complex reagent (2% Na2CO3, 1% CuSO4.5H2O and 2% Sodium 

potassium tartarate) was added to the above mixture and incubated at room 

temperature for 10 min. After incubation, 0.1 ml of 1N Folin’s reagent was 

added.  This mixture was then incubated at room temperature for 30-60 min and 

5-HT
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Fig. 13: Spectrofluorimetric assay of Serotonin 

 

absorbance was measured at 550 nm.  The standard was prepared using bovine 

serum albumin (BSA) of concentrations ranging from 10µg to 100µg. 1ml of 

reagent was used for each standard sample. Standard graph was plotted by taking 

concentration of protein sample on x-axis against the corresponding absorbance 

obtained on y-axis.   

Protein estimation for SCN samples was done by using Bradford’s method 

(Bradford, 1976) because the sample size of SCN was too less to be estimated by 

Lowry’s method. 10µl of 5% homogenate was used for the protein estimation of 

each SCN sample in all the age groups of rats studied (15, 30, 60, 90, 120, 180, 

270, 365, 540 and 730 day old). Volume of each tissue sample was adjusted to 
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100µl with double distilled water. 1ml of Bradford’s reagent was added to each 

sample and contents were mixed properly. The absorbance was measured at 

595nm after 2 min and before 1hr against a reagent blank of 100µl double 

distilled water and 1ml of Bradford’s reagent. The standard was prepared using 

bovine serum albumin (BSA) of concentrations ranging from 1µg to 10µg. 1ml of 

reagent was used for each standard sample. Standard graph was plotted by taking 

concentration of protein sample on X-axis against the corresponding absorbance 

obtained on Y-axis.   

 

STATISTICAL ANALYSIS: 

 

One Way ANOVA with Tukey test was done for all the age groups (15D, 

30D, 60D, 120D, 180D, 270D, 365D, 545D and 730D at all zeitgeber times) studied 

by taking 90 day values as control. t-test was done to compare maximum and 

minimum amount of 5-HT/g protein within the same age group and their ratio values 

were compared in all the age groups studied with 90 day as control. 

 

RESULTS: 

 

Serotonin daily rhythms in the brain:  

 

 In this study all the age groups showed a distinct pattern of rhythmicity in 

brain serotonin levels (Table 1; Fig. 14). 5-HT levels increased from 15 day to 90 

day except in 30 day, there was decrease in serotonin levels at all zeitgeber times. 

Serotonin levels then decreased from 90 day to 730 day. Rhythmicity in serotonin 

levels was observed in the age groups, 15, 30, 60, 90, 120 and 180 day with 

highest levels at mid-day (ZT-6) and lowest levels observed at mid-night (ZT-18). 

Rhythms were abolished in 270 and older age groups up to 730 day. We observed 

a phase advance in the maximum levels of serotonin at 270 day (ZT-0/24), phase 

delay at 365 and 545 day (ZT-18) and at ZT-6 in 730 day.  

The maximum levels of 5-HT observed were 3.61 ± 0.42, 3.21 ± 0.28, 

7.82 ± 0.49,
 
47.3 ± 9.98, 21.51 ± 3.72, 8.22 ± 1.21, 14.01 ± 2.23, 1.054 ± 0.32, 

1.42 ± 0.26 and 4.44 ± 1.73 µmol/g protein in 15, 30, 60, 90, 120, 180, 270, 365, 
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545 and 730 day respectively (Table 2; Fig. 15). There was a significant 

difference (pa
 
≤ 0.05) in serotonin levels at ZT-6 in 15, 30, 60, 120, 180, 270, 365, 

545 and 730 day as compared with 90 day, adult.  

Table 1: Age related changes in daily serotonin rhythms in the rat brain 

(LD; 12:12) 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off).

One Way Anova: p
a

< 0.05 (a refers to comparison with 90D)

0.977 ± 0.027 a2.739 ± 1.162 a1.154 ± 0.057 a4.442 ± 1.734 a0.977 ± 0.027 a73010

0.773 ± 0.11 a1.42 ± 0.26 a1.028 ± 0.12 a0.91 ± 0.13 a0.773 ± 0.11 a5459

0.973 ± 0.13 a1.054 ± 0.32 a0.846 ± 0.07 a0.915 ± 0.23 a0.973 ± 0.13 a3658

14.01 ± 2.23 a6.03 ± 0.5 a7.67 ± 0.488.69 ± 0.87 a14.01 ± 2.23 a2707

3.09 ± 0.36 a3.43 ± 1.02 a7.07 ± 0.9 a8.22 ± 1.21 a3.09 ± 0.36 a1806

21.13 ± 3.657.76 ± 1.0316.06 ± 2.7721.51 ± 3.72 a21.13 ± 3.651205

37.95 ± 10.2912.65 ± 2.3516.17 ± 3.2547.3 ± 9.9837.95 ± 10.29904

5.27 ± 1.10 a4.0 ± 1.0 a7.37 ± 1.43 a7.82 ± 0.49 a5.69 ± 1.03 a603

2.74 ± 0.31 a1.07 ± 0.17 a1.68 ± 0.32 a3.2 ± 0.28 a2.44 ± 0.28 302

3.31 ± 0.23 a1.37 ± 0.39 a3.14 ± 1.02 a3.61 ± 0.42 a3.49 ± 0.03 a151

24/0181260/24
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Fig. 14: Age related changes in daily serotonin rhythms in rat brain  

(LD; 12:12) 
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Table 2: Daily pulses of Serotonin levels in the rat brain (LD; 12:12) 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way Anova: p
a

< 0.05 (a refers to comparison with 90D)

p
b
< 0.05 (b refers to comparison of ratio values between a given age group and 90D)

t-test: p
c

< 0.05 (c refers to comparison between maximum and minimum values in the same age group)

1.7 ± 0.448 b2.739 ± 1.162 a4.442 ± 1.734 a730

1.33 ± 1.09 b0.773 ± 0.11 a1.028 ± 0.12 a545

1.38 ± 0.48 b0.846 ± 0.07 a1.054 ± 0.32 a365

2.45 ± 0.26 b, c6.03 ± 0.5 a14.01 ± 2.23 a270

2.84 ± 0.18 b, c3.09 ± 0.36 a8.22 ± 1.21 a180 

3.49 ± 0.31 c7.76 ± 1.0321.51 ± 3.72 a120

4.431 ± 0.505 c12.65 ± 2.3547.3 ± 9.98        90

2.818 ± 0.319 b, c4.0 ± 1.0 a7.82 ± 0.495 a60

3.323 ± 0.204 c1.68 ± 0.32 a3.206 ± 0.284 a30

4.096 ± 0.476 c1.375 ± 0.393 a3.616 ± 0.427 a15

MinimumMaximum

Ratio

Maximum: Minimum

Serotonin levels  (µµµµmol/g protein)Age

(days)
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Fig. 15: Daily pulses of Serotonin levels in Rat Brain (LD; 12:12) 
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Minimum levels of serotonin observed were 1.37 ± 0.39, 1.07 ± 0.17, 4.0 

± 1.0, 12.65 ± 2.35, 7.76 ± 1.03, 3.09 ± 0.36, 6.03 ± 0.5, 0.84 ± 0.07, 0.77 ± 0.11 

and 0.97 ± 0.02 µmol/g protein in 15, 30, 60, 90, 120, 180, 270, 365, 545 and 730 

day respectively (Table 2; Fig. 15). 5-HT levels at ZT-18 in 15, 30, 60, 180, 270, 

365, 545 and 730 day brain were significantly different (pa ≤ 0.05) from the adult, 

90 day.  

 

Serotonin daily rhythms in the SCN: 

 

 We observed age-related changes in serotonin levels and circadian 

rhythmicity in the SCN of all the age groups studied (15, 30, 60, 90, 120, 180, 

270, 365, 545 and 730 day) (Table 3; Fig. 16). There was increase in serotonin 

levels from 15 day old to 120 day, except in 30 day serotonin levels decreased. 

With increase in age, 120 day to 730 day serotonin levels decreased. 

Serotonin daily rhythms in SCN were observed from 15 day to 180 day 

with maximum serotonin levels at ZT-6 and minimum serotonin levels at ZT-18 

and at ZT-12 in 30 day. However, rhythmicity in serotonin levels was not 

observed in 30, 270 day and other older age groups up to 730 day. Robust 

increase in the amplitude of serotonin rhythms in 90 day was observed as 

compared to serotonin rhythms in other age groups. Rhythmicity was abolished in 

older age groups with maximum levels at ZT-0/24, ZT-12, ZT-0/24 and ZT-6 in 

270, 365, 545 and 730 day respectively.   

Maximum serotonin levels observed were 19.26 ±  2.2, 7.66 ± 0.74, 24.69 

± 1.71, 169.75 ± 9.21, 290.53 ± 52.49, 225.10 ± 3.66, 33.53 ± 3.3, 8.97 ± 3.45, 

4.14 ± 2.4 and 17.66 ± 6.63 µmol/g protein in the age groups studied from 15 day 

to 730 day respectively (Table 4; Fig. 17). Minimum levels of serotonin observed 

were 10.4 ± 3.44, 5.21 ± 1.09, 6.9 ± 1.58, 36.96 ± 12.0, 39.33 ± 6.92, 95.84 ± 

8.07, 5.96 ± 0.32, 3.02 ± 0.32, 2.54 ± 0.83 and 0.21 ± 0.13 µmol/g protein in 15, 

30, 60, 90, 120, 180, 270, 365, 545 and 730 day respectively (Table 4; Fig. 17). 

There was a significant difference (pa ≤ 0.05) in serotonin levels in 15, 30, 60, 

270, 365, 545 and 730 day at all zeitgeber times as compared to the adult (90 
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day). Serotonin levels in 120 day were significant at ZT-0/24 and ZT-6 (pa ≤0.05) 

and in 180 day, levels were significant at ZT-18 (pa ≤ 0.05). 

  

Table 3: Age related changes in daily serotonin rhythms in the SCN  

of Rat (LD; 12:12) 

0.212 ± 0.129 a4.067 ± 0.779 a0.659 ± 0.369 a17.661 ± 6.633 a0.212 ± 0.129 a73010

4.14 ± 2.4 a3.88 ± 1.45 a2.54 ± 0.83 a3.193 ± 0.865 a4.14 ± 2.4 a5459

5.26 ± 1.82 a5.54 ± 1.77 a8.97 ± 3.45 a3.018 ± 0.32 a5.26 ± 1.82 a3658

33.53 ± 3.30 a  5.96 ± 0.32 a15.2 ± 0.96 a 13.94 ± 0.67 a33.53 ± 3.30 a 2707

171.73 ± 7.4095.84 ± 8.07 a120.41 ± 8.33225.10 ± 3.66180.84 ± 12.461806

220.26 ± 27.03 a 39.33 ± 6.9297.56 ± 24.68290.53 ± 52.49 a 220.26 ± 27.03 
a

1205

132.47 ± 20.4536.96 ± 12.091.07 ± 19.03169.75 ± 9.21131.91 ± 14.28904

18.87 ± 4.52 a6.9 ± 1.58 a13.11 ± 1.97 a24.69 ± 1.71a21.05 ± 3.66 a603

7.88 ± 1.52 a 6.06 ± 1.72 a 5.21 ± 1.09 a7.66 ± 0.74 a 7.88 ± 1.52 a302

16.98 ± 2.85 a10.4 ± 3.44 a14.28 ± 2.3 a19.26 ± 2.2 a17.33 ± 2.71a151

24/0181260/24

Serotonin levels (µmol/g protein) at different zeitgeber timesAge

(days)

S.No

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way Anova: pa < 0.05 (a refers to comparison with 90D)
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Fig. 16: Age related changes in daily serotonin rhythms in the SCN  

of rat (LD; 12:12) 
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Table 4: Daily pulses of Serotonin levels in the SCN of Rat  

(LD; 12:12) 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off).

One Way Anova: p
a

< 0.05 (a refers to comparison with 90D)

p
b

< 0.05 (b refers to comparison of ratio values between a given age group and 90D)

t-test: pc < 0.05 (c refers to comparison between maximum and minimum values in the same age group)

3.94 ± 1.04 c4.06 ± 0.779 a17.661 ± 6.63 a730

1.63 ± 1.4 b2.54 ± 0.83 a4.14 ± 1.2 a545

2.97 ± 1.683.018 ± 0.32 a8.97 ± 0.54 a365

5.56 ± 0.37 c5.96 ± 0.32 a33.53 ± 3.30 a270

3.01 ± 0.28 b, c95.84 ± 8.07 a225.10 ± 3.66180 

13.70 ± 3.28 c39.33 ± 6.92290.53 ± 52.49 a120

6.912 ± 0.979 c36.96 ± 12.0169.75 ± 9.2190

4.652 ± 0.46 c6.91 ± 1.586 a24.69 ± 1.713 a60

1.883 ± 0.279 b5.21 ± 1.09 a7.887 ± 1.525 a30

1.852 ± 0.641 b10.4 ± 3.4419.267 ± 2.206 a15

MinimumMaximum

Ratio

Maximum: Minimum

Serotonin levels  (µµµµmol/g protein)Age

(days)

 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off).

One Way Anova: p
a

< 0.05 (a refers to comparison with 90D)

p b < 0.05 (b refers to comparison of ratio values between a given age group and 90D)

t-test: p c < 0.05 (c refers to comparison between maximum and minimum values in the same age group)
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Fig. 17: Daily pulses of Serotonin levels in the SCN of Rat  

(LD; 12:12) 
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Table 5: Age related changes in serotonin levels in Brain and SCN of Rat   

(LD; 12:12) 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off).

One Way Anova: p
aa

< 0.05 (a refers to comparison with 90D)

p
b

< 0.05 (b refers to comparison of ratio values between a given age group and 90D)

t-test: p
c

< 0.05 (c refers to comparison between SCN and Brain values in the same age group)

3.975 ± 3.823 c4.442 ± 1.734 a17.661 ± 6.63 a730

4.02 ± 0.82 c1.028 ± 0.12 a4.14 ± 1.2 a545

8.51± 1.68 c1.054 ± 0.32 a8.97 ± 0.54 a365

3.97 ± 0.51c14.01 ± 2.23 a33.53 ± 3.3 a270

27.15 ± 1.69 b, c8.22 ± 1.21a225.10 ± 3.66180

12.21 ± 0.84 b, c21.51 ± 3.72 a290.53 ± 52.49 a120

4.41 ± 0.82 c47.3 ± 9.98169.75 ± 9.2190

3.26 ± 0.4 c7.82 ± 0.49 a24.69 ± 1.71a60

2.46 ± 0.25 c3.21 ± 0.28 a7.66 ± 0.74 a30

5.9 ± 1.22 c3.62 ± 0.43 a19.26 ± 2.2 a15

BrainSCN

Ratio

SCN: Brain

Maximum serotonin levels 

(µmol/g protein)

Age 

(days)

 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off).

One Way Anova: p
a

< 0.05 (a refers to comparison with 90D)

t-test: p
c

< 0.05 (c refers to comparison between SCN and Brain values in the same age group)
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Fig. 18: Age related changes in serotonin levels in Brain and SCN of Rat   

(LD; 12:12) 
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Serotonin levels in SCN were high as compared to brain 5-HT levels. 

There was about 4 fold and 27 fold difference in 5-HT levels of SCN and brain in 

90 day (adult) and 180 day respectively.  

 

DISCUSSION: 

 

 In the present study, we report that aging results in decreased serotonin 

levels and arrhythmicity in the brain (Fig. 14) as well as in the SCN (Fig. 16) of 

rat. 

