Genetic analysis of indigenous plasmid, pPDL2 of *Flavobacterium* sp. ATCC 27551and its use in engineering benzoate degrading *Acinetobacter* sp. DS002

Thesis submitted for the Degree of Doctor of Philosophy In Animal Sciences

Supervisor Prof. S. Dayananda **By** P. Emmanuel Vijay Paul

Dept. of Animal Sciences School of Life Sciences University of Hyderabad Hyderabad – 500 046, India

March, 2011

Enrolment No. 05LAPH06

Introduction

1.1. Generation of genetic variations- Natural strategies	2
1.2. Mechanisms of Horizontal gene transfer	3
1.2.1. Transformation	4
1.2.2. Transduction	7
1.2.3. Conjugation	8
1.3. Entities of Horizontal Gene Transfer (HGT)	9
1.3.1. Plasmids	9
1.3.1.1. Resistance plasmids	10
1.3.1.2. Conjugative Plasmids	11
a) Maintenance modules	12
b) Plasmid stability modules	13
c) Dissemination modules: 1.3.2 IS elements and Transposons	14
1.3.2. IS elements and Transposons	15
1.3.3. Integrative and conjugative elements (ICEs)	17
1.3.4. Genomic Islands	18
1.3.5. Integrons	21
1.4. Xenobiotic-degradation islands	22
1.5. Catabolic plasmids	23
1.6. Catabolic transposons	24
1.6.1. Chlorbenzoate transposon (Tn <i>5271</i>)	24
1.6.2. Chlorobenzene transposon (Tn <i>5280</i>)	25
1.6.3. Class II transposons	25
1.6.4. Toluene degrading transposons (Tn <i>4651</i> , Tn <i>4653</i> , Tn <i>4656</i>)	25
1.7. Organophosphates	26
1.7.1. OP poisoning	27
1.7.2. OP-compounds and environmental pollution	28
1.7.3. Microbial Degradation of Organophosphorus compounds	28
1.7.4. Genetics of Organophosphate degradation	29
1.7.5. The opd genes	29
1.7.6. Organization of <i>mpd</i> genes	30
1.7.7. The <i>opaA</i> genes	31
1.7.8. HGT of phosphotriesterase (<i>pte</i>) coding sequences	31

Materials & Methods

2.1. Preparation of stocks, working solutions and buffers	39
2.2. Preparation of buffers and solutions for SDS-PAGE	41
2.3. Preparation of buffers for Western blotting	43
2.4. Preparation of buffers for Isoelectric focusing	43

2.5. Preparation of solutions for Agarose gel electrophoresis	44
2.6. Substrates for growth / enzyme assays	45
2.7. Media	47
2.8. Isolation of plasmids by alkaline lysis method	48
2.9. Purification of plasmids using QIAgen Mini preparation kit method	49
2.10. Agarose gel electrophoresis	50
2.11. Southern blotting	51
2.12. SDS-polyacrylamide gel electrophoresis	51
2.13. Western blotting	53
2.14. DNA ligation	54
2.15. Preparation of competent cells	54
2.16. Transformation	55
2.17. Preparation of electro-competent cells	55
2.18. Electroporation	56
2.19. Isolation of plasmid pPDL2 from <i>Flavobacterium</i> sp. ATCC27551	56
2.20. Rescue of pPDL2 from <i>Flavobacterium</i> sp. ATCC 27551	57
2.21. Sub-cloning of pPDL2-Tn [™] <r6kyori kan-2=""></r6kyori>	59
2.22. Sequencing of plasmid pPDL2	59
2.23. Sequence Assembly	60
2.24. Annotation of pPDL2 sequence	60
2.25. Prediction of <i>oriV</i>	60
2.26. Prediction of <i>att</i> sites	61
2.27. Promoter and terminator predictions	61
2.28. Horizontal transfer of <i>opd</i> plasmids	62
2.28.1. Mobilization of pPDL2::Tn5 <r6kyori-kan2></r6kyori-kan2>	62
2.28.1.1. Biparental mating	62
2.28.1.2. Triparental mating	62
2.28.2. Horizontal transfer of pCMS1	63
2.29. In vivo transposition assay	63
2.30. Identification of catabolic intermediates of benzoate	64
2.31. Determination of benzoate induced genome-wide expression profile	65
2.31.1. Two-dimensional electrophoresis	65
2.31.2. Preparation of protein sample	65
2.31.3. Isoelectro focusing (IEF)	66
2.31.4. In-Gel Digestion	66
2.31.5. MALDI-MS	67
2.31.6. Protein Identification	67
2.32. Protein estimation	67
2.33. Catechol 1, 2- dioxygenase assay	68
2.34. Purification of catechol 1, 2 dioxygenase	68
2.34.1. Preparation of cell free extracts	68
2.34.2. Ammonium Sulphate Fractionation	68
2.34.3. Anion Exchange Chromatography	69
2.34.4. Hydrophobic Interaction chromatography	69
2.34.5. Gel Permeation Chromatography	69
2.34.6. Paraxonase assay	70

