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Abstract

Recent trends in wireless communication technologies claim a rapid in-

crease in demand of radio spectrum. In the current spectrum allocation scheme,

it is difficult to accommodate the demand of radio spectrum. Moreover the desig-

nated spectrum are not efficiently exploited, resulting its poor utilization. Stud-

ies have demonstrated that reuse of the un-utilized spectrum provides a signifi-

cant improvement in network capacity. Recently, a new dynamic spectrum access

paradigm called Cognitive Radio (CR) has gained popularity to solve the short-

comings of spectrum under-utilization and spectrum scarcity. In CR technology,

unlicensed users (secondary users) make use of the unused spectrum of licensed

users (primary users), thereby discovering a new capacity and commercial value

from the existing unused spectrum. The main functions of the CR are spec-

trum sensing, spectrum management, spectrum mobility and spectrum sharing.

Spectrum sensing deals with the detection of vacant spectrum bands known as

spectrum holes and these detected holes are assigned to the secondary users (SUs)

during spectrum management phase. It uses different spectrum allocation (SA)

algorithms for allocating spectrum to SUs. The present thesis mainly concen-

trates on spectrum allocation phase. The objectives of SA phase are a) maximize

the spectrum utilization, b) minimize interference to primary users (PUs) and

neighbor secondary users and c) maintain fairness across the users.

To achieve these goals, an efficient SA technique is required for making deci-

sions within a stipulated time. For this purpose, various techniques like graph col-

oring, game theory, evolutionary algorithms, local bargaining, auction and pricing

mechanisms and stochastic search methods have been reported in the literature.

The problem of allocating channels amongst the secondary users in the network is

considered as a NP-hard problem. In this work, evolutionary algorithms, namely

Differential Evolution (DE), firefly and particle swarm intelligence are applied to

find an efficient channel assignment solution. Further, the performance of three

algorithms in terms of quality of solution and time complexity are compared to

find the best solution.

v



Abstract vi

In the distributed approach, each SU device has an embedded platform to

perform the SA task. The allocation process needs to be executed in a short

time after obtaining request from secondary users or preemption of the channel by

the primary user. Otherwise, it degrades the quality of service and interrupt the

communication. Thus, it is required to implement the SA algorithm on hardware

platform like microcontroller, digital signal processor, field programmable gate

array (FPGA) or application specific integrated circuit (ASIC) to improve the

execution speed for performing the spectrum allocation. In this work, hardware

Intellectual Property (IP) of DE based SA is developed targeting to a FPGA

platform. The DE-based SA IP is developed as a coprocessor, and it is interfaced

to PowerPC 440 embedded processor via Auxiliary Process Unit controller.

The spectrum allocation needs to simultaneously optimize multiple objectives

like maximize network utilization, maximize fairness across the users and mini-

mize forced termination probability by satisfying the constraints posed by primary

and secondary users. Hence in this work, Multi-Objective Differential Evolution

(MODE) algorithm is used to optimize the network utility functions simultane-

ously to provide best channel to the secondary users. In literature, forced ter-

mination probability is used to analyze the performance of spectrum allocation

technique. In the present work, forced termination probability is formulated as an

objective function and optimized along with the network utilization functions to

find best channels for secondary users. To increase the efficiency of SA technique,

a joint spectrum and power allocation algorithm is used to maximize the total

network utilization and sum capacity of a user by satisfying the interference and

power constraints imposed by both PUs and SUs. Further, a MODE-based SA

IP is developed and implemented on FPGA platform to improve the execution

speed of the MODE-based spectrum allocation. The network utility functions are

integrated with the MODE IP and developed as a MODE-based SA coprocessor

to solve the SA problem in cognitive radio.



Contents

Acknowledgements iv

Abstract v

Abbreviations xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10

2.1 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Standardization attempts . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cognitive Radio Network architecture . . . . . . . . . . . . . . . . . 13

2.4 Spectrum Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Spectrum Allocation techniques . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Heuristic techniques . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . 21

2.6 Power allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Hardware platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Field Programmable Gate Array . . . . . . . . . . . . . . . . 25

2.8 Hardware-Software Co-design . . . . . . . . . . . . . . . . . . . . . 26

2.9 Hardware accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Programmable System on Chip design . . . . . . . . . . . . . . . . 27

2.10.1 Embedded processors . . . . . . . . . . . . . . . . . . . . . . 28

2.10.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10.3 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10.4 Universal Asynchronous Receiver and Transmitter (UART) . 29

vii



CONTENTS viii

2.10.5 Digital Clock Manager (DCM) . . . . . . . . . . . . . . . . . 30

2.10.6 Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10.6.1 Auxiliary Processor Unit (APU) interface . . . . . 30

2.11 Hardware implementation of Spectrum Allocation techniques . . . . 32

2.12 Tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Spectrum Allocation using DE algorithm 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Spectrum Allocation using Differential Evolution algorithm . . . . . 39

3.3.1 Differential Evolution algorithm . . . . . . . . . . . . . . . . 39

3.4 Spectrum Allocation using Particle Swarm Optimization algorithm 42

3.4.1 Particle Swarm Optimization algorithm . . . . . . . . . . . . 42

3.5 Spectrum Allocation using Firefly algorithm . . . . . . . . . . . . . 44

3.5.1 Firefly algorithm . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . 47

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 FPGA implementation of DE-based SA 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 FPGA implementation of Differential Evolution algorithm . . . . . 57

4.3.1 Software profiling of DE algorithm . . . . . . . . . . . . . . 57

4.3.2 Proposed hardware architecture of DE algorithm . . . . . . 58

4.3.2.1 Memory initialization module . . . . . . . . . . . . 60

4.3.2.2 Mutation module . . . . . . . . . . . . . . . . . . . 60

4.3.2.3 Crossover module . . . . . . . . . . . . . . . . . . . 60

4.3.2.4 Selection module . . . . . . . . . . . . . . . . . . . 61

4.3.2.5 Fitness evaluation module . . . . . . . . . . . . . . 62

4.3.2.6 Random Number Generator (RNG) module . . . . 62

4.4 FPGA implementation of DE based Spectrum Allocation algorithm 63

4.4.1 Software profiling of SA algorithm . . . . . . . . . . . . . . . 63

4.4.2 Hardware architecture of DE-SA IP . . . . . . . . . . . . . . 65



CONTENTS ix

4.4.2.1 Max-Sum-Reward (MSR) . . . . . . . . . . . . . . 66

4.4.2.2 Max-Min-Reward (MMR) . . . . . . . . . . . . . . 66

4.4.2.3 Max-Proportional-Fair (MPF ) . . . . . . . . . . . 67

4.4.3 System on Chip (SoC) implementation . . . . . . . . . . . . 68

4.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.3 Synthesis results . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 MODE-based SA and its FPGA implementation 84

5.1 Spectrum Allocation in Cognitive Radio Networks using Multi-

Objective Differential Evolutionary algorithm . . . . . . . . . . . . 84

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.3 Multi-Objective problem formulation of Spectrum Allocation 87

5.1.4 Forced termination probability . . . . . . . . . . . . . . . . . 88

5.1.5 Multi-Objective Differential Evolution algorithm . . . . . . . 90

5.1.6 MODE based Spectrum Allocation . . . . . . . . . . . . . . 92

5.1.7 Simulation setup and Results . . . . . . . . . . . . . . . . . 93

5.2 Joint Spectrum and Power Allocation in Cognitive Radio Networks 97

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.4 Joint Spectrum and Power allocation using DE and PSO

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.6 MODE based Joint spectrum and power allocation . . . . . 108

5.3 FPGA implementation of MODE based Spectrum Allocation tech-

nique for Cognitive Radio Networks . . . . . . . . . . . . . . . . . . 111

5.3.1 Hardware implementation of MODE algorithm . . . . . . . . 111

5.3.1.1 Initialization module . . . . . . . . . . . . . . . . . 113

5.3.1.2 Mutation module . . . . . . . . . . . . . . . . . . . 113

5.3.1.3 Crossover module . . . . . . . . . . . . . . . . . . . 114



CONTENTS x

5.3.1.4 Selection module . . . . . . . . . . . . . . . . . . . 115

5.3.1.5 Stopping criteria module . . . . . . . . . . . . . . . 115

5.3.1.6 Dominance filter . . . . . . . . . . . . . . . . . . . 116

5.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.3 Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.4 Synthesis results . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.5 Pareto Front . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusions and Future work 126

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A 129

A.1 Embedded Development Kit design flow for hardware-software co-

design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Benchmark test functions for single-objective optimization . . . . . 130

A.3 Benchmark test functions for multi-objective optimization . . . . . 131



List of Figures

1.1 Radio Spectrum occupancy averaged over seven locations [1] . . . . 2

1.2 Utilization of radio spectrum [2] . . . . . . . . . . . . . . . . . . . . 3

1.3 Spectrum hole and dynamic spectrum access [3] . . . . . . . . . . . 3

2.1 Cognitive Radio cycle [2] . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cognitive Radio network architecture . . . . . . . . . . . . . . . . . 14

2.3 Spectrum Allocation model . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Classification of Spectrum Allocation techniques [4] . . . . . . . . . 19

2.5 Basic System-on-Chip platform . . . . . . . . . . . . . . . . . . . . 28

2.6 APU controller interface to PowerPC 440 processor . . . . . . . . . 31

3.1 Convergence graph (Max-Sum-Reward) . . . . . . . . . . . . . . . . 47

3.2 Convergence graph (Max-Min-Reward) . . . . . . . . . . . . . . . . 48

3.3 Convergence graph (Max-Proportional-Fair Reward) . . . . . . . . . 48

3.4 Convergence graph (N=10, M=10 and K=10) . . . . . . . . . . . . 49

3.5 Convergence graph (N=5, M=5 and K=5) . . . . . . . . . . . . . . 49

3.6 Rewards by varying number of secondary users . . . . . . . . . . . . 50

3.7 Rewards by varying number of primary users . . . . . . . . . . . . . 50

3.8 Rewards by varying number of channels . . . . . . . . . . . . . . . . 51

4.1 Differential Evolution IP Core . . . . . . . . . . . . . . . . . . . . . 59

4.2 Finite State Machine diagram of DE algorithm . . . . . . . . . . . 59

4.3 Mutation module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Crossover module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Selection module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Circuit diagram of 32-bit LFSR . . . . . . . . . . . . . . . . . . . . 63

4.7 Hardware architecture of DE based Spectrum Allocation . . . . . . 66

4.8 Max-Sum-Reward module . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Max-Min-Reward module . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Max-Proportional-Fair module . . . . . . . . . . . . . . . . . . . . . 68

4.11 APU interface diagram of DE IP core . . . . . . . . . . . . . . . . . 69

4.12 System-on-Chip setup for DE-SA . . . . . . . . . . . . . . . . . . . 69

xi



LIST OF FIGURES xii

4.13 Functional simulation of DE IP core . . . . . . . . . . . . . . . . . . 71

4.14 Convergence graph of Fun2 test function in hardware and software . 79

4.15 Convergence graph of MSR . . . . . . . . . . . . . . . . . . . . . . 79

4.16 Convergence graph of MMR . . . . . . . . . . . . . . . . . . . . . . 80

4.17 Convergence graph of MPF . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Transitions of cognitive radio from one state to another . . . . . . . 88

5.2 MSR vs Forced termination probability . . . . . . . . . . . . . . . . 94

5.3 MMR vs Forced termination probability . . . . . . . . . . . . . . . 94

5.4 MPF vs Forced termination probability . . . . . . . . . . . . . . . . 95

5.5 Pareo front of three and four objective functions . . . . . . . . . . . 95

5.6 Performance of Quality of Service . . . . . . . . . . . . . . . . . . . 96

5.7 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Number of active secondary users vs. number of secondary users

with different rates in downlink . . . . . . . . . . . . . . . . . . . . 106

5.9 Number of active secondary users vs. number of secondary users

with different rates in uplink . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Sum of Secondary users capacity per user vs. number of secondary

users with different rates for R=0.5 bits/s/Hz . . . . . . . . . . . . 107

5.11 Sum of Secondary users capacity per user vs. number of secondary

users with different rates for R=0.3 bits/s/Hz . . . . . . . . . . . . 108

5.12 Pareto Front between MSR and Average user capacity . . . . . . . 110

5.13 Performance of Quality of Service . . . . . . . . . . . . . . . . . . . 111

5.14 Hardware architecture of MODE algorithm . . . . . . . . . . . . . . 112

5.15 FSM diagram of MODE algorithm . . . . . . . . . . . . . . . . . . 112

5.16 Mutation module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.17 Crossover module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.18 Selection module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.19 Dominance Filter module . . . . . . . . . . . . . . . . . . . . . . . . 116

5.20 Functional simulation of MODE IP Core . . . . . . . . . . . . . . . 117

5.21 System on Chip setup . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.22 Pareto Front of ZDT1 test function . . . . . . . . . . . . . . . . . . 121

5.23 Pareto Front of ZDT2 test function . . . . . . . . . . . . . . . . . . 121

5.24 Pareto Front between MSR and MMR . . . . . . . . . . . . . . . 122

5.25 Pareto Front between MMR and MPF . . . . . . . . . . . . . . . 122



LIST OF FIGURES xiii

5.26 Pareto Front between MSR and MPF . . . . . . . . . . . . . . . . 123

A.1 Hardware software co-design approach using Embedded Develop-

ment Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



List of Tables

3.1 Performance analysis of Firefly, PSO and DE . . . . . . . . . . . . . 52

4.1 Profiling results of the software (SW) DE algorithm (GMAX=1000,

NP=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Profiling results of the software (SW) SA algorithm (% of Execution

time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Average execution time of SA task in Hardware-software co-design

platform for (5× 5× 5) . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Control parameters of the DE algorithm . . . . . . . . . . . . . . . 70

4.5 Average execution time of the DE algorithm implemented on PPC440

processor (software) . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Average execution time of DE coprocessor and its acceleration fac-

tor (AF) over Floating and Fixed point software execution time . . 73

4.7 Average execution time of Spectrum Allocation problem in Float

and Fixed arithmetic (software) for (5× 5× 5) . . . . . . . . . . . . 74

4.8 Average execution time of Spectrum Allocation problem in Float

and Fixed arithmetic (software) for (10× 10× 10) . . . . . . . . . . 75

4.9 Average execution time of Spectrum Allocation problem in Float

and Fixed arithmetic (software) for (20× 20× 20) . . . . . . . . . . 76

4.10 Acceleration Factors of DE-SA coprocessor over DE-SA software

(Float and Fixed) for (5× 5× 5) . . . . . . . . . . . . . . . . . . . 76

4.11 Acceleration Factors of DE-SA coprocessor over DE-SA software

(Float and Fixed) for (10× 10× 10) . . . . . . . . . . . . . . . . . 77

4.12 Acceleration Factors of DE-SA coprocessor over DE-SA software

(Float and Fixed) for (20× 20× 20) . . . . . . . . . . . . . . . . . 77

4.13 Resource utilization of MSR, MMR, MPF and DE − SA . . . . . 81

4.14 Power analysis of system . . . . . . . . . . . . . . . . . . . . . . . 81

4.15 Hierarchy power analysis of DE − SA SoC system . . . . . . . . . 82

4.16 Device utilization of system and Core . . . . . . . . . . . . . . . . . 82

5.1 Control parameters of the MODE algorithm . . . . . . . . . . . . . 90

5.2 Time complexity of NSGA-II and MODE . . . . . . . . . . . . . . . 94

xiv



LIST OF TABLES xv

5.3 Execution time of test bench functions in software (SW) and hard-

ware (HW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Timing results of Spectrum Allocation problem in software (SW)

and hardware (HW) (MSR & MMR) . . . . . . . . . . . . . . . . 119

5.5 Timing results of Spectrum Allocation problem in software (SW)

and hardware (HW) (MMR & MPF ) . . . . . . . . . . . . . . . . 120

5.6 Timing results of Spectrum Allocation problem in software (SW)

and hardware (HW) (MMR & MPF ) . . . . . . . . . . . . . . . . 120

5.7 Resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 Device utilization of system and MODE-SA Core . . . . . . . . . . 123

5.9 Hierarchy power analysis of MODE − SA SoC system . . . . . . . 123



Abbreviations

ABC - Artificial Bee Colony

ACO - Ant Colony Optimization

ACS - Ant Colony System

ADE - Adaptive Differential Evolutionary

AF - Acceleration Factor

ASP - Advanced Simple Profile

API - Application Programming Interface

APU - Auxiliary Processor Unit

ASIC - Application-Specific Integrated Circuit

ASSP - Application-Specific Standard Part

BFA - Binary Firefly Algorithm

BRAM - Block Random Access Memory

BS - Base Station

BSB - Base System Builder

BUFG - Global Buffer

CA - Channel Assignment

CD - Compact Disk

CDMA - Central Direct Memory Access

CLB - Combinational Logic Block

CPEs - Consumer Premise Equipments

CPLD - Complex Programmable Logical Devices

CPU - Central Processing Unit

CR - Cognitive Radio

CRC - Cyclic Redundancy Check

CRN - Cognitive Radio Network

CSGC - Color Sensitive Graph Coloring

CU - Cognitive User

DCM - Digital Clock Manager

DCR - Device Control Register

DDR2 - Double Density RAM

DDR-SRAM- Double Data Rate Static Random Access Memory

xvi



Abbreviations xvii

DE - Differential Evolution

DE-SA - Differential Evolution based Spectrum Allocation

DMA - Direct Memory Access

DEMUX - Demultiplexer

DRAM - Dynamic Random Access Memory

DSP - Digital Signal Processing

EA - Evolutionary Algorithm

ECMA - European Computer Manufacturers Association

EDK - Embedded Development Kit

EPROM - Erasable Programmable Read-Only Memory

ETSI - European Telecommunications Standards Institute

FA - Firefly Algorithm

FCB - Fabric Coprocessor Bus

FCC - Federal Communication Commission

FCM - Fabric Coprocessor Module

FF - Flip Flop

FFT - Fast Fourier Transform

FIFO - First In-First-Out

FIR - Finite Impulse Response

FP - Floaing Point

FPGA - Field Programmable Gate Array

FPU - Floating Point Unit

FSL - Fast Simple Link

FSM - Finite State Machine

FT - Forced Termination Probability

GA - Genetic Algorithm

GCP - Graph Coloring Problem

GE - Genetic Evolution

GPIO - General Purpose Input and Output

GPP - General Purpose Processor

GSM - Global System for Mobile Communications

HDL - Hardware Description Language

HIL - Hardware-in-the-Loop

HMCR - Harmony Memory Considering Rate

HS - Harmonic Search



Abbreviations xviii

HW - Hardware

I/O - Input-Output

IBM - International Business Machines

IC - Integrated Circuit

IDCT - Inverse Discrete Cosine Transform

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineering

ILP - Integer Linear Programming

IOB - Input/output Block

IP - Intellectual Property

IPIF - Intellectual Peripheral Interface

IPIC - Intellectual Peripheral Interconnect

ISE - Integrated Software Environment

ISM - Industrial, Scientific and Medical

ISO - International Standard Organization

ITU - International Telecommunication Union

JTAG - Joint Test Action Group

LMB - Local Memory Block

LFSR - Linear Feedback Shift Register

LUT - Look Up Table

MAC - Medium Access Control

MATLAB - Matrix Laboratory

MB - MicroBlaze

µC - Micro-Controllers

MCI - Memory Controller Interface

MHz - Mega Hertz

MINLP - Mixed Integer Non-Linear Programming

MMR - Max-Min-Reward

MODE - Multi-Objective Differential Evolution

MODE-SA - Multi-Objective Differential Evolution based Spectrum Allocation

MOGA - Multi-Objective Genetic Algorithm

MPF - Max-Proportional-Fair

MPMC - Multi Port Memory Controller

MSR - Max-Sum-Reward

MUX - Multiplexer



Abbreviations xix

NP - Neyman-Pearson

NSGA-II - Nondominated Sorting Genetic Algorithm II

OFDM - Orthogonal Frequency Division Multiplexing

OSI - Open Systems Interconnection

OTS - Off-the-Shelf

PAR - Pitch Adjustment Rate

PC - Personal Computer

PDA - Personal Digital Assistant

PHY - Physical Layer

PLB - Processor Local Bus

PLL ADV- Phase Locked Loop

PPC440 - PowerPC440

PPSO - Pipelined PSO

pPSO - Parallel PSO

PSO - Particle Swarm Optimization

PSoC - Programmable System on Chip

PU - Primary User or licensed user

QoS - Quality of Service

QGA - Quantum Genetic Algorithm

RAM - Random Access Memory

RF - Radio Frequency

RISC - Reduced Instruction Set Computer

RNG - Random Number Generation

RRS - Reconfigurable Radio Systems

SA - Spectrum Allocation

SCC - Standards Coordinating Committee

SDK - Software Development Kit

SDRAM - Single Data Rate RAM

SDR - Software Defined Radio

SINR - Signal-to-Interference-plus-Noise Ratio

SIR - Signal-to-Interference Ratio

SNIR - Signal-to-Noise-plus-Interference Ratio

SoC - System on Chip

SoPC - System on Programmable Chip

SNR - Signal to Noise Ratio



Abbreviations xx

SRAM - Static Random Access Memory

STD - Standard Deviation

SU - Secondary User or Unlicensed user or Cognitive Radio

SW - Software

TVWS - TeleVision White Space

UART - Universal Synchronous and Asynchronous Receive and Transmit

UDI - User Defined Instructions

UMTS - Universal Mobile Telecommunications System

USB - Universal Serial Bus

USRP - Universal Software Radio Peripheral

VLSI - Very Large Scale Integration

VHDL - VHSIC Hardware Description Language

VoIP - Voice Over Internet Protocol

WARP - Wireless Open Access Research Platform

WG - Working Group

WiMax - Worldwide interoperability for Microwave access

WiFi - Wireless Fidelity

WLAN - Wireless Local Area Network

WRAN - Wireless Regional Area Network

XPS - Xilinx Platform Studio

XST - Xilinx Synthesis Tool

ZDT1 - Zitzler-Deb-Thiele 1

ZDT2 - Zitzler-Deb-Thiele 2

2G - Second-Generation

3G - Third-Generation



 
LIST OF INTERNATIONAL JOURNALS PUBLISHED  

 
1. Kiran Kumar Anumandla, Rangababu Peesapati, Samrat L. Sabat, Siba K. Udgata and Ajith Abraham, 

FPGA based Differential Evolution Coprocessor: A case study of spectrum allocation in cognitive radio 
network, IET Computer and Digital Techniques, 7(5), pp 221-234, 2013. 

 
2. Kiran Kumar Anumandla, Rangababu Peesapati, Samrat L. Sabat and Siba K. Udgata,  SoC based 

floating point implementation of Differential Evolution Algorithm using FPGA,  Design Automation and 
Embedded Systems, Springer, 16(4), pp 221-240, 2012. 

 
3. Kiran Kumar Anumandla, Rangababu Peesapati, Samrat L. Sabat, Field Programmable Gate Array 

implementation of Spectrum Allocation technique for Cognitive Radio Networks, Computers & Electrical 
Engineering (Elsevier), 42(0), pp 178-192, 2015. 

 
4. Rangababu Peesapati, Kiran Kumar Anumandla, Samrat L. Sabat, Comparative study of system on chip 

based solution for floating and fixed point differential evolution algorithm, Swarm and Evolutionary 
Computation (Elsevier), 19(0), pp 68-81,2014. 

 
 
 
 

 

LIST OF INTERNATIONAL CONFERENCE PROCEEDINGS  
 

• Kiran Kumar Anumandla, Shravan Kudikala, Bharadwaj Akella Venkata, Samrat L. Sabat, “Spectrum 
Allocation in Cognitive Radio Networks Using Firefly Algorithm, In Proceedings of   International 
conference on Swarm, Evolutionary and Memetic Computing (SEMCCO), 2013, pp 366-376. 
 

• Kiran Kumar Anumandla, Bharadwaj Akella Venkata, Samrat L. Sabat and Siba K.Udgata, “Spectrum 
Allocation in Cognitive Radio Networks Using Multi-Objective Differential Evolution Algorithm, In 
Proceedings of IEEE 2nd International conference on Signal Processing and Integrated Networks (SPIN), 
2015, pp 273-278. 
 

 
 



Chapter 1

Introduction

There is a limited availability of radio spectrum resources for future services to

users, despite the fact that the licensed spectrum is under-utilized for long pe-

riods of time. At present, the radio spectrum is divided into spectrum bands

and these have been assigned to various services like mobile, broadcast, satellite

services regulated by International Telecommunication Union (ITU). Particularly,

the mobile telecommunication market predicted that system development and con-

sequent spectrum allocations will grow significantly in the time span 2010 - 2020

in terms of aggregate data rate per user (ITU-R 2006). Figure 1.1 illustrates the

average utilization of spectrum over seven locations in U.S in the frequency range

of 30MHz - 2.9GHz. It is observed that the maximum spectrum occupancy is in

the range of 5.2% to 13.1% at some frequency bands [1, 5]. Figure 1.2 shows that

significant part of the spectrum is under-utilized. Hence, it depicts that the spec-

trum scarcity problem is not due to the lack of radio spectrum resources, but due

to the inefficient spectrum assignment policies. The reports published by Federal

Communications Commission (FCC) stated that fixed spectrum allocation poli-

cies in wireless applications accompanied to poor utilization of spectrum resources

in time, frequency and geographical space dimensions [6].

To solve the spectrum scarcity problem, Mitola has introduced a new tech-

nology paradigm called Cognitive Radio (CR) [7]. It has the capability to sense

the RF environment and intelligently find an appropriate spectrum for seamless

communication. Thus, it opportunistically and adaptively uses the under-utilized

frequency bands in different parts of the spectrum as shown in Figure 1.3. It max-

imizes the cognitive user capacity without disturbing the licensed users. Thus,

a dynamic spectrum allocation technique is essential to improve the spectrum

utilization. In CR network, two types of users are present a) licensed users also

known as primary users (PUs) and b) unlicensed users also known as secondary

users (SUs) or CR users. In CR cycle, the first phase is spectrum sensing. In

this phase, the spectrum bands are scanned to obtain the information about occu-

1
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Figure 1.1: Radio Spectrum occupancy averaged over seven locations [1]

pancy in the channel. In the next phase, available channels are allocated to SUs

such that the communication do not cause interference to the existing users. This

is known as spectrum allocation (SA) [4]. In wireless network, interference may

occur due to either environment noise or other neighborhood users. Controlling

the interference is a critical task and it affects channel capacity and performance

of the wireless network. The spectrum available for secondary user varies with

both location and time due to mobility and traffic variations of primary user.

Spectrum occupied by a cognitive user without coordinating with neighbors can

cause interference to other users.

In CR network, the SA problem is more complex compared to the conventional

wireless network, due to dynamic variation of spectrum holes and available fre-

quencies with respect to both time and location. The objective of SA is to allocate

a best channel (among the available) to each CR user such that the network uti-

lization is maximum by maintaining fairness across the users subject to satisfying
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Figure 1.2: Utilization of radio spectrum
[2]

Figure 1.3: Spectrum hole and dynamic
spectrum access [3]

a set of constraints imposed by both PUs and SUs. The constraints are number

of channels selected for each user, data rate, transmitted power and interference

to PUs. In CR network, interference can also be minimized by optimizing trans-

mitted power allocated to each SU. Hence, a joint spectrum and power allocation

technique is required to increase the network efficiency (i.e., maximum network

utilization with minimum interference). An efficient SA technique will provide

maximum network utilization, minimum interference, maximum data rate, maxi-

mum fairness among the users and optimal power to SUs. Optimal power to SUs

ensures maximum battery life. Thus, development of efficient algorithm for SA is

an important area of research.

In a distributed network, each SU uses a distributed algorithm for determin-

ing spectrum for its own communication. In this network, each SU considers the

locally available information from the neighborhood users and decides its spec-

trum. In literature, the SA problem is solved by different techniques using high

end computing platform to maximize the network utilization. However in real

time, each SU implicitly have an embedded computing platform and the SA task

has to be performed on it. Hence, development of architecture and hardware

implementation of SA algorithm is also an important area of research.

1.1 Motivation

The spectrum allocation in CR network is a NP-hard problem and the algorithmic

time complexity to solve SA exponentially increases with CR network parameters

like number of primary, secondary users and number of channels [8]. Recent

research has focused on solving the SA problem using evolutionary algorithms
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for obtaining an optimal solution [9], [10], [11]. In recent past, a service based

spectrum allocation model was solved using graph coloring method and enhanced

Particle Swarm Optimization (PSO) algorithm to satisfy user demand and fairness

reward [12]. It was reported that the enhanced PSO achieves better reward and

efficiency compared to graph coloring method. Although the above mentioned

algorithms solved the SA problem, but the performance of these algorithms were

not compared among evolutionary algorithms under different network conditions

like by varying the number of users and channels. Thus in this thesis, the SA

problem is solved using PSO, Firefly and Differential Evolution (DE) algorithms.

It also studies the effect of varying number of SUs, PUs and channels on network

utilization. The performance of these algorithms is compared in terms of quality

of solution and time complexity.

The SA algorithm needs to simultaneously optimize multiple objectives (like

maximizing network utilization [13] and minimizing forced terminations) for find-

ing optimal channel assignment. Thus in this thesis, the SA problem is formu-

lated as a multi-objective optimization problem where network utility functions

and forced termination probability [14],[15] are optimized simultaneously using

Multi-Objective Differential Evolution (MODE) and Non-dominated Sorting Ge-

netic Algorithm II (NSGA-II) algorithms. Power allocation to SUs also plays an

important role in minimizing interference to PUs. A joint power and channel

allocation algorithm was reported to maximize CR network capacity by consider-

ing Signal to Interference plus Noise Ratio (SINR) constraints posed by PUs [16].

However, in [16] maximization of capacity of an individual user, outage probability

and interference constraints imposed by SUs are not considered during SA.

Thus in this thesis, a joint spectrum and power allocation algorithm is used to

optimize both network capacity and individual user capacity simultaneously using

MODE and NSGA-II algorithms by considering outage probability and interfer-

ence constraints imposed by PUs and SUs. In a distributed network, each SU has

to perform the SA task on its CR device quickly to ensure seamless communi-

cation. In literature, a hardware device for channel allocation was proposed for

cellular networks to speedup the channel selection and allocation algorithm with

respect to current traffic requirement and interference constraints [17]. The hard-

ware device improved the efficiency of allocation time. In literature, there is not

much work on accelerating the execution speed of SA algorithm in CR networks

to provide seamless communication to users. Thus in this thesis, DE-based SA
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(DE-SA) hardware Intellectual Property (IP) is developed to accelerate the execu-

tion speed of SA algorithm. This IP is used to optimize the three network utility

functions independently. In addition, MODE-based SA (MODE-SA) hardware IP

is also developed to optimize the network utility functions simultaneously. The

main objective of this research is to study, design, implement and validate a SA

technique for Cognitive Radio on a reconfigurable platform.