The SCN showed significant changes in serotonin levels as well as in the 

rhythmicity with increase in age. Serotonin levels increased from 15 day to 120 

day, but not in 30 day (Fig. 16). Robust increase in rhythmicity was observed in 

60, 90 and 120 day, but no rhythmicity was observed in 30 day (Fig. 17). 

According to earlier reports, SCN in rodents is rhythmic in nature at birth and 

responds to light (Ferguson et al., 2000) and hence rhythmicity in serotonin levels 

was observed in 15 day. The phase of establishment of SCN as a circadian clock 

was observed by the changes in daily serotonin pulses. Serotonin daily pulses 

decreased in SCN by 1.85 and 1.88 folds (pb ≤ 0.05) in 15 day and 30 day 

respectively which is significantly very low as compared to 90 day. Serotonin 

daily pulses in SCN increased significantly in 60, 90 and 120 day by 4.6, 7 and 14 

folds respectively (Table 4; Fig. 17). The arrhythmicity in serotonin levels at 30 

day but not in 15 day or 60 day shows that, 30 day could be the stage at which 

SCN gets established as a circadian clock on its own in the individual. Daily 

pulses in serotonin levels further decreased from 120 day and 1.6 folds were 

observed in 545 day and 3.9 fold in 730 day. The arhythmicity with either phase 

advances or delays in 5-HT levels as well as decrease in serotonin levels with 

increase in age from 120 day to 730 day attributes the role of serotonin in age 

related circadian disorders such as advanced sleep phase syndrome (ASPS) or 

delayed sleep phase syndrome (DSPS) as 5-HT plays an important role in the 

sleep-wake cycle of an organism. Our results are in agreement with such workers 

who have reported age related changes in 5-HT afferents to the SCN (Turek, 
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1994; Penev et al., 1995). Age-related decline in postsynaptic receptors of 

serotonin has been reported (Meltzer et al., 1998). This could be resulting in 

alterations of SCN functions as serotonin forms one of the input pathways to the 

SCN. 

 In brain, serotonin levels increased significantly from 15 day to 90 day, 

except in 30 day levels decreased as compared to 15 day 5-HT levels (Table 1). 

Serotonin levels in 15 day could be more than in 30 day as 15 day old were still in 

the weaning stage. Rhythmicity in serotonin levels was seen in 15, 30 and 90 day 

but not in 60 day old brain (Fig. 14). Robust increase in the amplitude of 

serotonin levels in 90 day old was observed. Significant change in the daily pulses 

of serotonin levels was observed which decreased from 4 folds in 15 day to 3 

folds in 30 day and 2.8 folds (pb ≤ 0.05) in 60 day whereas in 90 day daily pulses 

increased robustly by about 4 folds. Thus 60 day could be the stage at which 

serotonin rhythms get established in the brain. However, 4 fold serotonin daily 

pulses in 15 and 90 day old suggest that maternal influence on serotonin rhythms 

is almost similar to that observed in the adult. These daily pulses in 5-HT levels 

decreased further with the advancement of age from 4 fold (90 day) to 1.7 fold 

(730 day). This is in agreement with earlier workers who reported marked decline 

in the brain serotonin levels in age rats (Petkov et al., 1987). 

 The occurrence of rhythmicity in serotonin levels during weaning stage 

(15 day old) in both SCN (Table 3; Fig.16) and brain (Table 1; Fig. 14) suggests 

that 5-HT is under maternal regulation (Reppert et al., 1988) and it has a role in 

early development as reported by Levitt and Rakic (1982) in other species. The 

early establishment of individual serotonin daily rhythms in SCN (at 30 day) 

(Table 3; Fig. 16) as compared to brain (at 60 day) (Table 1; Fig. 14) conveys the 

stage specific and tissue specific organization of circadian rhythm generation. 

This once again proves that SCN is the master circadian clock and once it gets 

established as an individual clock it regulates the rhythms in other regions of 

brain as well as in peripheral tissues. This is also supported by earlier workers, 

which includes the establishment of intrinsic rhythmicity first and the maturation 

of effector follower systems for the expression of circadian function in other areas 
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(Moore, 1992). In all the age groups studied serotonin levels were high in SCN as 

compared to brain (Table 5; Fig. 18). Earlier studies report that brain serotonin 

originates from a relatively few serotonergic neurons, which profusely branch out 

to all areas of central nervous system (Jacobs and Azmitia, 1992). Also SCN 

receives one of the densest serotonergic terminal plexes in the brain (Morin, 

1999). Maximum levels of serotonin in SCN were 4 (pc ≤ 0.05) times higher as 

compared to the brain serotonin levels in the adult (90 day) whereas there was 27 

fold difference in the 5-HT levels of SCN and brain in 180 day (Table 5). This 

suggests the importance of serotonergic innervation in SCN in the circadian 

rhythm generation and entrainment. The decrease and arrhythmicity in serotonin 

levels in both brain and SCN with increase in age implies the importance of 

serotonin in the circadian timing system and alteration in serotonin homeostasis 

could lead to age related circadian disorders such as ASPS, DSPS, later life 

depression (Meltzer et al., 1998). The changes could be due to serotonergic 

neuronal degeneration or changes in the metabolism of serotonin.  

Thus present study helps us in understanding age induced changes in 

serotonin rhythms in SCN and brain of rat. These observations may be helpful in 

understanding the aging process and age related neurological disorders. 
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INTRODUCTION: 

 

Aging has been related with changes in structure and functions of 

neurotransmitter systems. Maintenance of physiological concentrations of 

serotonin in the organism is important because it has a great therapeutic 

significance as depletion of serotonin levels causes depression and other age 

related changes in elderly (Lozeva-Thomas, 2004). There are limited and 

conflicting data in the literature regarding changes in the 5-HT system in 

normal aging. Earlier workers have reported effects of aging on 5-

hydroxyltryptamine-immunoreactive (5-HT-IR) neurons in raphe and 

extrarapheal nuclei of rats (Lolova, 1996). Age-related changes in behaviors 

such as sleep are linked to serotonergic function which suggests decline in 5-

HT function (Klöppel et al., 2001; Meltzer et al., 2001). There are also reports 

that development of major depression is implicated with age-related deficit in 

serotonergic neurotransmission. It has been postulated that 5-HT may play an 

important role in age-related memory impairment (Buhot et al., 2000). 

Disruptions in serotonergic system have been implicated in age related 

disorders such as Alzheimer’s disease where a combination of disturbances in 

cholinergic and serotonergic function may play a role in cognitive impairment 

in Alzheimer’s disease (AD) (Lorke et al., 2006), Schizophrenia (Stone and 

Pilkowsky, 2007).  

The SCN and pineal gland alterations have been suggested to be the 

basis of circadian rhythm disturbances during aging (Wu and Swaab, 2007). 

Age related changes in circadian function could also be due to decreased 

exposure or response of the pacemaker to entraining effects of photic and non-

photic stimuli (Van Cauter et al., 1998). Aging alters the synchronization of 

rhythms by the SCN in humans (Touitou et al., 1997). Many of the circadian 

functions such as neuroendocrine rhythms (Smith et al., 2005), locomotor 

activity rhythms, feeding and drinking rhythms decline with the progression of 

age (Turek, 1995). In the SCN neurons, firing rate and the amplitude of the 

rhythms are primarily controlled by the genes at the level of transcription. 

Increase in age results in irregular firing rate and reduced amplitude in the 
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rhythms of these neurons (Edery, 2000). Decrease in amplitude shows the 

decrease in neuronal activity in SCN (Rúzsás and Mess, 2000; Van Someren, 

2000). The quality of sleep and sleep-wake patterns that are regulated by the 

SCN are known to be altered with aging (Dijk and Lockley, 2002). Age 

associated changes in circadian rhythms are known to influence metabolism 

like glucose regulation (Van Cauter et al., 1997), alterations in carbohydrate 

and lipid metabolism that causes excess deposition of fat at the expense of 

muscle (Bjorntorp, 1999).  

In the circadian timing system, SCN and IGL, receive serotonergic 

projections from median raphe nucleus (MRN) and dorsal raphe nucleus 

(DRN) respectively. Serotonergic projections to these structures have different 

functions in the circadian responses such as rhythm modulation by the SCN to 

photic and non-photic stimuli (Duncan et al., 2005). Several workers studied 

serotonergic activity in relation to characteristics of circadian rhythms 

generated by SCN. Endogenous serotonin and serotonergic drugs influence 

many aspects of circadian rhythms, including phase shifts, onset of locomotor 

activity, period length and integrity of rhythms in the SCN (Duncan et al., 

2000). Serotonin agonists inhibit RHT mediated responses in the SCN to 

photic signaling (Ying and Rusak, 1994) and IEG activation (Rea and Pickard, 

2000). Decrease in serotonin levels inhibit phase resetting evoked by 

locomotor activity (Sumova et al., 1996; Marchant et al., 1997) and there are 

evidences for the release of serotonin in the SCN to non-photic phase resetting 

stimuli such as wheel running (Dudley et al., 1998). It is known to phase reset 

the circadian clock both in vitro and in-vivo (Ehlen et al., 2001). The circadian 

activity of SCN serotonergic neurons affects circadian rhythms in the 

secretions of several anterior pituitary hormones in old animals (Simpkins and 

Millard, 1987). Serotonergic afferents to the SCN (Turek, 1994; Penev et al., 

1995) and serotonin’s action on light entrainment of SCN-driven rhythms 

(Penev et al., 1997) have been implicated as a site of neural aging in 

mammals. In mouse, serotonergic afferents to the SCN are necessary for 

activity dependent entrainment (Edgar et al., 1997). Ehlen et al., (2001) 

suggested that serotonin may directly act on SCN to induce in vivo non-photic 
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phase-resetting. Therefore, changes in endogenous serotonin levels or 

serotonin receptors could play a role in age-related changes and functioning of 

SCN.  

In addition to these physiological functions which alter with aging, 

serotonin connects the nervous system with the endocrine system as it is the 

precursor of a neurohormone, melatonin (Aparicio et al., 2006). Melatonin has 

been associated with aging and its levels decline with aging. Melatonin 

metabolite, 6-hydroxymelatonin levels were significantly higher than free 

melatonin levels in tissues like cerebral cortex, serum, heart, liver and kidney 

of mice (Lahiri et al., 2004). Age related changes in melatonin production 

could be due to (i) a marked decline in the neuronal mass including SCN, 

which regulates its production (ii) an overall disturbance of all SCN driven 

circadian rhythms, (iii) general disturbances related to circadian clock with 

aging, (iv) dysfunction or insensitivity of neural processes involved in 

entrainment of circadian clock, (v) dysfunction of pineal gland and (vi) 

insufficient exposure to zeitgebers. 

Melatonin has various effects on SCN function (von Gall et al., 2002). 

Pineal melatonin modulates clock function through a direct action on G-

protein coupled melatonin receptors in the SCN (Dubocovich et al., 2003). It 

inhibits SCN neuronal firing (Hunt et al., 2001) through MT-1 receptor, which 

plays a role in the sensitivity of SCN to phase-shifting stimuli (Gerdin et al., 

2004) and it entrains mammalian circadian rhythms (Lewy et al., 2006). 

Therefore, a multiple and complicated reciprocal feed-forward and feed-back 

regulatory mechanism appears to act between the SCN and pineal gland (Mess 

and Rúzsás, 1986). 

Several studies indicated that there is a great interaction between 

melatonin and central serotonin (Miguez et al., 1997). Serotonin along with its 

methylated derivative is known to regulate arousal and sleep-wake cycles 

(Roskoski, 1996). Effect of melatonin administration on the changes in 

serotonin levels and its turnover in different hypothalamic nuclei of 

pinealectomized rats had been studied earlier by Miguez et al., (1996). There 

are evidences for the mediatory role of serotonergic neurons to the melatonin 
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signals in the brain (Cardinali et al., 1985; Ruzsás et al., 1986). There have 

been reports suggesting that melatonin administration changes the 

hypothalamic serotonin uptake and release (Miguez et al., 1995).  

Age-related events have been related to an alteration in amplitude and 

pulsatile pattern of hormone and neurotransmitter release (Wise et al., 1999). 

The frequency of release of a hormone is as important or more important in 

some cases, than the amount of hormone released. Target cells respond most 

effectively to exogenous hormonal stimulation when the frequency of 

stimulation approaches the endogenous frequency (Goldbeter, 1996). The age-

related decline of pineal melatonin production is due to the degenerative 

changes of the neural structures (serotonergic and noradrenergic neuron 

systems) innervating the pineal gland and the suprachiasmatic nuclei rather 

than to the degeneration of the pineal tissue itself (Rúzsás and Mess, 2000). 

The endocrine system affects neuronal signaling and neuronal integrity. 

Therefore, age-dependent endocrine changes influence structure and function 

of the CNS (Smith et al., 2005). Decline in melatonin production during aging 

might be a consequence of the age-related alterations of the brain neuronal 

systems regulating pineal activity (Rúzsás and Mess, 2000). Dietary 

supplementation with melatonin resulted in a significant increase in serum and 

other tissue melatonin levels tested in mice. Thus age-related decline of tissue 

melatonin gets reversed by supplementation with dietary melatonin in such 

studies (Lahiri et al., 2004).  

The effect of exogenous melatonin administration is well established 

both in vivo and in vitro. Melatonin is known to exert both long term effects 

such as synchronizing the free running locomotor activity by daily melatonin 

injections (Pitrosky et al., 1999; Slotten et al., 1999) and also immediate 

effects (Poirel et al., 2003). Melatonin, when administered in the late 

subjective day inhibits metabolic activity of SCN (Cassone et al., 1988) and 

immediately phase shifts the clock in vivo (Warren et al., 1993) as well as 

mice locomotor activity (Sharma et al., 1999). In vitro application of 

melatonin on SCN slices inhibits neuronal electrical activity immediately 
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(Shibata et al., 1989), phase advances SCN circadian neuronal activity (Hunt 

et al., 2001) and inhibits vasopressin (AVP) synthesis (Watanabe et al., 1998).  

SCN and circadian systems of several mammalian species have been 

indicated to be highly sensitive to exogenous melatonin (Cassone, 1992) and it 

has a chronobiotic effect (Pévet et al., 2002). In our 1
st
 chapter, we found 

decrease as well as abolition of rhythmicity in serotonin levels in SCN with 

aging (Table 3 and 4; Chapter 1). The rhythmicity in serotonin levels was 

altered from 270 day to 730 day (Fig. 16 and 17; Chapter 1). Melatonin 

treatments have been shown to alter hypothalamic serotonin metabolism 

(Miguez et al., 1991). We studied effect of melatonin administration on 

serotonin levels and daily rhythms in aging SCN. 

 

MATERIALS and METHODS: 

 

 Male Wistar rats of different age groups (90, 180, 270 and 730 day old) 

were maintained under laboratory conditions, 06.30h (ZT-0)-18.30h (ZT-12) light 

phase; 18.30h (ZT-12)-06.30h (ZT-24) dark phase, two weeks prior to the 

experiments. All rats were kept individually in polypropylene cages at room 

temperature (20+2
o
C) with relative humidity (55+6%). Food and water were 

supplied ad libitum. Dim red light was used for handling the animals in the dark. 

Cage changing was done at random intervals. Serotonin levels were measured at 

various zeitgeber times in the rat brain and SCN by spectrofluorimetry (Jagota and 

Habibulla, 1992). 

 

1) SCN tissue preparation: 

  

 SCN was dissected out as described in Chapter 1. 