Results & Discussion

Chapter-1

3.1. Isolation and rescue cloning of Indigenous plasmid pPDL2 from	
<i>Flavobacterium</i> sp. ATCC 27551	72
3.2. Rescue cloning of plasmid pPDL2	73
3.3. Sequencing of pPDL2 and annotation	76
3.4. Sequence strategy	77
3.5. Sequence assembly and analysis	79
3.6. The GC composition	81
3.7. Replication and partition module	86
3.7.1. Replicative origin (<i>oriV</i>)	86
3.7.2. Origin of replication (<i>oriV</i>)	89
3.7.3. ParA locus	93
3.7.4. Toxin antitoxin module	94
3.7.5. RelB of plasmid pPDL2	95
3.8. Mobilization module	96
3.8.1. Origin of Transfer	96
3.9. Integrase module	98
3.9.1. The attachment (<i>attP</i> / <i>attB</i>) sites	107
3.10. Degradative module	109
3.10.1. Protocatechuate 4, 5 dioxygenase (P45O)	111
3.10.2. Major facilitator super-family protein	112
3.11. Mobile genetic elements	114
3.11.1. Tn <i>3</i> transposon	116
3.11.1.1. Transposon Tn <i>3-I</i>	117
3.11.1.2. Tnp R-I	119
3.11.2. Transposon Tn <i>3-II</i>	120
3.11.2.1.TnpA-II	120
3.11.3. Transposon Tn3 specific terminal repeats	123
3.11.4. The y4qE element	123
3.12. Discussion	124
3.12.1. Structure and Function of ICEs	126
i) Maintenance modules	126
ii) Dissemination modules	129
iii) Regulation modules	129
3.13. Conclusions	133

Chapter-2

4.1. Horizontal mobility of pPDL2 of <i>Flavobacterium</i> sp. ATCC 27551	134
4.1.1. Triparental mating	136
4.1.2. Characterization of exconjugants	137
4.1.2.1. Detection of <i>opd</i> gene	137
4.1.1.2. OPH assay	137
4.2. In vivo transposition assay	138
4.2.1. Analysis of sucrose resistant colonies	141
4.3. Horizontal transfer of plasmid pCMS1	143
4.3.1. Random sequencing of pCMS1	143
4.3.2. Analysis of exconjugants	145
4.4. Discussion	
4.4.1. The $Tn op dA$ element	147
4.4.2. The <i>mpd</i> elements	148
4.4.2.1. The Tn <i>mpd</i> element is a typical class I transposon	148
4.4.2.2. Distribution of <i>mpd</i> elements	149
4.4.3. The <i>opaA</i> genes	151
4.5. Evolutionary link between phosphotriesterases and lactonases	151
4.6. MPH Scenario	154
4.7 Conclusions	155