1.2 Challenges

Spectrum allocation is an important step in CR networks and variety of techniques

have been applied to solve the SA problem. However, still there are some open

issues in solving the SA problem in a CR network.

(I) Spectrum characterization: Most of the previous works select a channel for

a user based on a single criterion (i.e., throughput, SNR or SINR) that repre-

sents traffic load of the spectrum. However, multiple criteria are not considered

for selecting a channel, although it may give better results. There are different

Quality of Service (QoS) criteria such as bit error rate, interference, throughput,

jitter, end-to-end delay, transmitted power, etc., that depends on cognitive user

application/service. Most of the proposed SA algorithms target to achieve only

one QoS criterion, i.e. throughput. It is not applicable to other applications that

are sensitive to transmission delay.

(II) Multiple channel selection: The throughput of CR network (CRN) can

be increased by the use of multiple channels (contiguous or non-contiguous) or

multiple radios. In literature, limited works addressed this and most of the works

concentrated on single-radio device. The allocation of multiple channels to multi-

ple radios is a complex problem in terms of algorithm and corresponding hardware

design.

(III) Energy efficiency: Minimizing energy consumption of a CR device is

the active research in CR technology. In literature, limited works related to the

power optimization are proposed to achieve energy efficiency and non-interference

to licensed users. It is a challenge to balance the QoS requirements to SUs and

non-interference to PUs. The transmission power of CR device, selected channel

bandwidth, frequency, link error are leading causes of energy consumption. CR

users are considered to be mobile and battery power constrained. Thus, a method
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for energy-aware SA techniques on a hardware platform is essential.

(IV) Spectrum Fragments/Channels: In CR technology, there is no particular

depiction about the spectrum holes that a CR device can use. A CR user can use

those available channels regardless of bandwidth and frequency of the channels.

The previous works considered that the available channels are of fixed width with

a specific central frequency and find the best channel using traditional channel

assignment (CA) techniques. In CRN, there is no restriction about fixed range

and width of a channel. The CR users scan the RF spectrum, detect the holes and

use them by satisfying the QoS requirements like optimal bandwidth, frequency,

and required throughput. Reconfiguring the hardware to attain this is a research

issue.

(V) Interference Management: In CR networks, it is mandatory to limit the

interference to primary users during communication. It is a crucial challenge to

achieve maximum network utilization with minimum interference to other users

in a network. In literature, many works considered the interference caused by

SUs to PUs. However, it is important to consider the interference caused by each

user to other user. Limiting the interference is usually carried out by controlling

the SU transmitted power. Hence, it is required to develop a joint framework

that addresses the SA and power allocation simultaneously. With this approach,

a trade-off solution can be achieved that will satisfy the interference constraints

posed by both PUs and SUs.

(VI) Hardware implementation: In distributed approach, each CR device has

to execute the SA algorithm independently for assignment of channel to SUs. The

execution of complex SA algorithm on embedded platform degrade its primary

functionality. Due to dynamic variation of available channels, the SA algorithm

should execute fast during call initiation and hand-off process. Hence, it is required

to accelerate the execution performance of SA for fast process of allocation of

channels to the SUs. Hardware implementation of the SA algorithm can meet

the requirements of execution speed and power consumption specification of CR

device.

1.3 Research objective

The present work has mainly two objectives: a) to develop an efficient spectrum

allocation technique that maximizes network utilization subject to satisfying in-
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terference and power constraints imposed by both PUs and SUs b) to implement

the SA algorithm on a hardware platform to accelerate the execution speed for

finding optimum channel.

1.4 Thesis contribution

In the context of a general SA framework for CR networks, efficient SA algorithm

is developed to optimize the network utility functions that assures quality of ser-

vice (in terms of reward assigned to SU, fairness and non-interference across the

users) of each SU.

(1) The SA problem is formulated as a single objective problem and solved

using Differential Evolution (DE), PSO and Firefly algorithms to maximize the

network utilization subject to interference constraints imposed by SUs. The per-

formance of these algorithms is evaluated in terms of quality of solution (fitness

value of network utility functions) and time complexity. From simulation results,

it is observed that the DE algorithm improved the quality of solution by 29.9%

and 19.04% and the time complexity by 242.32% and 46.3% when compared to

PSO and Firefly algorithms respectively.

(2) The SA task is formulated as a multi-objective optimization problem to

optimize network utility functions, namely Max-Sum-Reward (MSR), Max-Min-

Reward (MMR), Max-Proportional-Fair (MPF ) and forced termination proba-

bility simultaneously subject to interference constraints using MODE algorithm.

The performance of MODE algorithm is compared with NSGA-II for evaluating

the optimal solution for fair spectrum assignment to the CR users without inter-

ference to PUs.

(3) To enhance the efficiency of SA technique, channel capacity of the individ-

ual SUs need to be optimized subject to the limit of interference and PU outage

probability. Hence, a joint spectrum and power allocation model is formulated as

an optimization problem and solved using DE and PSO algorithms. Further, one

of the network utility function (MSR) and channel capacity of individual user are

optimized simultaneously using MODE algorithm subject to PU outage probabil-

ity and power constraints posed by SUs. The performance of MODE algorithm is
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compared with NSGA-II algorithm in terms of quality of solution.

(4) A hardware IP of DE-SA algorithm is developed. The IP is interfaced

with PowerPC 440 (PPC440) processor of Xilinx Virtex-5 FPGA using Auxiliary

Processor Unit (APU) to accelerate the execution speed of SA algorithm. The ac-

celeration of this coprocessor is compared with equivalent floating and fixed point

arithmetic implementation of the SA algorithm on PPC440 processor. The imple-

mentation results show that the coprocessor accelerates the SA task by 76.79-105x

and 5.19-6.91x compared to floating and fixed point implementation of the algo-

rithm on PPC440 processor respectively.

(5) A MODE-SA hardware IP is developed to accelerate the execution speed of

MODE-SA algorithm. Further, a FPGA based System on Chip (SoC) solution is

developed for solving MODE-SA problem by interfacing the IP to PPC440 proces-

sor of Xilinx Virtex 5 FPGA. This IP is interfaced as a coprocessor by connecting

to Auxiliary Processor Unit (APU) controller. The hardware solution attained a

speedup of 50-60x compared to the time taken by the PPC440 processor to com-

plete the allocation process.

1.5 Thesis organization

This thesis is organized as follows:

Chapter 2 presents a brief introduction to cognitive radio and mainly focused

on SA. Different techniques involved in SA are discussed. It also presents a brief

introduction to FPGAs, hardware accelerators, Hardware-software co-design, Pro-

grammable System-on-Chip design and the tools used in this work. The challenges

involved in design and implementation of an efficient SA technique are discussed.

Chapter 3 presents the simulation study of solving SA problem using evolu-

tionary algorithms. In this chapter, the SA problem is solved using PSO, Firefly,

and DE algorithms. The algorithm performance is compared in terms of quality

of solution and time complexity to solve the SA problem.

Chapter 4 presents the hardware implementation of DE algorithm on PPC440

based System on Chip platform using Virtex-5 FPGA development board. It also

presents the performance of DE-IP for solving benchmark test functions and SA
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problem. Further, it also presents a detail study of the IP’s execution speed along

with resource utilization and power analysis.

Chapter 5 presents the study of SA problem as a multi-objective optimization

problem by considering network utility functions along with forced termination

probability. Multi-Objective Differential Evolution and NSGA-II algorithms are

used to solve the SA problem. It also presents the performance comparison of

MODE with NSGA-II algorithm to solve the problem. Further, it presents a joint

spectrum and power allocation algorithm to maximize the network utilization and

average capacity of a user in both uplink and downlink scenarios. This problem

is solved using single objective DE and PSO algorithms, MODE and NSGA-II al-

gorithms. A detailed performance study of these algorithms is presented. Finally,

it presents the performance of the MODE-SA hardware IP on Virtex-5 FPGA

development board to solve the SA problem.

Chapter 6 concludes the thesis by summarizing the research contributions of

the thesis. A possible future scope of the work is also presented.



Chapter 2

Background

2.1 Cognitive Radio

The recent rapid development in technological and economical background lead

to reshape the design of wireless communication networks. During last decade,

the usage of wireless services has increased tremendously. Thus, there is a huge

demand for new spectrum to provide more services. On the other hand, large

portions of the radio spectrum is under-utilized due to the fixed spectrum assign-

ment policies made by the government and international regulatory bodies [18]. In

the early 1990s, the concept of Software Defined Radio (SDR) was introduced by

Joseph Mitola [19]. The SDRs typically have a reconfigurable platform in which

radio frequency (RF) front end is configured according to the base band signal.

Further, Mitola took one step forward and extended it to Cognitive Radio (CR).

The CR is basically a SDR capable of intelligent sensing and adaptive to the RF

environment. A more common definition of CR: ”It is a radio that can change its

transmitter parameters (must be reconfigurable) based on interaction with the en-

vironment in which it operates (must have sensing or cognitive capabilities). This

interaction may involve active negotiation or communications with other spectrum

users and/or passive sensing and decision making within the radio” [6].

In CR network, PUs have legacy rights to use the specific part of the spectrum,

whereas secondary users termed as Cognitive Users (CUs) have no license to use

the spectrum. However, they can access the unused spectrum opportunistically

using CR technology. In CR domain, a spectrum hole is defined as a band of

frequencies allocated to a PU, but is not being used by it, at an instant of time

and specific geographic location. CR has the capability to take the best decision

for achieving maximum network utilization, minimum interference to PUs and

robust communication to both PUs and SUs. The two main attributes of CR are

Cognitive capability and reconfigurability [3].

Cognitive capability: It helps to (i) interact with the surrounding RF environ-

10
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ment using radio transceiver and (ii) capture the communication parameters. The

radio decides the spectrum band and type of transmission strategy based on these

parameters.

Reconfigurability: It is the capability to reconfigure the communication pa-

rameters of cognitive radio transceiver based on dynamic nature of radio environ-

ment during the operation. CR is flexible enough to reconfigure the transceiver

parameters like operating frequency, modulation-demodulation scheme, transmis-

sion power and communication technology to exploit the unused spectrum over

a wide range. It is possible to implement the cognitive radio device on a recon-

figurable platform like Field Programmable Gate Array (FPGA) to achieve the

reconfigurability.

Radio Environment

Sensing

Decision

Sharing Mobility

RF Stimuli

Spectrum Holes

Transmission

Decision
Request

PU Activity

Figure 2.1: Cognitive Radio cycle [2]

The basic working principle of CR can be explained through the cognitive

cycle as shown in Figure 2.1 [2, 20, 21]. It consists of four main functionalities

namely spectrum sensing, spectrum management, spectrum sharing and spec-

trum mobility. The fist step is spectrum sensing in which each cognitive user

scans the entire available RF spectrum and finds the spectrum holes [20]. This

operation is performed in physical (PHY) layer of Open Systems Interconnection

(OSI) model. In literature, different techniques have been employed for spectrum

sensing [22, 23]. In the spectrum management step, the detected spectrum holes

are analyzed/characterized with respect to transmission parameters [2]. In this

phase, channel statistical properties like holding time, off time and channel char-

acteristics like bandwidth, carrier frequency, channel error rate and interference

level, etc. are extracted. Thereafter, a spectrum decision (spectrum assignment)
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operation is performed. During this phase, best channels are allocated to SUs

by satisfying the user Quality of Service (QoS) requirements such as throughput,

minimum interference, data rate and bandwidth. This operation is performed in

Medium Access Control (MAC) layer of OSI model. The detailed discussion about

various spectrum allocation techniques are presented in Section 2.3.

In CR network, it is necessary to maintain coordination among the CR users

during transmission through the shared wireless channels. Spectrum sharing main-

tains the QoS of SUs without any interference to PUs while assigning the suitable

channels in the dynamic radio environment. It provides flexibility in partitioning

the spectrum to the respective SUs such that the interference and collisions among

the users are minimum. This function is performed in MAC layer during the com-

munication session. After assignment of a suitable channel to SU, communication

process starts. During the communication, the channel occupied by SU may be

retained by a PU due to the dynamic nature of RF environment. At this instance,

SU vacates the channel and look for another vacant channel. This operation is

performed in spectrum mobility phase of the CR [2]. This process is also known

as spectrum handover between the bands. It ensures (i) minimum interference to

PU transmissions, (ii) seamless communication during switching of SUs between

the bands.

2.2 Standardization attempts

It has been proven from reports [6] and measurements [18, 1] that traditional fixed

spectrum assignment policy result in inefficient usage of frequency bands. Several

international organizations like IEEE, Software Define Radio Forum (SDR forum),

International Telecommunication Union (ITU), European Computer Manufactur-

ers Association (ECMA) and European Telecommunications Standards Institute

(ETSI) are undertaking regulatory and standardization activities for cognitive

radio across the world [24]. In November 2004, the first wireless air interface stan-

dard called IEEE 802.22 Wireless Regional Area Network (WRAN) was proposed

for wireless networks based on cognitive radio techniques [25]. This standard op-

erates in TV bands (54 - 862 MHz) with the use of spectrum sensing and spectrum

management. These TV band signals were sensed at a signal strength of -116dBm

(-21dB) with respect to the receiver noise figure of 11dB using an omni-directional

antenna. In this system, a central base station controls the Consumer Premise
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Equipments (CPEs) in a cell that are associated with the base station. In 2005,

the IEEE Electromagnetic Compatibility Society and IEEE Communications So-

ciety together initiated the IEEE 1900 Standards Committee, which standardizes

many critical issues in the domain of policy defined radio systems, cognitive radio

systems and spectrum management [26].

IEEE 1900.1 working group (WG) provided the standard definitions for spec-

trum management and CR-oriented terms and concepts [27]. IEEE 1900.2 WG

recommended the interference and coexistence criteria and established a frame-

work for measuring the interference between radio systems [28]. IEEE 1900.3

WG handles developing test methods for evaluation of software modules of a CR

device along with its validation and certification [29]. IEEE 1900.4 defined the

system architecture, functionality of terminals and the network devices [30]. The

exchange of information between coordinating reconfigurable devices leads to in-

crease the spectrum utilization and quality of service. The promising wireless

services achieved by CRs in TV white band lead to various amendments in IEEE

standards like IEEE 802.16h [31, 32, 33]. Additionally, the ETSI proposed reg-

ulations for Reconfigurable Radio Systems (RRS) based on CR and SDR tech-

nologies [34, 35]. These standard activities are being conducted under Standards

Coordinating Committee (SCC) 41 [36] focused on dynamic spectrum access net-

works. New techniques are supposed to manage interference, coordinating wire-

less technologies, information sharing, and network management. The SCC41

addresses these issues using Software Defined Radio technologies as a key enabler

for CR/DSA [37].

2.3 Cognitive Radio Network architecture

A CR network architecture primarily consists of SUs and PUs. An example of CR

network architecture is shown in Figure 2.2. PUs have legacy rights to access the

existing primary network infrastructures like GSM, TV broadcast, UMTS etc.,

that are operating at specific frequency bands. All PU operations are not effected

by unlicensed users, and these activities are controlled by primary base stations.

In CRN, PUs do not have any cognitive functionalities whereas SUs do not have

any license to use any frequency bands.

CR networks support two types of network topologies namely: Infrastructure

based (centralized) and Infrastructure-less (distributed). In a centralized CR net-
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Figure 2.2: Cognitive Radio network architecture

works, the SUs are controlled through a single-hop connection to a central server.

The server finds the required vacant channels and assigns the best channels to SUs

without interference to PUs. In the distributed topology, SUs communicate with

other users without any central server node. Each SU has a CR enabled device

to detect the spectrum holes in the current RF environment. After detecting the

vacant spectrum, SU selects the best channel such that it satisfies the user re-

quirements and interference constraints. During the communication of a SU over

a channel, if the licensed user retains it, then the SU need to vacate the channel

and switch to another available channel. In this topology, the primary goal is to

assign the best channels to SUs such that it maximizes the network utilization

with minimum interference to PUs.

2.4 Spectrum Allocation

Spectrum Allocation (SA) in wireless networks aims to assign vacant channels

(white spaces) to SUs, such that it maximizes the network utilization with mini-

mum interference to PUs and SUs during communication [38]. However, maximiz-

ing the utilization of network resources and minimizing the level of interference are

two conflicting objectives [39, 40]. SA can be significantly affected by the network

topology and conflict among wireless links or connectivity between the wireless
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devices of a network.

Figure 2.3: Spectrum Allocation model

Spectrum allocation provides fairness across the SUs and efficient utilization

of spectrum without any performance degradation to other SUs and PUs in the

network. To meet these requirements, an efficient and fast SA technique has been

a key focus of research. An example of a typical SA model is shown in Figure 2.3.

In the SA model, environment conditions like user position and available channels

are considered as static due to slow change in RF environment. On the other hand,

users can perform network-wide spectrum allocation operation quickly to adapt

changes in the environment. In this section, a SA model of CRN architecture

is described. The present model assumes a network of N SUs, M channels and

K PUs. The primary user transmission affects not only channels available to

SUs but also throughput, transmission power and transmission range of SUs. In

Figure 2.3, three broadcast channels (CH1, CH2 and CH3), correspond to three

PUs (PU1, PU2 and PU3) and five SUs (SU1 ... SU5). Each PU occupies a

channel m with a protection area of radius DPR. No secondary users that cause

interference to PUs are allowed to transmit within this protective area. A SU n

can change its transmission range DSU(n,m) by controlling its transmitted power

on the channel m.

The model considered in this work is same as the model proposed in [8], wherein

it is considered that a SU n can utilize the same channel m used by a PU PUx

if DSU(n,m) ≤ Dist(n, PUx)−DPR, where Dist(n, PUx) is the distance between

the PUx and SU n. The maximum and minimum transmission range of the sec-
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ondary user is dmax and dmin respectively. In Figure 2.3, it is shown that primary

user PU1 uses channel CH1. However, SU1 cannot use the channel CH1, since

it is within the protection area of PU1. Since DSU(n,m) < dmin, SU2 cannot

use the channel m although it is outside the communication range of all primary

users. In a CRN, each secondary user can adjust the DSU , that has an impact

on its transmission power. An increase in the value of DSU causes an increase in

interference probability with the neighboring users. If there is a conflict in the

transmission range of any two SUs, then the same channel cannot be used simul-

taneously. The main goal of the SA algorithm is to provide maximum spectrum

utilization and fairness among the users. To achieve these goals, different network

utility functions are described that provide a trade-off between the fairness and

spectrum utilization.

2.4.1 Problem formulation

In CRN model shown in Figure 2.3, the position of PU and SU are assumed to be

static during the allocation process. The channel availability and reward values are

evaluated based on the position of the user, channel utilization of PUs and neighbor

SUs as specified in the Algorithm 1. The general SA model consists of a channel

availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M , where ln,m = 1 iff channel m is

available to user n, else ln,m = 0. The channel reward matrix B = {bn,m}N×M ,

where bn,m represents the reward that can be obtained by an user n using the

channel m. The interference constraint matrix C = {cn,p,m|cn,p,m ∈ {0, 1}}N×N×M
represents the interference among SUs, where cn,p,m = 1 if users n and p would

interfere with each other if they use the channel m simultaneously and cn,p,m = 0

otherwise. However, cn,p,m = 1−ln,m if n = p [8]. During SA, it is assumed that the

user position and available spectrum are static. Thus L, B and C matrix values

are constant during the allocation period. The objective of SA is to determine the

conflict free spectrum assignment matrix A = {an,m|an,m ∈ {0, 1}}N×M , (where

an,m = 1 if channel m is allocated to SU n, and an,m = 0 otherwise) subject to

satisfying the interference constraints defined by C:

an,m.ap,m = 0, ifcn,p,m = 1,∀1 ≤ n, p ≤ N, 1 ≤ m ≤M (2.1)

For the given scenario of channel availability matrix (L) and interference constraint

matrix (C), the objective of spectrum allocation is to find the optimal conflict
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Algorithm 1 : Pseudo-code for Evaluation of Spectrum Allocation Parameters [8]

Step 1: Define the number of SUs N and deploy them randomly. Record the
location of each SU n ∀n = 1...N as φn(x, y)
Step 2: Define the number of primary users K and deploy them randomly.
Record the location of each primary user k, that uses channel zk ∀k = 1...K as
αk(x, y)
Step 3: Define the maximum and minimum transmission range of SU (dmax and
dmin), protection area of PU (DPR).
Step 4:
for n = 1 to N do

for m = 1 to M do
DSU(n,m) = min(dmax,mink=1...K,zk=mDIST (φn(x, y), αk(x, y))−DPR)
if DSU(n,m) > dmin then
Bn,m = DSU(n,m)2, ln,m = 1

else
Bn,m = ln,m = 0

end if
end for

end for
Step 5:
for n = 1 to (N − 1) do

for i = (n+ 1) to N do
for m = 1 to M do

if DSU(n,m) +DSU(i,m) ≥ DIST (φn(x, y), φi(x, y)) then
cn,i,m = ci,n,m = 1

else
cn,i,m = ci,n,m = 0

end if
end for

end for
end for

free channel assignment matrix A∗ that maximizes the network utility defined

as U(A,B). For the given L and C matrices, Λ(L,C) is considered as the set of

interference free channel assignment. Mathematically it can be expressed as:

A∗ = argmax
A∈Λ(L,C)

U(A,B) (2.2)

In this work, three utility functions are considered [9].

1. Max-Sum-Reward (MSR): It maximizes the total spectrum utilization in the
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network regardless of fairness. This is defined as:

MSR : U(A,B) =
N∑
n=1

M∑
m=1

an,m.bn,m (2.3)

2. Max-Min-Reward (MMR): It maximizes the spectrum utilization of the

user with the least allotted spectrum. This is defined as:

MMR : U(A,B) = min
1≤n≤N

M∑
m=1

an,m.bn,m (2.4)

3. Max-Proportional-Fair (MPF ): It maximizes the fairness for single-hop

flows and the corresponding fairness-driven utility function is defined as:

MPF : U(A,B) =

(
N∏
n=1

(
M∑
m=1

an,m.bn,m

))1/N

(2.5)

where an,m and bn,m are the elements of channel assignment matrix (A) and reward

matrix (B) respectively. N and M corresponds to the number of SUs and channels

in the network.

2.5 Spectrum Allocation techniques

In literature, SA problem is solved based on cooperative and non-cooperative allo-

cation behavior, underlay, and overlay spectrum access technique and distributed

and centralized architecture, using techniques like graph theory, game theory, lin-

ear programming, local bargaining, heuristics, pricing and auction, fuzzy logic and

evolutionary algorithms as in Figure 2.4. This section presents a brief introduc-

tion of different methods used to solve the SA problem. Game theory is a decision

making framework that has been extensively used to solve many engineering de-

sign problems. In a multiuser wireless network, the action of one user/player may

impact on other user’s performance, so a game can be formulated to obtain a

stable solution through the objective of equilibrium. The games are classified as

non-cooperative and cooperative. The game choice depends on whether the users

are exchanging decision information or not. In literature, game theory technique

has been used to solve the SA problem in CR networks [41, 42, 43, 44].

Network graphs have been used to solve the SA problem, where the network
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structure is assumed to be known a priori [45]. One of the most common method

is network conflict graph that shows the interference between the nearby SUs [8,

46, 47]. It shows the communication and connectivity between the nodes and the

links between the nodes. Dynamic conflict graphs can be used to accommodate the

changes in the assignment step in the SA algorithms due to interference between

the users [48, 49]. Graph coloring is another method to solve SA problem in

CR network, where the problem is mapped to an either uni-directional or bi-

directional graph [50, 51, 52, 8]. The allocation problem is identical to assigning a

color to each vertex from the available color list. The primary constraint used in

this method is that two connected SUs must not assign to the same color (same

channel). When the two SUs are close to each other or using the same channel, it

is necessary to include adjacent channel interference as another layer in the graph

coloring method.

Fuzzy logic is generally used for decision making in various engineering prob-

lems. It is also used to solve the SA problem [53, 54]. A Fuzzy logic controller

contains four modules: fuzzy inference engine, fuzzy rule base, and a fuzzifica-

tion/defuzzification module. The fuzzy logic system takes decision about the se-

lection of spectrum for SUs based on the inputs like channel availability, arrival
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rate of PUs and SUs, distance and interference between the users and required

quality of service. For a scalable CR network, this technique does not provide

a feasible solution because it requires a large number of rules to formulate the

membership function, and it may affect on results if not structured correctly. Lin-

ear Programming is another familiar method used to solve SA problem in CRNs

[55, 56]. It is reported that joint power and spectrum allocation is a NP-hard

problem and it has been formulated as a Mixed Integer Non-linear Programming

(MINLP) problem [57].

2.5.1 Heuristic techniques

The SA problem is NP-hard. It is difficult to find an optimal solution for solv-

ing NP-hard problem using deterministic algorithm in a limited execution time.

Heuristic techniques are good choice to achieve an optimal solution with in the

limited time for solving NP-hard problems. The heuristic technique can provide

a near-optimal solution for complex problems at modest computational cost. In

literature, variety of heuristic algorithms were used to solve the SA optimization

problem [58, 59, 60]. A channel assignment algorithm based on heuristic was

proposed to decrease the complexity of the problem [59]. In this method, PUs

and SUs are selected randomly at each step. All available channels are scanned

iteratively and SU selects the suitable channel that satisfies the QoS requirements.

The SA is formulated as an Integer Linear Programming (ILP) problem and

solved using heuristic method [61]. It gives less computational complexity with

sub-optimal solution. In [61] , for short distance transmissions SUs are assigned

with low SINR channels. For long distance transmissions, channels are assigned

based on local information about the availability of spectrum holes. The SA

problem was solved for both static and dynamic CRN with known and unknown

traffic requirements respectively. All available channels are divided into M sets,

and each SU maintains a channel list of other SUs, based on the distance to other

SUs and SINR of the channel. The channels with low SINR are assigned to the

closest SUs. The main advantage of heuristic methods is that it is simple and

able to find near optimal and quality solutions for NP-hard problems. However,

these are less sensitive to variation in data quality and problem specifications.

The disadvantage of the heuristic method is that the same method cannot be

applicable to solve other problems [62].
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2.5.2 Evolutionary algorithms

Spectrum allocation is formulated as an optimization problem and solved using

different optimization algorithms [9]. In the context of SA, the objective of opti-

mization algorithm is to determine the best-suited channel for SUs by maximizing

spectrum/network utilization that satisfies interference constraints posed by both

SUs and PUs. Mathematically, the spectrum utilization is termed as fitness func-

tion and solution of the problem is termed as channel assignment matrix. Most of

the traditional optimization algorithms are based on first derivative of the fitness

function and tend to converge in local minima of the constrained surface. To avoid

this disadvantages, many derivative free optimization algorithms were emerged for

solving linear and nonlinear optimization problems [63]. Evolutionary algorithm

(EA) is one such derivative free algorithm popularly being used in solving many

science and engineering problems. It is a population based stochastic algorithm.

The basic principle of EA is: ”given a population of individuals the environ-

mental pressure causes natural selection (survival of the fittest) and this causes

a rise in the fitness of the population” [64]. In the context of SA, the candidate

solution i.e., the channel assignment matrix is randomly generated and the net-

work utilization is evaluated as an abstract fitness measure. Some of the better

candidate from the population are chosen for next generation through recombi-

nation/mutation and crossover process based on the fitness (network utilization)

value. In the mutation stage, one or more population will be considered for ob-

taining a new candidate whereas crossover will consider two population and obtain

a new candidate. This new candidate compete with old one based on the fitness

value for next generation. This is iterated till a stopping criteria is met. Stopping

criteria can be either the number of iteration or an optimum solution by a candi-

date of the population. The pseudo- code of EA algorithm is shown in Algorithm

2.

Genetic algorithm (GA) is a popular EA, where the initial population contains

feasible and infeasible set of solutions of channel assignment and the constraints are

based on the interference posed by SUs and PUs [9]. In GA, the genetic operators

namely, crossover and recombination, mutation, and selection are play an essential

role in solving the optimization problem. During the optimization, multiple off-

springs are generated and behaves like independent agents and able to explore

the search space in many directions simultaneously. This characteristic provides
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Algorithm 2 : ”Pseudo-code for general scheme of an Evolutionary algorithm [64]

BEGIN
INITIALIZE population with random candidate solutions;
EVALUATE each candidate;
WHILE (termination condition is satisfied) DO

1. SELECT parents;
2. RECOMBINE pairs of parents;
3. MUTATE the resulting offspring;
4. EVALUATE new candidates;
5. SELECT individuals for the next generation;

END WHILE
END”

to parallelize the algorithm for implementation. Each solution is represented as

a chromosome and collectively known as population. Initially, each bit in the

chromosome is generated randomly and during the optimization process crossover,

mutation and selection operations take place on each chromosome. Fitness values

of each chromosome are evaluated by fitness function, and the number of bits in

the chromosome is mapped to channel allocation matrix. This is to avoid the

redundancy in encoding the number of bits into the chromosome. The fitness

functions like throughput and interference are optimized to find the best solution

for SA problem [9, 65, 66, 67]. The disadvantage of using GA is is that it has slow

convergence rate to find an optimal solution.

Recently a new meta-heuristic algorithm namely Harmony search (HS) algo-

rithm was proposed to solve nonlinear optimization problem [68]. It imitates the

music improvisation process. In general a musician improvises one pitch, based on

either by playing any one pitch from his (or her) memory, or playing an adjacent

pitch of one pitch from his (or her) memory, or playing totally random pitch from

the possible range of pitches [68]. Based on this principle the HS algorithm up-

dates the candidate solution and finds an optimum solution for a given problem.

HS algorithm is used to solve channel assignment problem [69]. It builds a vector

of channel allocation matrices (harmonies) through intelligent combinations and

mutation operations. These operations are controlled by two control parameters:

Pitch Adjustment Rate (PAR) and Harmony Memory Considering Rate (HMCR).