 

2) Melatonin administration: 

 

30µg/Kg body weight of melatonin was administered subcutaneously via 

10% ethanol in physiological saline, 1 h (ZT-11) before the onset of darkness 

(Cardinali et al., 2002). This treatment was given for 11 days. On the 12
th

 day 

animals were sacrificed and serotonin levels were measured 

spectrofluorimetrically. 
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3) Fluorimetric assay of Serotonin: 

 

This assay was done as described in Chapter 1.  

 

4) Protein Estimation: 

 

 Protein estimation was done as given in Chapter 1 

 

STATISTICAL ANALYSIS: Statistical analysis was done by one way 

ANOVA and student’s t-test.   

 

 

RESULTS: 

 

Effect of melatonin administration on serotonin levels and rhythmicity in 

the SCN of aging rat: 

 

 Melatonin administration had a significant effect on serotonin levels in 

the SCN with increase in age (Table 6 and 7; Fig. 19a and 19b). This was 

studied in 90, 180, 270 and 730 day. Upon melatonin administration, 

maximum serotonin levels decreased significantly in 90 and 180 day by 21.48 

± 2.63 (pc
 
≤ 0.05) and 1.84 ± 0.047 (pc

 
≤ 0.05) folds respectively but levels 

increased by 4.64 ± 0.27 folds (pc
 
≤ 0.05) in 270 day SCN as compared to their 

respective controls. Melatonin administration decreased serotonin levels by 

2.69 ± 0.79 folds (pc
 
≤ 0.05) in 730 day SCN as compared to its control. The 

maximum serotonin levels observed in treated SCN were 8.267 ± 1.727, 122.3 

± 5.1, 154.17 ± 4.85 and 43.63 ± 11.39 µmol/g protein in 90, 180, 270 and 730 

day respectively as compared to their controls 169.75 ± 6.51, 225.10 ± 3.66, 

33.53 ± 3.3 and 17.66 ± 6.63 µmol/g protein. Upon melatonin administration, 

the maximum 5-HT levels were observed at ZT-18, ZT-6, ZT-6 and at ZT-0 in 

90, 180, 270 and 730 day respectively. Minimum serotonin levels observed in 

melatonin treated SCN were 4.91 ± 0.98, 56.02 ± 2.95, 67.79 ± 2.2 and 6.89 ± 

1.47 µmol/g protein in 90, 180, 270 and 730 day respectively as compared to 

their controls 36.96 ± 8.49, 95.84 ± 8.07, 5.96 ± 0.32 and 0.212 ± 0.129 

µmol/g protein. Upon melatonin administration, serotonin levels were  
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Table 6: Effect of melatonin administration on serotonin rhythms  

in the SCN of rat (LD; 12:12) 

43.63 ± 11.39 a6.89 ± 1.4740.34 ± 2.21 a18.86 ± 6.63 43.63 ± 11.39 aT

0.212 ± 0.1294.06 ± 0.7790.659 ± 0.36917.661 ± 6.630.212 ± 0.129C

730

127.75 ± 4.5 a67.79 ± 2.20 a86.92 ± 4.08 a154.17 ± 4.85 a135.28 ± 3.69 aT

33.53 ± 3.30 5.96 ± 0.3215.2 ± 0.96 13.94 ± 0.6733.53 ± 3.30C

270

106.22 ± 2.81 a56.02 ± 2.95 a91.77 ± 4.66 a122.3 ± 5.1 a109.22 ± 2.72 aT

171.73 ± 7.4095.84 ± 8.07120.41 ± 8.33225.10 ± 3.66180.84 ± 12.46C

180

4.91 ± 0.98 a8.267 ± 1.727 a7.08 ± 1.38 a5.947 ± 0.911 a4.91 ± 0.98 aT

132.47 ± 14.4636.96 ± 8.4991.07 ± 13.58169.75 ± 6.51131.91 ± 14.68C

90

24/0181260/24

Serotonin levels (µmol/g protein) at different zeitgeber timesAge

(days)

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off).

t-test: pa < 0.05 (a refers to comparison of control and treated values within the age groups)
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Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off). 

t-test: pa < 0.05 (a refers to comparison of control and treated values within the age groups) 

 

Fig. 19a: Effect of melatonin administration on serotonin rhythms in the 

SCN of rat (LD; 12:12)  
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Table 7: Daily pulses of melatonin administration on serotonin  

rhythms in the SCN of rat (LD; 12:12) 

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off)

t-test: p
c

< 0.05 (c refers to comparison between maximum control and treated values in the same age group)                            

2.69 ± 0.79 17.66 ± 6.6343.63 ± 11.39 730

4.64 ± 0.27 c154.17 ± 4.8533.53 ± 3.3270

1.84 ± 0.047 c122.3 ± 5.1225.10 ± 3.66180

21.48 ± 2.63 c8.26 ± 1.72169.75 ± 6.51 90

TreatedControl
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Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off) 

t-test: pc  < 0.05 (c refers to comparison between maximum control and treated values in the same age group) 

 

 

Fig. 19b: Effect of melatonin administration on serotonin rhythms in the 

SCN of rat (LD; 12:12)  
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minimum at ZT-0 in 90 day and at ZT-18 in 180, 270 and 730 day. 

Rhythmicity in serotonin levels was not persistent in 90 day upon melatonin 

administration. There was restoration in the rhythmicity of serotonin levels in 

both 180 and 270 day upon melatonin administration whereas in 730 day, 

serotonin levels increased but rhythmicity was not restored.  

 

DISCUSSION: 

 

Aging causes disturbances in the functioning of the rhythm generating 

system, due to increase in monoamine oxidase activity, decrease in serotonin 

and melatonin concentrations (Kabuto et al., 1995), alterations in 

concentrations of receptors for hormones and neuropeptides in the central 

nervous system (Smith et al., 2005). This leads to altered overt rhythms. Thus 

changes in the serotonergic system could be an important neurophysiological 

aspect during aging. 

Melatonin administration resulted in significant decrease in 5-HT 

levels in the SCN of rat (Fig. 19a). Melatonin administration decreased 

maximum serotonin levels by about 21 and 2 folds in 90 and 180 day 

respectively. This is in agreement with earlier workers who have reported 

drastic changes in serotonin metabolism in hypothalamus upon melatonin 

administration (Miguez et al., 1994). At 270 day, physiological disturbances 

such as biochemical alterations would have initiated because of age. We found 

decrease in serotonin levels as well as abolition of serotonin rhythms with 

aging. Upon melatonin administration, maximum 5-HT levels in 270 day 

increased by about 4.6 folds and hence serotonin levels and rhythmicity were 

restored in 270 day. There was about 2.7 fold decrease in maximum serotonin 

levels in 730 day (2 years). Some workers reported that younger rats were 

more sensitive to hormonal control and treatment as compared to older rats 

(Maines et al., 1999). This could be due to the loss of inherent capacity of the 

tissue with aging causing changes in molecular, biochemical, anatomical and 

morphological aspects resulting in functional deterioration. Therefore, 

exogenous melatonin could not restore serotonin levels and its rhythmicity. 
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Alterations in catecholaminergic levels have pharmacological effects 

also. The effects of drugs on cellular neurochemistry have been found to 

change with age. Dopamine and serotonin release in response to drugs is 

variable with age in rats and therefore, the effects of various drugs may differ 

between younger and older rats due to changes in neurochemistry with age 

(Yurek et al., 1998; Gerhardt and Maloney, 1999). The time of administration 

of melatonin at one hour before the onset of darkness (ZT-11) doesn’t coincide 

with the physiological peak levels of melatonin (ZT-18). Thus the changes 

observed in serotonin levels as well as in its rhythmicity could be due to 

exogenous melatonin administration.   

This work suggests that melatonin could be playing an important 

regulatory role in the modulation of rhythms upon aging. This would also 

suggest that melatonin is essential for maintaining serotonin levels during 

aging. The decline of pineal melatonin with age could be a consequence of a 

deficit in the pathway of serotonin utilization as conversion of serotonin to 

melatonin could be getting affected. This may be linked to impaired pineal 

catecholaminergic neurotransmission (Miguez et al., 1998).    
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INTRODUCTION: 

 

 The endocrine system plays a key role in conveying environmental 

information to changes in physiology (Foulkes et al., 1997). The daily synthesis 

of melatonin is one of the important output signals of SCN to the organism. 

Melatonin synthesis is catalyzed by two enzymatic reactions. Serotonin is first 

acetylated to NAS by the enzyme NAT. The NAS is then methylated by HIOMT 

to form melatonin (Sun et al., 2002; Simonneaux and Ribelayga, 2003). 

Melatonin is secreted only during the dark phase of the light-dark cycle (Hamada 

et al., 1999). 

The daily rhythm of melatonin synthesis in the rat pineal gland is 

controlled by the SCN, via a multi-synaptic pathway that include neurons of the 

PVN of the hypothalamus, sympathetic preganglionic neurons of the IML cell 

column of the spinal cord and NE containing sympathetic neurons of the SCG 

(Perreau-Lenz et al., 2005). Induction of melatonin production occurs during the 

first phase of darkness. The sympathetic nerve fibres from the SCG release NE 

which acts on both α1- and β-adrenergic receptors present on the pinealocytes of 

pineal gland. The β-adrenergic receptors stimulate adenylate cyclase and α1 

adrenergic receptors potentiate the β- induced cAMP production (Foulkes et al., 

1997). This later increases the concentration of cAMP. Increased levels of cAMP 

lead to the activation of cAMP-dependent protein kinase A (PKA) (Maronde et 

al., 1999). The PKA phosphorylates a group of transcription factors such as 

CREB (Spessert et al., 2000). Phosphorylation of CREB is an important step in 

the signal transduction cascade of melatonin biosynthesis (Maronde et al., 1997) 

and is phosphorylated constitutively with a transient fall occurring at the 

beginning of night (Foulkes et al., 1997). Phosphorylation of CREB is regulated 

by multiple entraining agents in the SCN, thus plays a role in the clock 

entrainment (Hastings et al., 1997). Phosphorylated-CREB (P-CREB) binds to 

the CREs present on the cAMP response genes such as N-acetyl transferase (Nat) 

and stimulates its transcription (Chen and Baler, 2000) leading to 100-150 fold 

increase in Nat mRNA levels (Klein et al., 2003) and translation with 70 fold 

nocturnal increase in protein levels (Obsil et al., 2001; Ganguly et al., 2002) and 
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also maintains the enzyme in its active form (Takahashi, 1994). Activation of 

NAT results in a 10 fold increase in melatonin synthesis and secretion, 

approximately 5-6 h after the onset of night (Drijfhout et al., 1996). The cAMP 

also triggers the expression of a negative transcription factor, an inducible cAMP 

early repressor (ICER). This ICER competes with phosphorylated CREB for the 

CREs in the Nat promoter (Stehle et al., 1993). Nat gene expression is suppressed 

when there is a decrease in P-CREB together with an increase in ICER. Increase 

ICER levels inhibit transcription of CRE-induced genes late in the night 

(Maronde et al., 1999). Melatonin synthesis is inhibited during the second phase 

of darkness which includes events like inhibition of NE secretion by SCN, 

withdrawal of adrenergic inputs and reversal of events that take place in the first 

phase of darkness (Gupta et al., 2005). Decline in NAT protein levels occur due 

to proteasomal proteolysis (Fukuhara et al., 2001; Iuvone et al., 2002). The 

mechanism involved in photoperiodic control of pineal metabolism involves two 

important links; photoperiodic regulation of Nat gene expression and 

photoperiodic regulation of HIOMT activity which occurs at the transcriptional 

level (Ribelayga et al., 1999). The mRNA levels of HIOMT exhibit circadian 

variation with a peak at mid-light phase in in vivo as well as in vitro conditions 

(Grève et al., 1996). The SCN controls melatonin rhythm in the pineal by using 

inhibitory signal, GABA during day time and stimulatory signal, glutamate at 

night time (Perreau-Lenz et al., 2005). The decrease in melatonin synthesis at the 

end of the night depends on post-translational mechanisms triggered by 

termination of NE release from ganglionic terminals. 

 N-acetyl transferase, is the key regulatory enzyme in melatonin 

biosynthesis (Touitou, 2005). It is a member of the GCN-5-related N-acetyl 

transferase (GNAT) superfamily of enzymes (Dyda et al., 2005). These enzymes 

catalyze a wide range of biologically important acetyl transfer reactions from 

antibiotic resistance to chromatin remodeling (Scheibner et al., 2002). The 

members of the super family are characterized by a common substrate, acetyl 

CoA and a structural fold where acetyl CoA binds to them (Neuwald and 

Landsman, 1997). Several species exhibit remarkable differences in the 

molecular mechanisms involved in regulation of NAT activity. In rat, Nat gene 
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expression is transcriptionally regulated by cAMP and circadian regulation of 

NAT mRNA occurs transcriptionally and post-transcriptionally (Klein et al., 

1997). Maintaining the mRNA stability is an important mechanism in controlling 

gene expression (Tae-Don et al., 2005). Regulation of NAT also occurs at protein 

level (Fukuhara et al., 2001). Sheep Nat mRNA levels exhibit relatively little 

change within a circadian cycle and enzyme activity is primarily regulated at 

protein level. In chicken, Nat mRNA rhythmicity is driven by a non-cAMP 

dependent mechanism linked to the clock within the pineal gland (Klein et al., 

1997). 

In pineal gland of mammals, NAT activity is dependent on two 

mechanisms, cAMP/P-CREB stimulation of Nat expression in rats and post 

transcriptional regulation of NAT protein in ungulates (Garidou et al., 2002). 

Several studies suggested that age related decline in melatonin synthesis in pineal 

is due to degenerative changes of neural structures (serotonergic and 

noradrenergic neuron systems) innervating the pineal gland and the SCN rather 

than to the degeneration of pineal tissue itself (Rúzsás and Mess, 2000) resulting 

in the advancement of age (Pazo et al., 2002).  

The activity of NAT has been reported in SCN by Hamada et al., (1999) 

and melatonin production in the SCN by Gachon et al., (2004). The primary 

function of melatonin is to co-ordinate circadian responses to the external cues. 

The secondary function is to co-ordinate a variety of seasonal photoperiodic 

responses (Poirel et al., 2003). Middle-aged rats show decreased levels of α-

adrenergic receptors in the SCN. The diurnal rhythm of α-adrenergic receptor 

expression, characteristic of young rats, disappears by middle age (Weiland and 

Wise, 1990). Earlier studies showed that alterations in neurotransmitter release 

result in age-associated changes in hormone secretion (Simpkins and Millard, 

1987). 

Serotonin levels decreased with increase in age in brain and SCN 

(Chapter 1). The decrease in serotonin levels could be due to either decreased 

synthesis of serotonin or altered NAT activity i.e. increase in NAS levels but not 

in melatonin levels, because melatonin levels were shown to decline with age 

(Rúzsás and Mess, 2000). Melatonin is known to have a feedback effect on 
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serotonin and that reduced melatonin levels may give signal for 5-HT to enter 

into melatonin synthesis pathway. It has been shown that aging results in 

circadian system disorders and treatment for these disorders include light therapy 

and melatonin (Rivkees, 1997). Exogenous melatonin affects all levels of 

circadian network by acting on the circadian clock. It has been investigated that 

in rat, REV-ERBα is the initial molecular target for the chronobiotic effect of 

melatonin (Pévet et al., 2006). Exogenous melatonin administration either 

subcutaneously or directly into the SCN was shown to exhibit a direct action on 

the amplitude of clock oscillations in addition to its phase-shifting effect 

(Bothorel et al., 2002). Thus in order to understand the effect of aging on NAS 

levels and to know if melatonin administration can reset age induced changes in 

NAS levels altered with age, we studied age related changes and the effect of 

melatonin on NAT activity measured in terms of NAS levels in the SCN of rat.  