Chapter-3

5.1	Growth behavior of Acinetobacter sp. DS002 in benzoate	157
5.2	LC/MS analysis of catabolites	158
5.3	Proteome analysis of Acinetobacter sp. DS002	164
5.4	Cloning of <i>cat</i> operon	172
5.6	Purification of Catechol 1,2dioxygenase	175
5.7	Catechol 1, 2 dioxygenase assay	178
5.8	Manipulation of Acinetobacter sp. DS002	180
5.9	Mobilization of pPDL2 Tn 5×R6Kyori/KAN-2>into Acinetobacter sp. DS002	180
5.10) Degradation of methyl parathion	182
5.1	l Conclusions	184

University of Hyderabad (Central University established in 1974 by an act of Parliament) HYDERABAD-500 046, INDIA

CERTIFICATE

This is to certify that **Mr. P. Emmanuel Vijay Paul** has carried out the research work embodied in the present thesis under my supervision and guidance for a full period prescribed under the Ph.D. ordinance of this University. We recommend his thesis entitled "Genetic analysis of indigenous plasmid, pPDL2 of *Flavobacterium* sp. ATCC 27551 and its use in engineering benzoate degrading *Acinetobacter* sp. DS002" for submission for the degree of Doctor of Philosophy in Animal Sciences of this University.

Prof. S. Dayananda Supervisor

Head Department of Animal Sciences

Dean School of Life Sciences

University of Hyderabad (Central University established in 1974 by an act of Parliament) HYDERABAD-500 046, INDIA

Declaration

I hereby declare that the work embodied in this thesis entitled "Genetic analysis of indigenous plasmid, pPDL2 of *Flavobacterium* sp. ATCC 27551 and its use in engineering benzoate degrading *Acinetobacter* sp. DS002" has been carried out by me under the supervision of Prof. S. Dayananda and this has not been submitted for any degree or diploma of any other university earlier.

Prof. S. Dayananda Paul (Research Supervisor) Scholar) P. Emmanuel Vijay

(Research

Acknowledgements

I would like to acknowledge my sincere thanks and heartfelt gratitude to my supervisor **Prof. S. Dayananda** for his guidance, unwavering support throughout the course of my work.

I thank the Dean **Prof**. Ramanadham and the former Dean **Prof**. A. S. Raghavendra for allowing me to use the school facilities.

My thanks to the Head, Department of Animal Sciences, **Prof. Manjula Sritaran**, and former Head **Prof. S. Dayananda** and **Prof. Aparna Dutta Gupta** for allowing me to use the Department facilities.

I would like to thank my Doctoral Committee members **Prof**. Manjula Sritaran and **Prof. Appa Rao Podile** for their valuable suggestions.

I would like to thank all the faculty members of School of Life Sciences for their help whenever needed. I thank Dr. Ch. Venkatramana for his valuable suggestions. I also thank Dr. O.H. Shetty and Prof. P. Reddanna for allowing me to use their lab facilities. I thank Gopi for helping me in the oxygraph studies.

I thank Mr. Anil, Mansi, Shailly, and Devilal for their timely help during annotation of the sequences.

I thank CSIR for giving me financial assistance throughout my Doctoral studies. I thank the University for providing the financial assistance to visit TAMU, USA.

I thank DST, DRDO, CSIR, UGC for funding our laboratory.

I thank **Prof. James R. Wild**, Dept of Biochemistry and Biophysics, TAMU for inviting me to his lab as a visiting Research Scholar. Many thanks to **Dr. Melinda Wales**, **Dr. Boris**, **Dr. Janet Grimesly** for their useful discussions and valuble suggestions. I thank **Manoj**, **Gaurav**, **Piush**, **Nerraj**, **Subrithi** and **Dheeraj** for making my stay at TAMU enjoyable. I thank Mr.Lallan, Mr. Ankinedu, Mr.Jagan, Mr. Gopi and Mrs. Jythothi who helped me in different endeavors during my work here.

I thank Dr. Madhura Rekha, L Mrs. Leena Bhashyam for their technical help whenever needed.