It has mainly three steps: (i) the values of channel assignment are randomly ini-

tialized without knowledge of required solution; (ii) the initialized harmonies are

improvised using HMCR and PAR control parameters; (iii) improvised harmonies
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are evaluated using fitness function and resultant values are stored in the harmony

memory. These steps are executed till the maximum iterations are completed and

the best solution is obtained.

A swarm intelligence algorithm called Ant Colony Optimization (ACO) was

proposed by Dorigo et al. [70]. In ACO, the ant system simulates the behavior

of real ants with artificial features like memory, visibility and discrete time. Even

though the real ants are blind, they are able to find a shortest path from food

source to their nest. The ants release a liquid substance called pheromone on the

transiting route to exploit information of food source. The ACO algorithm was

used to solve the SA problem in CR networks [71]. In this method, the broadcast

message contains information about the probability of successful transmissions as

pheromone [72]. The SUs adapt the channel assignment according to the received

broadcast message. If the transmission probability of a channel decreases, then

the SU has less chance to select that channel. A channel is selected with the use

of pheromones that maximizes the total throughput, but it may not provide the

required quality of service in transmission.

Another swarm intelligence technique known as Artificial Bee Colony (ABC)

algorithm was proposed by Karaboga and Bastruk [73]. It simulates the foraging

behavior of a bee colony. This algorithm introduces employed bees, onlooker bees

and scout bees,. Initially, the employed bees are randomly distributed to search

for number of food sources. Onlookers follow employed bees depending on the

quantity of food at the source. Scout bees search for new food sources randomly.

Finally, the optimal solution is represented by the location of food sources that

has optimum amount of food detected by onlooker or employed bees. The amount

of food in nectar represents the quality of the solution. The ABC algorithm is

used to solve the SA problem [74]. In SA problem, the position of an onlooker or

employed bee corresponds to the channel assignment matrix for SUs and nectar

food is the throughput that is maximized.

2.6 Power allocation

Power allocation is an important step in spectrum allocation in wireless commu-

nication systems. In this step, optimum power is alloted to SUs to minimize

interference and reduce the effect of multi-path fading. In the present CR proto-

col, each SU scans the wireless channel and detect the spectrum hole. Then, SU
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communicates over the vacant channel. Kulkarni et al. proposed a channel and

rate allocation scheme under the presence of co-channel interference to minimize

the total transmitted power [75]. It was formulated as an optimization problem

and solved using heuristic algorithm to provide an optimal channel and data rate

to the wireless links by minimizing the total transmitted power. However, PU

interference is not considered while solving the problem [75].

Hoang et al. proposed a two-phase channel and power allocation technique in

which PU interference is taken into consideration to maximize the total system

throughput [76]. The allocation was carried out in the centralized server and it

provides a decision on assignment of channel and power to the SUs. In the two-

phase resource allocation process, firstly the channel and power are assigned to the

base stations for maximizing coverage and minimizing interference to PUs. In the

second phase, each base station assigns the required channels to the active SUs. It

achieves significant performance gain compared to methods like random allocation,

non-overlapping allocation and interference graph based allocation [76]. However,

the two phase allocation method is applicable only for centralized approach with

infrastructure provided to SUs. Li et al. formulated a multiuser channel and

power allocation problem and solved using a non-cooperative game technique to

maximize the system capacity of the distributed CR network [77]. The SUs choose

the optimal power need to be transmitted on each channel with respect to the

payoff function that takes into account the capacity gain of themselves and the

loss of others. The simulation results shown that the algorithm achieved superior

performance compared to the selfish channel and power allocation scheme [77].

Haddad et al. proposed an uplink distributed binary power allocation tech-

nique in which PUs and SUs share the same spectrum to maximize the cognitive

network capacity while maintaining the QoS of the PUs [78]. The thesis presents

an improved power allocation algorithm based on [79]. In the distributed ap-

proach, each SU need to determine its transmission power below the threshold

without affecting the QoS of PUs. In a fast fading CRN environment, central-

ized coordination is complex to implement. Thus in this work, a distributed CR

network is considered, where each SU need to determine its transmission power

below a threshold such that the total sum rate of the network is maximum while

avoiding interference to the PUs. Here both type of users may communicate

through the same channel by optimally selecting the SU transmission power on

the corresponding channel that maximizes the network capacity.
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In CR network, joint spectrum and power allocation for SUs introduces more

challenges. In this scheme, the same spectrum can be alloted to the SUs that is far

away from PU with an appropriate power to maintain the interference below the

required limit of PUs. The main issue is to protect the PU transmissions without

any interruptions. In this work, a joint spectrum and power allocation method is

proposed to maximize the average capacity of the user as well as the total network

utilization without any interference to PUs by considering the transmission power

constraints.

2.7 Hardware platforms

There exists several hardware platforms such as microcontrollers (µC), digital sig-

nal processors (DSP), field programmable gate arrays (FPGA) and application

specific integrated circuits (ASIC) for developing an embedded system. Plat-

forms like µC and DSP are revolving around firmware development using software

methodologies rather than hardware development for the application [80]. FPGA

platforms support both hardware-based approach (system developed entirely in

the hardware) and processor-based approach (system developed entirely in the

firmware). It has the flexibility to customize the hardware design by adding any

combination of peripherals and controllers, that are not available in either DSP

or microcontroller based system.

2.7.1 Field Programmable Gate Array

FPGAs are equipped with programmable connectivity between the logic blocks

where the programmability depends on different technologies like EPROM, anti-

fuse or SRAM [81]. FPGA accommodates flexibility, shorter design time and is

suitable for developing system prototype. FPGAs have embedded processors and

other peripherals to develop a complete System on Chip (SoC) platform for var-

ious embedded applications. Due to this, FPGAs are used in complex DSP and

embedded applications. It also offers dedicated parallel architectures to reduce the

execution time of the complex algorithms. In order to meet real-time specifications

of an embedded application, hardware and software need to be combined into a

single FPGA platform that provides high level of integration density, flexibility

and reduced communication overhead between various peripherals. Most conven-
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tional approach for design and implementation of a custom hardware is to develop

an Intellectual Property (IP) using Hardware Descriptive Language ( Verilog or

VHDL). These custom hardware IPs are interfaced to a processor core along with

other I/O peripherals on a single FPGA chip. In this thesis, a Xilinx Virtex-5

FPGA development board is used for verifying the developed IPs because, it has

a PPC440 microprocessor on the same silicon area, cross-platform compatibility

with most common communication protocols like Ethernet and USB [82]. The

FPGA core (ML507) has a variety of resources i.e., 128 DSP slices, 11,200 con-

figurable logic block (CLB) slices, 6 Clock management blocks, 19 I/O banks and

5328 kB of RAM, suitable and enough for implementing the SA algorithm.

2.8 Hardware-Software Co-design

In an embedded system, speed and cost are the most demanding parameters,

and the system performance can be improved by increasing the efficiency of both

hardware and software involved in the design. In the co-design, the algorithm is

partitioned into flexible software (SW) and fixed hardware (HW) modules. The

partitioning of HW and SW is decided by profiling that identifies [83] the compu-

tational intense tasks/subtasks of the algorithm. Subsequently, these are designed

and implemented either on a processor or using a hardware accelerator/dedicated

coprocessor unit [84, 85]. The hardware is used to implement computationally

intensive tasks and hence accelerate the execution speed of the algorithm/task.

The HW module mostly run on customized hardware and SW module run on

an embedded processor. The design flow for implementing a design on FPGA

based platform using Xilinx Embedded Development Kit (EDK) is mentioned in

Appendix A.1.

2.9 Hardware accelerator

Hardware accelerator is used to increase the execution speed of a specific routine in

a separate custom hardware unit other than the processor. The primary benefit

of an accelerator is achieved only if the total execution time of the hardware

accelerator and communication overhead is less than the execution time of the

same task in a processor [86]. These accelerators can be designed using an ASIC or
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FPGA approach based on the application requirements. ASIC-based accelerators

are more cost effective design and has longer design cycle compared to FPGA-

based accelerators. In the present thesis, FPGA based accelerators are developed.

The capability of on-demand FPGA reconfigurability facilitates the accelerator

adapt to the actual needs of a specific application running on the processor [87, 83].

The important step in designing an accelerator is to select a proper communi-

cation/interface technique that affects the quantity of the data transfer between

the processor and the accelerator [88, 89]. Selection of either handshaking or di-

rect/interrupt mechanism to synchronize the data transfer between processor and

hardware accelerator is an important issue in a design. In general, the instruction

pipeline connection approach is used to connect the accelerator directly to the co-

processor port of processor via Auxiliary Processor Unit (APU) interface [90]. The

coprocessor port is tightly coupled to the internal instruction pipeline of PowerPC

processor. The custom hardware accelerators are executed using the coprocessor

instructions, and it avoids communication overhead between the processor and

coprocessor. The implementation of an accelerator unit itself is the critical task

of this approach.

2.10 Programmable System on Chip design

System-on-Chip design is the recently evolved design methodology that combine

various IPs and third-party cores into a single chip to minimize the design produc-

tivity gap [91]. The IPs may include memory blocks, processors, signal processing

functions, custom IPs, etc. Programmable System on Chip (PSoC) design facili-

tates to program logic gates in an entire system as per user requirements in the

field [91, 87]. FPGA based PSoC provides better flexibility to include a hard

processor, soft processor, custom IPs and various peripherals to design a complex

system. This methodology also has the feature of including an operating system.

It offers functionality of a personal computer on a single Integrated Circuit (IC)

chip. The general architecture of PSoC platform is given in Figure 2.5. In this

figure, external and on-chip memories are used for executing the software pro-

grams. The Joint Test Action Group (JTAG) and Universal Synchronous and

Asynchronous Receive and Transmit (UART) ports are used to debug, monitor

and download the bit stream on to the FPGA.
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2.10.1 Embedded processors

System-on-Chip based embedded applications demand on-chip processor core in

FPGA to target a single chip solution. There are two types of processor cores

embedded in FPGA, namely soft-core processor and hard-core processor. A hard-

core processor like IBM PowerPC 440/405 [92, 93] in Xilinx Virtex-5 FXT / Virtex-

II Pro FPGA is a dedicated physical component on the chip. A soft-core processor

like Altera Nios II [94] or Xilinx MicroBlaze [95] is included in the programmable

logic of the chip. If an application requires an embedded processor, then the

design involves processor selection, compatibility with memory or I/O interfaces

and software development.

2.10.2 Memory

Embedded system use different memories like on-chip memory, cache memory and

external memories like SRAM, DRAM, SDRAM, etc. [96]. In a SoC platform,

memory hierarchies play an important role to achieve energy efficiency and opti-
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mal run time. FPGA-based SoC system is a memory mapped system in which

each peripheral is associated with an address. In Virtex-5 FPGA, the basic prim-

itive of internal memory is a Block RAM with a size of 148 Kbytes. However,

the size is different from one FPGA to other. Decreasing the amount of on-chip

memory will increase the performance and reduce the active area of SoC. Simi-

larly, DDR2 SDRAM and SRAM are of size 256Mbyte and 1Mbyte respectively.

These are used as off-chip external memories. The external memory access time is

high compared to on-chip memory and SRAM [97]. These can be configured using

Multi-Port Memory Controller (MPMC)/ Memory Controller Interface (MCI) in

SoC platform. The use of external memory degrades the throughput of a design.

Cache memory provides enough energy efficiency and run-time efficiency by main-

taining local access to frequently used data and instructions. In the PSoC, if an

application program fits entirely within the local memory, then the design may

achieve optimal throughput performance. The program/data memory usage in

SoC can be manipulated using the Linker Script of a system. It can be mapped

either into internal memory such as BRAM or external memory.

2.10.3 Peripherals

In a SoC based embedded system, all peripherals can communicate with the pro-

cessor through different buses like Processor Local Bus (PLB), Fabric Coprocessor

Bus (FCB), etc. These peripherals are divided into two categories namely generic

and custom peripherals. Generic peripherals can be either soft-core or hard-core,

and these are configured during the SoC design [98]. Hard-core peripherals are

implemented in silicon whereas soft/custom peripherals are configured in FPGA

fabric. The custom peripherals are developed by the user with the given speci-

fications using HDL languages. Custom peripherals like IDCT [99], FFT [100],

FIR [101] filter etc., can be connected to a processor through various bus inter-

face techniques like Slave Unit (SU) and Auxiliary Processor Unit (APU). In this

thesis, custom peripherals namely DE, MODE, DE-based SA and MODE-based

SA IPs are developed and interfaced to PPC440 processor using APU controller.

2.10.4 Universal Asynchronous Receiver and Transmitter (UART)

UART is a serial communication protocol. This peripheral can perform parallel

to serial and serial to parallel conversion on the received data. It is used for
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debugging, transferring and monitoring the input/output data between the on-

chip embedded processor and serial port of a desktop system [87].

2.10.5 Digital Clock Manager (DCM)

Most of the systems have a single external clock that generates fixed clock fre-

quency. However, a SoC platform offers various peripherals that require different

clock frequencies to perform their operation [102, 103]. For example, a custom IP

can run at 50MHz whereas processor and memory can run at 200MHz. Digital

Clock Manager can provide various clock frequencies required for different modules

of the system. It also performs elimination of clock skew to improve the system

performance.

2.10.6 Bus interfaces

Different types of bus interface are used to connect the processor, memory con-

trollers and external peripherals to the system bus. Each interface logic is unique

to the corresponding bus. A bus arbiter is included in every bus interface to con-

trol the bus access. There are three different types of bus interface techniques,

namely Slave Unit, Device Control Register (DCR) and Auxiliary Processor Unit

(APU) to interface any external peripheral. In slave unit interfacing technique,

the custom peripherals are interfaced to the Processor Local Bus (PLB). Intellec-

tual Peripheral Interface (IPIF) is responsible to provide bi-directional interface

signals between the custom peripherals and the processor. The DCR interface

offers the PPC440 embedded processor to control and check the status of other

peripherals. This interface is interlocked with control signals such that it can be

connected to peripheral units and respective clock frequencies from the embedded

processor. In the APU interfacing technique, custom peripherals are interfaced

with the processor using an APU controller. Detailed description about the bus

interfaces is available in [102, 104]. In this thesis, APU interfacing technique is

used to connect the custom IPs with the embedded processor.

2.10.6.1 Auxiliary Processor Unit (APU) interface

The PPC440 processor in Virtex-5 FPGAs has a fabric coprocessor bus (FCB) (128

bit) through which custom peripherals are interfaced using an APU controller. The
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custom peripheral is invoked using the processor extended instruction set i.e. Load

and Store. This approach provides the flexibility of interfacing a coprocessor with

the instruction pipeline [90].
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Figure 2.6: APU controller interface to PowerPC 440 processor

This coprocessor can execute the desired task concurrently with the PPC440

processor extended instructions. The APU controller synchronizes the clocks of

processor and custom IP, that can run at different frequencies. The APU controller

decodes the processor instructions in a pipelined manner for faster execution of

overall instructions. The custom IP is designed as a fabric coprocessor module

(FCM) and interfaced to PPC440 using APU controller. There are two major

classes of Fabric Coprocessor Module (FCM) instructions, (a) storage instruction

and (b) non-storage instruction. In this work, storage instructions i.e., load and
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store are used. Non-storage instructions like floating point arithmetic instructions

and User Defined Instructions (UDIs) are based on opcodes.

The APU controller interface for custom IP (i.e. either DE core or MODE

core) is shown in Figure 2.6. The coprocessor interface has mainly three modules,

i) PPC440 processor, ii) APU wrapper (iii) custom IP core. The processor is used

to send and receive data to and from the custom IP. The APU wrapper is used to

interface the custom IP with the processor. It has two different modules namely

IP APU and APU IP . The APU IP module receives data from the processor

and sends it to custom-built IP, whereas the IP APU module receives data from

the custom-built IP and sends it to the processor (PPC440). The APU IP receives

128-bit signal. However, the IP has only 32-bit width input, so the IP receives

a full set of data in four clock cycles. Similarly, the IP APU module receives

128 bits of data from the IP in four clock cycles. The APU wrapper is interfaced

with the IP core using six control signals OP DATA EN ,OP DATA RDY ,

OP DATA EOS, IP DATA EN , IP DATA RDY , IP DATA EOS [105]. A

Finite State Machine (FSM) with five states, i.e. load, load valid, store, store valid

and idle states control the data transfer between the processor, IP APU and

APU IP .

2.11 Hardware implementation of Spectrum Allocation tech-

niques

In traditional wireless networks, a temporary channel is assigned by a base station

of the corresponding cell to make communication using a wireless terminal. If the

wireless terminals are in roaming from one cell to another cell, the corresponding

base station has to allocate a different channel to the user to avoid interruption.

It is known as spectrum hand-off. The hand-off process should be performed

fast, otherwise it deteriorates the quality of transmission. Hence, the process of

channel allocation need to be executed fast to establish high-quality and efficient

wireless communication [17]. This task should be performed during the instances

of call initiation and call hand-off. In literature, many works were concentrated

on solving the channel allocation problem. However, there is a very limited work

on a hardware implementation of channel allocation algorithms to accelerate the

speed of execution. Integrated Channel Manager is implemented in hardware
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to provide efficient channel allocation algorithm in cellular networks with multi-

terminal platforms [106, 107]. The efficiency of channel allocation is improved by

hardware via the high degree of parallelism. It supports single and multiple hand-

offs and also provides efficient call rejection when the system is not supported.

Jelena proposed hardware implementation of channel allocator to speed up

the execution of different channel allocation algorithms [17]. The hardware device

is integrated into a network switch, and it is further connected to other compo-

nents via a system bus. Three different algorithms namely Fixed, Quasi-Random

and Semi-Fixed channel allocation algorithms were implemented in hardware, and

these are located in the execution unit of channel allocator. According to the traf-

fic demands and interference conditions, the execution unit will select the suitable

algorithm to provide the desired performance. The hardware IP proved its effi-

ciency in the process of allocation of available channels (order of nanoseconds). In

the present work, a hardware implementation of SA algorithm for CR networks is

proposed to speedup the execution time. In the distributed network architecture,

each SU determines the spectrum availability and allocate the desired spectrum.

In this scheme, each SU considers the locally available information from the neigh-

borhood users and decides spectrum assignment. As each SU implicitly have an

embedded computing platform, the SA task needs to be performed on it. How-

ever, running the SA on an embedded processor consumes most of the platform

resources, thereby degrading the performance of other applications running on it.

Hence, there is a requirement of a dedicated hardware peripheral for performing

the SA task.

2.12 Tools used

MATLAB and C programming languages are used for algorithmic simulation and

validation. Xilinx Software Development Kit (SDK) is used for profiling the algo-

rithms on PPC440 and MicroBlaze processors and calculates the execution time

of algorithm to solve the problem.

The hardware development platform uses various tools for HDL coding, sim-

ulation, synthesis and debugging. Xilinx Isim and Mentor Graphics Modelsim

simulation tools are used for coding and simulation. For hardware and SoC de-

velopment, Xilinx Integrated Development Environment (IDE) with Integrated

Software Environment (ISE) [108] and Embedded Development Kit (EDK) [109]
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are used. EDK tool is used for building a SoC system and generating custom pe-

ripherals (such as UART, JTAG, timer, IP) that are interfaced to the SoC system

[110].



Chapter 3

Spectrum Allocation using Differential

Evolution algorithm in Cognitive Radio

Networks

In this chapter, Differential Evolution (DE) algorithm is applied to solve the spec-

trum allocation problem in cognitive radio networks for achieving efficient network

resource utilization. The performance of DE algorithm is compared with Particle

Swarm Optimization (PSO) and Firefly algorithms in terms of quality of solution

and time complexity. The performance of all the three algorithms is analyzed to

provide conflict free channel assignment to secondary users.

3.1 Introduction

In CR technology, each cognitive radio user (secondary user) can adapt to vari-

ous technologies and utilize the vacant spectrum without any interference to the

licensed users (primary users). Cognitive radio is built on a software-defined ra-

dio with intelligence that can sense, learn and adapt to statistical variations in

the operating RF environment [20]. The first phase of a CR cycle is spectrum

sensing. During this phase, the vacant bands (spectrum holes) are identified.

Subsequently, in the second phase, SUs use the detected holes on request for com-

munication while satisfying the interference constraints imposed by primary and

secondary users. This is termed as Spectrum Allocation (SA). In CR networks,

the general procedure to solve the SA problem is divided into three steps. In the

first step, criteria (defines the target objective like maximize spectrum utilization)

to solve the SA problem are chosen. In the second step, the approach to model

the SA problem that satisfies the criteria is selected. In the final step, the most

suitable technique that solves the SA problem is selected. In this work, spectral

efficiency and fairness are chosen as criteria and evolutionary algorithm is selected

35
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as technique to solve the SA problem.

In SA, the best channels are assigned to the requested users for achieving effi-

cient channel utilization by minimizing interference between the users. This avoids

performance degradation of wireless networks. It has been proven that assigning

optimal channels in an arbitrary network topology is the NP-hard problem [8].

The solution of SA affects traffic load among the wireless links, network topol-

ogy or connectivity between the nodes of a network. Hence, there should be a

trade-off between minimizing the traffic contention, maximizing performance and

connectivity. In CRN, the use of a multi-radio device is a feasible solution to

increase the network capacity. However, an efficient channel allocation algorithm

is necessary to avoid interference between multiple radio interfaces. The assign-

ment algorithm needs to take various parameters like vacant channels, required

transmission rate of a user, transmission power and bit error rate constraints into

account for efficient allocation. Furthermore, with increasing number of users and

their requirements, complexity of the SA problem increases exponentially. Tradi-

tional non-evolutionary techniques can no longer meet the demand.

In literature, evolutionary algorithms have proved to be effective to solve NP-

hard problems, because of their easy implementation characteristics and low com-

putational complexity. Abril et al. used evolutionary algorithms to obtain an

effective solution for frequency assignment problem in Global Systems for Mo-

bile (GSM) communication networks [111]. The use of evolutionary algorithms

proved that they efficiently allocate frequencies to each radio cell by considering

the interference constraints given by a compatibility matrix. In CR networks, SA

can also be formulated as an optimization problem. Indeed, it has been solved

using different evolutionary algorithms like Genetic Algorithm (GA), Quantum

Genetic Algorithm (QGA), Particle Swarm Optimization (PSO) [9] and Artificial

Bee Colony (ABC) [74]. During the last decade, Differential Evolution algorithm

has gained popularity in solving NP-hard problems due to its inherent capability

to find global optimum solutions [112, 113]. In this chapter, a simulation study

of PSO, Firefly and DE algorithms to solve the SA problem is presented. The

performance of the algorithms in terms of quality of solution and time complexity

for solving SA problem is also compared.
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3.2 Related work

In literature, different approaches such as genetic algorithm, neural network, and

game theory have been used to solve the SA task of the CR [114, 115, 42, 116,

117, 8]. The SA problem of CR networks is solved by the stable matching game

theory technique using Gale-Shapley theorem [118]. For any game, a steady state

solution always exists for definite characteristics, and any unilateral action of a

player leads to lower utility. The resultant solution is called Nash Equilibrium.

The stable matching theory was developed to study the stability of marriage, i.e., it

matches the preferences of men to the preferences of women. In SA problem, user

and channels are assumed to be men and women, the preferences are corresponding

to utility functions. Distributed version of Gale-Shapley consists of roaming and

non-roaming users. For each time-slot, roaming users transmit to the best channel

among others, and non-roaming users transmit to the same channel as in the

previous time slot. Based on utility function, a best channel is selected for each

user as non-roaming and others confirmed as roaming users. In this way, matching

can be done between the users and channels, after a certain number of time slots a

stable state called an equilibrium condition is reached. The main disadvantage of

this technique is that the game formulation and utility functions must be designed

carefully to achieve equilibrium.

Peng et al. defined a general framework for SA problem, which is mapped

to a variant of graph coloring problem and solved using a general approximation

methodology called vertex labeling [8]. This technique was applied on both cen-

tralized and distributed approaches, and the experimental results show that the

distributed approach provides allocation assignments similar to a centralized ap-

proach. However, distributed algorithm takes less computational complexity. In

graph coloring technique, when the size of the graph increases, the execution time

for solving the problem increases exponentially. It means that the SA problem is

very difficult to solve for real networks. Hence, approximate algorithmic methods

(provide a solution that is close to the absolute minimum in a moderate time)

must be used in practical applications.

In literature, different evolutionary algorithms have been used to solve the SA

problem for CR networks. Zhao et al. formulated SA as an optimization problem

and solved it using GA, QGA and PSO algorithms [9]. From the simulation results,

it was found that PSO performs better than GA and QGA in optimizing MSR and
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MPF functions. In contrast, QGA performs the best in optimizing MMR utility

function. It has been shown that these evolutionary algorithms greatly outperform

the color sensitive graph coloring algorithm. However, the performance of these

algorithms is not studied by varying the number of users and channels. Ye et al.

proposed an improved genetic spectrum assignment model, in which population of

genetic algorithm was divided into two sets of feasible spectrum assignment that

randomly updates the spectrum assignment strategies [119]. In [119], a penalty

function was included to satisfy interference constraints. It resulted in better

performance than the conventional genetic and quantum genetic assignment model

in optimizing the utility function by varying the number of SUs and channels. This

work was limited to maximize the network utility function called Maximum-Sum-

Reward (MSR) only and does not consider the fairness based utility functions.

Besides, the improved genetic algorithm performance was not compared with other

popular evolutionary algorithms like PSO, DE and Firefly algorithms.

Cheng et al. used a biological inspired ABC algorithm to optimize the network

utility functions by considering fairness and efficiency for cognitive users simulta-

neously using the weighted summation method [74]. This work defined a general

framework for spectrum allocation in a CR system and optimized the allocation

of spectrum for fairness and efficiency. The performance of ABC algorithm was

compared with GA in terms of convergence speed and time complexity. It was

proved that ABC outperforms GA. However, the algorithm performance was not

compared with other popular evolutionary algorithms like PSO, Firefly, and DE.

It considered only two utility functions and did not show the impact on network

utility by varying the number of users and channels. Koroupi et al. proposed a

new approach to solve spectrum allocation based on Ant Colony System (ACS)

and Graph Coloring Problem (GCP) in CR network [10]. The performance of

ACS was compared with PSO and Color Sensitive Graph Coloring (CSGC) for

a number of SUs, PUs, and available channels. ACS performed better than the

other algorithms, but it required more execution time to converge to the solution.

In work not presented in this thesis, the SA problem was solved by optimizing

the three network utility functions, namely MSR, MMR and MPF indepen-

dently using Firefly algorithm [120]. The performance of Firefly algorithm was

compared with PSO and ABC algorithms in terms of time complexity and quality

of the solution. It was observed from the simulation results that Firefly improved

the quality of solution by 17% and 13% and the time complexity by 100% and
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103%, when compared to the PSO and ABC algorithms respectively. However, the

performance of these algorithms were not studied under different network param-

eters like a number of SUs, PUs and a number of channels. Liu et al. used Binary

Firefly Algorithm (BFA) to solve the SA problem by maximizing the spectrum

utilization and SU fairness under interference constraints [121]. It also compared

the performance of BFA with GA and PSO under a different number of SUs and

channels. Simulation results have shown that BFA outperforms GA and PSO in

terms of both convergence speed and quality of the solution.

In this chapter, DE algorithm is used to optimize the network utility functions

to provide the best channel assignment to secondary users. The effect of varying

the number of primary, secondary users and number of channels on network utility

is also presented. The performance of DE is compared with PSO and Firefly

algorithms by evaluating convergence speed, time complexity and quality of the

solution.

3.3 Spectrum Allocation using Differential Evolution algo-

rithm

The SA model and the problem formulation are explained in Section 2.4 of chapter

2. This section explains about DE algorithm and the procedure to optimize the

network utility functions for solving the SA problem.

3.3.1 Differential Evolution algorithm

Differential Evolution (DE) algorithm is an evolutionary computation method pro-

posed by Storn and Price in 1995 [112]. It has been applied in diverse domains of

science and engineering applications. This algorithm became a popular evolution-

ary algorithm because (a) it is simple to implement, (b) it has better performance,

(c) It has less number of control parameters and less space complexity [113].

DE algorithm employs real-coded variables and typically relies on mutation

as the search operator. It has evolved to share many features with conventional

GA, like both maintain populations of potential solutions and use a selection

mechanism for choosing the best individuals from the population. However, DE

has more advantages than GA, like it operates directly on floating point (FP)

vectors [122]. DE is a parallel direct search method that employs a population
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of size NP that are FP encoded individuals. In DE, a global best solution is

obtained using the direction and distance information just as differentiation of

the population. The operation of searching an individual in the search space is

dynamically adjusted with differentiation’s direction and step length. The major

steps of the algorithm are: (i) initialization of the population (ii) mutation (iii)

crossover and (iv) selection process.

Algorithm 3 : Pseudo-code for the Differential Evolution algorithm based Spec-
trum Allocation
Step 1: Initialize the SA algorithm parameter values
Initialize number of secondary users (N), number of primary users (K), number of chan-
nels (M), Channel availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M , Reward matrix B =
{bn,m|bn,m ∈ {0, 1}}N×M , Constraint matrix C = {cn,p,m|cn,p,m ∈ {0, 1}}N×N×M and set
L1 = (n,m)|ln,m = 1 in which elements are arranged in ascending order with n and m
Step 2: Initialize the control parameter values of the DE algorithm Initialize scale factor
F , crossover rate Cr, maximum number of iterations GMAX , dimension of the population
D =

∑N
n=1

∑M
m=1 ln,m and the population size NP .