 

MATERIALS and METHODS: 

 

Based on our results in Chapter 1 and 2, the onset of age related changes 

occurred by middle age. Therefore we concentrated on middle age and also age 

related changes appeared reversible by melatonin administration in 270 day as 

compared to 2 years. Male Wistar rats of 90, 180 and 270 day were taken for 

present study but not 2 year old because of the non-availability of aged rats. 

Animals were maintained as described in Chapter 1. Melatonin administration 

was given by the method of Cardinali et al., (2002) as described in Chapter 2. 

NAT activity was assayed by reverse phase high pressure liquid chromatography 

(RP-HPLC) (Waters, 2465) using fluorescence detector measured in terms of 

NAS formed from serotonin (Slominski et al., 2002) in different age groups of rat 

SCN.  

All chemicals and reagents used in this study were of HPLC grade. 

Standard NAS was obtained from Sigma chemicals. HPLC grade or Milli Q 

water was used for preparation of solutions. Solutions were degassed and filtered 

through 0.22 µm thick solvent filters (Millipore) and samples were also filtered 

through 0.22 µm thick syringe filters (Millipore) before injecting into HPLC 

system.  
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1) SCN tissue preparation: 

  

 SCN was dissected out as described in Chapter 1. 

 

N-Acetyltransferase Activity Assay: 

 

 Animals were decapitated and the SCN were removed carefully and 

rapidly. Tissue was homogenized in an ice-cold 0.25 M potassium phosphate 

buffer (pH-6.8) containing 1mM DTT, 1mM EGTA, protease inhibitor cocktail 

(2 µl/ml homogenization mixture) and 0.625mM acetyl CoA. Homogenates were 

centrifuged at 15000g for 10 min at 4ºC. Enzymatic activity was measured by 

taking 80 µl of supernatant and mixed with 20 µl of 5mM serotonin in 0.25 M 

potassium phosphate buffer (pH-6.8). The final concentrations of acetyl CoA and 

substrate were 0.5mM and 1mM respectively. The reaction mixture was 

incubated for 1 hr at 37ºC and then reaction was stopped by the addition of 20 µl 

of 6 M HClO4. The above mixture was centrifuged at 15000g at 4ºC. 20 µl of 

supernatant was subjected to HPLC system equipped with C18 reverse-phase 

column (150 X 5 mm, I.D.) and fluorimetric detector. The excitation and 

emission wavelengths were set at 285 and 360 nm respectively for detection. 

Elution was carried out isocratically at ambient temperature with a flow rate of 

1.5 ml/min. The mobile phase contained 4mM sodium 1-octanesulfonate as ion-

pairing agent, 50mM ammonium formate (pH-4.0) versus methanol (80:20 v/v). 

Elution peaks of NAS were identified by retention time. The peaks of samples 

were verified by running standards. For background controls, the reaction 

mixture was incubated without substrate. 

 1 mg of standard NAS was taken and dissolved in 1 ml of mobile phase 

containing 4mM sodium 1-octanesulfonate in 50mM ammonium formate (pH-

4.0) and methanol in 80: 20 v/v. From this 1 µg/ml stock, different concentrations 

such as 5nM, 10nM, 15nM and 20nM were taken and run for HPLC. The 

unknown was compared with the standard (Fig. 20). 

 

Protein estimation was done by Bradford’s method as described in Chapter 1. 
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Sample Standard

NAS NAS

 

 

Fig. 20: N-Acetyl transferase (NAT) activity assay by RP-HPLC  

 

STATISTICAL ANALYSIS: Statistical analysis was done by one way ANOVA 

and student’s t-test.   

 

RESULTS: 

 

Effect of age related changes on the NAT enzyme activity rhythms in the SCN: 

 

NAT enzyme activity rhythms were studied in the aging SCN (90, 180 

and 270 day old). Our results showed highest enzyme activity at 90 day but no 

significant rhythmicity. We observed rhythmicity but decreased NAT activity 

with increase in age from 180 to 270 day (Table 8; Fig. 21a). NAT activity was 

highest at ZT-6 in 90 day whereas in 180 and 270 day highest activity was 

observed at ZT-18. NAS levels observed were 7.67 ± 0.77, 5.14 ± 0.67 and 4.09 

± 1.79 µmol/ mg tissue in 90, 180 and 270 day respectively. There is a significant 

difference in NAT activity in 180 day (pa ≤0.05) at ZT-6 and 270 day (pa ≤0.05) 

at ZT-0, 6 and 12 to that of the activity in 90 day old. Lowest activity of NAT 

was observed at ZT-12, 6 and 0 in 90, 180 and 270 day respectively. Lowest  
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Table 8: Age related changes in NAT activity rhythms in the SCNof rat  

(LD; 12:12) 

3.497 ± 1.06      18.62 ± 6.46b4.097 ± 1.790.785 ± 0.27a0.862 ± 0.57a0.22 ± 0.11 a2703

4.217 ± 0.98       2.04 ± 0.615.144 ± 0.674.57 ± 0.492.514 ± 1.09 a4.217 ± 0.981802

6.645 ± 1.33       1.35 ± 0.386.013 ± 2.385.657 ± 2.016 7.675 ± 0.776.645 ± 1.33901

24/0                    Ratio

Max : Min

181260/24

NAS levels (µµµµmol/ mg tissue) at different zeitgeber timesAge

(days)

S. 

N0

Each value represents HPLC-FC measurement of enzymatically formed N-Acetyl Serotonin (NAS) (µmol/ mg tissue)

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way ANOVA: p
a

< 0.05 (a refers to comparison with 90D)

t-test: p
b

< 0.05 (b refers to comparison between maximum and minimum values within an age group)

One Way ANOVA: pa < 0.05 (a refers to comparison with 90D) 

Each value represents HPLC -FC measurement of enzymatically formed N -Acetyl  Serotonin (NAS) ( µmol/ g tissue)

Each value is mean + S.E, (n=6); Zei tgeber Time (ZT): ZT -0 = 6.30 h (Lights on); ZT -12 = 18.30 h (Lights off).
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Fig. 21a: Age related changes in the NAT activity rhythms in the SCN 

of rat (LD; 12:12) 
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NAS levels observed were 5.65 ± 2.01, 2.51 ± 1.098 and 0.22 ± 0.115 µmol/ mg 

tissue in 90, 180 and 270 day respectively. We observed 1.35 ± 0.38, 2.04 ± 0.61 

and 18.62 ± 6.46 (Table 8; Fig. 21b) fold difference between the maximum and 

minimum NAT activity in 90, 180 and 270 day respectively. 
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t-test: p
b

< 0.05 (b refers to comparison of ratio values between a given age group)

 

Fig. 21b: Age related changes in the NAT activity rhythms in the SCN 

of rat (LD; 12:12) 

 

Effect of melatonin administration on NAT enzyme activity rhythms in the 

SCN of aging rat: 

 

NAT activity did not show any significant change in 90 and 180 day, but 

a little increase in the activity was observed in 270 day upon melatonin 

administration (Table 9; Fig. 22a). We observed a phase delay in the maximum 

NAT activity from ZT-6 to ZT-12 at 90 day. NAT at 180 day, showed a phase 

advance in the maximum activity from ZT-18 to ZT-12. However we observed a 

significant decrease in NAT activity at ZT-6 in 180 day as compared to its 

control. Maximum and minimum activities were observed at ZT-18 and ZT-0 
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Table 9: Effect of melatonin administration on age related changes in the 

NAT activity rhythms of rat SCN (LD; 12:12) 

 

3.417 ± 1.27         1.48 ± 1.195.071 ± 1.523.946 ± 1.554.817 ± 1.27 a3.41 ± 1.27T

3.497 ± 1.06      18.62 ± 6.46b4.097 ± 1.790.785 ± 0.270.862 ± 0.570.22 ± 0.11C

2703

4.576 ± 1.22         9.64 ± 2.733.583 ± 1.874.949 ± 1.340.513 ± 0.494.57 ± 1.22T

4.217 ± 0.98         2.04 ± 0.615.144 ± 0.674.57 ± 0.492.514 ± 1.094.21 ± 0.98C

1802

8.179 ± 1.23         2.61 ± 1.774.813 ± 1.619.993 ± 2.613.815  ± 1.47a8.17 ± 1.23 T

6.645 ± 1.334         1.35 ± 0.36.013 ± 2.385.657 ± 2.01 7.675 ± 0.776.64 ± 1.33C

901

24/0                 Max :    

Min

181260/24

NAS levels (µµµµmol/ mg tissue) at different zeitgeber times                                                          

Ratio

Age

(days)

S.

No

Each value represents HPLC-FC measurement of enzymatically formed N-Acetyl Serotonin (NAS) ((µmol/ mg tissue)

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30h (Lights on); ZT-12 = 18.30h (Lights off)

t-test: p
a

< 0.05 (a refers to comparison of control and treated values within age groups)

t-test: p
b

< 0.05 (b refers to comparison of ratio values between a given age group and 90D control)

 

Each value represents HPLC-FC measurement of enzymatically formed N-Acetyl Serotonin (NAS) ((µmol/ mg tissue)

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)
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Fig. 22a: Effect of melatonin administration on age related changes 

in the NAT activity rhythms of rat SCN (LD; 12:12) 
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Each value represents HPLC-FC measurement of enzymatically formed N-Acetyl Serotonin (NAS) ((µmol/ mg tissue)

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)
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Fig. 22b: Effect of melatonin administration on age related changes 

in the NAT activity rhythms of rat SCN (LD; 12:12) 

 

respectively as observed in controls. There was no significant change in 

rhythmicity of NAT activity at 270 day upon melatonin administration. 

Melatonin treatment increased NAT activity significantly in 270 day old at all 

time points except at ZT-0 and 18. Maximum activity observed upon melatonin 

administration was 9.99 ± 2.61, 4.94 ± 1.34 and 5.07 ± 1.52 µmol/ mg tissue in 

90, 180 and 270 day respectively. Minimum activity observed was 3.81 ± 1.47, 

0.51 ± 0.49 and 3.41 ± 1.27 µmol/ mg tissue in 90, 180 and 270 day respectively. 

 

DISCUSSION: 

  

Several workers studied neural regulation of melatonin synthesis in 

various organs, species, both in nocturnal and diurnals and at different 

experimental conditions. It is well established that NAT activity which is under 

the control of SCN plays an important role in melatonin synthesis. Melatonin 

levels decline with age. The exact mechanism for the decrease in melatonin levels 

is yet to be determined.  Decline in melatonin levels with age could be due to less 
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availability of its precursor, serotonin and alteration (decreased or shift) in the 

activity of enzymes involved in the synthesis or due to changes in the signal 

transduction pathway. The results in the previous chapters showed that serotonin 

levels decrease with increase in age. This could be a reason for the decrease in 

melatonin levels with age.  

In the present work, we studied daily NAT activity rhythms in rat SCN of 

different age groups. Our results indicated that aging reduces the amplitude of 

daily NAT activity in the SCN (Table 8; Fig. 21). Earlier in vivo studies showed 

that different subpopulations of SCN neurons have different peak time of their 

activity (Saeb-Parsy and Dyball, 2003). Similarly the nocturnal neuronal activity 

in specific SCN neurons could play an important role in stimulation of NAT 

activity in the SCN. VIP is the neuropeptide through which SCN regulates output 

rhythms. Ibata et al., (1999) suggested that the amount of VIP mRNA reduces in 

the SCN of aged rats.  

Another group of workers showed that lesions in the PVN lead to reduced 

activity of melatonin synthesizing enzymes and thus results in low melatonin 

levels. Glutamatergic signaling within the PVN plays an important role in 

melatonin synthesis. Thus, for the stimulation of melatonin synthesis in the pineal 

gland, nocturnal neuronal activity in specific SCN cell populations as well as 

activity in PVN would be crucial (Perraeu-Lenz et al., 2004). 

 It was reported that decline in circadian activity of suprachiasmatic 

nucleus serotoninergic neurons may account for the blunting of circadian rhythms 

in the secretions of several anterior pituitary hormones in old animals. Decrease 

in hypothalamic NE turnover has been known with aging (Simpkins and Millard, 

1987). Though NE induces nocturnal increase in pineal Nat gene expression, 

Garidou et al., (2001) suggested that neurotransmitters other than NE are 

involved in the day time inhibition and night time stimulation of pineal 

metabolism. Serotonin has been shown to enhance the release of NE from the 

adrenals (Lefebvre et al., 1998). Previous reports showed that there was a 

decrease in the density of β-adrenergic receptors on the pinealocytes of rat with 

increasing age (Henden et al., 1992). Earlier studies suggested that 5-HT release 

may play a role in the full expression of β-adrenergically induced NAT activity 
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and thus contribute to optimal melatonin synthesis at night (Miguez et al., 1997). 

Our present results suggested that the decrease in serotonin levels (Chapter 1) 

were not because of increased NAS levels as we found decrease in NAS levels 

with aging. The decrease in NAT activity which was measured in terms of NAS 

formed could be related to decrease in serotonin levels with aging. Thus in 

addition to transcriptional and post-transcriptional regulation of NAT, serotonin 

levels as well as its release seem to play a crucial role in inducing NAT activity 

in the pineal. This could be the same in SCN also for the induction of NAT 

activity. 

The same mechanism appears to be involved in a gland called 

submaxillary gland (Ellison et al., 1972) as observed in pineal gland but lacks 

circadian rhythmicity in NAT. Thus, this suggests that regulation of NAT activity 

differs from tissue to tissue and pineal gland adapts specific mechanism to 

regulate rhythmicity of NAT in the pineal gland (Ellison et al., 1972). Thus 

regulation of NAT activity in SCN could be different from that in pineal gland as 

it does not involve the multisynaptic pathway and the exact mechanism is yet to 

be elucidated. It was reported that the specificity, stability and inhibition by 

melatonin are the factors that regulate the activity of NAT which differs from 

tissue to tissue (Voisin et al., 1984). Hamada et al., (1999) suggested that in the 

SCN of rat, post-transcriptional mechanisms such as phosphorylation of NAT by 

PKA might play a dominant role in regulating NAT activity. Melatonin secretion 

was found to diminish with the advancement of age due to insufficient 

environmental illumination (Mishima et al., 2001). This is supported by a clear 

change in habitual light exposure patterns associated with aging (Kawinska et al., 

2005). This suggests that the response of SCN to photic cues alters with aging 

and hence results in changes in circadian rhythms of many physiological 

functions. 

Several studies have reported that timed melatonin administration can 

help with re-adjusting the circadian system after jet-lag and shift-work. Melatonin 

administration helped in improving the quality of sleep and/or timing of sleep in 

some patients of insomnia (Rajaratnam and Arendt, 2001). Melatonin is known to 

accelerate the re-entrainment of circadian rhythms (locomotor activity as well as 
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NAT activity) in rats subjected to a shift in the LD cycle (Redman and Armstrong 

1988). Thus the probable chronobiotic effect of melatonin may result from a 

direct action on the SCN. The rhythmic synthesis of melatonin by the pineal is a 

direct output of the clock. Exogenous melatonin exerts its effects on SCN through 

its receptors and it could also affect the endogenous melatonin rhythm (Pévet et 

al., 2002). Thus we studied the effect of exogenous melatonin on age related 

changes in NAT activity. 

Our results showed that there was no significant increase in the NAT 

activity upon melatonin administration in the SCN of aging rats (Table 9; Fig. 