I thank my current lab mates Purushotham, Aleem, Gopi, Prasanna, Toshi, Swetha, Sunil, Santosh and Ashok for their constant support during my work.

I specially thank my senior colleagues **Dr. Pakala Suresh Babu**, **Dr. Syed Khajamohiddin**, **Dr. Pandey** and **Dr. Elisha** for their constant support during my work.

Thanks to Manikanta (lab Asst), Krishna (Lab Attendant) and Mallesh for their assistance in administrative work.

I thank **Dr. Rajesh, Dr. Vijay Chiatanya, Girish, Ranjith, Vijay** all my friends at School of Life Sciences for all the help and support and making my stay at University of Hyderabad memorable.

Special thanks to Naresh, Dinakar, Kiran, Vinay, Hari, Pavan, Madhu, Boney, Kauser, Christopher and all my friends at CC Church for all their support and prayers. I greatly acknowledge the support of my Pastors. **Rev.Pascal Prakash** and **Rev. Promod**.

I am grateful to my mother, wife, my daughter and son for their love, affection and cooperation. I also thank my brother, sister and her family for their love and support. I thank my grandfather and grandmother for their prayers and blessings.

Special thanks to all my relatives and friends for supporting me in time of need.

I thank my LORD God, Jesus for his Grace, Constant presence and for help all through my life.

P. Emmanuel Vijay Paul

As mentioned in the introduction chapter, OP compound degrading Flavobacterium sp. ATCC 27551 and Brevundimonas diminuta MG were isolated from agricultural soils collected from IRRI, Philippines (Sethunathan et al, 1973) and Texas, USA (Serdar et al, 1982) respectively. After these two reports a number of OP compound degrading bacteria belonging to different taxonomic groups were isolated from diverse geographical regions (Zhongli et al, 2001; Horne et al, 2002; Liu et al, 2005; Karpouzas and Singh, 2006; Singh, 2009). In all these OP degrading bacterial strains, a phosphotriesterase (PTE) is shown to be responsible for the hydrolysis of triester linkage found in structurally diverse groups of OP compounds (Benning et al, 1994; Cho et al, 2004). In Brevundimonas diminuta and Flavobacterium sp. ATCC 27551, the phosphotriesterase is coded by an identical organophosphate degrading (opd) gene present on large indigenous plasmids, pCMS1 and pPDL2 respectively (Serdar et al., 1982; Mulbry and Karns, 1986). Further studies from our laboratory have shown transposonlike opd gene cluster in Flavobacterium sp. ATCC 27551 (Siddavattam et al, 2003). In both pCMS1 and pPDL2 almost identical opd sequences were found. The DNA region identified 2.6 kb upstream and 1.7 kb downstream of the opd gene was found (Mulbry et al, 1988; Siddavattam et al, 2003). Beyond this region no detectable homology was found between these two indigenous plasmids. Such observation suggests existence of horizontal mobility of opd genes among soil bacteria. Horizontal mobility of genetic information occurs through various genetic elements such as plasmids, bacteriophages, genomic islands, Integrons, transposons, conjugative transposons and IS elements (Dobrindt et al, 2004). Existence of opd genes on large indigenous plasmids strengthens the hypothesis of spreading opd information through horizontal mobility. However, till date no experiments were conducted to validate if lateral gene transfer is contributing

for distribution of *opd* information among soil bacteria. Existence of *cis*-elements that contribute for horizontal mobility of plasmids, as well as structural information pertaining to the organization of *opd* information will be known from the primary sequence of the plasmids. Therefore, as a basic requirement to understand the HGT of *opd* gene, complete sequence of pPDL2 isolated from *Flavobacterium* sp. ATCC 27551 is determined.