Step 3: Set the generation number G=0 and randomly initialize a population of NP individuals

using Equation 3.1. The initial population PG=[X
(G)
1 , ...., X

(G)
i , ..., X

(G)
NP ] is evaluated using the

objective functions (Equations.(2.3), (2.4), (2.5)) where

X
(G)
i =[x

(G)
1,i , ...., x

(G)
3,i , ..., x

(G)
D,i ] and each individual uniformly distributed in the range

[Xmin, Xmax], where Xmin={xmin
1 , xmin

2 , ...., xmin
D } and Xmax={xmax

1 , xmax
2 , ...., xmax

D } with i =
[1, 2, ...., NP ].
Step 4:

while maximum no. of iterations is not reached do
for i=1 to NP //do for each individual sequentially do

Step 4.1: Mutation Step

Generate a mutant vector V
(G)
i ={vG1,i, ...., vGD,i} corresponding to the ith target vector

X
(G)
i via the differential mutation scheme of DE as given in Equation (3.2)

Step 4.2: Crossover Step

Generate a trial vector U
(G)
i ={u(G)

1,i , ...., u
(G)
D,i} for the ith target vector X

(G)
i through

binomial crossover as given in Equation (3.3)
Step 4.3: Selection Step
Perform the Selection operation given in Equation (3.4) by evaluating the trial vector

U
(G)
i using Equations.(2.3), (2.4), (2.5).

end for
Step 4.4:Increase the iteration count
G = G + 1

end while
Report results
Terminate

The operation of DE starts with initialization of population randomly in the

search space, and it operates cooperatively between the individuals of the popula-

tion. Each decision parameter in every vector of the initial population is assigned
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with a randomly chosen value within its feasible bounds as in Equation (3.1).

xj,i = xminj + randj[0, 1].(xmaxj − xminj ) (3.1)

where i = 1,..,NP and j = 1,..,D. xj,i is the initial value of the jth parameter

of the ith population. xminj and xmaxj are the lower and upper bounds of the jth

parameter respectively. Once every vector of the population has been initialized,

its corresponding fitness value is calculated and stored in a memory. The mutation,

crossover and selection operations are performed to create population for the next

generation P (G+1) using the current population P (G). In each generation, every

vector in the population has to serve as a target vector X
(G)
i , and it is compared

with a mutant vector. The mutation operator generate mutant vectors V
(G)
i as

Equation (3.2) by perturbing a randomly selected vector Xr1 with the difference of

two other randomly selected vectors Xr2 and Xr3. The selected vector indices are

in the range of 1 to NP . The scaling factor F is used for amplifying the difference

vectors and typically chosen within the range of 0 to 1.

V
(G)
i = X

(G)
r1 + F.(X

(G)
r2 −X

(G)
r3 ) (3.2)

Vector indices r1, r2 and r3 are randomly chosen in {1,...,NP}. After gener-

ating the mutant vector, crossover operations is performed to enhance potential

diversity of the population. The mutant vector exchanges its components with

the target vector X
(G)
i to generate a trial vector U

(G)
i as in Equation (3.3).

U
(G)
i = u

(G)
j,i =

v
(G)
j,i if randj(0, 1) ≤ CR or j = jrand

x
(G)
j,i otherwise

(3.3)

In the next step, the algorithm uses selection operator to keep the population

size constant over subsequent generations. This step decides whether the target

or trial vector survives to next generation. The selection operation is given in

Equation (3.4).

X
(G+1)
i =

U
(G)
i if f(U

(G)
i ) ≤ f(X

(G)
i )

X
(G)
i otherwise

(3.4)

where f(x) is an objective function to be minimized. If the new trial vector

yields an equal or lower value of the objective function, it replaces the corre-
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sponding target vector in the next generation; otherwise the target is retained in

population. These steps are repeated till the maximum number of generations is

reached or any other convergence criterion is satisfied. The pseudo-code to solve

the SA problem using DE algorithm is given in Algorithm 3.

3.4 Spectrum Allocation using Particle Swarm Optimiza-

tion algorithm

This section presents a brief explanation about PSO algorithm and describes the

procedure to optimize the network utility functions for solving the SA problem.

3.4.1 Particle Swarm Optimization algorithm

PSO algorithm was introduced in 1995 by Kennedy and Eberhart [123],[124]. It

is a stochastic algorithm that exhibits many common properties of an evolution-

ary algorithm for solving optimization problems. It essentially imitates the food

foraging behavior of social life, such as a school of fish or swarm of birds [125].

In PSO terminology, each member of the swarm is called as a particle. Every

particle in the search space represents a solution. During the search process every

particle remembers its current position and self-best position found so far called

as personal best (pbest). The information collected by all the particles during the

search process is sorted to find the global best particle (gbest).

The position of the best particle is shared with all the particles, and their

flying trajectory is changed towards the swarm’s gbest and it’s own pbest it-

eratively. Each particle’s position and velocity is evaluated by a fitness func-

tion to be optimized. Since each particle search randomly in a D-dimensional

search space, the position and velocity of ith particle are represented as Xi =

(xi,1, xi,2, xi,3, · · · , xi,D) and Vi = (vi,1, vi,2, vi,3, · · · , vi,D) respectively. The param-

eter D represents the number of variables in the fitness function to be optimized.

In a D dimensional search space the pbest of the ith particle is represented as

pbesti = (pi,1, pi,2, pi,3, · · · , pi,D) and the gbest of the whole swarm is represented

as gbest = (g1, g2, g3, · · · , gD). The PSO algorithm updates the velocity and posi-
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Algorithm 4 : Pseudo-code for PSO Algorithm based Spectrum Allocation

Step 1: Initialize the SA algorithm parameter values
Initialize Channel availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M , Reward matrix B =
{bn,m|bn,m ∈ {0, 1}}N×M and Constraint matrix C = {cn,p,m|cn,p,m ∈ {0, 1}}N×N×M and set
L1 = (n,m)|ln,m = 1 in which elements are arranged in ascending order with n and m
Step 2: Initialize the algorithmic parameter values of the PSO :
Initialize Minimum and maximum values of variables Xmin = 0 and Xmax = 1, dimension
of the population (D =

∑N
n=1

∑M
m=1 ln,m), population size (NP ) and maximum iterations

(tmax), t← 0, i← 0 (t for iterations and i for particles)
Randomly initialize particle’s position XNP

i = Xmin + (Xmax −Xmin) ∗ rand(1, D)
Randomly initialize particle’s velocity V NP

i = Xmin + (Xmax −Xmin) ∗ rand(1, D)
Evaluate fitness function values f0i ..f

NP
i using Equations.(2.3), (2.4), (2.5)

pbest0i ← f0i , gbest0 ← f0best
Step 3: Optimization Process
Step 3.1:
while t ≤ tmax do

Step 3.2:
while i ≤ NP do

Evaluate fitness function values f t+1
i of MSR, MMR and MPF using Equations.(2.3),

(2.4), (2.5)
Update velocity and position using Equation. (3.5)
Find pbestt+1

i (for minimization problem)
if f t+1

i < pbestti then
pbestt+1

i ← f t+1
i

end if
Find gbestt+1

d (for minimization problem)
if gbestt+1

d < gbesttd then
gbestt+1

d ← gbesttd
end if
i← i+ 1, go to step 3.2

end while
Check boundaries of population
for k = 1 to NP do

if Xi
k > Xmax or Xi

k < Xmin then
Xi

k = Xmin + (Xmax −Xmin) ∗ rand(1, D)
end if

end for
Check Stopping Criteria
if t ≤ tmax then
t← t+ 1, go to step 3.1

end if
end while
Report results
Terminate

tion of each particle by the following equations ( 3.5) and ( 3.6) respectively.

V t+1
i,d = V t

i,d + c1 ∗ rand1 ∗ (pbestti,d −X t
i,d)

+ c2 ∗ rand2 ∗ (gbesttd −X t
i,d) (3.5)

X t+1
i,d = X t

i,d + V t+1
i,d (3.6)
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where, c1 and c2 are the learning factors which determines the relative influence

of cognitive and social component respectively. rand1 and rand2 are uniformly

distributed random numbers in the range [0,1]. V t
i,d, X

t
i,d and pbestti,d are the

velocity, position and the personal best of ith particle in dth dimension for the tth

iteration respectively. The gbesttd is the global best of the swarm in dth dimension

for the tth iteration. The pseudo-code to solve the spectrum allocation problem

using PSO algorithm is given in Algorithm 4

3.5 Spectrum Allocation using Firefly algorithm

This section presents a brief explanation about Firefly algorithm and describes the

procedure to optimize the network utility functions for solving the SA problem.

3.5.1 Firefly algorithm

In recent years, Firefly algorithm has emerged as a heuristic algorithm to solve

optimization problems [126]. The use of fireflies as an optimization tool was ini-

tially proposed by Yang in 2008 [127]. This algorithm imitates the social behavior

of fireflies, according to distinctive flashing and attraction properties of fireflies to

protect themselves from predators and absorb their prey. Firefly produces short

and rhythmic flashes. These flashes are to attract female partner (communication)

and to attract potential prey.

Besides, flashing also serve as a protective warning mechanism. Light intensity

from a particular distance r from a light source obeys the inverse square law. Fur-

thermore, the air medium absorbs light, and hence the intensity becomes weaker

with the increase in distance. These two combined factors make most fireflies vis-

ible only to a limited distance. This algorithm has mainly two important issues,

change in light intensity and formulation of attractiveness. The attractiveness of

a firefly is calculated by its brightness, which in turn corresponds to fitness value

of an objective function. The light intensity and the attractiveness decrease as the

distance from the source increases. So the light intensity and attractiveness are

considered as monotonically decreasing functions. The light intensity is a function

of distance (r) and expressed as [126].

I(r) = Ioe
−γr2 (3.7)
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Algorithm 5 : Pseudo-code for Firefly algorithm based Spectrum Allocation
Step 1: Initialize the SA algorithm parameters
Initialize number of secondary users (N), number of primary users (K) and number of
channels (M), Channel availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M , Reward matrix
B = {bn,m|bn,m ∈ {0, 1}}N×M and Constraint matrix C = {cn,p,m|cn,p,m ∈ {0, 1}}N×N×M and
set L1 = (n,m)|ln,m = 1 such that the elements in L1 are arranged in ascending order with n
and m.
Step 2: Initialize control parameters of the Firefly algorithm
Initialize light absorption coefficient γ, attractiveness β, randomization parameter α, maximum
number of iterations tmax, the number of fireflies NP , dimension D =

∑N
n=1

∑M
m=1 ln,m

Step 3: Define objective function f(−→x ) = MSR,MMR,MPF , −→x = (x1, x2, x3, ..., xd) = L1,
Generate the initial location of fireflies xi (i = 1, 2, ...NP ) and set the iteration number t = 0.
Step 4:

while t ≤ tmax do
for i=1 to NP //do for each individual sequentially do

for j=1 to NP //do for each individual sequentially do
Map the population xd,i to assignment matrix A = {an,m}
Evaluate A matrix using the constraint matrix C
Compute light intensity Ii at xi is determined by f(xi) using Equations.(2.3), (2.4),
(2.5)
if Ii ≤ Ij , then

Move firefly i towards j using Equation.(3.9)
endif
Evaluate the attractiveness using Equation.(3.8)
Evaluate new solutions and update light intensity
Check the bounds of updated solutions

end for
end for
Step 4.1:
Rank the fireflies and find the current best;
Check Stopping Criteria
if t ≤ tmax then

Increase the iteration t← t+ 1, go to step 4
end if

end while
Report results
Terminate

where I(r) is the light intensity at a distance r from the source, Io is the

original light intensity at the source, and γ is light absorption coefficient. The

firefly’s attractiveness β from a distance r is proportional to the light intensity

seen by adjacent fireflies.

β(r) = βoe
−γr2 (3.8)

where βo is attractiveness at r = 0.
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If a firefly i is attracted by the firefly j, then it moves towards firefly j by

following the Equation (3.9).

xi = xi + βoe
−γr2ij(xj − xi) + αεi (3.9)

where xi and xj are the locations of firefly i and firefly j respectively. α is random-

ization parameter and εi is a vector of random numbers with uniform distribution.

The pseudo-code to solve the spectrum allocation problem using Firefly algorithm

is given in Algorithm 5 .

3.6 Simulation Results

3.6.1 Experimental setup

For simulation, a desktop computer with Intel Core(TM)2 Duo CPU at 3 GHz and

2 GB of RAM is used, and the entire experiment is carried out in the MATLAB

environment. To evaluate performance of the algorithm for solving SA problem,

the objective functions of SA were setup by assuming that the network is noiseless,

and there is a static environment. In this setup, it is considered that the network

has N secondary users, K primary users and M channels in the network. Each

primary user selects the channel from the available list with a protection range of

dP which is a constant. Each secondary user can adjust its communication range

within the bounds of dmin and dmax to avoid interference between the secondary

and primary users.

In simulation, the network parameters are set as N=20, M=20, K=20, dP=2,

dmin=1 and dmax=5. For this set of parameters, the channel availability, reward,

constraint matrices are derived from the pseudo-code of Algorithm 1. For compar-

ison, the SA problem was also solved using PSO, Firefly, and DE algorithms. The

parameters of PSO algorithm are defined as follows: Number of particles NP=20,

maximum iterations tmax=500, weighting coefficients c1, c2 to 0.9 and inertial

weight ω=0.3. For Firefly, the number of fireflies NP=20, maximum iterations

tmax =500, randomization parameter α=0.25, attractiveness β=0.2 and light ab-

sorption coefficient γ=1. The control parameters of DE algorithm are defined

as follows: Population size NP=20, maximum number of iterations GMAX=500,

crossover rate Cr=0.9 and weighting factor F=0.9. Using this experimental setup,
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all three algorithms were run for 20 independent runs. Three fitness functions

MSR, MMR and MPF are optimized individually using PSO, Firefly and DE

algorithms.

3.6.2 Results and discussions

The three evolutionary algorithms are executed with the above mentioned exper-

imental setup to solve the SA problem. The three network utility functions are

individually optimized using evolutionary algorithms, and the average rewards

are plotted as convergence graphs. The convergence graphs under a fixed network

topology of N=20, M=20 and K=20 are shown in Figure 3.1, 3.2 and 3.3. These

figures correspond to MSR, MMR and MPF objective functions optimized by

Firefly, PSO and DE algorithms. In case of MSR and MPF function DE per-

forms the best in terms of converged value, while Firefly performs the best under

the objective of MMR. Even though Firefly performs better than PSO and DE

in the early stage under objectives MSR and MPF , the converged values after

500 generations by Firefly are still lower than DE. For all three objectives, DE and

Firefly algorithms outperform PSO in terms of converged value and convergence

rate.
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Figure 3.1: Convergence graph (Max-Sum-Reward)

In order to evaluate the convergence speed of the three algorithms, the above

mentioned experimental setup is used to solve the SA problem under two different

network configurations (N=10, M=10 and K=10, N=5, M=5 and K=5). Figure

3.4 shows the convergence graphs for N=10, M=10 and K=10, corresponding
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Figure 3.2: Convergence graph (Max-Min-Reward)
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Figure 3.3: Convergence graph (Max-Proportional-Fair Reward)

to three fitness functions (MSR value is divided by number of secondary users).

From this graph, it is shown that PSO performs better in the early stage under

all objectives, but after 100 generations DE outperforms both Firefly and PSO in

optimizing all three objectives. Figure 3.5 shows the convergence graphs for N=5,

M=5 and K=5, corresponding to three fitness functions. From all the convergence

graphs, it can be concluded that DE performance is superior compared to Firefly

and PSO in maximizing the network utility functions.

Next, the performance of PSO, Firefly, and DE algorithms are compared while

solving the SA problem by varying the number of users and channels for a given
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Figure 3.4: Convergence graph (N=10, M=10 and K=10)
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Figure 3.5: Convergence graph (N=5, M=5 and K=5)

CR network. The impact of varying number of secondary users, primary users and

channels on the network performance (MSR, MMR and MPF ) using DE, Firefly

and PSO algorithms are studied. For simulation setup, the network parameters

are set as N = 5 to 50, K = 10, M = 5. Figure 3.6 shows that all the three

utilization function values decrease with increase in a number of secondary users

N . This is because of the constraints between the secondary users to share the

channel. Figure 3.7 corresponds to N = 20, M = 5, K varies between 5 and 50.

From this figure, it is observed that as the number of primary users increases there

is no spectrum available to secondary users leading to decrease in all the utility
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Figure 3.6: Rewards by varying number of secondary users
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Figure 3.7: Rewards by varying number of primary users

function values. Figure 3.8 corresponds to K = 20, N = 20 with M varying

between 5 to 30. This figure reveals that by increasing the number of channels,

more opportunities are available to secondary users leading to increasing in all the

three objective function values.

For comparison of performance, all the algorithms (PSO, DE, and Firefly)

are executed for 20 independent runs, and the results are tabulated in Table 3.1,

corresponding to 20 secondary users, 20 primary users and 20 channels. In this

table, Time denotes time complexity, Reward corresponds to mean fitness value

and std% defines standard deviation in percentage of the fitness value over 20

runs. The time complexities of PSO, Firefly, and DE algorithms are evaluated as
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Figure 3.8: Rewards by varying number of channels

given in [128]. The following test code (Algorithm 6) was used for obtaining the

time complexity. The time complexity (execution time) T of each algorithm is

calculated using:

Algorithm 6 : Test Code

for i=1 to 1000
x= double(5.55);
x=x+x; x=x./2; x=x*x; x=sqrt(x); x=log(x);
x=exp(x); y=x/x;
end for

T =
T2 − T1

T0

(3.10)

where T2 is the total execution time of the optimization problem, T1 is the time

required for evaluating the objective function alone and T0 is the execution time of

test code. T1 is obtained by evaluating the objective function for 3000 iterations

and T2 is the total execution time includes 3000 function evaluations. From Table

3.1, it is observed that the DE algorithm improves the quality of solution and

robustness in all the three cases. The robustness of the DE algorithm is inferred

from the standard deviation of the fitness values. In the case of MPF , the im-

provement in quality of solution (fitness value) is approximately 19% and 30%,

whereas the time complexity is improved by 46% and 242% compared to Firefly
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and PSO algorithms respectively. In case of the other two utility functions, DE

algorithm also performs better in terms of quality of solution and time complex-

ity compared to PSO and Firefly algorithms. It confirms the superiority of DE

algorithm in terms of convergence speed, quality of solution and time complexity

with respect to Firefly and PSO algorithms for solving SA problem.

Table 3.1: Performance analysis of Firefly, PSO and DE

Fitness Firefly PSO DE
Function Time Reward std % Time Reward std % Time Reward std %
MSR 2.908e+3 2563 2.57 6.636e+3 2408 2.65 1.938e+3 2805 2.64
MMR 2.934e+3 60.6 17.65 6.671e+3 18.2 18.34 1.980e+3 56.76 8.29
MPF 2.946e+3 102.4 3.19 6.891e+3 93.8 4.54 2.013e+3 121.90 2.11

3.7 Conclusions

Spectrum allocation (SA) for CR network is computationally complex and NP-

hard optimization problem. In this work, the SA problem is solved using three

evolutionary algorithms, namely PSO, Firefly and DE. This work is mainly focused

on performance evaluation of these algorithms to solve the SA problem in terms

of critical characteristics of optimization algorithms such as accuracy, convergence

speed, and repeatability. From the simulation results, it is concluded that Firefly

algorithm outperforms PSO algorithm in solving the SA problem, because firefly

introduces a distance paradigm that has implicit local as well as global search mo-

tivation, thereby maintaining divergence. However in PSO, particles are oriented

towards a global best particle irrespective of the distance between them. It is also

concluded that DE outperforms both Firefly and PSO algorithms, because of its

distinct feature of perturbing the current population with the scaled differences of

randomly selected distinct population members. From the simulation results, it

can be concluded that DE performance is superior to that of PSO and Firefly in

providing maximum utilization of network capacity by optimizing MSR, MMR

and MPF utilization objective functions and allowing a conflict free channel as-

signment to secondary users.



Chapter 4

FPGA implementation of Differential

Evolution based Spectrum Allocation in

Cognitive Radio Networks

Spectrum Allocation is a process of assigning best channels to required secondary

users without any interference to primary users. In a distributed approach, each

SU device has its embedded platform to perform the SA task. The computational

complexity in solving the SA problem increases with the increase in the number

of users in a network. However, the SA task needs to be executed in a limited

time. Hence, it is required to implement the SA algorithm on a hardware plat-

form like microcontroller, DSP, FPGA or ASIC to accelerate the execution speed

of the algorithm. Among these, FPGA platform provides flexibility in customizing

the hardware design and also supports processor based approach for developing a

system in firmware. This chapter presents FPGA based System on Chip (SoC)

implementation of DE-based SA (DE-SA) algorithm. A hardware IP of SA algo-

rithm is developed and interfaced as a coprocessor to the PowerPC 440 processor

of Xilinx Virtex-5 FPGA. The execution time of the IP is compared with its equiv-

alent software implementation on PowerPC processor. Further, device utilization

and power consumption of the complete DE-SA system is analyzed.

4.1 Introduction

In chapter 3, the SA problem was solved using PSO, Firefly and DE algorithms to

maximize the network resource utilization. It was concluded that the DE algorithm

performs better in terms of time complexity, convergence speed and quality of the

solution. In literature, the SA problem is solved with an assumption that during

the spectrum assignment process, the environmental condition of the network

remains static [8]. It is also assumed that each secondary user uses a distributed

53
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algorithm to select its channel for communication. In the distributed scheme,

a secondary user considers the locally available information from neighborhood

users and decides its best channel. The SA problem has been solved by different

optimization algorithms using high performance computing platform to maximize

the network utilization. However in real-time, SA task has to be performed on an

embedded computing platform.

In an embedded platform, execution of an evolutionary algorithm demands

more computation time. To meet the real-time execution speed requirement,

one can either proceed with parallelization of the algorithm or implement the

algorithm in a hardware. There are several hardware platforms such as micro-

controllers (µC), digital signal processors (DSP), field programmable gate arrays

(FPGA) and application specific integrated circuits (ASIC) for developing an em-

bedded system. Platforms like µC and DSP are revolving around firmware devel-

opment using software methodologies rather than the development of hardware for

an application [80]. FPGA development platform supports both hardware-based

approach (a system developed entirely in the hardware) and processor-based ap-

proach (a system developed entirely in the firmware) to develop a system. It has

the flexibility to customize the hardware design by adding any combination of

peripherals and controllers that are not available in microcontroller or DSP pro-

cessor based system. The execution time of an evolutionary algorithm increases

with the increase in complexity of the function to be optimized. Due to this, these

algorithms are not suitable for implementation in low-end processors for real-time

applications involving complex optimization. Thus, there is a need to define an ar-

chitecture and implement the algorithm in the FPGA to meet real-time execution

speed requirement. Recently, PSO and Genetic algorithms have been implemented

on FPGA [129, 130].

Execution of the SA algorithm on embedded processor consumes most of the

platform resources, thereby degrades the performance of other primary applica-

tions running on it. Thus, a dedicated hardware peripheral for performing the SA

task is required. Hence in this chapter, a coprocessor is proposed for performing

the SA task to enhance the execution speed of the allocation algorithm. Xilinx

Virtex-5 FPGA is chosen as a platform for implementation of the SA task due

to its features like improved DSP48E slices for complex math, six input look-up

tables (LUTs) and its improved power efficiency. To implement the SA algorithm

on FPGA, the critical task is to develop a suitable architecture for the complete
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algorithm targeted to FPGA. In the previous chapter, it was concluded that the

DE algorithm outperforms both PSO and Firefly algorithms for solving the SA

problem by maximizing the network utility functions. Hence, DE-SA algorithm

is being chosen for FPGA implementation to accelerate the execution speed. To

achieve this, initially a fixed point DE algorithm is implemented on FPGA. Fixed

point arithmetic of algorithm is selected due to its advantages of less compu-

tational complexity over floating point operations, although floating point can

provide more accurate and precise results. This work mainly concentrates on ac-

celerating the execution speed, hence fixed point arithmetic is used to implement

in FPGA.

In this chapter, a coprocessor of the fixed point DE algorithm is developed and

interfaced with the PPC440 processor of Virtex 5 FPGA as an auxiliary proces-

sor unit (APU). Although, there is a flexibility to choose slave interface for the

same, the APU interface is chosen because it is more flexible than slave interface.

This is because, with the use of extended instructions, the coprocessor can exe-

cute an instruction set in parallel with the embedded processor PPC440. The DE

coprocessor is validated by optimizing benchmark test functions mentioned in Ap-

pendix A.2 [131]. Then the DE-SA IP is developed to solve the SA problem. The

network utility functions, namely Max-Sum-Reward (MSR), Max-Min-Reward

(MMR) and Max-Proportional-Fair (MPF ) are optimized using the DE-SA IP.

The IP is interfaced to the PPC440 processor through APU controller and built

as a coprocessor to accelerate the execution speed of the SA task.

4.2 Related work

A limited study has been reported on hardware implementation of SA to im-

prove the execution speed and portability of the algorithm. A hardware device for

channel allocation was proposed to speed up the channel selection and allocation

algorithm with respect to current traffic requirement and interference constraints

[17]. It has attained high efficiency in the allocation of available channels (order of

nanoseconds). FPGA-based hardware/software co-design architecture of Genetic

Algorithm (GA) for reconfiguring cognitive radio parameters was proposed [114].

In [114], fitness module (for obtaining CR parameters) and GA were implemented

on a processor and hard-wired blocks of FPGA’s fabric respectively. It was re-

ported that the acceleration of execution time by 6µs compared to the execution



CHAPTER 4. FPGA IMPLEMENTATION OF DE-BASED SA 56

time of the same algorithm on processor [114].

In literature, evolutionary algorithms like GA and PSO were implemented in

hardware to accelerate the optimization process and achieved an optimal solu-

tion. A customized Intellectual Property (IP) of GA was implemented in the

Xilinx FPGA and integrated with PPC405 processor based SoC and the speed en-

hancement up to 5.16x was achieved in Virtex-II Pro development board [130]. A

modular co-design architecture was developed for PSO algorithm [129], in which

particle positions were updated in hard-wired blocks whereas the fitness func-

tion was evaluated on a Nios-II embedded processor. In [129], the design has

the flexibility to modify the fitness functions in the software depending on the

applications. This approach can be used to develop various embedded applica-

tions simply by changing the fitness function. The design achieved a speedup of

20x in Altera development board [129]. Hardware architecture of pipelined PSO

(PPSO) was developed along with the parallel PSO framework using multiple

Nios-II processors in a System-on-a-programmable-chip (SOPC) platform and re-

sulted speedup of 98x compared to software implementation of the PSO algorithm

in Altera development board [132]. A modular, flexible and reusable multi-swarm

PSO parallel hardware architecture was proposed to overcome the drawbacks of a

software implementation of the PSO algorithm using a Freescale microcontroller

and Xilinx MicroBlaze soft processor core [133]. A hardware accelerator for par-

allel PSO (pPSO) algorithm was reported and validated its performance by op-

timizing test bench functions on MicroBlaze processor-based SoC in a Virtex-6

development board [134]. Apart from the above works, different variants of PSO

algorithms were implemented on FPGA without addressing the acceleration of

execution speed [135, 136, 137, 138, 139, 140]. Although different evolutionary

algorithms were implemented on FPGA for enhancing the execution speed, there

is a limited work in literature that has been reported on implementation of the

DE algorithm on FPGA.

DSP algorithms can be implemented in hardware using either fixed point or

floating point arithmetic. Fixed point algorithm on hardware performs operations

on strictly integer arithmetic only, whereas floating point algorithm on hardware

performs operations on both integers and real arithmetic values. In work not pre-

sented in this thesis, a floating point DE IP was developed and interfaced to a

32-bit PPC440 (PPC440) processor using processor local bus (PLB) of Virtex-5

FPGA [141]. The developed hardware DE IP was verified by optimizing numeri-
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cal benchmark functions and concluded that the DE IP accelerates the execution

speed by 200x when compared to its equivalent software implementation on the

PPC440. Floating point DE gives better accuracy at the expense of high com-

putation cost. Thus, to reduce the computational complexity, fixed arithmetic is

chosen for hardware implementation.

In this chapter, a coprocessor for fixed point DE algorithm is developed and

interfaced to PPC440 embedded processor. The coprocessor performance is val-

idated by solving numerical test bench functions. Further, the DE coprocessor

is embedded with the three network utility functions, namely MSR, MMR and

MPF in the fitness evaluation module. Finally, DE-SA IP is developed to accel-

erate the execution speed of the SA task.

4.3 FPGA implementation of Differential Evolution algo-

rithm

4.3.1 Software profiling of DE algorithm

It is necessary to find computational intensive functions of the algorithm to im-

plement it in hardware. Computational intensive functions and instructions inside

these functions are identified through profiling. This information is used to de-

cide the function(s) that need to be implemented in hardware (logic blocks of the

FPGA) or software (runs on the FPGA’s embedded processor). DE algorithm

has three main modules a) random number generation, b) fitness function evalu-

ation and c) DE algorithm module (i.e., mutation, crossover and selection). The

DE algorithm is coded in both fixed and floating point arithmetic in C language

to optimize benchmark test functions for profiling as mentioned in Appendix-1.

This is termed as software DE algorithm. These software codes are executed

in the embedded processor of the Virtex 5 FPGA. In this work, profiling of the

DE algorithm is carried on PPC440 embedded processor operating at a clock fre-

quency of 200 MHz and the results are tabulated in Table 4.1. The first column of

the table corresponds to different test functions that are optimized using the DE

algorithm. The DE algorithmic parameters are considered as maximum genera-

tions GMAX=1000, population size NP=8, weighting factor F=0.6, crossover rate

Cr=0.9. From this table, it is observed that for optimizing test function Fun1,
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floating point and fixed point DE algorithm takes 4,721ms (execution time taken

by DE algorithm + Objective function + RNG + Float operations) and 70ms (ex-

ecution time taken by DE algorithm + Objective function + RNG) respectively.

The floating point DE takes more time due to complex floating point operations

involved in the algorithm compared to the fixed point arithmetic. All the floating

point operations involved in the algorithm are executed in Floating Point Unit

(FPU) module of the embedded processor.

Table 4.1: Profiling results of the software (SW) DE algorithm (GMAX=1000,
NP=8)

DE algorithm Objective function RNG Float operations
Test SW float SW fixed SW float SW fixed SW float SW fixed SW float
Function (ms) (ms) (ms) (ms) (ms) (ms) (ms)
Fun1 50 (1%) 30 (43%) 10 (0.21%) 10 (14%) 40 (0.85%) 30 (43%) 4,621 (97.88%)
Fun2 60 (1%) 30 (43%) 60 (0.81%) 10 (14%) 40 (0.54%) 30 (43%) 7,228 (97.83%)
Fun3 90 (2%) 30 (38%) 10 (0.19%) 10 (13%) 50 (0.93%) 40 (50%) 5,220 (97.20%)
Fun4 50 (1%) 40 (44%) 20 (0.26%) 20 (22%) 40 (0.51%) 30 (33%) 7,674 (98.58%)
Fun5 1,488 (5%) 1,245 (69%) 294 (0.97%) 255 (14%) 520 (1.72%) 303 (17%) 27,944 (92.38%)
Fun6 1,824 (6%) 1,330 (29%) 3,640 (11%) 2,983 (64%) 570 (1.72%) 334 (7%) 27,042 (81.75%)

In the Table 4.1, the value inside parenthesis refers to % of the total execution

time of a particular module requires during execution. For low dimension functions

like Fun1, the execution time of the random number generator (RNG) module

is comparable with DE algorithm module, whereas the objective function module

takes less time compared to other two modules. Hence, to accelerate the execution

speed of the total algorithm, both DE algorithm and RNG modules need to be

executed on a hardware. If the objective function is implemented in the processor

and the other modules are implemented in the hard-wired blocks then the on-chip

bus transaction time between these modules will degrade the acceleration. To

reduce the bus overhead, the DE algorithm module, RNG module and the fitness

evaluation module are embedded into a single hardware IP.