22a and 22b). Previous report suggests that age related decline in melatonin 

production is a consequence of increased oxidation of its precursors (Lerchl, 

1994). Recent studies by Liu and Borjigin (2005) showed that NAT is not the rate 

limiting enzyme in melatonin biosynthesis in the pineal gland. They 

demonstrated that (i) night time NAS was in excess as compared to melatonin in 

pineal (ii) increase in NAT protein levels didn’t induce melatonin production and 

(iii) increase in NAS didn’t increase in melatonin output. They suggest that 

HIOMT and NAT determine the level of melatonin synthesis in the pineal at 

night. HIOMT activity of pineal gland was found to reduce by 17 to 55% in old 

rats (18 months) (Dax and Sugden, 1988). Additional factors may be playing an 

important role in regulation of NAT activity and hence exogenous melatonin 

would not have significant effect on NAT activity in the SCN.      

This could also be explained by the number of melatonin receptors 

present on the tissue. The affinity of binding sites for melatonin is similar in all 

brain regions and doesn’t change with circadian timing. Receptor 

autoradiography studies showed that the density of melatonin receptors in the 

hypothalamus decreased significantly with the advancement of age (Pevet et al., 

2002). In rat SCN melatonin receptors were shown to exhibit circadian variation 

with low levels during the night (Gauer et al., 1993, Tenn and Niles, 1993). 

Earlier reports showed that aging reduces MT1 receptor mRNA expression in the 

SCN during day but not at night (Benloucif et al., 1997b). This supports that 

there is a great correlation between the density of melatonin receptors within the 

SCN and the ability of exogenous melatonin administration in the entrainment of 
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clock. It was suggested that along with high affinity melatonin receptors, there 

could be other mechanisms involved in entraining effect of melatonin like high 

dosage (Pevet et al., 2002). 

It was reported that intraperitoneal administration of melatonin could 

restore the amount of VIP mRNA in aged rats to that of the levels in young ones 

(Ibata et al., 1999). This suggests that different routes of administration of 

melatonin might have different targets in the same tissue. Melatonin mechanism 

of signal transduction shows both species and tissue specificity (McArthur et al., 

1997). Studies on hamsters revealed that melatonin can entrain rhythms only 

under particular experimental conditions such as long term infusions (Schuhler et 

al., 2002). This could be the reason for no significant increase in NAT activity in 

the SCN of aging rats upon melatonin administration. The present work suggests 

that melatonin synthesized in the SCN itself might play a role in entraining the 

clock along with exogenous melatonin. Thus our present study suggests to 

separately elucidate the role of endogenous melatonin that is synthesized in 

pineal gland as well as in SCN itself. Also the exact mechanism of exogenous 

melatonin action on the SCN is to be determined. 
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INTRODUCTION: 

 

 The circadian oscillator of organisms is composed of autoregulatory 

transcriptional/translational feedback loops (Kondratov et al., 2003). Post-

transcriptional regulation of clock proteins plays an important role in rhythm 

generation and entrainment (Lowrey et al., 2000). Entrainment of mammalian 

circadian rhythms involves several signal transduction pathways such as 

activation of transcription factors (Gau et al., 2002) and related kinases 

(Golombek et al., 2003). Mutations in key protein kinases have been shown to 

affect the chronobiological properties of different animal models (Lowrey et 

al., 2000). Cellular processes as diverse as the transcription and translation of 

genes, fertilization and cell division, metabolism, membrane transport and 

permeability, secretion, contractility, neurotransmission and even memory are 

all regulated by post-translational modifications (Ceseña et al., 2007; 

Whitmarsh, 2007). Various studies demonstrated that post-translational 

modification is critical to all circadian mechanisms sometimes more important 

than regulated transcription.  

 The common feature of all the post translational modifications in 

circadian systems is phosphorylation of one or several clock proteins (Merrow 

et al., 2006; Vanselow et al., 2006). In eukaryotes, phosphorylation mediates 

the circadian timing through regulation of proteins of the transcription-

translation feedback loop (Young and Kay, 2001; Brunner and Schafmeier, 

2006). Transcriptional factors which play an important role in clock function 

are the largest group of proteins to be phosphorylated (Ptacek et al., 2005). 

Phosphorylation determines the cellular localization and stability of clock 

proteins, a critical process for building time delays into the 24 h rhythms of 

molecular mechanism (Young 2000; Denault et al., 2001).  

Clock proteins in all molecular circadian systems exhibit a temporally 

distinct phosphorylation patterns. In Drosophila, DBT, which is most closely 

related to mammalian CKIε phosphorylates PER, thereby influencing PER 

turnover (Price et al., 1998). In mammals, phosphorylation appears to control 

critical aspects of mCRY: mPER interactions necessary for normal clock 
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function (Lee et al., 2001). Phosphorylation status of the transcription factors 

may be a determining character for the transcriptional competency of the 

heterodimer. Phosphorylation regulates the transcriptional activity of other 

bHLH transcription factors (Neufeld et al., 2000; Park et al., 2000). It may 

also be important for the formation of protein complexes that inhibit CLOCK: 

BMAL1-mediated transcription, but it does not appear to alter CLOCK: 

BMAL1 heterodimerization or binding to DNA. Studies of the tau mutation in 

Syrian hamsters (a spontaneous, semi-dominant mutation leading to marked 

shortening of the circadian period) revealed that it encodes a missense 

mutation within CKIε. This results in the mutant enzyme deficient in its ability 

to phosphorylate the mPER proteins (Lowrey et al., 2000). A human genetic 

disorder characterized by shortened circadian period and advanced sleep phase 

is associated with a missense mutation in human PER2 and the mutant protein 

is less effectively phosphorylated by CKIε in vitro (Toh et al., 2001). Several 

studies suggested that pharmacological modulation of cellular protein 

phosphorylation has yielded useful information on the molecular events 

involved. Phosphorylation state of many proteins is fine-tuned by a balance 

between kinases and phosphatases. 

Protein kinases are important regulators of many cellular processes. 

These kinases modify the functions of enzymes, receptors, channels, 

transporters and others by phosphorylation. Second messengers like Ca
2+

, 

cAMP, cGMP and phospholipase C activate the protein kinases. Several 

protein kinases like CKIδ (Lee et al., 2001) are known to play an important 

role in mammalian clock function.  

 

Calcium as intracellular messenger in the circadian system: 

 

Cellular calcium concentrations act as important components of signal 

transduction pathways (D’Souza and Johri, 2003). It plays a key role in the 

light resetting of the circadian clock. It regulates diverse cellular processes like 

membrane potential, neurotransmitter release, gene expression. Calcium is 

compartmentalized into cytosolic and nuclear Ca
2+ 

and this has been described 

in several cell types. The gradients of cytosolic and nuclear Ca
2+

 depend on 
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the type of cell and stimulants (Ikeda et al., 2003). Studies by Ikeda et al., 

(2003) showed that Ca
2+ 

levels in the cytosol but not the nucleus of SCN 

neurons exhibit circadian rhythmicity and nuclear Ca
2+ 

response in SCN 

neurons might play an important role in circadian regulation. Neurotransmitter 

release is generally dependent on cytosolic Ca
2+

 [Ca
2+

]c (Ikeda et al., 2003). 

Cytosolic free Ca
2+

 mediates circadian signal from the core loop to membrane 

potential. Calcium transmits both the input and out put signals to and from the 

core molecular clock in the SCN neurons (Honma and Honma, 2003). [Ca
2+

]c 

is important for output pathways via neuronal circuits (Aston-Jones et al., 

2001) as well as humoral pathways from SCN neurons. 

Calcium plays an important role in neuronal aging and based on 

‘calcium hypothesis of aging’ (Khachaturian, 1994), dysfunction of 

intracellular calcium [Ca
2+

]i homeostasis and neuronal loss are important 

alterations that are age dependent (Raza et al., 2007). [Ca
2+

]c increases (0.1µM 

resting state to 1-10µM in the stimulated state) either by release from 

intracellular stores or by influx from the extracellular space (Machaca, 2003). 

It mediates the effects of many hormones and neurotransmitters on the target 

tissues (Colbran et al., 1989). The first link in the chain of events is generally 

a hormone or transmitter reacting with a specific receptor (Fig. 23). The 

primary intracellular receptor of increased calcium is calmodulin (CaM) 

(Cheung, 1980). 

 

Calmodulin: 

 

Calmodulin is a highly conserved and most widely distributed Ca
2+

-

binding protein (Turjanski et al., 2004). It has a dumbbell shape with two 

Ca
2+

-binding domains (Barbato et al., 1992). It is an important sensor of 

intracellular Ca
2+ 

and upon activation it undergoes conformational change. It is 

known to interact with a large number of Ca
2+

-dependent intracellular 

signaling. It helps in the control of various cellular processes such as muscle 

contraction, fertilization, cell proliferation, vesicular fusion and apoptosis 

(Berridge et al., 1998). It functions as a regulatory element for its target 

proteins. The principal action of Ca
2+

/calmodulin complex is alteration of 
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phosphorylation states of intracellular proteins and enzymes (Manalan and 

Klee, 1984) which modulates important cellular functions. Small hydrophobic 

molecules bind to CaM and modify its function by inhibiting the interaction 

with other proteins (Harmat et al., 2000). There are two major classes of Ca
2+

-

dependent protein kinases, phosphatidylserine-dependent kinases (Ca
2+

/PS 

Kinases) (Nishizuka, 1984) and Ca
2+

/calmodulin-dependent protein kinases 

(CaM Kinases) (Schulman and Greengard, 1978). 

 

 

Fig. 23: Generalised Mechanism of Calcium mediated actions of  

Hormones and extracellular signals  

 

 

 

 

 

 

(Cohen, 1988) 
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Ca
2+

/calmodulin-dependent protein kinases: 

 

 Elevated calcium levels trigger CaM kinases (Schulman, 1993) which 

coordinate cellular responses to external stimuli. These responses include 

phosphorylation of proteins involved in neurotransmitter synthesis, 

neurotransmitter release, carbohydrate metabolism, ion flux and neuronal 

plasticity. The kinase is relatively inactive in its basal state by the presence of 

an autoinhibitory domain. Binding of Ca
2+

/calmodulin allows the kinase to 

phosphorylate its substrates, as well as itself. This autophosphorylation 

significantly slows dissociation of CaM, thereby trapping CaM even when 

Ca
2+

 levels are sub-threshold. Once CaM dissociates, CaM kinase remains 

partially active until it is dephosphorylated (Schulman and Hanson, 1993). 

The CAM kinases are mostly located within the cytosol or loosely 

associated with the plasma membrane (Nairn et al., 1985). They include 

phosphorylase kinase, myosin light chain kinase and Ca
2+

/calmodulin 

dependent protein kinases I, II III and IV. Ca
2+

-dependent intracellular 

signaling is an important regulatory mechanism in neural tissues which 

contain high concentrations of Ca
2+

/calmodulin regulated proteins. Some of 

these CaM-binding proteins are involved in regulating the synthesis or 

degradation of signaling systems and also protein phosphatases (Hashimoto et 

al., 1988).  

The enzyme CaMKII is abundantly expressed in the rat SCN (Agostino 

et al., 2004). It was reported that light exposure results in phosphorylation of 

CaMKII in the SCN (Yokota et al., 2001). It is implicated in the resetting of 

the circadian clock by light exposure (Fukushima et al., 1997). Golombek and 

Ralph (1994) suggested that activation of CaMKII mediates the circadian 

responses to light via CREB phopsphorylation. It is known to induce Per1 and 

Per2 mRNA in the hamster SCN as well as phase shifting upon light-exposure 

(Yokota et al., 2001). Earlier workers reported that CaMKII inhibitor, KN-62 

suppressed light-induced phase shift of activity rhythm (Golombek and Ralph, 

1995) c-Fos expression (Fukushima et al., 1997), CREB phosphorylation in 

the SCN (Golombek and Ralph, 1995). The enzyme CaMKII is rhythmically 
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phosphorylated in the SCN both under entrained and free-running (constant 

dark) conditions (Golombek et al., 2004). Its activity was found to be reduced 

in ischemia. Loss of activity of CaMKII was suggested to play an important 

role in initiating the changes involved in ischemia induced- cell death 

(Shackelford et al., 1995). 

 

Hormones and Extracellular signals: 

 

Hormones, neurotransmitters and other extracellular signals transmit 

information to the interior of the cell by activating transmembrane signaling 

systems that control the production of chemical mediators called ‘second 

messengers’ such as cAMP and Ca
2+

 (Hashimoto and Soderling, 1987). These 

second messengers regulate protein kinase and phosphatase activities and alter 

the phosphorylation states and hence the activities of many intracellular 

proteins resulting in the physiological response. Intracellular free Ca
2+

 [Ca
2+

]i 

levels have been estimated in the SCN. Various cellular processes are 

regulated in a well-coordinated manner due to the cross talk between the 

membrane-associated cell signaling processes (Shenolikar, 1988). In the SCN, 

[Ca
2+

]i levels are higher during the light phase than in the dark (Colwell, 

2000). It was also suggested that [Ca
2+

]i rhythm is a result of circadian firing 

rhythms of the SCN neurons (Honma and Honma, 2003). 

Light exposure in the night results in the release of glutamate at the 

terminals of the retinohypothalamic tract which reach SCN neurons. 

Glutamate interacts with ionotropic glutamate receptors on the SCN neuron 

leading to calcium influx. Influx of Ca
2+

 activates a series of events (Obrietan 

et al., 1998). Calcium activates CaMKII and triggers NOS activation. This 

results in increased levels of nitric oxide which stimulates soluble guanylyl 

cyclase. Guanylyl cyclase increases cGMP concentrations and thus activates 

cGMP-dependent protein kinase II (cGKII) (Liu et al., 1997). This is later 

involved in regulating light induced Per expression (Oster et al., 2003). In 

addition to CaMKII, Ca
2+

 also activates mitogen activated protein kinases 

(Yokota et al., 2001). The kinase phosphorylates cAMP responsive element 
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binding protein (CREB) and ultimately leads to the expression of clock 

controlled genes (Fig. 24). 
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Fig. 24: Role of CaMKII in a SCN neuron 

 

Calcium dependent protein kinases have been shown to play a major 

role in the regulation of serotonin synthesis and release (Ramakrishnan et al., 

2005). The rate-limiting step in the synthesis of 5-HT is the activity of TPH 

(Malek et al., 2005) whose activity in the brain is mainly dependent on two 

factors: the concentration of L-tryptophan in the brain and the impulse activity 

in the serotonergic neurons. The activity of TPH is again dependent on its 

phosphorylation status by the CaMKII.  

 Melatonin effects are known to be mediated by several mechanisms. It 

can act by binding to neural and non-neural membrane receptors (Dubocovich, 

1995), by binding to CaM (Turjanski et al., 2004), to nuclear proteins (Acuña-

Castroveijo et al., 1994; Steinhilber et al., 1995) and also acts as a free radical 

scavenger (Reiter et al., 1995). Recent evidence suggests that a melatonin 
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mechanism of action may be through modulation of Ca
2+

-activated CaM 

(Benitez-King et al., 1996).  

We observed decrease in serotonin levels and its rhythmicity with age 

(Chapter 1). Melatonin levels are known to decline with age and one reason 

for the decrease in melatonin levels could be decreased serotonin levels with 

age. Our results, (Chapter 3) showed that NAT activity rhythms also alter with 

age. The CaMKII is known to regulate the TPH activity. So, CaMKII might 

play a role in regulating serotonin levels and hence its rhythmicity indirectly 

which was shown to alter with age and these serotonin levels could help in 

maintainance of normal melatonin levels involved in maintaining various 

physiological circadian functions. Thus we studied the age induced changes in 

CaMKII activity rhythms and the effect of exogenous melatonin 

administration on CaMKII activity rhythms in SCN and pineal gland.  