3.1. Isolation and rescue cloning of Indigenous plasmid pPDL2 from *Flavobacterium* sp. ATCC 27551

The plasmid pPDL2 of *Flavobacterium* sp. ATCC 27551 is a low copy number, large indigenous plasmid of 39.75 kb in size. In order to obtain sequence of pPDL2 it has to be isolated and sub-cloned in multipurpose vectors. Further, in *Flavobacterium* sp. ATCC 27551 there are more than one plasmid. While sub-cloning pPDL2 it has to be isolated in a pure form. Therefore, plasmids pPDL2 was rescue cloned into *E. coli pir*-116 cells following procedures described in materials and methods. Initially all plasmids from *Flavobacterium* sp ATCC 27551 were isolated using a modified protocol of Courier and Nester method described in materials and methods section (Currier and Nester, 1976) and were analysed on agarose gels. As reported by Mulbry and his associates, plasmid preparations made from *Flavobacterium* sp. ATCC 27551 have revealed existence of four plasmids (Fig. 3.1) (Mulbry et al, 1986). Out of these four plasmids existence of *opd* was reported only in plasmid pPDL2. The *opd* plasmid pPDL2 was rescued from the rest of the three indigenous plasmids by rescue cloning technique.

Fig. 3.1. Isolation of indigenous plasmids from *Flavobacterium* sp. ATCC 27551. Lane 1 represents 1 kb DNA ladder and lane 2 represents plasmid preparations from *Flavobacterium* sp. ATCC 27551. Plasmid pPDL2 is shown with an arrow mark.

3.2. Rescue cloning of plasmid pPDL2

The plasmid preparation containing mixture of four plasmids were tagged with R6Kyori replication origin containing mini-transposon EZ-Tn5<R6Kyori/Kan2>. These plasmids were then transformed into *E. coli pir*-116 cells and the kanamycin resistant colonies were then used for doing colony PCR using *opd* specific primers. Out of 100 colonies screened only 30 colonies gave amplification of *opd* gene indicating existence of pPDL2 in these plasmids. The authenticity and purity of pPDL2 was established by performing restriction analysis and by amplification of *orf306*, an ORF adjacently located to the *opd* gene (Siddavattam et al, 2003). Amplicons of *opd* and *orf306* obtained from the rescued clones coincided with the amplicon size obtained from *Flavobacterium* sp ATCC 27551 used as positive control, suggesting successful rescuing of pPDL2 into *E. coli*

pir-116 cells (Fig. 3.2). Further the restriction profile generated to the rescued plasmid has perfectly coincided with the similar profile reported by Mulbry and his associates (Mulbry et al, 1986),

Fig. 3.2. Amplification of plasmid pPDL2 borne *opd* and *orf306* from *Flavobacterium* sp ATCC 27551 and *E. coli pir*-116 containing rescue cloned pPDL2:: Tn5<R6Kyori/Kan2>. Panel A, Lane 1 represents 1 kb DNA ladder. Lane2 and 3 represents amplicons of *opd* obtained from *E. coli pir*-116 (pPDL2::Tn5<R6Kyori/Kan2>) and *Flavobacterium* sp. ATCC 27551 respectively. Lane 4 represents negative control where a colony of *E.coli pir*-116 cells was used while performing colony PCR. Panel B indicated similar loading pattern except that *orf306* specific primers were used while performing colony PCR.

except that the size of the 14.7 kb large *Eco*RI fragment increased by 2kb. Further, a 5.7 kb *PstI* fragment found on plasmid pPDL2 has disappeared in pPDL2::Tn5<R6Kγori/Kan-2>. *In lieu* of that, two new bands with a size of 3 kb and 2.5 kb were seen after digestion with *PstI*. Obviously, this is due to existence of an internal *PstI* site in mini-transposon Ez-Tn5<R6Kγori-Kan2> (Fig. 3.3). With the exception of the increase in the size of large *Eco*RI fragment by 2 kb (A-14.7kb) and disappearance of the 3rd largest *PstI* fragment (C-5.7kb), the restriction profile of pPDL2 perfectly matched with the restriction profile of pPDL2:: Tn5<R6Kγori/Kan2> (Fig. 3.3). The *PstI* and *Eco*RI restriction profiles of pPDL2::Tn5<R6Kyori/Kan2 gave 10 and 5 fragments respectively (Fig. 3. 3). Rescuing of pPDL2 was found to be advantageous in number of ways. One of them was apparent