4.3.2 Proposed hardware architecture of DE algorithm

The proposed DE IP core has seven main modules i.e., Memory initialization, Mu-

tation, Crossover, Selection, Random Number Generator, Fitness evaluation and

a Control Finite State Machine (FSM) module to synchronize all the six modules

as shown in Figure 4.1. The FSM has idle, initialization, operation, waiting and

reading states as shown in Figure 4.2. In the idle state all the modules are in the

reset condition. In the initialization state, the FSM initializes the population and
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fitness memories when the inputs i.e., maximum number of generations GMAX

and population size NP are available at the initialization module. During the

operation state, control FSM enables internal modules according to the different

stages of the algorithm, i.e., mutation, crossover and selection. FSM will be in a

wait state until the execution of current module is completed else it will go to the

next module for execution. In the reading state, FSM reads the fitness value and

writes into an output register.
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4.3.2.1 Memory initialization module

The memory module has two separate memories, for storing the population (Pop-

ulation Memory) and their fitness values (Fitness Memory). During the initializa-

tion state, population of size NP ×D are randomly generated within the range of

[Xmin, Xmax], and stored in the population memory of size 4KBytes. The popu-

lation members are accessed from the population memory using a 12-bit address.

Each population member is of size 128 Bytes, and the maximum values of NP and

D are set to 32. These values are input to the fitness evaluation module. After

evaluating the fitness function, the fitness values (each of size 32-bit) are stored

in the fitness memory of size 1 Kbits. This process is repeated for NP times.

4.3.2.2 Mutation module

After the initialization state, mutation operation is performed by the mutation

module. In this module, a mutant vector is generated for each ith target vector

from the current population. Three distinct vector indices in the range of 1 to NP

are generated by comparing the counter value with a value in the register. The

register value contains a randomly generated number multiplied by population

size. These indices are connected to the select lines of a multiplexer. Three

distinct target vectors are obtained from the output of a multiplexer as shown

in the Figure 4.3 and these are stored in Reg-files A, B and C, each of size 128

Bytes. The mutation operation is performed by the difference of any two of these

registers scaled by a factor F and this difference is added to the third register

to obtain the mutant vector. In this module, the mutant vector (128 Bytes) is

generated for all the dimensions of each population member.

4.3.2.3 Crossover module

The crossover operation is mainly responsible for increasing the diversity among

the mutant vectors. A trial vector is generated in the crossover module as shown

in Figure 4.4. Each ith trial vector is generated with a crossover rate Cr. The

registers Reg 1 and Reg 2 have a randomly generated number rand × D. The

input mutant vector index is 5-bit, and it is padded with zeros of 27-bits to make

it as 32-bit input. The trial vector (32-bit) is generated using the multiplexer

logic as shown in Figure 4.4. The crossover constant controls the diversity of the
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population and makes the algorithm escape from local optima, and ensures that

the trial vector gets at least one vector from the mutant vector.

4.3.2.4 Selection module

The trial vector generated from the previous module is input to the selection

module as shown in Figure 4.5. The fitness value of a trial vector is evaluated

and if it is less than the fitness of the current population member then it selects

the input as a trial vector otherwise it selects the current population member

as the new population member. The output of the multiplexer (MUX) is the

updated value of the current population memory. This process is repeated for all

the generations to improve the fitness of individuals till the maximum number of

generations is reached.
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4.3.2.5 Fitness evaluation module

The Fitness module evaluates the fitness of individual member in accordance with

the defined fitness functions. Here different test bench functions like three variable

Sphere function (Fun3), four variable variably dimensioned function (Fun4) and 32

variable De Jong (Fun5) and schwefel’s function (Fun6) are considered to verify the

performance of DE hardware. The fitness of each population and the population

members for the complete population is evaluated and stored in the fitness memory

module. The fitness module is designed according to the fitness function whereas

the rest of the system remains unchanged.

4.3.2.6 Random Number Generator (RNG) module

Random number generation module plays an importance role in the DE algorithm.

In this work, Linear Feedback Shift Register (LFSR) is used to generate random

numbers, as it is easy to implement and produces fairly good pseudo-randomness.

It generates the random numbers for the initial population module, mutation,

crossover, and selection modules. The bit selection for mutation is also carried out

using this module. The seed for the random number generator is programmable.

It enables different convergence characteristics for each generation. A non-zero

value is assigned for seed as an initial value, before starting the process. If all zero

value appears in seed, then XOR operations continue to generate zeros and output

becomes always zero. The circuit diagram for 32-bit LFSR with maximum length

polynomial X32 + X22 + X2 + X1 + 1 is shown in Figure 4.6, and it generates

232 − 1 random outputs, which are large enough for this application.
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4.4 FPGA implementation of DE based Spectrum Alloca-

tion algorithm

4.4.1 Software profiling of SA algorithm

In the previous section profiling of both fixed point and floating point DE algo-

rithm for solving benchmark test function targeted to PPC440 embedded processor

is presented. The previous chapter concluded that the DE algorithm is a promis-

ing algorithm for solving SA problem in cognitive radio. Thus, the present section

focuses on FPGA implementation of DE-SA algorithm to accelerate the execu-

tion speed. Furthermore, DE-SA algorithm is implemented on the Xilinx Virtex 5

FPGA based system on chip platform, that provides design flexibility, adaptability

and ease in integration of other custom IPs. As mentioned in the earlier section,

profiling of a signal processing algorithm is essential prior to its implementation

in FPGA. Thus, this section presents the software profiling analysis of both fixed

and floating point DE-SA algorithm on Xilinx PPC440 processor. Since the clock

frequency of the target development board is 200MHz, the profiling was carried

out for the clock frequency of 200 MHz.

In the SA technique the objective functions like Maximum-Sum-Reward, Max-

Min-Reward and Max-Proportional-Fair are optimized using DE algorithm. In

real-time, these objective functions are fixed during the allocation process. In

this study, the number of secondary users, primary users and available spectrum

bands, each is fixed to 20. Profiling is carried out for optimizing the Maximum-

Sum-Reward (MSR), and the results are tabulated in Table 4.2. The DE al-

gorithmic parameters are selected as GMAX=300, NP=20, F=0.6 and Cr=0.9.

From this table, it is observed that the floating point DE algorithm (algorithmic

steps, function evaluation) takes more execution time compared to the fixed point
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DE algorithm, as obvious. The execution time of floating point operations domi-

nates the total execution time. To eliminate the computational intensive floating

point operations, the algorithm is implemented in fixed point arithmetic. From

this table, it is also observed as the number of users and available band increases

the computational complexity of fitness evaluation module increases. The overall

execution time consumed by the DE algorithm is 98%, out of which DE algo-

rithmic steps like mutation, crossover and selection (25.42%) and fitness function

evaluation (62.98%) consumes significant percentage of time.

Table 4.2: Profiling results of the software (SW) SA algorithm (% of Execution
time)

Fixed Float
Test Function DE Objective RNG DE Objective RNG Div floatsidf unpack f

Function Function
MSR (5× 5× 5) 41.57 38.80 17.26 2.92 2.81 1.33 35.38 26.81 6.06
MSR (20× 20× 20) 25.42 62.98 10.06 3.57 2.84 1.35 38.11 23.97 5.36

Thus, to accelerate the total execution speed, the fitness evaluation module

need to be implemented in the hardware due to its inherent advantages mentioned

earlier. If the fitness function alone is implemented in the hardware and the

other functionalities in the embedded processor, then the bus transaction overhead

between fitness function module in hardware and DE algorithm (except fitness

evaluation) in software will dominate the acceleration. This lead to degrade the

acceleration performance. To avoid the performance degradation, the complete

DE algorithm (including utility functions) need to be implemented as a single

hardware module.

In this chapter, hardware-software co-design platform is used to study the ef-

fect on execution speed of SA algorithm. In the first case (Case-I), DE algorithm

is implemented in software (on embedded processor) and fitness function (MSR)

is implemented in hardware. In the second case (Case-II), DE algorithm is imple-

mented in hardware and fitness function (MSR) is implemented in software. Later

in the third case (Case-III), DE algorithm and fitness evaluation modules are im-

plemented in hardware. System on Chip platform is developed for the above three

cases individually, and the timing results are tabulated in Table 4.3. This table

correspond to the network parameters as 5 secondary users, 5 primary users and

5 available channels (5× 5× 5). The bus transaction time to pass the values from

hardware to software and vice-versa to evaluate the fitness function is 161.51ms

(NP x GMAX x (each bus transaction time 50µs)) whereas overall execution time
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of the algorithm is 516ms and 408ms (for NP=32 and GMAX=100) in Case-I and

Case-II respectively.

Table 4.3: Average execution time of SA task in Hardware-software co-design
platform for (5× 5× 5)

NP=16 NP=32
Case-I Case-II Case-III Case-I Case-II Case-III

Test Function GMAX Time(ms) Time(ms) Time(ms) Time(ms) Time(ms) Time(ms)
(Std%) (Std%) (Std%) (Std%) (Std%) (Std%)

1 4.4 1.95 0.8 8.7 3.74 1.6
(0.8) (0.6) (0.7) (0.6) (0.4) (0.4)

50 131 102 22 260 204 43
(0.5) (0.3) (0.3) (0.3) (0.2) (0.2)

MSR 100 259 205 43 516 408 85
(0.6) (0.4) (0.2) (0.2) (0.5) (0.2)

300 771 615 129 1538 1225 254
(0.6) (0.2) (0.1) (0.3) (0.6) (0.1)

However, pure hardware implementation of DE-SA algorithm (Case-III) con-

sumes only 85ms, due to the exclusion of bus transaction time and objective

function evaluation time.

4.4.2 Hardware architecture of DE-SA IP

The proposed hardware architecture of DE-SA is shown in Figure 4.7. It consists

of seven main modules, i.e., Memory initialization, Mutation, Crossover, Selec-

tion, Random Number Generator, SA fitness evaluation module and a Control

Finite State Machine (FSM) Module to synchronize all six modules as explained

in Section 4.3.2. In this IP, the fitness evaluation module consists of three network

utilization functions, namely MSR, MMR and MPF are embedded on it. The

utilization function is selected by the user input (User Sel) to DEMUX logic as

shown Figure 4.7. During the fitness evaluation, the selected utilization function

results are stored in the fitness memory.

The network data matrices (L, B and C) and the current DE population ma-

trix, that are used to compute the assignment and reward matrices are stored in

the internal memory. These matrices are given as inputs to the fitness module for

calculating the fitness value. The FSM has idle, initialization, operation, waiting

and reading states. In the idle state all the modules are in the reset condition.

In the initialization state the FSM enables memory module when the inputs such

as maximum number of generations GMAX , population size NP , dimension D,

crossover rate Cr, scaling factor F , number of secondary users N , number of pri-
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Figure 4.7: Hardware architecture of DE based Spectrum Allocation

mary users K, number of channels M and choice of utilization function User Sel

are available to the DE-SA module. During the operation state, control FSM

enables internal modules according to the different stages of the algorithm, i.e.,

crossover, mutation and selection. FSM will be in the wait state until the exe-

cution of current module else it will go to the next module for execution. In the

reading state, FSM will read the fitness value and write into the output register.

4.4.2.1 Max-Sum-Reward (MSR)

MSR module is used to calculate the total sum reward of the network. The

architecture details of MSR module is shown in Figure 4.8. For each population,

the channel availability matrix A and channel reward matrix (B) are input to the

fitness function. These two matrices are given to a multiplier. Essentially this is

a multiply-accumulate unit. The final accumulated result is stored in the 32-bit

register (Reg1).

4.4.2.2 Max-Min-Reward (MMR)

This module is used to calculate the minimum reward of the cognitive user in

the network. The same A and B matrices are given as input to the multiplier

and adder. The reward value of each secondary user for the selected channels is

stored in RegFile1 of 1Kbit size. Minimum value of RegFile1 is obtained using a
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comparator and Mux logic. The resulted MMR reward value is stored in a 32-bit

register (Reg2) as shown in Figure 4.9.
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4.4.2.3 Max-Proportional-Fair (MPF )

MPF module is used to calculate the fairness reward of the network. The archi-

tecture for implementing the MPF utility function is shown in Figure 4.10. The

same A and B matrices are input to the multiplier and adder module of the circuit.

For each secondary user, reward value is calculated for the selected channels, and

it is stored in Reg2. This reward value is again multiplied by the reward value of
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another secondary user, and the result is stored in Reg3. This process continues

for N times, where N is the number of secondary users. Subsequently the Reg3

value is input to N th Root module to calculate the fair reward of the network.

4.4.3 System on Chip (SoC) implementation

In general, System on Chip implementation of the hardware is carried out for

validating the prototype of a system before building the ASIC chip. SoC integrates

processors, peripherals, memories, custom IP components into a single chip. The

FPGA-based SoC offers hardware re-use, easier programmability to the user for

developing complex systems. The proposed SoC platform uses Virtex-5 FPGA

that includes PPC440 embedded processor, peripherals such as UART (RS-232)

for serial communication, DDR2-SDRAM, BRAM, Timer and Interrupt modules

[142]. Timer and Interrupt modules are used for software profiling.

In this work, at the first stage DE IP is developed as a Fabric Coprocessor

Module and it is connected to the PPC440 processor via Fabric coprocessor bus

as shown in Figure 4.11. Then the DE coprocessor is invoked using Load and

Store instructions of PPC440 processor. The functionality of DE IP is validated

by optimizing the benchmark test functions. In addition to the functional results,

timing result and convergence of the algorithm are also observed. In the later
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stage, the DE coprocessor for benchmark test function optimization is replaced

with DE-SA coprocessor. The corresponding SoC architecture for implementing

DE-SA IP is shown in Figure 4.12. In this figure, MSR, MMR, and MPF

corresponds to the hardware module for evaluating three fitness functions, namely

Max-Sum-Reward, Max-Min-Reward and Max-Proportional-Fair respectively. In

this design, a hardcore PPC440 is used because of its natural advantages over

soft-core processor along with its effective resource utilization capability. Two

asynchronous FIFOs (depth of 10 and width of 32 bits) are used at the interface

(input and output) of the DE-SA core. The input signal is processed as a stream

of nine samples GMAX , NP , D, Cr, F , UserSel, N , M and K through the first

FIFO (FIFO−1), whereas the output signal from the core is acquired through the

other FIFO (FIFO−2). These FIFOs are interfaced with the PPC440 processor.

Table 4.4: Control parameters of the DE algorithm

Control Parameters Value
Population Size (NP ) 8,16,32
Maximum Number of Iterations(GMAX) 1,50,100,300
Weighting Factor (F ) 0.6
Crossover rate (Cr) 0.9

4.5 Experimental setup

In the first stage, the DE algorithm is coded using fixed point C code and ported on

to the PPC440 processor. The DE algorithmic parameters are tabulated in Table

4.4. The DE IP core is designed using Verilog hardware description language. The

developed DE IP core is implemented and tested on a Xilinx Virtex-5 Development

board (XC5VFX70T-1136). The developed DE IP core is interfaced to an auxiliary

processing unit controller. Finally, a coprocessor for accelerating DE algorithm

is developed. Initially, it was used for optimizing benchmark test functions. For

functional verification of the DE IP core along with wrapper logic, a test bench was

simulated as shown in Figure 4.13. The results shown in this figure corresponds

to the function Fun6 with GMAX = 1, NP = 8 and D = 4. It is not the

optimized solution because the simulation is carried out for one iteration only.

From this figure, it is ascertained that the resultant fitness value is available at

DE Output Data port, when DE Output Rdy signal is logic high. It is also
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evident that the IP core takes 0.08 mega clock cycles for completing one iteration

with above control parameters. The optimum solution obtained for minimizing

Fun6 using the DE core is ”3” as expected. This is shown in Figure 4.14. It

confirms the proper functionality of the DE IP core. In the next stage, the same

experiment was conducted for DE-SA algorithm.
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Figure 4.13: Functional simulation of DE IP core

The DE-SA algorithm is ported onto the PPC440 using 32-bit fixed point C

code for software implementation. For a hardware implementation, the proposed

algorithm is coded using HDL and an Intellectual Property (IP) is developed.

Then the IP core is simulated and tested using Xilinx ISE and EDK 10.1.3 platform

on Virtex-5 FPGA development board. The IP core frequency is set to 63.55 MHz,

which is the maximum frequency obtained during implementation. The developed

coprocessor is scalable (in terms of the number of secondary users, primary users,

number of channels and other DE algorithmic parameters such as population size,

number of generations and dimension) and these are set as user inputs to the

processor. After receiving these inputs, DE-SA IP is invoked using Load/Store

API call from the PPC440. Then the IP completes its execution and the channel

availability matrix, and the optimum fitness values are monitored through UART

module.

4.6 Results and analysis

4.6.1 Timing results

Initially, the complete DE optimization algorithm is ported to the PowerPC pro-

cessor of Xilinx Virtex-5 FPGA for software implementation, and then the com-
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plete DE algorithm is executed using the DE coprocessor. The execution time

of the DE algorithm for different population sizes (8, 16, 32) and three different

generations (1, 50, 100) is evaluated for 20 independent runs. The acceleration

factor (AF) of the coprocessor with respect to software floating and fixed point

execution time are tabulated as AF (float) and AF (fixed) respectively. The values

in parenthesis refer to the percentage of standard deviation of execution time.

Table 4.5: Average execution time of the DE algorithm implemented on PPC440
processor (software)

NP =8 NP=16 NP=32
Float Fixed Float Fixed Float Fixed

Test Function GMAX SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 4.91 0.15 32.73 9.44 0.26 36.31 18.36 0.52 35.31
(3.2) (2.8) (2.5) (2.2) (1.4) (1.2)

Fun1 50 181.05 5.38 33.65 332.37 9.69 34.30 641.81 18.82 34.10
(1.4) (0.9) (0.7) (0.4) (0.4) (0.2)

100 363.17 10.38 34.99 673.21 19.33 34.83 1,301.32 37.51 34.69
(1.1) (0.5) (1.4) (0.4) (1.1) (0.2)

1 8.01 0.18 44.50 15.02 0.31 48.45 28.73 0.61 47.10
(1.9) (2.2) (1.5) (2.3) (0.8) (1.2)

Fun2 50 264.53 5.97 44.31 491.39 10.85 45.29 940.12 19.82 47.43
(1.4) (0.9) (0.9) (0.4) (0.7) (0.2)

100 536.05 11.96 44.82 994.24 21.64 45.94 1,897.45 39.26 48.33
(1.5) (0.5) (0.9) (0.3) (0.7) (0.2)

1 5.12 0.16 32.00 10.13 0.31 32.68 19.88 0.61 32.59
(1.3) (2.7) (1.9) (1.3) (0.8) (0.6)

Fun3 50 199.54 5.83 34.23 371.94 11.08 33.57 720.03 21.64 33.27
(0.8) (0.6) (0.4) (0.3) (0.2) (0.2)

100 397.91 11.62 34.24 740.14 22.08 33.52 1,432.64 43.16 33.19
(0.8) (0.5) (0.3) (0.3) (0.2) (0.2)

1 9.99 0.23 43.43 19.36 0.45 43.02 38.38 0.84 45.69
(1.9) (2.2) (0.9) (1.2) (0.5) (0.6)

Fun4 50 305.79 7.08 43.19 584.59 13.48 43.37 1,145.25 26.46 43.28
(0.6) (0.4) (0.3) (0.2) (0.1) (0.2)

100 612.92 14.11 43.44 1,178.46 26.94 43.74 2,304.13 52.77 43.66
(0.7) (0.3) (0.5) (0.2) (0.3) (0.2)

1 41 6 6.83 81 11 7.36 162 23 7.04
(1.7) (1.6) (1.2) (1.5) (1.2) (1.5)

Fun5 50 1,132 207 5.47 2,234 411 5.44 4,439 809 5.49
(1.3) (1.7) (2.1) (1.6) (2.1) (1.4)

100 2,254 412 5.47 4,435 825 5.38 8,809 1,638 5.38
(0.8) (0.9) (0.9) (2.1) (1.1) (2.1)

1 85 15 5.67 170 30 5.67 339 62 5.47
(1.8) (1.9) (2.1) (2.3) (1.1) (2.2)

Fun6 50 2,251 446 5.05 4,472 884 5.06 8,916 1,736 5.14
(1.2) (1.1) (1.5) (1.7) (2.3) (2.1)

100 4,476 891 5.02 8,745 1,764 4.96 18,483 3,537 5.23
(1.3) (2.1) (1.3) (1.1) (0.9) (1.1)

Table 4.5 shows the average execution time (in msec) and percentage of stan-

dard deviation (Std%) of execution time for both arithmetics of DE algorithm

implemented on the PPC440 processor (SW). The average execution time and

standard deviations tabulated in Table 4.5 are for 20 independent runs. The table

show results with maximum iterations GMAX = 1, 50, 100 and for different pop-
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ulation sizes NP = 8, 16, 32. It reveals that for optimizing high dimension test

functions, fixed point algorithm gives approximately 4.96 - 7.36x acceleration over

the floating point algorithm implemented on PPC440 processor. For optimizing

low-dimensional functions, the execution time is 32 - 48.45x faster compared to

the floating point implementation. The average execution time of the algorithm

using the coprocessor is tabulated in Table 4.6 and is referred as (HW) time.

Table 4.6: Average execution time of DE coprocessor and its acceleration factor
(AF) over Floating and Fixed point software execution time

NP =8 NP=16 NP=32
Test Function GMAX HW(ms) AF AF HW(ms) AF AF HW(ms) AF AF

(Std%) Float Fixed (Std%) Float Fixed (Std%) Float Fixed
1 0.05 98.20 3.00 0.1 94.40 2.60 0.2 91.80 2.60

(1.1) (1.4) (1.0)
Fun1 50 2.13 85.00 2.53 3.9 85.22 2.48 7.6 84.45 2.48

(1.2) (0.7) (0.2)
100 4.27 85.05 2.43 8.21 82.09 3.94 15.2 85.61 2.47

(1.0) (1.5) (0.2)
1 0.05 160.20 3.60 0.1 150.20 3.10 0.2 143.65 3.05

(1.5) (1.3) (1.4)
Fun2 50 2.23 118.62 2.68 4.06 121.03 2.67 7.8 120.53 2.54

(1.2) (0.5) (0.3)
100 4.43 121.00 2.70 8.11 122.59 2.67 15.6 121.63 2.52

(0.7) (0.5) (0.2)
1 0.07 73.14 2.29 0.13 77.92 2.38 0.26 76.46 2.35

(1.1) (1.8) (1.3)
Fun3 50 2.6 76.75 2.24 4.9 75.91 2.26 9.57 75.24 2.26

(1.1) (0.5) (0.3)
100 5.3 75.08 2.19 9.9 74.76 2.23 19.06 75.16 2.26

(1.1) (0.6) (0.2)
1 0.08 124.88 2.88 0.15 129.07 3.00 0.3 127.93 2.80

(1.6) (1.9) (0.9)
Fun4 50 2.9 105.44 2.44 5.4 108.26 2.50 10.5 109.07 2.52

(1.2) (0.7) (0.3)
100 5.8 105.68 2.43 10.9 108.12 2.47 21.1 109.20 2.50

(1.2) (0.7) (0.6)
1 0.5 82.00 12.00 0.8 101.25 13.75 1.6 101.25 14.38

(0.8) (0.3) (0.2)
Fun5 50 11.9 95.13 17.39 23.5 95.06 17.49 46.6 95.26 17.36

(0.2) (0.1) (0.1)
100 23.7 95.11 17.38 46.7 94.97 17.67 92.6 95.13 17.69

(0.1) (0.1) (0.1)
1 0.6 141.67 25.00 1.2 141.67 25.00 2.3 147.39 26.96

(0.6) (0.3) (0.2)
Fun6 50 16.4 137.26 27.20 32.4 138.02 27.28 64.5 138.23 26.91

(0.4) (0.1) (0.1)
100 32.6 137.30 27.33 64.4 135.79 27.39 128 144.40 27.63

(0.5) (0.1) (0.1)

From this table it is observed that the coprocessor execution time is up to 73.14

- 160.20x faster than the software execution time for floating point DE algorithm.

In contrast, it is only 2.19 - 27.63x faster compared to fixed point DE algorithm.

Further, it is observed that for lower dimension functions coprocessor acceleration

AF (fixed) is small as compared to higher dimension functions. It also reveals that

the execution time of the coprocessor for different functions is scaling up with the
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population size and maximum number of generations.

The execution time for DE-SA algorithm on PPC440 processor of Xilinx Virtex-

5 FPGA is referred as software (SW) execution time whereas the time for executing

the SA task using the DE-SA IP is referred as hardware (HW) execution time.

The average execution time of the DE-SA implemented on PPC440 processor for

optimizing the three utility functions are tabulated in Table 4.7. The tabulated

results correspond to the mean execution time of 20 independent runs. Table 4.7

correspond to the network parameters as 5 secondary users, 5 primary users and

5 available channels (5 × 5 × 5). In the table, Std % refers to the standard de-

viation of the execution time over 20 independent runs. It is observed that the

acceleration factor remains almost constant between 11 - 19x with the increase in

population size and network parameters.

Table 4.7: Average execution time of Spectrum Allocation problem in Float and
Fixed arithmetic (software) for (5× 5× 5)

NP =8 NP=16 NP=32
Float Fixed Float Fixed Float Fixed

Test Function GMAX SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 42 2.2 19.09 82 4.3 19.07 163 8.3 19.64
(0.5) (0.8) (0.7) (0.8) (0.4) (0.5)

50 1,068 63 16.95 2,011 125 16.09 4,113 248 16.58
(0.3) (0.3) (0.3) (0.4) (0.1) (0.3)

MSR 100 2,008 127 15.81 4,052 251 16.14 7,820 497 15.73
(0.2) (0.2) (0.1) (0.3) (0.1) (0.2)

300 5,786 381 15.19 11,276 757 14.90 22,364 1,498 14.93
(0.4) (0.1) (0.4) (0.1) (0.2) (0.1)

1 36 2.4 14.85 69 4.6 15.58 139 9.1 15.92
(0.2) (0.1) (0.1) (0.6) (0.3) (0.5)

50 1,109 67 16.11 2,235 132 16.38 4,492 263 16.52
(0.3) (0.3) (0.2) (0.4) (0.4) (0.1)

MMR 100 2,133 134 15.53 4,267 265 15.67 8,842 528 16.88
(0.4) (0.5) (0.5) (0.2) (0.3) (0.5)

300 6,235 402 15.41 12,267 797 15.49 24,359 1,590 15.81
(0.1) (0.2) (0.3) (0.1) (0.2) (0.1)

1 38 2.5 12.34 73 4.5 12.87 145 8.5 13.47
(0.3) (0.6) (0.4) (0.2) (0.6) (0.5)

50 1,039 64 11.58 2,054 128 11.57 4,094 253 11.47
(0.2) (0.1) (0.3) (0.5) (0.4) (0.3)

MPF 100 2,045 127 11.43 4,027 254 11.71 8,090 503 11.81
(0.5) (0.3) (0.2) (0.6) (0.2) (0.1)

300 6,085 384 11.52 11,925 762 11.56 24,755 1,590 11.54
(0.4) (0.2) (0.4) (0.3) (0.1) (0.4)

It is also observed that the fixed point implementation of the algorithm in

processor speeds up the design by same amount irrespective of the algorithmic

complexity of the DE algorithm. This observation is true for all the three utility

functions for all the generation numbers. The robustness of the implementation

is supported by the low standard deviation of the execution speed over many

independent runs. Similar kind of analysis is carried for the execution speed of
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the algorithm by increasing the network parameters. Table 4.8 correspond to

the study of execution speed for network parameter as (10× 10 × 10). Table 4.9

correspond to the study of execution speed for network parameter as (20×20×20).

As the network parameter increases, the complexity of SA task increases. From

both the above tables, it is evident that (a) although the execution time increases

in individual cases, but the acceleration factor remains almost constant with the

increase in the network complexity, and (b) the fixed point implementation is the

optimum choice for this application.

Table 4.8: Average execution time of Spectrum Allocation problem in Float and
Fixed arithmetic (software) for (10× 10× 10)

NP =8 NP=16 NP=32
Float Fixed Float Fixed Float Fixed

Test Function GMAX SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 150 10.1 14.85 296 19 15.58 589 37 15.92
(0.3) (0.8) (0.5) (0.7) (0.2) (0.4)

50 4,286 266 16.11 8,583 524 16.38 17,083 1,034 16.52
(0.3) (0.6) (0.3) (0.3) (0.2) (0.2)

MSR 100 8,326 536 15.53 16,598 1,059 15.67 35,012 2,074 16.88
(0.1) (0.4) (0.3) (0.4) (0.5) (0.2)

300 24,868 1,614 15.41 49,823 3,216 15.49 100,154 6,335 15.81
(0.2) (0.1) (0.2) (0.2) (0.3) (0.2)

1 156 12 19.09 309 23 19.07 615 44 19.64
(0.4) (0.3) (0.6) (0.5) (0.5) (0.6)

50 3,713 305 16.95 7,712 608 16.09 15,646 1,178 16.58
(0.5) (0.1) (0.1) (0.3) (0.3) (0.2)

MMR 100 7,123 610 15.81 14,632 1,206 16.14 30,059 2,375 15.73
(0.3) (0.4) (0.2) (0.4) (0.4) (0.1)

300 20,765 1,832 15.19 42,658 3,650 14.90 87,630 7,147 14.93
(0.3) (0.2) (0.5) (0.2) (0.2) (0.3)

1 157 11 12.34 312 20 12.87 620 42 13.47
(0.6) (0.3) (0.4) (0.5) (0.5) (0.3)

50 3,824 270 11.58 7,674 540 11.57 15,421 1,060 11.47
(0.2) (0.2) (0.4) (0.3) (0.4) (0.2)

MPF 100 7,485 543 11.43 14,988 1,080 11.71 30,012 2,130 11.81
(0.3) (0.2) (0.2) (0.1) (0.5) (0.3)

300 22,455 1,650 11.52 44,964 3,296 11.56 90,038 6,550 11.54
(0.3) (0.1) (0.3) (0.5) (0.2) (0.1)

Subsequently, the hardware IP of the SA algorithm is verified as shown in

the Figure 4.12. The hardware execution time (HW) for optimizing three utility

functions are measured using the timer. The execution time for three different

network parameters setting (5× 5× 5, 10× 10× 10 and 20× 20× 20) is tabulated

in Table 4.10, 4.11 and 4.12 respectively.