 

MATERIALS and METHODS: 

 

[γ
32

P] ATP (2000-4000 cpm/pmol) was obtained from Board of 

Radiation and Isotope Technology (BRIT JONAKI, CCMB, Hyderabad, 

India). Okadaic acid, Syntide-2 and CaM were purchased from Sigma 

Chemicals. Phosphocellulose filter (P-81) was purchased from Whatman 

(Canlab Corp., Mississauga, ON, Canada). All other chemicals were of 

analytical grade and obtained from standard commercial suppliers. 

 Male Wistar rats of different age groups (90, 180 and 270 day old) 

were taken and maintained under laboratory conditions, 06.30h (ZT-0)-18.30h 

(ZT-12) light phase; 18.30h (ZT-12)-06.30h (ZT-24) dark phase, two weeks 

prior to the experiments. All rats were kept individually in polypropylene 

cages at room temperature (20+2
o
C) with relative humidity (55+6%). Food 

and water were supplied ad libitum. Dim red light was used for handling the 

animals in the dark. Cage changing was done at random intervals. 

 

SCN preparation: 

 

  SCN was dissected out as described in Chapter 1. 
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Pineal preparation: 

 

Pineal gland is located just rostro-dorsal to the superior colliculus and 

behind and beneath the stria medullaris, between the laterally positioned 

thalamic bodies. It is part of the epithalamus. Rats were decapitated and brains 

were removed carefully. Pineal glands were carefully removed with the help 

of curved forceps as described by Jagota et al., (1999).  

 

Melatonin administration: 

 

 Melatonin administration was given as described in Chapter 2 and 3.  

 

CaMKII activity assay:  

 

 1 mg of tissue was homogenized in 50mM Tris-Cl (pH-7.4), 1mM 

EDTA, 1mM EGTA, 50mM NaF, a protease inhibitor cocktail, 10µM okadaic 

acid and 0.32M sucrose. Activity of CaMKII was assayed by the method of 

Fukunaga et al., (1989). 50µl reaction mixture contained 50mM HEPES (pH-

7.5), 10 mM MgCl2, 0.1 mM [γ
32

P] ATP (2000-4000 cpm/pmol), 30µM 

syntide-2, 2µM CaM, 1 mM CaCl2 and 20 µg of homogenate protein. The 

reaction mixture was incubated at 30ºC for 1 min and the reaction was stopped 

by adding 10µl of 0.4 M EDTA. The radioactivity was measured by the 

method of Roskoski, (1983). 50 µl of sample was spotted on to 2 x 2 cm 

phosphocellulose strips. The strips were immersed in 75 mM phosphoric acid 

(10 ml per strip) and swirled gently for 2 min. The phosphoric acid was 

decanted and the phosphocellulose strips were washed twice (1 min each) 

gently in 75 mM phosphoric acid. After drying the strips, radioactivity was 

measured by liquid scintillation counter (Tricarb, 2100R Liquid Scintillation 

Analyzer) using toluene scintillation fluid.  
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RESULTS: 

 

Age induced changes in the CaMKII activity rhythms in the SCN: 

 

CaMKII activity and its rhythmicity varied significantly with 

increasing age in SCN (Table 10; Fig. 25a). CaMKII activity was observed to 

be rhythmic with maximum amplitude at ZT-0/24 i.e at the onset of light and 

minimum at ZT-18, mid-night in all the age groups studied. Aging had a 

significant effect on CaMKII activity. Maximum CaMKII activity was 

observed at 180 day. CaMKII activity increased from 90 day to 180 day and 

then decreased from 180 day to 270 day. The maximum CaMKII activity 

observed was 1.52 ± 0.602, 66.46 ± 36.94 and 17.48 ± 5.86 arbitrary units 

(a.u) at ZT-0 in 90, 180 and 270 day respectively. In 180 day maximum 

CaMKII activity was 100 ± 20.61 at ZT-24/0. Minimum CaMKII activity 

observed was 0.33 ± 0.06, 34.28 ± 11.13 and 9.15 ± 1.84 a.u. at ZT-18 in 90, 

180 and at ZT-12 in 270 day. Activity of CaMKII was significantly different 

in 180 day at ZT-12, 18 and 24/0 (pa < 0.05) as compared to 90 day. The 

maximum CaMKII activity increased by 78 folds from 90 to 180 day and 

decreased by about 6.5 folds from 180 day to 270 day. 

 

Table 10: Effect of melatonin on age related changes in CaMKII activity 

rhythms in the rat SCN (LD; 12:12) 

13.7 ± 0.6410.53 ± 2.65a, b10.52 ± 1.17a, b9.09 ± 1.0265.33 ± 45.13 T

10.34 ± 1.549.2 ± 2.789.15 ± 1.849.52 ± 1.37 17.48 ± 5.86 C

2703

29.12 ± 4.03a, b10.86 ± 1.32a, b14.44 ± 3.05a, b15.33 ± 2.76a, 

b
23.28 ± 2.08bT

100 ± 20.61a34.28 ± 11.13a35.39 ± 12.73a,44.99 ± 20.9866.46 ± 36.94C

1802

24.75 ± 4.5a, b12.67 ± 4.11a, b7.52 ± 2.27b18.71 ± 5.72a,

b
46.67 ± 2.12bT

1.4 ± 0.120.33 ± 0.060.61 ± 0.0871.0 ± 0.045 1.52 ± 0.602C

901

24/0181260/24

CaMKII activity (a.u) at different zeitgeber timesAGE

(days)

S.No

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way ANOVA: pa < 0.05 (a refers to comparison with 90 D control (C))

p
b

< 0.05 (b refers to comparison of control and treated values within age groups) 
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Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way ANOVA: p
a

< 0.05 (a refers to comparison with 90 D control (C))
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Fig. 25a: Age related changes in CaMKII activity rhythms in the SCN  

of rat (LD; 12:12) 

 

 

Effect of melatonin administration on CaMKII activity rhythms in the 

SCN of aging rat: 

 

Melatonin treatment had a significant effect on CaMKII activity in the 

SCN (Table 10; Fig. 25b). Melatonin treatment resulted in increased CaMKII 

activity in 90 and 270 day but not in 180 day. In 90 and 180 day, upon 

melatonin administration, CaMKII activity increased significantly at all times 

as compared to controls of 90 day CaMKII activity (pa < 0.05). There was a 

significant difference in the CaMKII activity of 270 day upon melatonin 

treatment as compared to the control CaMKII activity in 90 day at all 

zeitgeber times except at ZT-0 (pa < 0.05). The maximum CaMKII activity 

observed after melatonin administration was 46.67 ± 2.12 (pb < 0.05), 29.12 ± 

4.03 (pb < 0.05) and 65.33 ± 45.13 a.u at ZT-0/24 in 90, 180 and 270 day 

respectively as compared to their respective controls. Upon melatonin 

administration, the maximum CaMKII activity increased in 90 and 270 day by 
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about 36 and 4 folds respectively as compared to their controls. We observed a 

decrease in the activity at 180 day by 3.5 fold but, melatonin played a role in 

controlling the fluctuations in the activity at 180 day. Though there was an 

increase in the CaMKII activity of melatonin treated 270 day rats at all 

zeitgeber times except at ZT-6, the increase was not significant as compared to 

its controls. The CaMKII activity observed at ZT-0 and ZT-24/0 in 270 day 

was 65.33 ± 45.13 and 13.7 ± 0.64 a.u. respectively. The minimum CaMKII 

activity observed after melatonin treatment was 7.52 ± 2.27 (ZT-12), 10.86 ± 

1.32 (ZT-18) and 9.09 ± 1.02 a. u. (ZT-6) respectively.  

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way ANOVA: p
a

< 0.05 (a refers to comparison with 90 D control (C))

p
b

< 0.05 (b refers to comparison of control and treated values within age groups) 
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Fig. 25b: Effect of melatonin administration on age related changes in 

CaMKII activity rhythms in the SCN of rat (LD; 12:12) 

 

Age induced changes in the CaMKII activity in the pineal gland: 

 

 We found that there was a similar change in the activity of CaMKII in 

pineal gland (Table 11; Fig. 26a) as was observed in SCN with increase in age. 

Activity increased from 90 day to 180 day and then decreased from 180 day to 

270 day. The maximum CaMKII activity was observed at ZT-0, i.e at the 

onset of light in 90 and 270 day whereas in 180 day maximum activity was 

observed at ZT-18. In 180 day, CaMKII activity was higher at all zeitgeber 
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times as compared to the activity with respect to 90 and 270 day, but 

rhythmicity was not observed. In 270 day rhythmicity was observed but with 

decreased activity as compared to that of the activity in 180 day. The activity 

of CaMKII increased significantly at all zeitgeber times in 180 day (pa < 0.05) 

as compared to 90 day. In 270 day CaMKII activity was significantly different 

from 90 day activity at ZT-0 and 18 (pa < 0.05). The maximum CaMKII 

activity observed was 4.19 ± 0.5, 100 ± 2.21 and 79.97 ± 3.67 a.u in 90, 180 

and 270 day respectively. The increase in maximum activity from 90 day to 

180 day was about 24 folds and decrease in maximum activity from 180 day to 

270 day was about 1.25 folds. The minimum activity observed was 1.95 ± 

0.17, 72.77 ± 13.34 and 10.76 ± 3.11 a.u in 90, 180 and 270 day respectively. 

The minimum activity was observed at ZT-18 in 90 and 270 day i.e at mid-

night and at ZT-12 at 180 day.  The increase in minimum activity from 90 day 

to 180 day was about 37.32 folds and decrease in minimum activity from 180 

day to 270 day was about 6.76 folds respectively. The activity of the enzyme 

was significantly high in pineal as compared to the SCN in all the age groups. 

 

Table 11: Effect of melatonin on age related changes in  

CaMKII activity rhythms in the rat pineal gland (LD; 12:12) 

 

34.39 ± 7.72a, b3.96 ± 0.183.25 ± 0.55b3.36 ± 0.39b34.45 ± 7.99a, bT

13.59 ± 2.15 10.76 ± 3.11a12.63 ± 1.6839.95 ± 9.9679.97 ± 3.67aC2703

12.05 ± 3.68b7.68 ± 1.91b6.1 ± 1.21b5.41 ± 2.14b4.44 ± 1.43bT

93.87 ± 11.77a100 ± 2.21a72.77 ± 13.34a96.28 ± 15.41a81.91 ± 7.74aC1802

45.7 ± 8.82a, b27.32 ± 9.28b38.72 ± 4.77a, b41.09 ± 10.5a, b48.58 ± 8.75a, bT

3.14 ± 0.261.95 ± 0.173.96 ± 0.213.92 ± 0.27  4.19 ± 0.5C901

24/0181260/24

CaMKII activity (a.u) at different zeitgeber timesAGE

(days)

S.No

Each value is mean + S.E, (n=6); Zeitgeber Time (ZT): ZT-0 = 6.30 h (Lights on); ZT-12 = 18.30 h (Lights off)

One Way ANOVA: p
a

< 0.05 (a refers to comparison with 90 D control (C))

p
b

< 0.05 (b refers to comparison of control and treated values within age groups) 
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Fig. 26a: Age related changes in CaMKII activity in the pineal gland  

of rat (LD; 12:12) 

 

 

Effect of melatonin administration on CaMKII activity rhythms in the 

pineal gland of aging rat: 

 

The effect of melatonin treatment on CaMKII activity rhythms in the pineal 

gland (Table 11: Fig. 26b) was significant and different from SCN. Upon 

melatonin administration, there was an increase in CaMKII activity in 90 day 

but significant decrease was observed in 180 and 270 day. Rhythmicity was 

maintained after melatonin administration in 90 day but not in 180 and 270 

day. In 90 day treated, CaMKII activity was significantly increased as 

compared to the respective control values at all zeitgeber times (pa < 0.05). In 

treated 180 and 270 day, CaMKII activity at ZT-18 and 24/0 were 

significantly different from that of control values of 90 day (pa < 0.05). The 

maximum CaMKII activity observed after melatonin administration was 48.58 
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± 8.75, 12.05 ± 3.68 and 34.45 ± 7.99 a.u (pb < 0.05) as compared to their 

controls in 90, 180 and 270 day respectively. Maximum CaMKII activity was 

observed at ZT-0/24 (i.e. onset of light) in 90, 180 and 270 day melatonin 

treated rats. There was about 11.62 fold increase in maximum CaMKII 

activity in 90 day, 9.15 fold and 1.68 fold decrease in maximum CaMKII 

activity in 180 and 270 day after melatonin administration with respect to their 

controls. The minimum activity observed after melatonin administration was 

27.32 ± 9.28, 4.44 ± 1.43 and 3.25 ± 0.55 a.u in 90, 180 and 270 day 

respectively. Minimum CaMKII activity in melatonin treated 90, 180 and 270 

day was observed at ZT-18, 0 and 12 respectively. There was about 14 fold 

increase in minimum CaMKII activity in 90 day, 18.3 and 3.4 folds decrease 

in minimum CaMKII activity in 180 and 270 day after melatonin 

administration. 
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Fig. 26b: Effect of Melatonin administration on age related changes in 

CaMKII activity in the pineal gland of rat (LD; 12:12) 
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DISCUSSION: 

  

 We report here that aging had a significant effect on CaMKII activity 

rhythms in both SCN and pineal. In the hamster SCN, phosphorylated 

CaMKII had been shown to exhibit varying levels under both diurnal and 

circadian conditions. This suggests that CaMKII is under both photic and 

clock regulated control in hamster SCN (Agostino et al., 2004). We report for 

the first time age related changes in CaMKII activity rhythms in SCN and 

pineal of rat. Ca
2+

 and CaM act as activators of the enzyme CaMKII. The 

decrease in CaMKII activity could be due to decreased influx of Ca
2+

 ions and 

also decreased number of CaM molecules that are synthesized and the 

alteration in the binding affinity of the Ca
2+

-CaM complex to the enzyme. It 

has been shown that Ca
2+

 levels regulate CaMKII in the hamster SCN and the 

free [Ca
2+

i] in the cytoplasm results from highly regulated balance between the 

rates of Ca
2+

 influx and removal/buffering (Agostino et al., 2004). Our results 

on age related changes in the CaMKII activity rhythms suggest that 180 day 

SCN exhibits maximum CaMKII activity among the three age groups studied. 

Also, serotonin levels were highest at 180 day as compared with 90, 180 and 

270 day age groups. This suggests that CaMKII activity plays an important 

role in phosphorylating tryptophan hydroxylase which is essential for 

serotonin synthesis. Thus, CaMKII activity is related with age related changes 

in serotonin synthesis.  

 As CaMKII activity has an important role in many physiological 

functions and its activity decreased with increase in age in both SCN and 

pineal gland we studied effect of melatonin treatment on age related changes 

in CaMKII activity rhythms in these two tissues. Melatonin treatment in the 

SCN resulted in increased CaMKII activity at 90 day at all zeitgeber times. 

The amplitude in the activity at ZT-0 in melatonin treated 90 day was almost 

similar to the amplitude of CaMKII activity of 180 day controls (Table 10; 

Fig. 26a). In case of 180 day, melatonin administration decreased CaMKII 

activity but not significantly. This suggests that SCN maintains a maximum 

threshold activity of CaMKII and melatonin administration could not exhibit 
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its effect on the CaMKII activity beyond that threshold maximum, but rather 

decreased its activity. CaMKII in 180 day SCN showed decreased activity 

upon melatonin administration but tight regulation of its amplitude was 

observed after melatonin administration. In 270 day, there was no significant 

change in CaMKII activity upon melatonin administration except at ZT-0. At 

ZT-0, CaMKII activity increased to that of the activity observed at ZT-0 of 

270 day control. Significant increase in CaMKII activity at ZT-0 and not at 

other zeitgeber times suggests that the effect of melatonin was immediate and 

not consistent. This suggests that melatonin administration had differential 

effect in different age groups.     