Fig. 3.3. Restriction profile of plasmid pPDL2::Tn5<R6Kyori/Kan2>.Lane 1 represents 1 kb DNA ladder. Lanes 2 and3 represents restriction profile of pPDL2::Tn5<R6Kyori/Kan2> generated by digesting with *Pst1* and *Eco*RI respectively. Increase in size of *Eco*RI is indicated with a black arrow. Additional *Pst1* fragments generated due to existence on mini-transposon specific *Pst1* are indicated with open arrows

increase in copy number. Due to increase in copy number, pPDL2::Tn5<R6Kγori/Kan2> could be isolated from *E. coli pir*-116 cells by using mini-prep protocols optimized for isolation of high copy number plasmids from *E. coli* (Fig. 3.4). Such easy isolation of

plasmid pPDL2::Tn5<R6Kγori/Kan2> facilitated for easy sub-cloning of its fragments in multipurpose vectors.

Fig. 3.4. Isolation of rescued plasmid pPDL2::Tn5<R6Kyori/Kan2> from *E.coli pir* 116 cells. Lane 1. Represents 1kb DNA ladder. Lanes 2 and 3 represent plasmid profile of *E.coli pir*-116 and *E.coli pir*-116 (pPDL2::Tn5<R6Kyori/Kan2>). Plasmid pPDL2::Tn5<R6Kyori/Kan2> is shown with an arrow mark.

3.3. Sequencing of pPDL2 and annotation:

As stated before, 10 fragments were generated when plasmid pPDL2::Tn5<R6Kyori/Kan2> was digested with *Pst*I. All the 10 fragments with the following sizes 12 kb, 8 kb, 5.5 kb, 3 kb, 2.5 kb, 2.2 kb, 2.0 kb, 1.7 kb, 1.6 kb and 1.3kb were sub-cloned in pBluescript-II KS digested with similar enzymes (Fig. 3. 5). Similarly, 4 *Eco*RI fragments, with the sizes of 11 kb, 6.7 kb, 3.0 kb and 2.5 kb were cloned in pBluescript-II KS digested with *Eco*RI. Description of the recombinant plasmids containing different pPDL2 fragments used for sequencing is shown in Table 3.1.

3. 5. Sub-cloning of pPDL2. Lane 1 represents 1kb DNA ladder. Panel A shows shows subclones of pPDL2 generated by ligating *Pstl* fragments in pBLuescriptII vector. Panel B shows similar sub-clones of *EcoRl* fragments. Refer table 3.1 for size description.

3.4. Sequence strategy

The detailed strategy used to obtain complete sequence of pPDL2 was shown in Fig. 3.6. Initially the sub-clones were directly used to generate sequence using universal forward and reverse primers. After obtaining plasmid pPDL2 specific internal sequence, fragment specific primers were designed to obtain entire sequence of the fragment through gene walking strategy. A detailed strategy used for obtaining the complete sequence of pPDL2 is shown in Fig. 3.6. Clones pE5 (2.2kb), pE12 (6.5kb), pP33II (12kb), pP4I (8kb), pP4II (5.5kb) and pP3II (5.7kb) were initially sequenced using vector specific primers and then were sequenced using primer walking strategy. Clone pP33II is 12kb in size. In order to reduce the size of the insert plasmid pP33II was further digested with both *PstI*, *SalI* and *Eco*RI and sub-cloned in pBluescript KSII as *PstI-Eco*RI (p33EP, 8kb) and *PstI-Sal*I (p33SP, 3kb) fragments. While obtaining the sequence of junction regions appropriate primers were designed and plasmids with overlapping fragments were used