The acceleration due to hardware implementation of the task is compared with

the equivalent floating point and fixed point software implementation. The accel-

eration factor in the case of floating point software implementation is calculated

as:

AF (Float) = Float SW/Fixed HW (4.1)
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Table 4.9: Average execution time of Spectrum Allocation problem in Float and
Fixed arithmetic (software) for (20× 20× 20)

NP =8 NP=16 NP=32
Float Fixed Float Fixed Float Fixed

Test Function GMAX SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 654 53 12.34 1,287 100 12.87 2,586 192 13.47
(0.5) (0.4) (0.3) (0.3) (0.7) (0.4)

50 15,028 1,298 11.58 29,925 2,586 11.57 58,974 5,140 11.47
(0.4) (0.4) (0.2) (0.1) (0.2) (0.1)

MSR 100 29,890 2,614 11.43 60,120 5,135 11.71 120,036 10,161 11.81
(0.2) (0.4) (0.3) (0.3) (0.4) (0.1)

300 91,086 7,906 11.52 180,210 15,583 11.56 359,860 31,189 11.54
(0.2) (0.3) (0.1) (0.4) (0.3) (0.2)

1 564 63 19.09 1,120 120 19.07 2,220 227 19.64
(0.6) (0.4) (0.5) (0.7) (0.3) (0.4)

50 14,320 1,550 16.95 28,370 3,065 16.09 56,210 6,002 16.58
(0.5) (0.2) (0.4) (0.5) (0.4) (0.3)

MMR 100 29,355 3,072 15.81 58,160 6,100 16.14 115,720 11,880 15.73
(0.5) (0.3) (0.2) (0.2) (0.2) (0.4)

300 87,480 9,170 15.19 179,319 18,180 14.90 356,685 35,110 14.93
(0.3) (0.2) (0.5) (0.4) (0.1) (0.3)

1 610 52 14.85 1,210 98 15.58 2,410 192 15.92
(0.3) (0.7) (0.6) (0.7) (0.3) (0.5)

50 16,920 1,294 16.11 33,440 2,550 16.38 66,210 5,021 16.52
(0.4) (0.5) (0.1) (0.2) (0.4) (0.4)

MPF 100 33,320 2,594 15.53 65,870 5,112 15.67 131,070 9,966 16.88
(0.3) (0.2) (0.3) (0.2) (0.3) (0.1)

300 98,620 7,810 15.41 194,300 15,510 15.49 385,345 30,062 15.81
(0.4) (0.2) (0.3) (0.3) (0.2) (0.4)

Table 4.10: Acceleration Factors of DE-SA coprocessor over DE-SA software
(Float and Fixed) for (5× 5× 5)

NP =8 NP=16 NP=32
Test Function GMAX HW(ms) AF AF HW(ms) AF AF HW(ms) AF AF

(Std%) Float Fixed (Std%) Float Fixed (Std%) Float Fixed
1 0.4 105.00 5.50 0.8 102.50 5.38 1.6 101.88 5.19

(0.3) (0.7) (0.4)
50 11 97.09 5.73 22 91.41 5.68 43 95.65 5.77

(0.3) (0.3) (0.2)
MSR 100 22 91.27 5.77 43 94.23 5.84 85 92.00 5.85

(0.2) (0.2) (0.2)
300 66 87.67 5.77 129 87.41 5.87 254 88.05 5.90

(0.1) (0.1) (0.1)
1 0.3 88.24 5.94 0.6 87.06 5.59 1.1 87.91 5.52

(0.8) (0.6) (0.6)
50 11 97.41 6.05 21 98.66 6.02 43 99.32 6.01

(0.4) (0.3) (0.3)
MMR 100 23 95.70 6.16 45 96.50 6.16 89 102.98 6.10

(0.4) (0.3) (0.3)
300 65 94.92 6.16 129 96.74 6.24 263 98.97 6.26

(0.2) (0.1) (0.1)
1 0.3 80.74 6.54 0.6 82.50 6.41 1.1 84.79 6.30

(0.7) (0.6) (0.7)
50 12 77.46 6.69 22 77.73 6.72 45 76.79 6.69

(0.5) (0.4) (0.3)
MPF 100 23 77.64 6.79 43 78.90 6.74 87 79.08 6.69

(0.4) (0.3) (0.2)
300 66 78.79 6.84 134 79.14 6.84 258 79.76 6.91

(0.2) (0.2) (0.1)

Similarly, in the case of fixed-point software implementation AF is calculated and

tabulated in Table 4.10. This analysis for acceleration is carried out for all the



CHAPTER 4. FPGA IMPLEMENTATION OF DE-BASED SA 77

Table 4.11: Acceleration Factors of DE-SA coprocessor over DE-SA software
(Float and Fixed) for (10× 10× 10)

NP =8 NP=16 NP=32
Test Function GMAX HW(ms) AF AF HW(ms) AF AF HW(ms) AF AF

(Std%) Float Fixed (Std%) Float Fixed (Std%) Float Fixed
1 1.7 88.24 5.94 3.4 87.06 5.59 6.7 87.91 5.52

(0.5) (0.3) (0.2)
50 44 97.41 6.05 87 98.66 6.02 172 99.32 6.01

(0.4) (0.2) (0.1)
MSR 100 87 95.70 6.16 172 96.50 6.16 340 102.98 6.10

(0.3) (0.3) (0.1)
300 262 94.92 6.16 515 96.74 6.24 1,012 98.97 6.26

(0.1) (0.2) (0.1)
1 1.4 105.00 5.50 2.8 102.50 5.38 6.1 101.88 5.19

(0.4) (0.3) (0.2)
50 43 97.09 5.73 86 91.41 5.68 171 95.65 5.77

(0.5) (0.5) (0.3)
MMR 100 86 91.27 5.77 171 94.23 5.84 342 92.00 5.85

(0.3) (0.3) (0.3)
300 263 87.67 5.77 516 87.41 5.87 1,020 88.05 5.90

(0.1) (0.2) (0.2)
1 1.6 80.74 6.54 3.1 82.50 6.41 6.2 84.79 6.30

(0.5) (0.4) (0.3)
50 44 77.46 6.69 87 77.73 6.72 172 76.79 6.69

(0.3) (0.3) (0.2)
MPF 100 87 77.64 6.79 173 78.90 6.74 343 79.08 6.69

(0.2) (0.2) (0.2)
300 264 78.79 6.84 517 79.14 6.84 1,018 79.76 6.91

(0.1) (0.1) (0.1)

Table 4.12: Acceleration Factors of DE-SA coprocessor over DE-SA software
(Float and Fixed) for (20× 20× 20)

NP =8 NP=16 NP=32
Test Function GMAX HW(ms) AF AF HW(ms) AF AF HW(ms) AF AF

(Std%) Float Fixed (Std%) Float Fixed (Std%) Float Fixed
1 8.1 80.74 6.54 15.6 82.50 6.41 30.5 84.79 6.30

(0.3) (0.2) (0.2)
50 194 77.46 6.69 385 77.73 6.72 768 76.79 6.69

(0.2) (0.1) (0.1)
MSR 100 385 77.64 6.79 762 78.90 6.74 1,518 79.08 6.69

(0.4) (0.1) (0.1)
300 1,156 78.79 6.84 2,277 79.14 6.84 4,512 79.76 6.91

(0.2) (0.2) (0.1)
1 8.0 105.00 5.50 15.5 102.50 5.38 30.4 101.88 5.19

(0.2) (0.2) (0.2)
50 195 97.09 5.73 386 91.41 5.68 772 95.65 5.77

(0.3) (0.4) (0.4)
MMR 100 387 91.27 5.77 767 94.23 5.84 1,525 92.00 5.85

(0.1) (0.6) (0.3)
300 1159 87.67 5.77 2,292 87.41 5.87 4,523 88.05 5.90

(0.1) (0.2) (0.2)
1 7.9 88.24 5.94 15.3 87.06 5.59 30.3 87.91 5.52

(0.3) (0.2) (0.2)
50 194 97.41 6.05 387 98.66 6.02 770 99.32 6.01

(0.2) (0.1) (0.1)
MPF 100 386 95.70 6.16 764 96.50 6.16 1,520 102.98 6.10

(0.2) (0.2) (0.2)
300 1,158 94.92 6.16 2,289 96.74 6.24 4,525 98.97 6.26

(0.1) (0.1) (0.1)
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utility functions with different population size and number of generations. The

standard deviation (std%) of execution time for 20 independent runs is also tab-

ulated in the Table 4.10. From this table, it is observed that DE-SA hardware IP

gives an acceleration of 87.41 - 105x and 5.19 - 5.9x over float and fixed software

implementation while optimizing the MSR utility function. The acceleration fac-

tor is almost same with the increase in population size and number of generations.

The acceleration of the hardware IP over fixed point software implementation is

due to the parallelization in FPGA. A significant acceleration ∼ 100x is observed

over floating point software implementation. Similar trend in acceleration factor is

observed while optimizing other two, i.e., MMR and MPF utility functions. The

same analysis is performed by changing the network parameters as (10× 10× 10),

(20×20×20) and the results are tabulated in Table 4.11 and 4.12. By comparing

the Table 4.10, 4.11 and 4.12 it is observed that with the increase in the network

complexity, individually the hardware IP and the processor takes more execution

time to complete the SA task, however the overall acceleration factor remains al-

most constant. The low standard deviation concludes about the robustness of the

implementation.

4.6.2 Convergence results

The convergence graph of DE algorithm for Fun2 test function is shown in Figure

4.14. This compares the convergence results of fixed point DE algorithm imple-

mented in embedded processor (SW) and coprocessor (HW). It is observed that

both the implementation gives approximately same quality of solution and con-

vergence rate. It proves the correctness of the developed hardware IP. The DE-SA

algorithm is implemented in the FPGA as shown in the Figure 4.12. The fitness

values, i.e., the converged values of the utility functions are compared with the re-

sults obtained from the software, i.e., PowerPC processor. The convergence results

of the three utility functions for different network configurations (i.e; 5 × 5 × 5,

10×10×10 and 20×20×20) are shown in Figure 4.15, 4.16 and 4.17 respectively.

In these figures, (HW) and (SW) correspond to the results obtained using the

DE-SA hardware IP (coprocessor) and the processor respectively. The results

shown are the mean results obtained for 20 independent runs. From the Figure

4.15, it is observed that at the beginning of generation/iteration both SW and

HW gives same value due to the same seed for generating random numbers, and
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Figure 4.14: Convergence graph of Fun2 test function in hardware and software
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Figure 4.15: Convergence graph of MSR

afterwards there is a slight variation in the reward values (fitness values). The vari-

ation is because they generate different random numbers with iteration. It affects

the performance of DE algorithm and its convergence. Similarly, Figure 4.16 and

Figure 4.17 analyze the convergence behavior of the HW and SW for optimizing

the Max-Min-Reward (MMR) and Max- Proportional-Fair reward (MPF ) utility

functions. The convergence graphs conclude that the SW and the developed IP

functionally behaves almost the same.
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Figure 4.16: Convergence graph of MMR
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Figure 4.17: Convergence graph of MPF

4.6.3 Synthesis results

The DE-SA IP is built by interconnecting the multiple modules like DE IP and net-

work utility functions. This IP is parameterized in terms of population size (NP ),

dimension (D), maximum number of generations (GMAX), crossover rate (Cr),

weighting factor (F ), number of secondary users (N), number of primary users (K)

and number of channels (M). Table 4.13 shows Xilinx Synthesis Tool (XST) syn-
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thesis results (resource utilization) of individual utility functions namely, MSR,

MMR, MPF and the complete DE-SA IP that includes the DE algorithm and

the three network utility functions. The three network utility function modules re-

quire almost similar amount of resources. The resource utilization for the DE-SA

IP (61% of BRAM, 62% of DSP48E, 13% of Slice registers, 22% of LUTs and 35%

of Slices) is tabulated in the same table and observed that BRAM and DSP48E

utilization is more due to computations like multiplication, division operations.

Table 4.13: Resource utilization of MSR, MMR, MPF and DE − SA

Test Function BRAM DSP48E Slice Registers Slice LUTs Slices LUT FF pairs
MSR 4(2%) 5(3%) 918(2%) 1370(3%) 545(4%) 586(34%)
MMR 4(2%) 5(3%) 793(1%) 1167(2%) 458(4%) 534(37%)
MPF 4(2%) 5(3%) 922(2%) 1365(3%) 534(4%) 613(36%)

DE − SA 92(61%) 80(62%) 6603(13%) 10008(22%) 3971(35%) 3851(56%)

The power analysis of the DE-SA IP is performed using XPower Analyzer

tool of Xilinx ISE 10.1. Table 4.14 shows the power consumed by each resource

block of the FPGA (Xilinx Virtex-5) along with its resource utilization for this

application. The hierarchal power analysis of the developed DE-SA System on

Chip (SoC) system is tabulated in Table 4.15. From this table, it is observed

that the proposed IP consumes 26.53mW i.e., 17% of total power (152.66mW)

consumed by the complete SoC system. Furthermore, device utilization of the

total SoC system along with the customized DE-SA IP is tabulated in Table 4.16.

Resources like Bonded IOBs, BUFG and PLL ADVs are used only in the SoC

system but not in the IP. This table reveals that DSP48E slices are used by the IP

only. Hence, all the computational task is performed in the IP core. The achieved

maximum operating frequency of the core is 63.5 MHz although the complete SoC

system can work at 200MHz frequency.

Table 4.14: Power analysis of system

Resource Power consumed Used Total available % utilization
(mW)

Clock 120.03 12 - -
Logic 1.54 10112 44800 22.6
Signals 4.17 18946 -
IOs 3298.22 233 722 32.3
BRAMs 21.81 90 148 58
DSPs 1.28 70 128 54.7
PPC440 44.74 1 1 100
PLL 69.24 2 6 33.3
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Table 4.15: Hierarchy power analysis of DE − SA SoC system

Resource Type Power(mW)
Total SoC system 152.66

PowerPC440 44.99
Clockgen 74.91

APU 26.53
DDR2 5.66

SysACE Compact Flash 0.29
RS232 Uart 1 0.13

PLB 0.02
proc sys reset 0 0.04

xps timer 0 0.03
xps timer 1 0.03
xps intc 0 0.02

xps bram cntlr 0.01
xps bram 0.00

Table 4.16: Device utilization of system and Core

Resource Total SoC Core
Slice Registers 8564(19%) 4700(10%)

Slice LUTs 11141(24%) 7859(17%)
LUT FF-Pairs 3295(23%) 2402(20%)

BRAM 88(59%) 84(56%)
DSP48E 70(54%) 70(54%)

Bonded IOBs 54(8%) -
BUFG 9(32%) -

PLL ADVs 2(33%) -
Max Freq 200 MHz 63.549 MHz

4.7 Conclusions

In this chapter, a hardware based solution for the SA problem in CR networks

is proposed. Initially, a scalable hardware IP with APU interface is developed

as a coprocessor for accelerating execution speed of the DE algorithm. To avoid

bus overhead, the complete DE algorithm with fitness evaluation module is im-

plemented in the hardware instead of partitioning the design into software and

hardware. To validate the performance of the coprocessor, six numerical test-

bench functions are optimized and compared execution time in both software and

hardware implementations. The experimental results have shown that an accel-

eration of approximately by 25 - 27.63x and 135.79 - 147.39x is attained while

optimizing a 32 dimension Fun6 complex test function compared to the fixed and

floating point software implementation respectively. For optimizing less complex

fitness functions i.e., Fun1 the coprocessor attained speedup of approximately by
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2.43 - 3.94x over fixed point and 82.09 - 98.20x over floating point software imple-

mentation respectively.

Subsequently, the DE-SA IP is developed by integrating network utility func-

tions to DE IP and verified its functionality on Xilinx Virtex-5 FX70T FPGA

based system on chip platform. The DE-SA IP is interfaced to the PPC440 hard-

core processor via auxiliary processor unit controller. It is scalable in terms of a

number of primary users, secondary users, and available channels. The accelera-

tion factor is evaluated in different network and algorithmic configurations, it is

observed an acceleration of 5.19 - 6.91x and 76.79 - 105x over the fixed and floating

point implementation of the SA algorithm on the PPC440 processor respectively.

Resource utilization of the IP core is also reported. Maximum operating frequency

and the power consumption of the IP are observed as 63.55 MHz and 26.53 mW

respectively.



Chapter 5

Spectrum Allocation using

Multi-Objective Differential Evolution

algorithm and its FPGA implementation

In CR Network, spectrum holes are assigned to SUs using spectrum allocation

(SA) algorithm by optimizing multiple objectives to provide best channels with-

out interference to primary users. In this chapter, forced termination probability,

and network utility functions (i.e., Max-Sum-Reward, Max-Min-Reward and Max-

Proportional-Fair) are simultaneously optimized to provide best channels to SUs.

Thus, the SA problem is formulated as a multi-objective optimization problem

consisting of the above mentioned four objective functions and solved using Non-

dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Differen-

tial Evolution (MODE) algorithms. Further, to improve the efficiency of channel

assignment solution, a joint spectrum and power allocation algorithm is used to

maximize both individual and total network capacity. Finally, MODE-based SA

(MODE-SA) algorithm is implemented on a SoC embedded platform to enhance

the execution speed of the algorithm.

5.1 Spectrum Allocation in Cognitive Radio Networks using

Multi-Objective Differential Evolutionary algorithm

5.1.1 Introduction

In chapter 4, DE-based SA IP was implemented on a FPGA and shown that the

hardware IP accelerated the execution speed of SA algorithm compared to the

processor implementation. In Chapter 3, the network utility functions were op-

timized individually to maximize the network resource utilization. This model is

84
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valid if the quality of service (QoS) depends on only one of the utility functions.

However, in reality more number of conflicting functions are associated with qual-

ity of service. To find a set of trade-off solutions, all the utility functions are need

to be optimized simultaneously. In the CR operation, it is possible that a PU will

arrive during a SU’s operation in a vacant primary user band. It leads to forced

termination of SU with a probability known as forced termination probability.

It degrades the SU network capacity. In a situation, when all the channels are

occupied by either SU or PU and a SU request for a channel then the requested

SU will be blocked with a probability known as blocking probability. It also leads

to degrade the SU network capacity. However in this work, network capacity is

analyzed with respect to forced termination probability only using Markov mod-

els. Forced termination probability is considered as a performance indicator for

SA technique. There exist many studies that independently addresses technique

to optimize the utility functions and analyze the traffic model separately. Zhu et.

al presented a Markov model to analyze the spectrum access for cognitive users in

licensed bands [14]. Blocking probability, forced termination probability, and traf-

fic throughput are formulated as performance indicators of the allocation scheme.

In literature, the forced termination probability is analyzed after completion of

the allocation process [15]. However, the forced termination probability depends

on the allocation results, hence it is necessary to take the termination probability

into account during the allocation process. Thus in this work, the forced termina-

tion probability is considered as one more objective function along with the three

utility functions described in Chapter 3 and are optimized simultaneously using

multi-objective optimization algorithms.

In literature, different evolutionary algorithms such as NSGA-II [143], PSO

[144] and DE [145] are used for solving multi-objective optimization problems.

NSGA-II is a popular technique with the advantages of fast nondominated sorting

procedure and an elitist strategy to solve multi-objective problems [143]. DE is a

powerful and simple evolutionary algorithm proposed by Storn and Price [112] and

successfully demonstrated for solving single-objective optimization problems. DE

technique is extended to solve multi-objective optimization problems and proved

its superiority compared to other algorithms [146, 147, 148, 149, 150]. MODE

algorithm with non-dominated sorting [151] technique finds a true pareto opti-

mal solution [152] and provides better accuracy compared to NSGA-II [153]. In

a multi-user and multi-relay cooperative cellular network, SA is formulated as a
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multi-objective optimization problem that optimizes the network throughput and

transmitted power of each user simultaneously [154]. In a centralized wireless

sensor networks, the SA problem was solved using bi-objective mixed integer non-

convex nonlinear programming method that provides maximum spectrum utiliza-

tion and fairness simultaneously [155]. In the present work, MODE and NSGA-II

algorithms are used to find the trade-off solutions between the network utility

functions and forced termination probability.

In the cognitive network model, it is assumed that every cognitive user decides

its spectrum by executing a distributed SA algorithm. Hence, each cognitive user

uses its embedded computing platform to compute the assignment matrix with

the information available from the neighborhood users. However solving SA using

MODE algorithm on an embedded processor is a challenging task as it consumes

most of the resources and degrades the execution performance of other primary

applications. Hence, it demands a dedicated hardware peripheral to accelerate

the execution speed of the MODE-SA task. Since MODE is a superior algorithm

for solving multi-objective optimization problems, the present work proposes a

hardware architecture for MODE algorithm. The proposed hardware is an ex-

tension of the architecture explained in Chapter 4. The major functionalities of

MODE algorithm are mutation, crossover, selection, dominance filter and fitness

evaluation (three network utility functions). The fitness evaluation module is a

computationally complex module and needs to be implemented in hardware to

speed up the execution of the application. In this work, the fitness functions

and MODE modules are integrated into a single core. It avoids bus transaction

overhead between the two different modules. The functionality of MODE IP core

is validated by optimizing two benchmark test functions mentioned in Appendix

A.3. Then finally MODE-SA hardware is developed and interfaced to PPC440

processor through APU controller to design a MODE-SA coprocessor.

5.1.2 Related work

In literature, Wen et al. proposed Genetic Algorithm (GA) based SA scheme

using Max-Overall-Performance algorithm [156] where cognitive radio user fair-

ness access and system’s sum bandwidth are optimized by introducing a penalty

function into the objective function. It resulted trade-off solutions by maximiz-

ing the overall system performance. However, the results are not compared with
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any other popular evolutionary algorithms. Byun et al. used bi-objective mixed

integer non-convex nonlinear programming method to solve centralized SA prob-

lem in wireless sensor network [155]. It aimed to achieve maximum fairness and

maximum spectrum utilization simultaneously. The disadvantage of this approach

is that the centralized approach requires more signaling between the server and

the wireless nodes in the network. Devarajan et al. formulated the SA task as

a multi-objective optimization problem for a multi-relay and multi-user coopera-

tive cellular network [154] to optimize the power and throughput simultaneously.

It considered the quality of service in terms of signal-to-noise ratio and fairness

among users.

In literature, some of the multi-objective optimization algorithms have been

implemented in hardware to accelerate the execution performance of the algo-

rithms. Jonathan Kok et. al developed a hardware for NSGA-II and implemented

on Xilinx Virtex 4 FPGA [157]. It was validated by solving four test bench func-

tions and achieved approximately a speedup of 1300x compared to the processor

implementation results. Multi-Objective Genetic Algorithm (MOGA) is also used

to solve multi-objective optimization problems but requires large computation

power. Tachibana et. al implemented MOGA in hardware to accelerate the ex-

ecution speed with high search efficiency [158]. The hardware was validated by

solving a multi-objective Knapsack problem. There is no previous work related to

the hardware implementation of the MODE-SA. In this chapter, initially the SA

problem is solved using different multi-objective evolutionary algorithms. Finally,

FPGA based hardware accelerator is proposed to accelerate the execution per-

formance of MODE-SA. The execution speed of the hardware is compared with

equivalent PPC440 processor execution speed.

5.1.3 Multi-Objective problem formulation of Spectrum Allocation

In this chapter, three network utilization functions are optimized simultaneously

by considering the two constraints: a) number of selected channels (Ch) and b)

required channel capacity (R). The SA model is same as shown in Figure 2.3.

The definition of utility functions i.e., MSR, MMR and MPF are also same as

defined earlier in Equations.(2.3), (2.4), (2.5) of Chapter 2. Mathematically, the

multi-objective spectrum allocation can be defined as:
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Maximize [MSR,MMR,MPF, 1/FT ]

subject to :
M∑
m=1

an,m = Ch

M∑
m=1

bn,m ≥ R

(5.1)

where FT is forced termination probability.

5.1.4 Forced termination probability

i, j-1

i-1, j i+1, ji, j

jµb

iµa (i+1)µa

i, j+1

(j+1)µb

Figure 5.1: Transitions of cognitive radio from one state to another

In this work, SA is modeled as a continuous time markov chain, and it is

characterized by its states and transition rates as shown in Figure 5.1 [14, 15]. Let

primary users and cognitive users share M channels and state is denoted by an

integer pair (i, j), where i is the total number of channels used by the secondary

users and j is the total number of channels used by primary users. It is assumed

that the arrival rates of secondary and primary users are λa and λb respectively,

and modeled as a Poisson process. Let the corresponding service rates are µa and

µb respectively. Primary users have the highest priority to occupy the band as

they are the licensed users. Cognitive users are supposed to vacate the band if

a primary user demands to use the particular band. Forced termination occurs

when a PU occupies a channel used by SU. At this instant SU will move from the

state (i, j) to (i, j + 1) ... (i − t, j + 1) depending on t, where t is the number

of channels preempted by PU. The residual (i − t) channels are distributed in

remaining (M − j− 1) channels. In this work, two assumptions are considered for

SA.
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1. Forced termination of a SU occurs only when the SU using the same channel

which is preempted by a PU.

2. If the PU occupies the channel other than the same band then forced termi-

nation will not occur, only data rate will get reduced.

For the above given SA model, let us consider an example with N=5, M=5

and K=5, then the total number of states is [14]

1 +
M∑
x=1

(x+ 1) = 21

The channel assignment matrix corresponding to above example is ANXM

A5X5 =


1 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 0 1 0 0

0 0 1 1 1


In the above matrix, rows represent SUs and columns represent channels that

are assigned to utilize spectrum resources. Let S be the number of cognitive users

for which a particular channel is available (for channel 1 S=1, for channel 3 S=4

) and V is the number of channels that each cognitive user can occupy (for SU1

V=3, for SU2 V=2). Let nc be the number of cognitive users in the present state

and np be the number of PUs in the present state. γ
(nc,np)

(nc−1,np+1) is defined as the

transition rate from the state (nc, np) to (nc − 1, np + 1) [14].

γ
(nc,np)

(nc−1,np+1) =

(
S
1

)(
M−np

V−1

)
∗ λb(

M−np

V

) (5.2)

A transition occurs when the primary user will retain its channel for communi-

cation. Forced termination of the secondary users occur when a channel occupied

by a SU is retained by a PU. In this scenario, the SU has to vacate the channel.

This termination may also occur if the reward value of the mth channel i.e., bn,m

is less than the threshold value. The forced termination probability (PF ) is given

by:
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PF =
M∑

np=0

N∑
nc=0

1

nc
∗ γ(nc,np)

(nc−1,np+1)P (nc, np) (5.3)

where P (nc, np) is the transition probability matrix [14].

5.1.5 Multi-Objective Differential Evolution algorithm

The multi-objective optimization problem for maximizing a set of functions can

be generalized as follows:

Maximize [f1(x), f2(x), ..., fk(x)]

Subject to : gl(x) ≤ 0, l = 1, 2, ..., n

hj(x) = 0, j = 1, 2, ...,m (5.4)

where k is the number of fitness functions, l is the number of inequality con-

straints and j is the number of equality constraints. x ∈ Xd is vector of deci-

sion variables, where d is the number of independent variables xi. fi(x) are cost

functions or objective functions. Trade-off solutions are obtained by solving the

multi-objective optimization problem. A trade-off solution is said to be pareto

optimal when there exists no solution that dominates it. Then a set of pareto op-

timal points resulting in solution space is known as pareto front. The algorithmic

parameters of MODE algorithm are tabulated in Table 5.1. The pseudo-code of

the multi-objective differential evolution is described in Algorithm 7.

Table 5.1: Control parameters of the MODE algorithm

Control Parameters Value
Population Size (XPOP ) 600
Maximum number of Iterations (Max Gen) 200
Weight Factor (F ) 0.5
Crossover rate (Cr) 0.2
Number of Objective functions (Nobj) 2,3
Maximum number of Function Evaluations (Fun Eval) 30000
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Algorithm 7 : Pseudo-code of Multi-Objective Differential Evolution algorithm
Step 1: Read the control parameters of the MODE algorithm given in Table 5.1:
number of objectives Nobj, weight factor F , crossover rate Cr, maximum number of
iterations Max Gen, maximum functional evaluations Fun Eval and the population
size XPOP from user.
Step2: Set the generation number G=0 & randomly initialize population of XPOP
individuals

for i=1 to XPOP //do for each individual sequentially do
for j=1 to Nvar //do for each individual sequentially do
Parent(i, j) = Xmin + (Xmax-Xmin)*rand(); //each individual uniformly dis-
tributed in the range [Xmin, Xmax] where Xmin = {xmin1 , xmin2 , ...., xminNvar} and
Xmax={xmax1 , xmax2 , ...., xmaxNvar}

end for
end for
Step 3:
while the maximum functional evaluations limit is not reached OR G< Max Gen do

for i=1 to XPOP //do for each individual sequentially do
Step 3.1: Mutation Step
Generate a mutant vector Mutant(i)(G)={mutantG1,i, ....,mutantGNvar,i} corre-

sponding to the ith target vector Parent(i)(G) via the differential mutation
scheme of DE as: Mutant(i)(G) = Parent(r1)(G) + F ∗ (Parent(r2)(G) −
Parent(r3)(G)), Vector indices r1, r2 and r3 are randomly chosen, where r1, r2

and r3 {1,...,XPOP}
Step 3.2: Crossover Step

Generate a trial vector Child(i)(G)={child(G)
1,i , ...., child

(G)
Nvar,i} for the ith target

vector Parent(i)(G) through binomial crossover in the following way:
if (randi,j [0, 1] ≤ CR, then
Child(i)(G) = Parent(i)(G)

else
Child(i)(G)=Mutant(i)(G)

endif
Step 3.3: Selection Step
Evaluate the trial vector Child(i)(G)

if f(Child(i)(G)) ≤ f(Parent(i)(G)), then
Parent(i)(G+1)= Child(i)(G)

else
Parent(i)(G+1)= Parent(i)(G)

endif
end for
Step 3.4: If stopping criterion is not satisfied then increase the Generation Count:
G = G + 1

end while
Step 4: Dominance filter is used to get pareto optimal solution of the problem.
Report results
Terminate
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5.1.6 MODE based Spectrum Allocation

In the proposed MODE-SA, each individual population represents a conflict free

channel assignment to SUs. The dimension of the population is evaluated using

the availability matrix L that satisfies the condition ln,m = 1. The values of L,

B and C matrices are initialized using the Algorithm 1 given in chapter 3. The

proposed MODE-SA algorithm is described as follows:

1. Initialize the MODE and SA algorithmic parameters as shown in Table 5.1

2. Given L = {ln,m|ln,m ∈ {0, 1}}N×M , B = {bn,m}N×M and C = {cn,p,m|cn,p,m ∈
{0, 1}}N×N×M , dimension of the population is set to D =

∑N
n=1

∑M
m=1 ln,m

and GMAX is set to 0;

3. Generate the parent population (Parent(g, h)) randomly, Xg = [x1,g, ...., xD,g]

where xd,g ∈ 0, 1, and g ∈ (1 . . . XPOP )

4. Generate the channel availability matrix (A) by using L, B and C matrices

obtained using Algorithm 1.