 Aging had a significant effect on CaMKII activity rhythms in the 

pineal gland. The activity decreased and rhythmicity was abolished with 

increase in age. This suggests that the decrease in pineal melatonin levels with 

age could be due to decreased CaMKII activity which phosphorylates TPH 

enzyme. This would lead to decreased serotonin synthesis, the precursor of 

melatonin. Melatonin treatment in pineal gland resulted in increased CaMKII 

activity in 90 day only but not in 180 and 270 day. The increase in activity in 

90 day SCN and pineal could be due to binding of hormone to its receptors 

enhances influx of Ca
2+

 levels and thus resulting in the Ca
2+

/calmodulin 

complex. Melatonin receptors were found to decrease with age and their 

densities could be altered in the pineal with aging and hence no significant 

change was observed in 180 and 270 day CaMKII activity upon melatonin 

administration. This suggests that aging not only causes biochemical changes 

in SCN but also leads to functional alteration. The whole circadian machinery 

seems to be altered with increase in age. Earlier workers suggested that the 

circadian machinery could be responsible for circadian rhythms in 

phosphorylated CaMKII in the SCN (Agostino et al., 2004).  

 According to Welsh et al., (1995), the basic mechanism responsible for 

rhythm generation is intrinsic to individual SCN neurons with individual 

circadian frequencies. The circadian oscillations result from synchronization 

of neurons in the SCN which are mediated by intercellular communication 

between them. This intercellular communication in tissue and in between cells 
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is mediated by protein phosphorylation that later control various physiological 

functions (Sáez et al., 1998). Thus maintainence of CaMKII activity rhythms 

is important for the normal circadian and physiological functions.  

 Several reports suggested that CaMKII has a pharmacological role in 

circadian regulation. It is known that psychotropic drugs selectively affect 

presynaptic CaMKII and thus change the local synaptic mechanisms for 

pharmacological regulation of kinase (Celano et al., 2003). It is also involved 

in long term antidepressant drug action on post receptor signaling mechanisms 

and modulation of transmitter release is the primary action of psychotropic 

drugs (Consogno et al., 2001). Antidepressants mostly are monoamine 

reuptake inhibitors and they induce an increase in autophosphorylation and 

activity of kinase in nerve terminals of hippocampus (Consogno et al., 2000). 

Thus studies on the post-transcriptional and post-translational modifications 

especially phosphorylation status of various proteins by kinases and 

phosphatases would help in understanding the clock function. Thus our study 

suggests that, more work has to be done on the effect of melatonin treatment 

on age induced changes in CaMKII activity rhythms.  
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INTRODUCTION: 

 

The molecular genetic approach to the circadian timing system is 

associated with circadian synchronization and its rhythmic output (Ikonomov 

et al., 1994). Neurotransmitter driven signal transduction about extracellular 

stimuli activates immediate early genes that control cellular activity by 

initiating or repressing transcription of their target genes in neural and 

neuroendocrine cells (Koch et al., 2003). The protein products of these genes 

are transcription factors, which can bind on to DNA and regulate the 

expression of other genes. Previous studies suggested that IEGs such as c-fos 

and jun-B may act as molecular signals involved in the time keeping 

mechanisms within the mammalian SCN (Wôllnik et al., 1995).  

The circadian profile of the c-fos expression is opposite to other SCN-

intrinsic circadian rhythms. The inducibility c-fos in rat SCN was reported as 

early as on embryonic day 18 (E18). The induction of c-fos in the fetus is 

mediated through D1-dopamine receptors and does not demonstrate circadian 

variations (Weaver et al., 1992). In adults, c-fos expression is gated by a 

circadian clock (Jáć et al., 2000). Expression is primarily restricted to the 

retinorecipient i.e ventral region of the SCN (Edelstein et al., 2000). Photic 

induction of c-fos expression is phase dependent and is the target of circadian 

pacemaker. c-fos serves as a measure of the duration of the SCN’s 

photosensitivity at night (Schwartz et al., 2001). Light induces c-fos 

expression at night but not during the day (Hastings et al., 1995). There are 

strong correlations between photic induction of c-fos and phase shifts of 

circadian rhythmic locomotor activity (Schwartz et al., 2001). The c-fos and 

jun-B induction occurs in hamsters after light pulses as short as 5 minutes at 

CT-19 (subjective night) and reaches maximal mRNA level only 30 minutes 

after light exposure (Kornhauser et al., 1992).  

Light phase-shifts the clock through glutamatergic stimulation of 

NMDA and non-NMDA receptors (Beaulé and Amir, 1999; Guido et al., 

1999) and by IEGs, like c-fos (Sutin and Kilduff, 1992). The best 

characterized photoinducible protein that is expressed in circadian visual 
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system is c-Fos (Kornhauser et al., 1996). Expression of c-fos is observed in 

the rods/cones of retina. In the absence of these photoreceptors, light will 

induce c-fos expression in RGCs with melanopsin (Semo et al., 2007).  

The IEGs in the IGL may not be directly related to photic resetting of 

the circadian clock. Light seldom induces c-Fos protein in IGL neurons 

projecting directly to the SCN (Peters et al., 1996). Recent data suggests, 

however, that the IGL is critical for entrainment to a skeleton photoperiod 

(Edelstein and Amir, 1999). In the IGL, Jun-B may not be the only protein that 

dimerizes with c-Fos to mediate the effects of light on the circadian system 

(Beaulé and Amir, 1999). Non-photic cues like serotonergic agonists were also 

shown to phase-shift the clock through cAMP, activating protein kinase A and 

by opening K+ channels (Prosser, 2003; Duncan et al., 2005). Quipazine, a 5-

HT1/2 agonist has been reported to induce c-fos expression at night in rat SCN 

in vivo mimicking effects of light (Neumaier et al., 2001). 

 Transcription of c-fos induction is calcium dependent (Curran and 

Morgan, 1987). Calcium enters via low voltage sensitive Ca2+ channels (L-

VSCC) and c-fos mRNA gets elevated within minutes and returns to baseline 

by 30 minutes. Exposure to NMDA also leads to c-fos transcription. 

Transcription of c-fos is regulated by calcium response element (CaRE), CRE, 

CREB protein and CREB binding protein (CBP). The regulatory region of c-

fos gene contains a sequence called CRE. Increase in intracellular cAMP 

content or Ca2+ activity triggers CREB phosphorylation. The P-CREB binds 

the CRE and turns on c-fos transcription. CREB phosphorylation takes place 

only during night when light pulses induce c-fos transcription. CREB is not 

phosphorylated during the subjective day. Thus the circadian control of the c-

fos stimulus-transcription cascade lies upstream to CREB phosphorylation 

(Ikonomov et al., 1994). The c-Fos containing heterodimer AP-1 was among 

the first inducible transcription factors identified. It has been widely used for 

mapping brain areas activated by various stimuli including drugs (Semba et 

al., 1999).  
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In the rat pineal gland, c-Fos is induced upon the onset of darkness and 

induction abolishes after the removal of superior cervical ganglion (Carter, 

1990). This suggests that there is a relation between melatonin and c-Fos 

induction as melatonin synthesis occurs at dark phase and requires signaling 

from superior cervical ganglion. Studies by Trávnícková et al., (1996) 

suggested that c-fos gene expression could be involved in photic resetting of 

pineal NAT rhythm. The differential photic and circadian regulation in 

separate cell populations implies that the function of the gene in circadian time 

keeping is likely to be cell specific (Schwartz et al., 2001). 

Hormones have been known to modulate gene transcription (Smith et 

al., 2005). We have observed significant effect of melatonin administration on 

age induced changes in CaMKII. Some workers have reported regulation of c-

fos expression by CaMKII (Golombek et al., 2004; Zayzafoon et al., 2005). 

Melatonin has been reported to bind to nuclear proteins (Kilduff et al., 1992) 

and c-Fos is one such nuclear phosphoprotein. Melatonin levels (Rúzsás and 

Mess, 2000) as well as CaMKII activity (Chapter 4) decline with age. Thus, 

we studied the age induced changes on c-Fos expression and the effect of 

melatonin treatment on age induced changes on c-Fos expression in SCN and 

pineal of rat. 

 

MATERIALS and METHODS: 

 

Male Wistar rats of different age groups (90, 180 and 270 day old) were 

taken and maintained under laboratory conditions, 06.30h (ZT-0)-18.30h (ZT-12) 

light phase; 18.30h (ZT-12)-06.30h (ZT-24) dark phase, two weeks prior to the 

experiments. All rats were kept individually in polypropylene cages at room 

temperature (20+2oC) with relative humidity (55+6%). Food and water were 

supplied ad libitum. Dim red light was used for handling the animals in the dark. 

Cage changing was done at random intervals. 

All chemicals and reagents used in this study were of analytical grade from 

standard companies.  
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Tissue preparation: 

 
 SCN tissue and pineal gland were dissected out as described in Chapter 1 

and Chapter 4.  

 

Melatonin administration: 

 
 Melatonin treatment was given by the method of Cardinali et al., (2002) 

as described in Chapter 2.  

 

Western blotting for c-Fos:  

 
Animals adapted to LD; 12:12 light-dark cycles for two weeks were 

transferred to continuous dark conditions for 48 h. A light pulse of ~200 lux was 

delivered for 30 min at mid-subjective day (ZT-6) and mid-subjective night (ZT-

18) before sacrifice for controls. Brains were rapidly removed, SCN and pineal 

were dissected as described earlier and immediately frozen on dry ice. Extraction 

of nuclear proteins was conducted at 4°C (Best et al., 1999). Tissues were 

homogenized in 400 µl of homogenization buffer containing: 10 mM HEPES-

KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 5 mM dithiothreitol (DTT), 1 mM 

phenylmethylsulfonyl fluoride (PMSF), 10 mg/ml aprotinin, and 2 mg/ml 

pepstatin. The nuclear fraction was precipitated by centrifugation for 2 min at 

14,000 rpm and the pellet was resuspended in 36 µl of ice-cold extraction buffer 

(10 mM HEPES-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 

mM EDTA, 5 mM DTT, 1 mM PMSF, 10 mg/ml aprotinin, and 2 mg/ml 

pepstatin) and incubated on ice for 20 min. The mixture was then centrifuged at 

14,000 rpm for 2 min and the supernatant was collected and used for western 

blotting. The protein content was determined by Bradford’s method (Bradford, 

1976). 

Nuclear extracts containing 15 µg of protein were separated on a 3% 

stacking 12% SDS-polyacrylamide gel and electro-transferred along with protein 

molecular weight standards at 70 V for 2 h to nitrocellulose membranes. 

Membranes were stained with 0.5% Ponceau S in 1% acetic acid to check the 

transfer. The membranes were blocked for 60 min at room temperature in 4% non 
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fat milk (NFM) (Nestle, Everyday) in TBS and then incubated overnight in TBS 

buffer (1X Tris-buffered saline, 0.05% Tween 20, 2.5% NFM) containing c-Fos 

antisera (1:1500) (Genetix) with gentle shaking at 4˚C. The blot was washed for 

30 min in 2.5% NFM and 1:200 Tween 20 in TBS and then incubated for 60 min 

in 1:2000 alkaline phosphatase anti-mouse antibody (Bangalore Genei). The blots 

were then washed in 2.5% NFM in TBS for 15 min, developed with 2 ml of the 

substrate for alkaline phosphatase, i.e nitro-blue tetrazolium chloride/ 5-bromo-4-

chloro-3-indolylphosphate toluidine (NBT/ BCIP) (Bangalore Genei). The blue 

coloured bands were visualized with the help of a gel documentation system 

(Biorad, Quantity One Software). The blots were probed with tubulin to confirm 

equal loading (Best et al., 1999). 

 
Densitometric Analysis: Densitometric analysis was done by using Scion 

image software. 

 

RESULTS: 

 

Fig. 27: Effect of Melatonin administration on age related changes in c-Fos levels  
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Effect of aging on c-Fos levels in the SCN: 

 

The c-Fos levels were studied at two zeitgeber times, mid-subjective 

day (CT-6) and mid-subjective night (CT-18) in 90, 180 and 270 day SCN 

(Fig. 27). The levels increased from 90 day to 180 day but c-Fos levels could 

not be detected in 270 day. Densitometric analysis was done for c-Fos levels 

(Fig. 28). At 90 day the observed c-Fos levels were 289 and 312 a. u. at CT-6 

and CT-18 respectively. The c-Fos levels observed at 180 day were 306 and 

374 a. u. at CT-6 and CT-18 respectively. The levels were observed to be high 

at CT-18 as compared to CT-6 in both the age groups, 90 and 180 day old. 

 

Effect of melatonin administration on c-Fos levels in the SCN of aging 

rat: 

 

Melatonin administration had a significant effect on c-Fos levels in the 

SCN (Fig. 27). The levels increased upon melatonin administration in 90 day 

old. c-Fos levels observed were 386 and 440 a. u. at CT-6 and CT-18 

respectively in 90 day SCN (Fig. 28). There was about 1.3 and 1.4 fold 

increase in c-Fos levels at CT-6 and CT-18 upon melatonin administration in 

90 day SCN. There was a decrease in c-Fos expression at 180 day upon 

melatonin administration. The levels observed were 236 and 258 a. u. at CT-6 

and CT-18 respectively. Levels decreased by about 1.3 and 1.4 fold at CT-6 

and CT-18 respectively at 180 day. The levels could not be detected in 270 

day even upon melatonin treatment.  

 

Age related changes in c-Fos levels in the pineal gland: 

 

 There was a decrease in c-Fos levels in the pineal gland from 90 day to 

180 day but then increased significantly at 270 day at both zeitgeber times, 

ZT-6 as well as ZT-18 (Fig. 27). The c-Fos levels by densitometric analysis 

were observed to be 830 and 971 a. u. in 90 day and 628 and 590 a. u. in 180 

day at ZT-6 and ZT-18 respectively (Fig. 28). We observed a 1.32 and 1.64 

fold decrease in c-Fos levels at ZT-6 and ZT-18 respectively from 90 day to 

270 day. However in 270 day, c-Fos levels increased drastically and the levels  
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Fig. 28: Densitometric analysis of c-Fos levels 

 

observed were 1484 and 1699 a. u. at ZT-6 and ZT-18 respectively. There was 

about approximately 2.4 and 3 fold increase in c-Fos levels from 180 day to 

270 day at ZT-6 and ZT-18 respectively whereas there was about 1.8 and 1.75 

folds increase in c-Fos levels from 90 day to 270 day at both zeitgeber times, 

ZT-6 and ZT-18.  
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Effect of melatonin administration on c-Fos levels in the pineal gland of 

aging rat: 

 

 Melatonin administration decreased c-Fos levels in 90 and 180 day but 

increased levels were observed in 270 day at both zeitgeber times, ZT-6 and 

ZT-18 respectively as compared to their controls (Fig. 27). The levels 

observed were 709 and 812 a. u. in 90 day and 435 and 572 a. u. in 180 day at 

ZT-6 and ZT-18 respectively (Fig. 28). There was about 1.2 folds decrease in 

c-Fos levels at both zeitgeber times at 90 day. At 180 day, upon melatonin 

administration c-Fos levels decreased by about 1.4 and 1.03 folds at ZT-6 and 

ZT-18. In 270 day, melatonin administration increased c-Fos levels. The levels 

observed were 1867 and 1856 a. u. at ZT-6 and ZT-18 respectively. There was 

about 0.8 and 0.9 folds increase in c-Fos levels at ZT-6 and ZT-18 in 270 day.  