Sub-clone of pPDL2	Description
pE10	11.0 kb <i>EcoRI</i> fragment of pPDL2 cloned in pBluescript II-KS
pE9	3.0 kb <i>EcoRI</i> fragment of pPDL2 cloned in pBluescript II-KS
pE5*	2.5 kb <i>EcoRI</i> fragment of pPDL2 cloned in pBluescript II-KS
pE12*	6.7 kb <i>EcoRI</i> fragment of pPDL2 cloned in pBluescript II-KS
pP33II*	12 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS
pP4I*	8 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS
pP3II*	5.5 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS
p33EP*	8 kb <i>Eco</i> RI- <i>PstI</i> fragment of pP33II cloned in pBluescript II-KS
p33SP*	4.5 kb <i>Sal</i> I- <i>PstI</i> fragment of pP33II cloned in pBluescript II-KS
pP1I*	1.5 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS
pP3I*	2.5 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS
pP7I*	2.2 kb <i>PstI</i> fragment of pPDL2 cloned in pBluescript II-KS

Table 3. 1. Details of *EcoRI* and *PstI* fragments of pPDL2::Tn5<R6Kγori-Kan-2> sub-cloned in pBluescript. Sub-clones used for sequencing are indicated with * mark.

as template to generate sequence reactions. The strategy followed to get the complete sequence was shown in Fig. 3.6.

3.5. Sequence assembly and analysis

Sequence assembly of pPDL2 was done using the contigexpress software of VectorNTI. The chromatograms were compared using contigexpress and contigs were created with chromatograms having good quality bases. All the contigs were then aligned using

Fig. 3.6. Strategy used for sequencing of plasmid pPDL2 of *Flavobacterium* sp. ATCC 27551. The outer and inner circles represent *Pst*I and *Eco*RI fragments of pPDL2. Arrows indicate position of primers used for sequencing of pPDL2. Blue coloured arrows show vector specific primers. Orange and maroon coloured arrows indicate the primer positions used to sequence *Pst*I and *Eco*RI fragments cloned in pBluescript vector.

Primer Name	Sequence of the primer	Primer position
E5F	5'-TAAGGATAGTGGGACGTCGC-3'	3838 - 3819
E5R	5'-GTCGTGGGCGTCGTTAAGCTG-3'	2452 -2472
P3R	5'-TATCCTTGATGCCGAAGACC-3'	6509 – 6490
E13R	5'-GCCGGCAGGATATAGGTT-3'	28028 -28045
E13F	5'-CACCTCACCAGCAATTCGTA-3'	38306 -38287
E12F	5'-AGCCTGTTGACGCAGAAAGT-3'	4498 -4517
P33F	5'-GTTCGCGATCGTCAAGAACT-3'	29779 – 29760
P4I-Ext4	5'-GTTCTACAACACGCTGAAC-3'	38999 -39017
P4II-M	5'- GTCCGGGCTGATGAAATATG-3'	13915 -13934
P4IR4	5'-ACTCGCTGGCCTATGTGTTC-3'	32593-32574
P33-R4	5'-ATCCCGATCTGTTCATTTGC-3'	18240-18259
P4F	5'-ACAATTTCCAGGTCGTCACC-3'	15599 -15580
E12F-internal2	5-'GCCTCAATCTGGTGTTCGAT-3'	5157 -5176
E13F-internal2	5'-CGAATTGGTGGGATTTGTCT-3'	37795 -37776
E13R-internal2	5'-CCATCGCCTAGATCAACACC-3'	28576 -28595
P3RII-internal	5'-ACGATGTCGTCGATGTGTGT-3'	6248 -6229
p33FII-internal2	5'-CTGTTCCGCACGATCGCG-3'	31865 -31882
P33R-Internal	5'-TATCTCGCTCACCGGCGACT-3'	11523 11504
P4FII internal	5'-TGGCGTTGATCGGCTATG-3'	15341 -15324
P4RI external	5'-CACCAGGCCAACAAGAAATC-3'	30585 -30566
P4RI internal	5'-ATGGCCGATTGGCTGCTGGC-3'	29841 -29822
P4FI-Internal	5'-GCACTTTCGTGTAGTGACCCC-3'	16962 -16981
P4RI-Internal2	5'-ATCGCGCGCGGCACTAAGC-3'	31877 -31895
P4RII-Internal2	5'-AGATCCACCATCTATCGCGA-3'	13832 -13851
P3FII-Internal	5'-GAAGTCACCGAGGAGCACTT-3'	2209 -2228
H10_P33RII(External)	5'-CGGTGTAGTGCTCCTCGATT-3'	16219 -16200
D07_P4FI(External)	5'-CTTTGACTTCATCCGGCAGT-3'	37893 -37912
G09_P4FII(External)	5'- AGTTGTCGCATTCTCGATCC-3'	15852 -15871
E09_P3FII(External)	5'- GCACGATGTTCTTCGACCTT-3	1886 -1867
P33SPF-E	5'- CGCTGAATCTGAACTGACGA-3'	21983 -22002
p33F2-g	5'-CGGCTTTCGGCATCCAACCT-3'	28414 -28395