5. Calculate the fitness of each individual of the current population using Equa-

tions.(2.3), (2.4) and (2.5).

6. Perform the mutation operation to generate mutant vectors and the bounds

of the population values are verified.

7. Perform crossover and selection operations and update the parent population

as defined in the MODE algorithm (Algorithm 7).

8. Increment the GMAX value, if it reaches the predefined maximum iterations

or maximum number of function evaluations then the parent population

obtained from the step (7) is given to the dominance filter and stop the

process else go to step (6) and continue.

9. In the dominance filter, non-dominated sorting operation is performed to

obtain non-dominated solutions as a pareto front.
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5.1.7 Simulation setup and Results

The simulation is carried out by assuming the CR environment as static and

noiseless. MATLAB software is used to perform the extensive simulation on In-

tel Dual Core processor with 2GB RAM. In this work, four objective functions

namely MSR, MMR, MPF and Forced termination probability are optimized

simultaneously using MODE and NSGA-II algorithms. It is assumed that in the

network there are N cognitive users, M number of channels and K primary users.

Each primary user has a communication range denoted as dp. The secondary users

can use the vacant channel without any interference to neighbor users within the

transmission range, i.e., between dmin and dmax. The simulation parameters of SA

algorithm are N=20, K=20, M=20, dP=1, dmin=1, dmax=4, Ch=4 and R=512

Kbps. These values are used to derive the availability matrix, reward matrix,

constraint matrix and channel assignment matrix [8]. The threshold value of the

reward is set to 16 Kbps. The algorithmic control parameters of MODE are tab-

ulated in Table 5.1. In the case of NSGA-II, the population size, and maximum

generations are chosen as 600 and 200 respectively. In the current simulation, the

service rate of secondary and primary users are set as 0.82 and 0.06 respectively

for calculating the termination probability. The arrival rate of SUs is fixed to 0.3,

whereas it varies in between 0.02 to 0.1 for PUs.

The performance of algorithm is measured in terms of time complexity and

pareto front. Both NSGA-II and MODE algorithms are executed for 20 indepen-

dent runs. The time complexity of both the algorithms is evaluated as [128]. The

following test code (Algorithm 8) is used for obtaining the time complexity.

Algorithm 8 : Test Code

for i=1 to 1000
x= double(5.55);
x=x+x; x=x./2; x=x*x; x=sqrt(x); x=log(x);
x=exp(x); y=x/x;
end for

Table 5.2 shows the percentage of improvement in time complexity of MODE

over NSGA-II algorithm for solving the SA problem. The pareto front between

the two objective functions i.e., MSR vs. Forced termination probability, MMR

vs. Forced termination probability and MPF vs. Forced termination probability

are shown in Figures 5.2 - 5.4 respectively.
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Table 5.2: Time complexity of NSGA-II and MODE

Fitness Function NSGA-II MODE Percentage
of Improvement

MMR & FT 4.66e+5 1.38e+5 237
MSR & FT 4.87e+5 1.47e+5 232
MPF & FT 4.44e+5 1.30e+5 241

MSR, MMR & MPF 4.41e+5 1.86e+5 137
MSR, MMR, MPF & FT 5.63e+5 1.96e+5 187

FT = Forced termination probability
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Figure 5.2: MSR vs Forced termination probability
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Figure 5.3: MMR vs Forced termination probability

Figure 5.2 depicts the typical nature of maximizing MSR while minimizing

forced termination probability. It is observed that, as the MSR value increases,
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Figure 5.4: MPF vs Forced termination probability
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Figure 5.5: Pareo front of three and four objective functions

forced termination probability also increases. Figure 5.3 and Figure 5.4 shows

the optimal front between MMR, MPF vs. forced termination probability re-

spectively. From the above figures, it is observed that the forced termination

probability increases with the increase in the values of MSR, MMR and MPF .

Furthermore, the effect of including the termination probability along with three

utility functions in the optimization is also studied. For this study, four ob-

jective functions are optimized simultaneously using both MODE and NSGA-II

algorithms, and results are plotted as pareto fronts in Figure 5.5. To avoid the

difficulty in observing the results, scatter plot matrix is used to analyze the cor-
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relation between the two objective functions. Diagonal plot (histogram) shows

the plot between the same objective function (i.e., MSR vs MSR). The legend

MODE and NSGA-II correspond to the front using MODE and NSGA-II algo-

rithms. From this figure, it is observed that MODE gives better front compared

to NSGA-II algorithm.
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Figure 5.6: Performance of Quality of Service

In order to observe the influence of termination probability in the solution, first

the three utility functions are optimized simultaneously and the forced termination

probability is calculated at three different instances (S1, S2, and S3) from the front

shown in Figure 5.5. Secondly, three instances that have approximately same

front value as previous are selected from the MODE (with 4 objective functions)

result. The calculated and optimized termination probability are plotted in Figure

5.6. From this figure, it is observed that inclusion of termination probability in

allocation problem gives an efficient channel assignment solution with minimum

termination probability. Thus, it is concluded that the quality of the solution

is improved. The same conclusion can be drawn for NSGA-II solutions also. In

Figure 5.6, the solutions S4, S5, and S6 corresponds to three different instances

obtained using NSGA-II algorithm.
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5.2 Joint Spectrum and Power Allocation in Cognitive Ra-

dio Networks

5.2.1 Introduction

Power allocation also plays an important role in the interference management and

energy saving in mobile units. During power allocation, it is required to maintain a

specific Signal-to-Interference-plus-Noise Ratio (SINR) level to the cognitive users

such that it minimizes interference level to the PUs. In literature, most of the re-

ported work solved the SA problem by maximizing the network throughput. The

optimization of network throughput with power constraint guarantees minimum

interference between CR to CR users and CR to PUs in the network while achiev-

ing maximum network capacity. Hence, it is required to optimize the individual

transmitted power of each user during SA. Digham et. al proposed a joint power

and channel allocation optimization algorithm for maximizing sum capacity of the

CR network, while satisfying SINR constraints posed by PUs [159]. However, it

does not consider the fairness among the CR users. Wang et. al proposed a novel

SA and power control algorithm to maximize the network utility functions in CR

networks [160]. In [160], transmitting power of CR node is dynamically varied

according to the cost and connection degree by satisfying the quality of service

requirements and interference constraints posed by SUs.

Haddad et al. proposed a downlink and uplink distributed power allocation

algorithm to maximize the CR network capacity [161, 78]. In [161], a SU can

decide either to communicate or silent in the channel without affecting the QoS

of PUs. Zayen et. al proposed a binary power allocation scheme that consists

of a single PU and multiple SUs in the network [79]. However in real-time, the

SU transmission cannot be on a single channel to communicate with other users.

If a SU uses multiple channels for communication, then it may affect on multiple

PUs transmission due to interference. In recent studies, CR protocols are extended

such that both primary and secondary users simultaneously transmit over the same

channel [162, 163]. The present work considers that the SUs communicate over

the same channel along with PUs at the same time with an acceptable interference

from SUs.

In literature, many works have considered the centralized optimization scheme
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for power control that requires the information about interference and channel con-

ditions of the network [164, 79, 159]. To avoid this problem, distributed scheme is

preferred in which each user can manage its resources based on locally available

information like channel gain, interference and noise conditions. In distributed

scheme, the system capacity is maximized without any interference to PUs by

considering SU interference and information outage probability. The outage prob-

ability is used to define probability of mutual information channel data rate is

below the transmitted code rate [165]. The mutual information of the channel

must be able to provide target data rate R to achieve better communication.

Hence, the SU can adapt its power level pi,j in between 0 and pmax to achieve the

desired data rate by not affecting the outage probability of PUs. For SA, channel

capacity is the most important factor to assign channels for the requested users.

Hence, it is necessary to optimize the network capacity and transmitted power of

each user (i.e., the individual average capacity of SU) simultaneously to achieve

minimum interference to PUs and required QoS.

The main goal of the present work is to assign suitable channels to SUs with op-

timum transmitting powers for maximizing the network throughput under various

constraints like noise, power, and interference. In the present work, the channel

gain and network throughput are calculated using different channel characteristic

parameters such as path loss, attenuation, fading of respective channels and their

interference to neighbor users. A joint spectrum and power allocation function is

formulated to maximize the capacity of each user. It is solved using DE and PSO

algorithms to provide a fair allocation of channel and transmission power to SUs

in both uplink and downlink scenarios. It is also important to study the effect of

the joint spectrum and power allocation on the total network utilization. In lit-

erature, the total network utilization is analyzed using Max-Sum-Reward (MSR)

utility function in a distributed network architecture. It is used to maximize the

utilization of spectrum resources by assigning proper channels to SUs by satisfy-

ing the interference constraints posed by both SUs and PUs. Hence, this study is

extended to optimize the total network utilization (MSR) and capacity of each

user simultaneously using MODE and NSGA-II algorithms. Trade-off solutions

between the two objective functions are obtained through a pareto front. The

performance of two algorithms are compared in terms of quality of the solution.

Finally, forced termination probability is included as one more objective function

and optimized the three functions simultaneously to find the quality of service



CHAPTER 5. MODE-BASED SA AND ITS FPGA IMPLEMENTATION 99

metric of the proposed algorithm.

5.2.2 System model

It is considered that a wireless cognitive radio network consists of K number

of primary users and N number of secondary users randomly deployed over a

geographical area as shown in Figure 5.7. It is assumed that M number of channels

are available for communication. In this model, a certain number of primary users,

secondary users and channels are scheduled to communicate at a given instant of

time while remaining users are silent. It is also assumed that (i) all SUs have a

prior knowledge about the channel state information of their links and (ii) channel

gains are independent and identically distributed random variables. Each PU is

covered by a non-interference boundary and SUs do not communicate within this

range in an ad-hoc manner.
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Figure 5.7: Network Model

To avoid the interference to PUs, SUs communicate outside the protection

range of PUs. The protection area surrounded by each primary user is denoted

by dp and the minimum and maximum communication range of each SU is in the

range of dmin and dmax respectively. Each SU calculates its availability matrix L

based on the availability of channels near to it. The channel availability matrix is

L = {ln,m|ln,m ∈ {0, 1}}N×M . If mth channel is available to nth user then ln,m = 1

otherwise ln,m = 0. The channel reward matrix B = {bn,m}N×M is initialized with

the capacity assigned to nth user in mth channel using power allocation algorithm

[79]. The interference constraint matrix C = {cn,p,m|cn,p,m ∈ {0, 1}}N×N×M is
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determined by evaluating the channel constraints and user constraints [8]. In this

distributed approach user’s position and available spectrum are static during the

allocation process. The final assignment matrix A = {an,m|an,m in{0, 1}}N×M is

calculated using L, B and C matrices. The instantaneous capacity of ith primary

user is given by [79]:

Capi = log2

1 +
pi |gi,i|2

N∑
j=1

pi,j |gi,j|2 + σ2

 (5.5)

where pi is the transmitted power of ith primary user, gi,i is the channel gain

between base station and primary user, pi,j denotes the transmitted power of the

jth secondary user in ith channel, gi,j denotes the channel gain of jth SU from ith

PU, σ2 is the ambient noise variance. The instantaneous capacity of jth secondary

user over a channel i is given by [79]:

Capi,j = log2

1 +
pi,j|gi,j|2

N∑
q=1
q 6=j

pq,j|gq,j|2 + pi|gi,j|2 + σ2

 (5.6)

In a distributed network, SUs need to adapt the required communication envi-

ronment without any interference to PUs to maximize the network capacity. The

average cognitive capacity of each SU over the network is given by:

Capsum =
1

N

M∑
i=1

N∑
j=1

Ai,j ∗ Capi,j (5.7)

where Ai,j is the channel assignment matrix. In this work, the cognitive radio

network capacity (5.7) is maximized by controlling the transmitting power of SUs

to avoid the PU interference. The information about channel characteristics and

required data rate of the PU are to be known to the SU apriori, to protect the PU

from interference.
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5.2.3 Proposed algorithm

In this work, it is assumed that both primary and secondary users are utilizing the

same channel by limiting the transmitted power levels of SUs. In communication,

the SUs detect the hole, then adapts to PU transmission characteristics without

any interference to PUs while satisfying the QoS requirements. In this technique,

SUs opportunistically selects the channel with an acceptable transmission power

to maximize the total sum rate while considering the proper outage probability of

PUs. A distributed approach is considered for joint spectrum and power allocation,

in which SU decides the channel and power allocated to each channel, such that the

allocated power is less than the SNR threshold. Initially, the joint spectrum and

power allocation problem is formulated as a single objective optimization problem

and the average capacity of each user is maximized by satisfying the SINR and

outage probability constraints. During the evaluation of the objective function, an

iterative method is used to check the SINR constraints and PU outage probability.

Based on these constraints, the solution is updated and finally a fair spectrum and

power assignment solution is achieved. The joint spectrum and power allocation

optimization problem is defined as:

Find {Ai,j, pi,j} s.t arg max
Ai,j ,pi,j

Capsum

subject to:

Ai,jε{0, 1} pi,jε[0, pth], for i = 1, ..,M j = 1, ..., N

Pout = Prob{Capi ≤ Ri | Ri, w} ≤ w

(5.8)

where Ri denotes ith PU transmitted data rate and w is the outage probability.

The key idea in this technique is that each SU selects a suitable channel and limit

its power level in the range of [0, pth] by controlling the interference to other

users in the network. In this distributed algorithm, selection of proper channels

and transmission power to the respective SUs should guarantee the QoS of PUs.

The SINR constraints are considered to manage the SU transmission power for

avoiding the interference to other users. It is also noted that, if a SU violates the

PU outage constraint then the SU should vacate the channel. In the high SINR

condition, all SUs are transmitting above the threshold power limit pth. If all SUs

are transmitting with Pmax then nth SU will be active only if [79]
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|gn,n|2∑
q∈ψ∪{i}
q 6=n

|gq,n|2
>

(
Ñ + U − 1

Ñ + U − 2

)Ñ−1

(5.9)

where Ñ is the size of active SUs, U = pi/pmax and ψ represents set of indices of

all active SUs with respect to the number of channels. In case of large number of

secondary users distributed over a limited geographical area (i.e., dense network)

nth SU will be active in ith channel if its signal-to-interference ratio (SIR) is greater

than e [79].

SIRi,n =
pi,n|gi,n|2

pi|gi,n|2 +
∑
q∈ψ
q 6=n

pq|gq,n|2
> e (5.10)

In the low SINR condition, power control algorithm adapts to a suitable power

level such that it avoids the interference to PUs and neighborhood SUs. The nth

SU will be active if it satisfies the below condition: [79]

SINRi,n <

∑
j∈ψ
j 6=n

pi,j|gj,j|2

PmaxW 2(Ñ + U − 2) + σ2
(5.11)

' PmaxW
2(Ñ − 1)

PmaxW 2(Ñ + U − 2) + σ2
(5.12)

where, W 2 denotes average interference gain. In a dense network with low

SINR, a SU will be active if the SIR of nth user is greater than 1.

SIRi,n =
pi,n|gn,n|2

pi|gi,n|2 +
∑
q∈ψ
q 6=n

pi,q|gq,n|2
> 1 (5.13)

In this work, QoS of primary users is maintained with the use of outage con-

straint. In a centralized approach, there is a need of central database entity but

it is hard to implement and extract the diversity gain in fast fading environment

that involves overhead in signaling between the users. In distributed approach,

SUs obtain information about a PU either through a band manager or by collect-

ing the channel state information itself. The PU average channel gain gi,i can be
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approximated to average channel gain Gi as

gi,i = Gi ∗ ǵi,i (5.14)

where ǵi,i is the random variable of channel gain i.e., normalized channel impulse

response. The PU outage probability can be defined as:

Pout ' 1− exp

[
−(2Ri − 1)

(
ÑW 2

suPmax + σ2

W 2
i pi

)]
≤ q (5.15)

Hence, the maximum number of active SUs (Ñ) transmitting with required

specifications and with out interference to PU transmissions is

0 ≤ Ñ ≤ −log(1− q)
(2Ri − 1)

.
W 2
i pi

W 2
suPmax

− 1

SNR
= Ñtheory (5.16)

where Ñtheory is the theoretical value of maximum number of active SUs. To

maximize the average capacity of a user, firstly the proper channels are selected for

required SUs and then the power allocation is performed in the selected channels.

Optimal resource allocation to SUs is performed by maximizing each user sum rate

over the assigned channels using PSO and DE algorithms. An iterative method

is used to check SINR constraints ((5.10) and (5.13)) and PU outage constraint

(5.15). After checking the constraints, the proposed algorithm allocates power to

the SUs. It avoids interference to PUs and maximizes the average capacity of each

user.

5.2.4 Joint Spectrum and Power allocation using DE and PSO al-

gorithms

In this work, two evolutionary algorithms namely DE and PSO are used for solving

the joint spectrum and power allocation problem. The complete detail of DE

algorithm for channel allocation without considering power constraint is explained

in Chapter 3. The pseudo-code of the proposed DE based joint spectrum and

power allocation is given in Algorithm 9. In the present CRN model, if multiple

channels are allocated to a SU, then it does not terminate forcefully due to either

interference or PU arrival. However, the SU transmission data rate may decrease

because it vacates few channels from the assigned channels. The pseudo-code of
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the joint spectrum and power allocation technique is shown in Algorithm 10. For

each population, Algorithm 10 is executed and finally the fitness value is evaluated

using (5.7). Each SU measures the channel SIR and compares with low or high

SIR value. In case of both conditions are not satisfied then pi,j values are assigned

with the previous values. In each iteration, pi,j values are updated using DE/PSO

algorithms. Each PU verifies its outage constraint in every iteration based on

the results of channel and power allocation. This loop iterates until a maximum

number of iterations is reached. The same problem is solved using PSO algorithm

and compared the performance with DE algorithm.

Algorithm 9 : DE based Joint Spectrum and Power allocation in distributed ap-
proach
Step 1: Initialize the cell radius, protection area and all parameters related to the pro-
posed algorithm.
Step 2: Define number of secondary users (N), primary users (K) and number of chan-
nels (M), initialize the optimization algorithm (DE and PSO) control parameters.
Step 3: Evaluate the channel availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M and cal-

culates the dimension of the population D =
∑N

n=1

∑M
m=1 ln,m.

Step 4: Initialize the population XPOP with the solution variables of channel and
power allocation algorithm
i.e., XPOP = Ai,j ∪ pi,j Ai,jε{0, 1} pi,jε[0, pth], where i= 1... M and j=1...N
Step 5: Evaluate the fitness function defined in Equation (5.8) for each population using
Algorithm 10.

while maximum no. of generations is not reached do
Perform the Mutation, Crossover and Selection operations to find the best fitness
value.
Evaluate the average capacity of SU using Equation (5.8)
Increase the Generation Count
G = G + 1

end while
Report results
Terminate

Step 6: Resultant solution i.e., spectrum and power assignment values Ai,j and pi,j
allocated to current SUs.

5.2.5 Simulation Results

For simulation, the joint spectrum and power allocation problem defined in (5.8)

is optimized using DE and PSO algorithms. MATLAB software is used to per-

form the extensive simulation. For simulation K number of channels (K=10),
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Algorithm 10 : Joint spectrum and power allocation

for t=1:tmax do
Calculate Channel Assignment matrix A = {an,m|an,m ∈ {0, 1}}N×M by satisfying
the interference constraints an,m.ap,m = 0, ifcn,p,m = 1,∀1 ≤ n, p ≤ N, 1 ≤ m ≤M
for i=1 to M do

for j=1 to N do

if SINR
(t)
i,j > e, then // In high SINR condition

pt+1
i,j = pth

else
pt+1
i,j = pti,j

endif
if SINR

(t)
i,j > 1, then // In low SINR condition

pt+1
i,j = pth

else
pt+1
i,j = pti,j

endif
end for

end for
Check outage constraint given in (5.15)
for i=1 to M do

if Ñ
(t)
i ≤ Ñ

(t)
theory, then Ñ

(t+1)
i = Ñ

(t+1)
i − 1

endif
end for
Evaluate the objective function defined in (5.8) to find the average capacity of SU
Increase the iteration count
t = t + 1

end for

M primary users (M=10) and N number of cognitive users (N = 1 to 10) are

deployed uniformly within an area of 1000m radius with PU protection area of ra-

dius 600m for the model shown in Figure 5.7. The channel gains are considered as

defined in COST-231 model [166] with log-normal shadowing (standard deviation

of 10dB) and fast fading effects in the range of (0,1). In simulation, the maximum

power (Pmax), power ratio for downlink and uplink are considered as 1W, 10 and

1 respectively. The CR network simulation parameters L, B and C matrices are

initialized as described in Chapter 2.

In the DE based joint spectrum and power allocation, the control parame-

ters are initialized as crossover rate Cr=0.9, weighting factor F=0.9, population

size NP=600 and maximum generations Gmax=200. In case of PSO, the con-

trol parameters are initialized as maximum iterations=200, number of particles

NP=600, inertial weight ω=0.3 and weighting coefficients c1 = c2 = 0.9. The
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dimension of population is calculated by considering the number of elements in

availability matrix L and the transmitted power pi,j depends on number of SUs

in the network. The lower and upper bound of channel assignment variables are

set as 0 and 1, whereas power assignment variables (pi,j) are set as 0 and Pmax

respectively. This subsection presents numerical results for network capacity and

the average capacity of each user by assigning suitable spectrum and transmitted

power to each user. For the same network settings, both DE and PSO algorithms

are used to solve the spectrum and power allocation problem and the results are

given in Figures 5.8 - 5.11.
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different rates in downlink
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From Figures 5.8 and 5.9, it is observed that as the number of incoming SUs

increases, the number of active SUs also increases while satisfying the QoS re-

quirements of PUs. From this results, it is noted that the number of active SUs

in downlink outruns the uplink scenario for power allocation. It is also observed

that in downlink scenario base station transmitted power is ten times more than

uplink power, that helps to maintain guaranteed QoS to PUs. In the case of down-

link scenario, for a rate R= 0.1bits/s/Hz (DE), 68% of SUs are allowed, whereas

in uplink 43% of SUs are allowed for 16 incoming SUs using DE algorithm. In

case of PSO, 53% and 43% of SUs are allowed in downlink and uplink scenarios

respectively. As the number of incoming SUs increases, initially the number of

active SUs also increases but at a certain value the active SUs remains constant

due to the interference constraints posed by SUs and PUs in multiple channels. It

is also observed that the number of active SUs is decreasing with increase in R. It

means that the data rate required by SU increases, but the number of active SUs

decreases due to limited availability of resources.
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Figure 5.10: Sum of Secondary users capacity per user vs. number of secondary
users with different rates for R=0.5 bits/s/Hz

Fig.5.10 and 5.11 show the affect on sum of user capacity over the avail-

able channels for both uplink and downlink configurations for R = 0.5 and 0.3

bits/s/Hz. It is observed that the capacity in uplink scenario outruns that of

downlink system. It is also to be noted that as the number of SUs increases,

capacity of a user also increases up to a certain number of users, then there is a

decrease in SINR of each user due to interference that in turn decrease the user

capacity. If the protection area of a PU and its primary cell radius decreases,
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Figure 5.11: Sum of Secondary users capacity per user vs. number of secondary
users with different rates for R=0.3 bits/s/Hz

deployment of a large number of SUs transmissions affect the interference caused

to PUs and user capacity. Hence, there must be a trade-off between the number of

active SUs and average user capacity. From the Figures 5.8 - 5.11, it is observed

that DE performs better compared to PSO in terms of quality of solution due to

its robustness and quick convergence in finding a solution.

5.2.6 MODE based Joint spectrum and power allocation

The network utility function Max-sum-Reward (MSR) is considered to obtain the

relationship between the average capacity of a user and total network utilization.

This function maximizes the total network capacity by assigning more number of

channels with optimal power. It is given by [8]

MSR =
M∑
i=1

N∑
j=1

Bi,j ∗ Ai,j (5.17)

where Ai,j is the channel assignment matrix and Bi,j is the reward matrix of

SUs. In this subsection, the dependency between total network utilization and av-

erage sum of user capacity is observed for a fixed number of SUs and PUs. Hence,

it is considered that the total network utilization (MSR) as one objective function

and average capacity of SU (Capsum) as another objective function. The proposed

joint spectrum and power allocation problem is formulated as a multi-objective

optimization problem and the two objective functions (MSR & Capsum) are opti-
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mized simultaneously using MODE and NSGA-II algorithms. The multi-objective

optimization of joint spectrum and power allocation problem is formulated as:

Maximize [MSR , Capsum]

subject to:

Ai,jε{0, 1} pi,jε[0, pth], for i = 1, ..,M j = 1, ..., N

Pout = Prob{Capi ≤ Ri | Ri, w} ≤ w

In the proposed MODE-based joint spectrum and power allocation algorithm,

the solution is represented as a population that defines channel and power assign-

ment to CR users. The dimension of population is calculated by considering the

number of elements in availability matrix L and the transmitted power values pi,j

depends on the number of SUs. The proposed MODE-based joint spectrum and

power allocation algorithm is described as follows:

1. Initialize the MODE and joint spectrum and power allocation algorithm

parameters.

2. Given L = {ln,m|ln,m ∈ {0, 1}}N×M , B = {bn,m}N×M and C = {cn,p,m|cn,p,m ∈
{0, 1}}N×N×M , dimension of the population is set to D = 2∗

∑N
n=1

∑M
m=1 ln,m

and G is set to 0;

3. Initialize the parent population (Parent(g, h)) randomly, Xg = [x1,g, .., xD,g]

where xd,g ∈ 0, 1, and g ∈ (1 . . . XPOP )

4. Evaluate the channel assignment matrix using L, B and C matrices that

satisfies the PU and SU’s constraints as described in Algorithm 1.

5. Find pi,j using power allocation algorithm as defined in Algorithm 10.

6. Calculate the fitness of each member of the current population using Equa-

tions (5.8) and (5.17).

7. Perform mutation operation to generate mutant vectors, and verify the

bounds of the population.

8. Perform crossover and selection operations and update the parent population

as defined in the MODE algorithm.
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9. Increment the G, if it reaches the maximum predefined iterations or max-

imum number of function evaluations then the parent population obtained

from the step (8) is given to the dominance filter and stop the process else

go to step (7) and continue.

10. If stopping criterion is satisfied then the final parent population is given to

the dominance filter to get a non-dominated solution, i.e., pareto front.

These two objective functions are optimized simultaneously using MODE and

NSGA-II algorithms and pareto front is shown in Figure 5.12. From this figure, it

is observed that as the total network capacity (MSR) increases, average capacity

of SU is decreasing. It means that increase in total network capacity is due to

the allocation of more number of channels to the user, but the Capsum decreases

due to more number of constraints need to be satisfied by the user in the selected

channels. It is also observed that MODE performs better compared to NSGA-II

algorithm for maximizing total network capacity and average user capacity.
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Figure 5.12: Pareto Front between MSR and Average user capacity

Further, forced termination probability is included as one more objective func-

tion along with the above two objective functions and optimized simultaneously to

find the channel allocation metric. From the resultant pareto front, four instances

of the solution are selected that are approximately close to solutions obtained from

Figure 5.12. The calculated and optimized forced termination probability are plot-

ted in Figure 5.13. From this figure, it is observed that inclusion of termination

probability in joint spectrum and power allocation algorithm gives approximately

same termination probability as compared to the termination probability obtained
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by optimizing the two objective functions (MSR and Capsum) simultaneously (in

case of S1, S2, S3 and S4 solutions of MODE). This is because the outage proba-

bility constraint is included in the proposed joint spectrum and power allocation

algorithm. The same conclusion can be drawn for NSGA-II solutions also. In

Figure 5.13, the solutions S5, S6, S7 and S8 corresponds four different instances

obtained from NSGA-II algorithm.

5.3 FPGA implementation of MODE based Spectrum Al-

location technique for Cognitive Radio Networks

In the previous chapter, DE algorithm is implemented in FPGA to solve the

single objective SA problem. In this chapter, MODE algorithm is used to solve

the SA problem. Hence, this section presents the implementation details of MODE

algorithm for solving SA problem on Xilinx Virtex 5 FPGA.

5.3.1 Hardware implementation of MODE algorithm

The hardware architecture of the proposed MODE algorithm is given in Figure

5.14. This architecture consists of nine modules, namely Initialization of popula-

tion, Mutation, Crossover, Selection, Stopping Criteria, Dominance filter, Random

Number Generator, Fitness Evaluation and Control Finite State Machine (FSM).

In chapter 4, the initialization, mutation, crossover and selection modules for DE

are explained for optimizing a single fitness function. However, here the termi-
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nology is slightly different and the architecture is targeted to optimize multiple

fitness functions simultaneously.
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The FSM has five states, i.e., idle, initialize, operation, read and wait. It

is used to synchronize the other eight modules of the core as shown in Figure

5.15. Initially (i.e., before execution of the algorithm) all modules are in a reset

condition, i.e., idle state. The FSM enters into the initialize state when the algo-
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rithmic parameters are available along with the start signal. In this state, parent

population and parent fitness memories are initialized. The hardware architec-

ture is scalable in terms of population size (XPOP ), dimension (Nvar), crossover

rate (Cr), weight factor (F ), maximum number of generation (Max Gen) and

function evaluations (Fun Eval), so that the user can configure these parameters

without redesigning the entire hardware. These inputs are given to the hardware

IP through the processor at the beginning of execution. In the operation state the

three main modules, i.e., mutation, crossover, and selection are executed according

to the Algorithm 6. During this state remaining, i.e., initialization and dominance

filter modules are in the wait state until the maximum number of generations or

function evaluations is complete. In read state, the population and fitness memo-

ries are copied to temporary registers. The final parent population is input to the

dominance filter after the completion of the main operation. Finally, the output

of dominance filter is stored in pareto front reg file. The fitness functions are in-

tegrated into the function evaluation module of the core to avoid bus transaction

overhead. Initially, two test bench functions i.e., ZDT1 and ZDT2 are optimized

to evaluate the functionality of the IP.