 

DISCUSSION: 

 We found that c-Fos levels increased from 90 day to 180 day at ZT-6 

as well as at ZT-18 in SCN. There was a drastic decrease in c-Fos levels by 

270 day in SCN and was not detected by immunoblotting. At 90 and 180 days, 

c-Fos levels were higher at ZT-18 than at ZT-6. These results were in 

agreement with previous reports which suggested that elevation of c-Fos levels 

in the mammalian SCN occurs only during the night (Hastings et al., 1995). 

According to Kilduff et al., (1992), phase shifting of the circadian clock also 

occurs during the subjective night. This once again suggests that c-Fos could 

be playing an important role in phase shifting of the locomotor activity 

rhythms of the circadian clock.  

Expression of c-Fos in the SCN indicates presence of light-activated 

retinorecipient neuronal involvement in photic entrainment (Amir et al., 

1998). We observed that c-Fos levels were high at mid-night (ZT-18) when 

melatonin levels are highest. The high levels of c-Fos as well as melatonin at 

mid-night suggest the role of melatonin in circadian rhythm generation and 

modulation. Thus our results suggested that aging reduced c-Fos levels in the 

SCN. This is in agreement with earlier reports which showed age related 
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changes in circadian rhythms with decreased sensitivity of the circadian 

system to light demonstrated by reduced c-Fos expression in the SCN of 

rodents (Zhang et al., 1996; Benloucif et al., 1997).  

Aging had a significant effect on pineal gland c-Fos levels. There was 

a decrease in c-Fos levels from 90 day to 180 day and then increased 

dramatically by 270 day. Levels were found to be higher at ZT-18 in 90 and 

270 day but not in 180 day. In 90 day pineal gland c-Fos levels were found to 

be similar as was observed in 90 day SCN. Previous studies in rodents showed 

a severe alteration of pineal physiology with aging (Miguez et al., 1998). Thus 

this could be the reason for changing c-Fos levels with aging.   

In SCN, c-Fos levels increased from 90 day to 180 day but in pineal 

gland levels decreased by 180 day. This could be due to age related loss of 

regulation of pineal function by SCN or disruption of the downstream pathway 

from SCN to pineal gland. This also suggests that aging affects the intrinsic 

rhythmicity of SCN and also acts on its ability to control the function of 

peripheral organs. Disturbances in c-Fos levels with aging in pineal could also 

be due to uncoupling of central (SCN) and peripheral pacemakers (pineal) 

with aging. Aging had a differential effect on SCN and pineal and at various 

times on c-Fos.    

Upon melatonin administration in SCN, c-Fos levels increased in 90 

day at both mid-day (ZT-6) and mid-night (ZT-18) whereas in 180 day levels 

decreased upon melatonin administration at both zeitgeber times. In 270 day c-

Fos levels could not be detected even after melatonin administration. In the 

pineal gland, upon melatonin administration c-Fos levels decreased at ZT-6 as 

well as at ZT-18 in 90 day and 180 day. However c-Fos levels increased upon 

melatonin administration but not significantly at 270 day. This suggests that 

melatonin administration seems to have dose-dependent effect on c-Fos 

expression with increasing in age and response of the circadian clock to both 

photic and non-photic stimuli is altered in advanced age (Turek et al., 1995). 

Earlier reports suggest that SCN output signals alter with age that lead to 

changes in rhythms of those cells that receive the signals (Smale et al., 2003). 

Earlier workers reported that circadian and seasonal rhythmicity characterizes 
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the action of many hormones and elicit long-term physiological adaptations 

that are ultimately mediated by changes in gene expression (Krieger, 1979). 

Hence we found melatonin had differential effect on age related changes in the 

c-Fos levels in the SCN as well as in pineal gland.  

Molecular mechanisms underlying the effect of exogenous melatonin 

on the SCN endogenous rhythmicity is not yet clear (Poirel et al., 2003). 

Recent in vitro studies suggested that the transcriptional activity of the 

CLOCK: BMAL1 heterodimer can be modulated directly by nuclear hormone 

receptors and redox potential (McNamara et al., 2001; Rutter et al., 2001). 

That means melatonin may bind to its nuclear receptors and activate c-fos 

transcription whose protein products bind to the target genes Clock and Bmal1. 

CLOCK and BMAL1 later heterodimerize and act on other genes thus regulate 

the circadian cycle and rhythm generation. Studies on the IEGs would help in 

unraveling the cellular transduction cascade involved in rhythm generation 

because light activation of immediate early genes, including c-fos, ultimately, 

appears to result in the up-regulation of two of the core clock genes Per1 and 

Per 2 (Reppert and Weaver, 2002). Our present study suggests more work to 

be done on age related changes in c-Fos expression as it induces the target 

genes of molecular clock. 
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CONCLUSION: 

 

The endogenous timekeeper, SCN regulates an enormous array of 

physiological systems, altering their activity rhythmically on both the daily 

and seasonal time scales (Loudon et al., 2000). Generation of circadian rhythm 

and its regulation is a complex process which involves many molecular and 

biochemical processes. In order to understand circadian rhythm generation and 

regulation, different biochemical parameters were studied. Initially serotonin 

levels and daily serotonin rhythms in brain and SCN in various age groups 

such as 15, 30, 60, 90, 120, 180, 270, 365, 545 and 730 day were studied. 

Serotonin rhythms appeared to be maternally regulated at 15 day in both brain 

and SCN. Individual rhythmicity in serotonin levels was established by 90 day 

in brain and 60 day in SCN which was observed to be a little early in SCN as 

compared to whole brain. This suggests that SCN is the master circadian clock 

and it regulates other peripheral clocks. With advancement of age the 

robustness and amplitude of serotonin rhythms decreased in both brain and 

SCN finally leading to abolition of rhythmicity by 270 day. These changes in 

serotonin rhythms would have an impact on SCN function. We hypothesized 

that the age induced changes in serotonin levels and rhythmicity could be due 

to either decreased anabolism of serotonin or increased catabolism of 

serotonin or alteration in the conversion of serotonin to melatonin.  

Upon subcutaneous administration of melatonin, we found restoration 

of serotonin levels as well as its daily rhythmicity in 90, 180 and 270 day but 

not in 730 day SCN.  So, in order to understand how melatonin levels are 

decreasing with age, we have studied NAT activity rhythms in the SCN. Our 

results showed decreased NAT activity with aging. This suggests that both 

serotonin levels as well as NAT activity could be responsible for low 

melatonin levels with the advancement of age. The decrease in melatonin 

levels with aging would be certainly affecting the proper functioning of the 

circadian clock. Upon melatonin administration, there was no significant 

increase in the NAT activity in 90 and 180 day but there was significant phase 

advancement in the activity in these age groups. In 270 day, though there was 
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increase in NAT activity but no phase shift was observed. This suggests that 

exogenous melatonin may result in phase shifting and can alter the amplitude 

of NAT activity rhythms in the aging SCN.  

Several reports showed that post-translational modifications such as 

phosphorylation play an important role in circadian rhythm regulation and 

phase shifts. As serotonin levels are decreasing with age and CaMKII 

phosphorylates TPH (Yamauchi and Fujisawa, 1983), we wanted to know age 

induced changes in CaMKII activity rhythms in SCN and pineal of rat and 

also the effect of melatonin on CaMKII as melatonin is synthesized from 

serotonin primarily in pineal gland and plays a crucial role in SCN functions. 

Our studies revealed that aging reduces CaMKII activity in both SCN and 

pineal. Melatonin administration resulted in increased amplitude of CaMKII 

activity in 90 and 270 day but not in 180 day which was found to be highest in 

control 180 day in both SCN and pineal. This suggests that melatonin 

influences the amplitude of CaMKII activity.  

It is well known that c-Fos expression is an important functional 

marker for SCN neuronal activity. Aging had a significant but differential 

effect on c-Fos expression in SCN and pineal. There was a reduced c-Fos 

expression with aging and by 270 day c-Fos expression could not be detected 

in SCN whereas we observed a decrease in c-Fos expression but then drastic 

increase in c-Fos expression was observed by 270 day in pineal. Melatonin 

had no significant effect on c-Fos levels. 

Our studies revealed that in the SCN of young rat (90 day old) within a 

24h daily rhythm, (Fig. 29) CaMKII activity was maximum at ZT-0 and 

serotonin levels were highest at mid-day (ZT-6). Thus the peak activity of 

CaMKII at ZT-0 could be activating TPH by phosphorylating it. 

Phosphorylated TPH catalyzes the conversion of tryptophan to 5-

hydroxytryptophan resulting in serotonin synthesis which peaks by ZT-6. The 

NAT activity in SCN peaks at ZT-18 as was observed in pineal gland. This 

showed that SCN neurons are also capable of synthesizing melatonin within 

them. The c-Fos levels were observed to be high at ZT-18 at the time when 

melatonin levels are highest. This suggests that c-Fos and melatonin could 
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have some direct relationship as c-Fos is involved in circadian phase shifts in 

the SCN and melatonin has a feedback effect on the SCN. 

Our studies on age induced changes in daily rhythms of serotonin 

levels, NAT activity, CaMKII activity and c-Fos levels indicate that aging is a 

complex, multi-factorial and interconnected process. This study gives us an 

insight on how daily rhythms play a role in age related diseases. Exogenous 

melatonin had differential effect on serotonin rhythms, NAT and CaMKII 

activity rhythms and c-Fos levels such as age specificity and tissue specificity. 

Therefore our study suggests that the effect of various dosages, durations and 

frequencies of melatonin on age induced changes should be tried to get the 

optimum restoration of various biochemical parameters. 

 

Fig. 29: Probable model of neural regulation of circadian clock 

 

 

In addition, the age related changes in the SCN function could be 

probably restored by targeting multiple therapies such as light therapy and 

melatonin treatment. As reported earlier, light and exogenous melatonin 

represent two different kinds of zeitgebers but their functional properties of 

entrainment resemble each other closely. This suggests that entrainment to 

melatonin or light involves at one level or another, a common mechanism 

even if their input pathway to the pacemaker differ (Pevet et al., 2002).  
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 Much work has to be done to know whether melatonin acts in a 

synergistic manner along with serotonin or independently through its various 

mechanisms of action. The interaction of melatonin with serotonin has to be 

elucidated at both biochemical and molecular levels for the better 

understanding of the SCN functions. Thus our studies provide new insights 

into the effect of aging on the underlying mechanisms and signal transduction 

pathways in circadian rhythm regulation as well as the role of melatonin in the 

effective treatment of age related circadian disorders and age-associated 

pathologies.  
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5-HIA                  :      5-Hydroxyindole acetaldehyde 

5-HIAA               :      5-Hydroxy indole acetic acid 

5-HT                    :      5-Hydroxytryptamine  

5-HTP                  :      5-Hydroxytryptophan 

AADC                 :      L-aminoacid decarboxylase 

AANAT               :      Arylalkylamine N-acetyltransferase 

Acetyl CoA         :      Acetyl coenzyme A  

AFMK                 :      N1-acetyl-N2-formyl-5-methoxykynuramine 

AMK                   :      N1-acetyl-5-methoxykynuramine 

AMPA                 :      α-Amino-3-hydroxy-5-methyl-4- 

isoxazolepropionic acid  

AP-1                    :      Activator protein-1 

APS                     :      Ammonium per sulphate  

ARNT                 :      Aryl hydrocarbon receptor nuclear     

                                   translocator 

ASPS                   :      Advanced sleep phase syndrome  

ATP                     :      Adenosine triphosphate  

AVP                    :      Arginine vasopressin  

bHLH                 :       basic helix loop helix  

Bmal1                 :       Brain-muscle-Arnt-like-protein 1 

Ca
2+

                    :       Calcium 

Ca/CRE              :       Calcium/cAMP response element 

CaM                   :       Calmodulin  

CaM Kinases      :       Ca
2+

/calmodulin-dependent kinases 

CaMKII              :       Ca
2+

/Calmodulin-dependent protein  

                                    kinase II 

cAMP                 :       cyclic adenosine monophoshate 

CGRP                 :       Calcitonin gastrin releasing peptide 

CkIε                    :       Casein kinase Iε 

CkIδ                   :        Casein kinase Iδ 

c3OHM              :       cyclic 3-hydroxymelatonin 

Clock                  :       Circadian locomotor output cycles kaput 

CNS                   :       Central nervous system 

Ca/CRE             :        Calcium/ cAMP response element 

CRE                   :       cAMP response element  

CREB                :       cAMP-responsive element binding protein 

Cry                     :       Cryptochrome 

CSF                    :       Cerebrospinal fluid 

DNA                  :       Deoxy ribonucleic acid 

DRN                  :       Dorsal raphe nuclei 

DSPS                 :       Delayed sleep phase syndrome  

EC cells             :       Enterochromaffin cells  

GABA               :       Gamma amino butyric acid  

GFAP                :       Glial fibrillary acidic protein  
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GHT                  :       Geniculohypothalamic tract 

GI tract              :       Gastro-intestinal  tract 

GMCSF             :       Granulocyte-macrophage colony stimulating  

                                   factor 

GNAT              :         GCN-5-related N-acetyl transferase  

GRP                  :        Gastrin releasing peptide 

HIOMT             :        Hydroxyl indole-O-methyl transferase 

ICER                 :        Inducible cAMP early repressor  

IEG                   :        Immediate early gene 

IGL                   :        Intergeniculate leaflet 

IL-4                   :        Interleukin 4 

kDa                   :        Kilodalton 

LD cycle           :        Light-dark cycle 

MAO                :        Monoamine oxidase 

MRN                :        Median raphe nuclei 

mg                     :        milligram 

ml                      :        milliliter 

mM                   :        millimolar 

mRNA              :        messenger ribonucleic acid 

NAAC              :        Neutral amino acid carrier  

NAD
+
/NADH  :        Nicotinaminde adenine dinucleotide    

                                  oxidised/reduced 

NAT                 :        N-acetyl transeferase 

NE                   :        Norepinephrine 

nm                    :        nanometers 

NMDA            :        N-methyl D-aspartate 

NPY                :        Neuropeptide Y 

PACAP           :        Pituitary adenylate cyclase activating  

                                 polypeptide 

PAGE              :       Polyacrylamide gel electrophoresis 

PAS                 :        PER-ARNT-Single minded 

P-CREB          :        Phosphorylated cAMP-responsive element  

                                  binding protein 

Per                   :        Period   

PHI                  :        Peptide histidine isoleucine 

PKA                 :        Protein kinase A  

PKC                 :        Protein kinase C  

PNS                  :       Peripheral nervous system 

PSD                  :       Post synaptic density 

PVN                 :       Paraventricular nucleus 

PVZ                 :       Paraventricular zone 

RGCs               :       Retinal ganglion cells  

RHT                 :       Retino hypothalamic tract 

RP-HPLC        :       Reverse phase high pressure liquid  

                                 chromatography 

SBP                  :       Serotonin binding protein  

SCG                 :       Superior cervical ganglia  
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SCN                 :       Suprachiasmatic nucleus 

SDS                  :       Sodium dodecyl sulphate 

SERT               :       Transporter of serotonin  

SP                    :       Substance P 

SS                    :       Somatostatin S 

TEMED           :       N, N,N�,N�-Tetramethylethylenediamine 

TGFα               :       Transforming growth factor  

TPH                 :       Tryptophan hydroxylase  

TRH                :        Thyrotropin releasing hormone   

Tris                  :        Tris-(Hydroxymethyl) aminoethane 

VIP                 :        Vasoactive intestinal peptide  

Vmat 2            :        Vesicular monoamine transporter 2 

  µl                     :        micro litre 

µM                  :        micro molar 

                                   0C                     :       degree centigrade/ degree celsius 

 