5.3.1.1 Initialization module

This module is used to initialize the parent population for finding the optimal

solution of the problem. In this module, parent population is randomly generated

using random number generator module within the range of Xmin and Xmax.

These values are stored in the parent population memory of 6Kbytes size using a

13-bit address. Each population member consists of Nvar number of variables and

each of 32-bit size. Maximum values of population size (XPOP ) and dimension

Nvar is set as 50 and 30 respectively. The population values are given to the

fitness evaluation module, in which two functions Fun1 and Fun2 are evaluated

and the resultant fitness values (each of size 32 bit value) are stored in the parent

fitness memory of size 4Kbits.

5.3.1.2 Mutation module

After initializing the parent population, FSM will be in the operation state, where

the three main modules mutation, crossover, and selection are executed. First in

mutation module, mutation vector is calculated for each population using mutation
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Figure 5.16: Mutation module

operation as shown in Figure 5.16. Here three distinct parent populations A, B

and C are randomly selected, and mutation operation is performed with a weight

factor (F ). The resultant mutant vector is compared with the minimum and

maximum values of solution. These vectors are stored in the mutant population

memory (6Kbytes).

5.3.1.3 Crossover module

To increase the diversity among the population, crossover module generates the

child population. The architecture of crossover module is shown in Figure 5.17.

For each population, this module selects the child population member from parent

and mutant vector memory by comparing the crossover rate (Cr) with a random

number generated using the Random Number Generator (RNG) module. The

output of MUX is child population, and it is stored in the child population mem-

ory (6Kbytes). Fitness value of each child population is calculated using fitness

evaluation module, and the resultant values are stored in the child fitness memory

(4Kbits).
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5.3.1.4 Selection module

In this module, each parent population and fitness values are updated by compar-

ing with the child population. The architecture of selection module is shown in

Figure 5.18. The fitness value of each parent and child population is compared to

choose the best solution for next generation. If the fitness value of child population

is less than the parent population, then current parent population and its fitness

values are replaced with child population and its fitness values. This process is

repeated for XPOP times and best population, and corresponding fitness values

are updated in parent population and fitness memories.

Selection Operation
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Figure 5.18: Selection module

5.3.1.5 Stopping criteria module

The three operations mutation, crossover and selection steps are performed by cor-

responding module sequentially for every generation and this process stops either
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by reaching the maximum number of generations or maximum number of function

evaluations specified by Max Gen and Fun Eval parameters respectively.
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Figure 5.19: Dominance Filter module

5.3.1.6 Dominance filter

In this module, dominance criteria is used to select the non-dominated solutions.

The architecture of dominance filter is shown in Figure 5.19. It gives the output

as pareto optimal solutions for the functions to be optimized and store the results

in a pareto front register file. The final optimal solution is selected by sorting the

fitness values from the parent fitness memory according to their dominance. Two

counters are used to index the fitness values from the fitness memory and compare

each value with the remaining values using the comparator-1 module. The indices

of the two counters are compared using the comparator-2 module. If the value of

Reg-1 is greater than the value of Reg-2 then the variable Domi updates with a

value ’1’ otherwise updates with a value ’0’. This process repeats XPOP times

and then if Domi=0 then the current parent population is stored in the temporary

memory. Subsequently, next parent fitness value is compared with the remaining

fitness values and this whole process is repeated for XPOP times. The resultant

pareto optimal solution, i.e., non-dominated solutions are stored in a pareto front
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Figure 5.20: Functional simulation of MODE IP Core

5.3.2 Experimental setup

In this work, single precision floating point MODE algorithm is implemented on

FPGA. Firstly the entire algorithm is coded in VHDL and functionally verified by

simulating the MODE core by optimizing ZDT1 function [150] with Max Gen=5,

XPOP=4, Nvar=4, Fun Eval=10, Nobj=2, Cr=0.5 and F=0.2. The simula-

tion result is shown in Figure 5.20. From this figure, it is observed that the resul-

tant output is available at MODE Output Data port when MODE Output Rdy is

high. All floating point operations are performed using IEEE-754 supported Xilinx

FPU core 5.0 [167]. Next, it is synthesized and implemented on Xilinx Virtex-5

FPGA. Further, an IP core is developed and interfaced to the PPC440 processor

via APU controller interface. The execution performance of the proposed core is

analyzed by integrating the core in system on chip platform as shown in Figure

5.21. The MODE IP acts as a coprocessor running at 50MHz frequency, and it is

accessed using load/store instructions given by PPC440 processor. The timer is

used to calculate the execution time to get the pareto optimal solution. The final

solution is transferred to the UART from PPC440 processor through Processor

Local Bus (PLB) to verify the results. For the software implementation, the same

algorithm is coded in single precision floating point C language and executed on

the PPC440 processor at 200MHz frequency.

5.3.3 Timing results

MODE algorithm is executed on both software (PPC440) and hardwired logic

of Xilinx Virtex-5 FPGA to evaluate its execution time. The algorithmic control
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Table 5.3: Execution time of test bench functions in software (SW) and hardware
(HW)

XPOP =10 XPOP=20 XPOP=30
Float Float Float Float Float Float

Test Function Max Gen SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

10 436 6.34 68.77 875 12.79 68.41 1,314 18.98 69.23
(0.4) (0.5) (0.6) (0.6) (0.5) (0.6)

50 2,028 29.14 69.60 3,791 59.91 63.28 4,028 58.89 68.40
(0.6) (0.6) (0.7) (0.2) (0.4) (0.2)

ZDT1 100 3,394 57.94 58.58 4,010 59.91 66.93 4,028 58.89 68.40
(0.3) (0.5) (0.5) (0.3) (0.4) (0.4)

200 3,830 57.94 66.10 4,010 59.91 66.93 4,028 58.89 68.40
(0.5) (0.4) (0.6) (0.4) (0.6) (0.3)

300 3,830 57.94 66.10 4,010 59.91 66.93 4,028 58.89 68.40
(0.7) (0.5) (0.4) (0.3) (0.2) (0.1)

10 222 3.10 71.61 476 6.21 76.65 714 9.35 76.36
(0.3) (0.5) (0.4) (0.7) (0.6) (0.4)

50 1,056 14.51 72.78 1,975 28.77 68.65 2,219 28.77 77.13
(0.4) (0.4) (0.3) (0.5) (0.5) (0.8)

ZDT2 100 2,007 28.74 69.83 2,233 28.77 77.62 2,219 28.77 77.13
(0.2) (0.3) (0.2) (0.3) (0.8) (0.7)

200 2,110 28.74 73.42 2,233 28.77 77.62 2,219 28.77 77.13
(0.5) (0.5) (0.1) (0.5) (0.5) (0.5)

300 2,110 28.74 73.42 2,233 28.77 77.62 2,219 28.77 77.13
(0.6) (0.7) (0.5) (0.6) (0.4) (0.3)

parameters shown in Table 5.1 are input to the core. Timer is used to measure the

execution time of the algorithm. Table 5.3 shows the average execution time (in

ms) for optimizing test functions for different Max Gen, XPOP and Nvar=30.

The tabulated values are the mean value of 20 independent runs. The table also
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presents percentage of standard deviation (std%) of execution time for different

runs in parenthesis. The execution time of the algorithm using MODE IP and

PPC440 is referred as hardware (Float HW) time and software (Float SW) time

respectively. It is observed that the MODE IP gives 60x speed up for ZDT1

function and 70x speed up for ZDT2 function over the software implementation

of the same algorithm on the hardcore PPC440 processor. The acceleration in

execution time of MODE IP is mainly due to its parellelized implementation.

Table 5.4: Timing results of Spectrum Allocation problem in software (SW) and
hardware (HW) (MSR & MMR)

Population Size Max Gen SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor

50 6796.13 130.85 51.94
(0.6) (0.5)

100 12249.77 234.67 51.20
(0.4) (0.3)

XPOP=20 200 27227.98 522.61 52.10
(0.2) (0.5)

300 41914.19 784.91 53.40
(0.5) (0.4)

400 55713.7 1047.25 53.20
(0.7) (0.6)

500 55713.7 1047.25 53.20
(0.6) (0.5)

50 13678.33 260.87 52.43
(0.3) (0.5)

100 24770.45 465.61 53.20
(0.5) (0.4)

XPOP=40 200 52465.32 984.34 53.30
(0.7) (0.6)

300 67705.48 1297.04 52.20
(0.6) (0.8)

400 67705.48 1297.04 52.20
(0.4) (0.7)

500 67705.48 1297.04 52.20
(0.3) (0.4)

In this work, MSR, MMR and MPF are optimized by considering two func-

tions at a time using MODE IP core and obtained the pareto solution for the two

objectives. Here, three scenarios are considered for optimizing MSR & MMR,

MMR & MPF and MSR & MPF objective functions. In each scenario, two

functions are integrated with MODE IP and its execution time (HW) is calculated

using timers. The execution time is compared with the processor (SW) execution

time. For validating the HW, all the network parameters (i.e., primary users,

cognitive users, and channels) are chosen as 10. MODE IP is executed to assign

the best available channels to SUs. Table 5.4 - 5.6 shows the mean execution time

to complete the SA algorithm in three scenarios MSR & MMR, MMR & MPF

and MSR & MPF for two different population sizes XPOP=20 and 40. From

these tables, it is observed that the proposed hardware performs 51-53x speedup
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Table 5.5: Timing results of Spectrum Allocation problem in software (SW) and
hardware (HW) (MMR & MPF )

Population Size Max Gen SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor

50 6922.99 130.74 55.75
(0.4) (0.6)

100 15634.33 260.26 60.07
(0.6) (0.2)

XPOP=20 200 30144.47 521.26 57.83
(0.3) (0.3)

300 45806.38 782.48 58.54
(0.6) (0.5)

400 58837.88 1043.78 56.37
(0.4) (0.4)

500 76527.55 1305.04 58.64
(0.5) (0.7)

50 15079.45 260.66 57.85
(0.5) (0.4)

100 29357.14 517.58 56.72
(0.4) (0.6)

XPOP=40 200 59563.06 1036.42 57.47
(0.5) (0.7)

300 75333.13 1295.94 58.13
(0.7) (0.5)

400 75333.13 1295.94 58.13
(0.3) (0.6)

500 75333.13 1295.94 58.13
(0.4) (0.5)

Table 5.6: Timing results of Spectrum Allocation problem in software (SW) and
hardware (HW) (MMR & MPF )

Population Size Max Gen SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor

50 8128.43 130.44 62.31
(0.7) (0.4)

100 16682.24 258.82 64.45
(0.7) (0.3)

XPOP=20 200 33126.75 519.88 63.72
(0.6) (0.6)

300 48341.51 781.34 61.87
(0.2) (0.3)

400 67589.70 1042.89 64.81
(0.3) (0.3)

500 83169.18 1304.41 63.76
(0.6) (0.6)

50 16660.32 260.48 63.96
(0.4) (0.6)

100 32479.24 517.68 62.74
(0.6) (0.4)

XPOP=40 200 65790.23 1037.21 63.43
(0.2) (0.5)

300 81486.33 1297.14 62.82
(0.7) (0.7)

400 81486.33 1297.14 62.82
(0.4) (0.3)

500 81486.33 1297.14 62.82
(0.2) (0.2)

for optimizing MSR & MMR, 55-60x speedup for optimizing MMR & MPF ,

whereas 61-64x speedup for optimizing MSR & MPF functions compared to its

equivalent software implementation.
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Table 5.7: Resource utilization

Test Function BRAM DSP48E Slice Registers Slice LUTs Slices LUT FF pairs Bonded IOBs Max Freq (MHz)
ZDT1 105 (70%) 46 (35%) 7,151 (15%) 12,663 (28%) 4,492 (40%) 5,632 (39%) 73 (11%) 96.96
ZDT2 105 (70%) 36 (28%) 5,142 (11%) 9,471 (21%) 3,428 (30%) 4,049 (38%) 73 (11%) 96.72

5.3.4 Synthesis results

The MODE hardware IP is simulated using Xilinx ISE simulator and synthesized

using Xilinx Synthesis Tool (XST). Resource utilization of the MODE algorithm

core with two test bench functions is shown in Table 5.7. From this table, it is

observed that 70% of BRAM is consumed for the two test functions, and maximum

operation frequency of the core is observed as 96MHz.
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Figure 5.22: Pareto Front of ZDT1 test function
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Figure 5.23: Pareto Front of ZDT2 test function
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5.3.5 Pareto Front

The MODE algorithm is executed for 20 independent runs with parameters

Max Gen=500, XPOP=40 and Nvar=30. The pareto front of two test functions

ZDT1 and ZDT2 are shown in Figure 5.22 and Figure 5.23 respectively. From

these figures, it is observed that the pareto front obtained by both software ((SW)

which runs on PPC440 processor) and hardware ((HW) which runs on coprocessor)

are almost same. From this result, it is confirmed that the designed MODE

coprocessor is functionally behaving correctly with accelerated execution speed.
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Figure 5.24: Pareto Front between MSR and MMR

45 50 55 60 65 70 75
82

84

86

88

90

92

94

96

98

MMR

M
P

F

 

 
HW
SW

Figure 5.25: Pareto Front between MMR and MPF

The synthesis results of the system on chip implementation of the total system

and MODE-SA IP is shown in Table 5.8. This table tabulates the resource uti-

lization of the IP on Virtex-5 FPGA. From the synthesis results of the MODE-SA
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Figure 5.26: Pareto Front between MSR and MPF

Table 5.8: Device utilization of system and MODE-SA Core

Resource Total SoC MODE-SA
Slice Registers 10206(22%) 6,344 (14%)

Slice LUTs 16581(37%) 12,385 (27%)
LUT FF-Pairs 19500(43%) 4,724 (33%)

BRAM 80(54%) 111 (75%)
DSP48E 77(60%) 71 (55%)

Bonded IOBs 54(8%) 73 (11%)
BUFG 8(25%) -

BUFIOs 8(10%) -
PLL ADVs 1(16%) -

External IOBs 145(22%) -
Max Freq 95.86 MHz 72.51

Table 5.9: Hierarchy power analysis of MODE − SA SoC system

Resource Type Power(mW)
Total SoC system 94.18

PowerPC440 18.82
Clockgen 39.97

APU 29.42
DDR2 5.39

SysACE Compact Flash 0.29
RS232 Uart 1 0.13

PLB 0.02
proc sys reset 0 0.04

xps timer 0 0.03
xps timer 1 0.03
xps intc 0 0.03

xps bram cntlr 0.01
xps bram 0.00

core, it is observed that 55% of DSP48E slices are consumed, and the maximum

operating frequency is 72.5MHz. Figure 5.24, 5.25 and 5.26 shows the variation

of pareto fronts in three scenarios using both processor and IP core.
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The power consumption of the SoC system is analyzed using XPower Analyzer

tool of Xilinx ISE software. The results are tabulated in Table 5.9. It shows

the power consumption of each resource of the SoC system. It is observed that

MODE-SA coprocessor consumes 29.42mW power, i.e., 31% of the total power

consumption of SoC system.

5.4 Conclusions

In this work, firstly SA problem is solved by optimizing Max-Sum-Reward, Max-

Min-Reward, Max-Proportional-Fair and Forced termination probability simul-

taneously using MODE and NSGA-II algorithms. The performance of MODE

algorithm is compared with NSGA-II algorithm and observed that MODE algo-

rithm performs better in terms of time complexity and pareto optimal solutions

for solving the SA problem. The use of forced termination probability as an ob-

jective function gives an improved channel assignment solution with minimum

termination probability. Next, a joint spectrum and power allocation algorithm is

used to increase the utilization of network resources by selecting suitable channel

along with optimally transmitted power. The joint spectrum and power alloca-

tion problem is solved using DE and PSO algorithms to maximize the efficiency

of spectrum utilization. From the simulation results, it is observed that the DE

algorithm outperforms PSO algorithm in terms of quality of the solution, i.e.,

maximizing the average SU capacity. Further, the work is extended to study

the dependency of a user sum capacity over multiple channels to the total net-

work utilization. For this, the network utilization function i.e., Max-Sum-Reward

(MSR) and average user sum capacity are optimized simultaneously to maximize

the network performance. The above joint channel and power allocation problem

is formulated as a multi-objective optimization problem and optimized the two

objective functions simultaneously, and the trade-off solutions are obtained under

the power constraints and QoS requirements of PUs.

Finally, Multi-Objective Differential Evolution based SA algorithm is imple-

mented on FPGA. Initially, a MODE IP is developed. The IP is scalable in

terms of algorithmic parameters such as population size, dimension, crossover

rate, weight factor, maximum number of generation and number of function eval-

uations. The developed IP is synthesized and interfaced to PPC440 processor of

Virtex-5 FPGA via APU controller. The hardware implementation results demon-
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strated 60x speedup over software implementation while optimizing test functions.

Finally, MODE-SA IP is developed by integrating the network utility functions

along with the MODE IP and it is connected to PPC440 processor as a coproces-

sor. The three functions MSR, MMR and MPF are optimized by considering

two functions simultaneously in three different scenarios. The hardware solution

attained an acceleration of 50-60x compared to equivalent software implementa-

tion on PPC440 processor. Thus, it can be concluded that the proposed hardware

solution is suitable to solve the SA problem using multi-objective differential evo-

lution algorithm and also it can be used to solve multi-objective optimization

problems for different applications in embedded platform.



Chapter 6

Conclusions and Future work

6.1 Conclusions

In the present work, three network utility functions, namely Max-Sum-Reward

(MSR), Max-Min-Reward (MMR) and Max-Proportional-Fair (MPF ) are opti-

mized for fair allocation of channels to CR users. Three optimization algorithms,

namely DE, PSO and Firefly are used to solve the SA problem and compared

the performance of these algorithms in terms of quality of solution and time com-

plexity. From the simulation results, it is observed that DE algorithm improved

quality of solution (fitness value of MPF ) is approximately 19% and 30%, whereas

the time complexity is improved by 46% and 242% compared to Firefly and PSO

algorithms respectively.

In the distributed network architecture, each SU need to perform the CR op-

erations locally. As each SU implicitly has an embedded computing platform,

the SA task need to be performed on a dedicated hardware platform to improve

the overall system execution performance. Hence, a DE based SA coprocessor is

proposed to accelerate the execution performance. DE hardware IP is integrated

with SA objective functions to develop the DE-based SA IP and verified its func-

tionality in a Xilinx Virtex-5 FX70T FPGA based SoC platform. The DE-SA IP

is scalable in terms of selecting number of PUs, SUs and available channels. The

acceleration factor was evaluated at different network and algorithmic configura-

tions and found to be 5.19-6.91x and 76.79-105x over the fixed and floating point

implementation of the SA algorithm on the PPC440 processor respectively.

The spectrum assignment solution must satisfy the multiple objectives simul-

taneously to provide best channels to the requested SUs. Forced termination prob-

ability is a performance metric of assignment solution provided by SA method.

Thus in this work, the forced termination probability is included in objective func-

tion along with three network utility functions, namely MSR, MMR and MPF

related to quality of service and are optimized simultaneously. Multi-Objective

126
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Differential Evolution and Non-dominated Sorting Genetic algorithms are used

to find the trade-off solutions between the network utility functions and forced

termination probability. It is observed that the MODE algorithm performs better

in terms of quality of solution and time complexity. It is necessary to optimize

the individual transmitted power of each user during SA to increase efficiency of

channel assignment solution. Power allocation also plays an important role in

interference management and energy saving in SUs. Hence, a joint spectrum and

power allocation model is formulated as an optimization problem and solved using

DE and PSO algorithms. From the simulation results, it is observed that the DE

algorithm improved the quality of solution (average SU capacity) is approximately

47% compared to PSO algorithm.

Further, the network utility function (MSR) and channel capacity of individual

user are optimized simultaneously using MODE algorithm subject to PU outage

probability and power constraints posed by SUs. The performance of MODE algo-

rithm is compared with NSGA-II algorithm in terms of quality of solution. From

the results, it is observed that the MODE algorithm improved the performance in

terms of quality of the solution (average SU capacity and MSR value) approxi-

mately 54% compared to NSGA-II algorithm. Further to accelerate the execution

speed of the MODE based SA algorithm, it is implemented on Xilinx Virtex 5

FPGA. Initially, a MODE coprocessor is designed and verified its functionality

by optimizing two benchmark test functions. The hardware implementation re-

sults demonstrated 60x speedup over software implementation of same MODE

algorithm on PPC440 processor in Virtex 5 FPGA development board. Finally,

MODE based SA IP is developed by integrating the network utility functions

along with the MODE IP and connected as a coprocessor to PPC440 processor.

The trade-off solutions between the three functions MSR, MMR and MPF are

obtained. This hardware solution attained an acceleration of 50-60x compared to

equivalent software implementation on PPC440 processor.

6.2 Future work

In this thesis, SA problem is solved using different evolutionary algorithms and

implemented on FPGA to accelerate the execution speed of SA algorithm. There

are several interesting directions for further research and development based on

the work in this thesis. Different variants of DE and MODE algorithms can be
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implemented in hardware to improve the quality of solution. These hardware IPs

can also be used to solve other real-time optimization problems like parameter

adaption in CR and other signal processing applications.

The present work is based on the assumption that SUs and PUs are randomly

deployed and based on their positions the proposed algorithm works to solve the

SA problem. However, there is a need to integrate the spectrum sensing phase prior

to SA task. The spectrum sensing task provides channel characteristics, detection

of PU transmissions and its modulation schemes. Based on this information, SA

algorithm provides the best channel to the SU without any interference to the

PUs. Further, both spectrum sensing and SA algorithms need to be implemented

on hardware to accelerate the execution performance such that it maximizes the

spectrum utilization.



Appendix A

A.1 Embedded Development Kit design flow for hardware-

software co-design
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Figure A.1: Hardware software co-design approach using Embedded Development
Kit
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A.2 Benchmark test functions for single-objective optimiza-

tion

Function 1 (Two variables): Rosenbrock function:

f(x) = 100.(x2 − x2
1)2 + (1− x1)2

Search domain:−9 < xj < 11 j = 1, 2

One global optimum with f = 0 at (1, 1)

Function 2 (Two variables): Goldstein function:

f(x) = [1 + (x1 +x2 + 1)2× (19− 14x1 + 3x2
1− 14x2 + 6x1x2 + 3x2

2)]× [30 + (2x1−
3x2)2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

Search domain:−2 < xj < 2, j = 1, 2.

One global optimum with f = 3 at (0,−1)

Function 3 (Three variables): Sphere function:

f(x) = x2
1 + x2

2 + x2
3

Search domain: −5.12 < xj < 5.12 j = 1, 2, 3

One global optimum with f = 0 at (0, 0, 0)

Function 4 (Four variables): Variably dimensioned function:

f(x) =
∑4

i=1(xi − 1)2 +
[∑4

i=1 i(xi − 1)
]2

+
[∑4

i=1 i(xi − 1)
]4

Search domain:−9 < xj < 11, j = 1, 2, 3, 4

One global optimum with f = 0 at (1, 1, 1, 1)

Function 5 (32 variables): De Jong function:

f(x) =
∑D

i=1 x
2
i x = [x1, x2, x3, ..., xD]

Search domain:−100 < xj < 100 j = 1, 2, .., 32

One global optimum with f(x) = 0 at (0, 0, .., 0)

Function 6 (32 variables): Schwefel’s Problem 1.2

f(x) =
∑n

i=1

(∑i
j=1 xi

)2

Search domain:−100 < xj < 100, j = 1, 2, .., 32

One global optimum with f = 0 at (0, 0, .., 0).
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A.3 Benchmark test functions for multi-objective optimiza-

tion

1. Zitzler-Deb-Thiele 1 (ZDT1) function:

Minimize =



f1 (x) = x1

f2 (x) = g (x)h (f1 (x) , g (x))

g (x) = 1 + 9
29

∑30
i=2 xi

h (f1 (x) , g (x)) = 1−
√

f1(x)
g(x)

2. Zitzler-Deb-Thiele 2 (ZDT2) function:

Minimize =



f1 (x) = x1

f2 (x) = g (x)h (f1 (x) , g (x))

g (x) = 1 + 9
29

∑30
i=2 xi

h (f1 (x) , g (x)) = 1−
(
f1(x)
g(x)

)2
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[63] Jorge J Moré and Stefan M Wild. Benchmarking derivative-free optimization

algorithms. SIAM Journal on Optimization, 20(1):172–191, 2009.

[64] Thomas Back, David B Fogel, and Zbigniew Michalewicz. Handbook of

evolutionary computation. IOP Publishing Ltd., 1997.

[65] Fang Ye, Rui Yang, and Yibing Li. Genetic Algorithm Based Spectrum

Assignment Model in Cognitive Radio Networks. In Proc. 2nd International

Conference on Information Engineering and Computer Science (ICIECS),

pages 1–4, Dec 2010.

[66] M.Y. ElNainay, Feng Ge, Ying Wang, A.E. Hilal, Yongsheng Shi, A.B.

MacKenzie, and C.W. Bostian. Channel allocation for dynamic spectrum

access cognitive networks using Localized island Genetic Algorithm. In Proc.

5th International Conference on Testbeds and Research Infrastructures for



REFERENCES 139

the Development of Networks Communities and Workshops (TridentCom),

pages 1–3, April 2009.

[67] M.Y. El Nainay, D.H. Friend, and A.B. MacKenzie. Channel Allocation and

Power Control for Dynamic Spectrum Cognitive Networks using a Localized

Island Genetic Algorithm. In Proc. 3rd IEEE Symposium on New Frontiers

in Dynamic Spectrum Access Networks (DySPAN), pages 1–5, Oct 2008.

[68] M Mahdavi, Mohammad Fesanghary, and E Damangir. An improved har-

mony search algorithm for solving optimization problems. Applied mathe-

matics and computation, 188(2):1567–1579, 2007.

[69] J. Del Ser, M. Matinmikko, S. Gil-Lopez, and M. Mustonen. A novel Har-

mony Search based spectrum allocation technique for cognitive radio net-

works. In Proc. 7th International Symposium on Wireless Communication

Systems (ISWCS), pages 233–237, Sept 2010.

[70] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learn-

ing approach to the traveling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1):53–66, April 1997.

[71] H. Salehinejad, S. Talebi, and F. Pouladi. A metaheuristic approach to spec-

trum assignment for opportunistic spectrum access. In Proc. IEEE 17th In-

ternational Conference on Telecommunications (ICT), pages 234–238, April

2010.

[72] L. Liu, G. Hu, and Y. Peng. Swarm Intelligence based Distributed Spectrum

Allocation for Cognitive Networks. In Proc. International Conference on

Future Information Technology, volume 13, pages 357–361, 2011.

[73] Dervis Karaboga and Bahriye Akay. A modified Artificial Bee Colony (ABC)

algorithm for constrained optimization problems. Applied Soft Computing,

11(3):3021 – 3031, 2011.

[74] Xiaoya Cheng and Mingyan Jiang. Cognitive radio spectrum assignment

based on artificial bee colony algorithm. In Proc. IEEE 13th International

Conference on Communication Technology (ICCT), pages 161–164, Sept

2011.



REFERENCES 140

[75] G. Kulkarni, S. Adlakha, and M. Srivastava. Subcarrier allocation and bit

loading algorithms for OFDMA-based wireless networks. IEEE Transactions

on Mobile Computing, 4(6):652–662, Nov 2005.

[76] Anh Tuan Hoang and Ying-Chang Liang. A Two-Phase Channel and Power

Allocation Scheme for Cognitive Radio Networks. In Proc. IEEE 17th In-

ternational Symposium on Personal, Indoor and Mobile Radio Communica-

tions, pages 1–5, Sept 2006.

[77] Jiandong Li, Dong Chen, Weiying Li, and Jing Ma. Multiuser Power and

Channel Allocation Algorithm in Cognitive Radio. In Proc. International

Conference on Parallel Processing (ICPP), pages 72–72, Sept 2007.

[78] M. Haddad, AM. Hayar, G.E. Øien, and S.G. Kiani. Uplink Distributed

Binary Power Allocation for Cognitive Radio Networks. In Proc. 3rd In-

ternational Conference on Cognitive Radio Oriented Wireless Networks and

Communications, pages 1–4, May 2008.

[79] Bassem Zayen, Majed Haddad, Aawatif Hayar, and Geir E.Øien. Binary

power allocation for cognitive radio networks with centralized and dis-

tributed user selection strategies. Physical Communication, 1(3):183 – 193,

2008.

[80] Walid Farid Abdelfatah, Jacques Georgy, Umar Iqbal, and Aboelmagd

Noureldin. FPGA-Based Real-Time Embedded System for RISS/GPS Inte-

grated Navigation. Sensors, 12(1):115–147, 2011.

[81] Mohd Nazrin Md Isa. High Performance Reconfigurable Architectures for

Biological Sequence Alignment, March 2013.

[82] ”http://www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-

G.html” Xilinx ML507 development board.

[83] Youn-Long Steve Lin. Essential Issues in SOC Design Designing Complex

Systems-on-Chip. Springer, P.O. Box 17, 3300 AA Dordrecht, Netherlands,

2006.

[84] Don Davis, Srinivas Beeravo, Ranjesh Jaganathan. Hardware/Software

Codesign for Platform FPGAs. Xilinx Application Notes, 2005.



REFERENCES 141

[85] J. A. Darringer, R. A. Bergamaschi, S. Bhattacharya, D. Brand, A. Herkers-

dorf, J. K. Morrell, I. Nair, P. Sagmeister, and Y. Shin. Early analysis tools

for system-on-a-chip design. IBM J. Res. Dev., 46(6):691–707, nov 2002.

[86] Aaron Richard Mandle. FPGA Based Hardware Acceleration: A Case Study

in Protein Identification, April 2008.

[87] Ron Sass and Andrew G. Schmidt. Embedded Systems Design with Platform

FPGAs Principles and Practices. Elsevier Inc, USA, 2010.
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