Table 3. 2. Primers used for sequencing of plasmid pPDL2 and their sequences

Pairwise alignments to get the complete sequence of pPDL2. The complete sequence of pPDL2 is available in web page (<u>www.uohyd.ernet.in/uploads</u>). After generating the complete sequence it was analyzed to indentify GC ratio, number of ORFs, inverted and direct repeats, promoter elements and other *cis*-elements that play a predominant role in integration excision and mobilization of plasmids.

3.6. The GC composition

The 39.75 kb sequence of pPDL2 has shown high similarity to either chromosomal or plasmid DNA sequences of Sphingobium and Sphingomonas sp. Since, plasmid pPDL2 has shown sequence similarity to the genome sequence of *Sphingomonas* and Sphingobium, the GC content of the total genome sequences were obtained from genome database. Based on the total genome sequence found in database (www.ncbi.nlm.nih.gov/) the GC content of Sphingomonas wittichi RW1 is 68.4%. It contains two indigenous plasmids designated as pSWIT01 and pSWIT02 which have a GC content of 64.1% and 61.2% respectively. Similarly there are two chromosomes 1 and 2 in Sphingobium japonicum UT26S and each of them have a GC content of 64.8 % and 65.9 % respectively. In addition to these two chromosomes there are three circular plasmids in Sphingobium japonicum UT26S (NBRC101211). These three plasmids designated as, pCHQ1, pUT1 and pUT2 have a GC % of 63.0%, 63.7% and 61.0% respectively (NBRC101211). The G+C content of pPDL2 of Flavobacterium sp. ATCC 27551 is 61.76% and found to be very close to plasmids pSWIT02 of Sphingomonas wittichi RW1 and pUT2 of Sphingobium japonicum UT26S. Consistent with GC content, the proteins coded by the open reading frames (Table 3. 3) of pPDL2 have shown homology to the proteins coded by the Sphingomonas. The 39.75kb plasmid pPDL2 codes for 41 open reading frames. Out of 42 predicted ORFs 18 of them are hypothetical proteins that show (31-95%) homology to the hypothetical proteins of *Sphingomonas* or *Sphingobium* sps. (Table 3.3, Fig. 3.7).

.3. 7. Circular map of plasmid pPDL2. The ORFs specified by sense or positive and antisense or negative strand are shown in outer and inner circles respectively. Colour boxes represent ORFs. Very distinct colours are used to indicate possible function of ORFs. Yellow, for all hypothetical proteins; dark green for transposons and IS elements; Dark blue, for proteins involved in plasmid replication and partition; Red to show phage integrases and CopG family transcription factors and brown colour for all ORFs which have accessory functions.

The ORFs identified in plasmid pPDL2 are given generic, conventional and functional names. The generic name indicates the serial order of the ORF on plasmid pPDL2. In the conventional names the ORF is followed by a number which is equivalent to the number

amino acids encoded by the *orf*. If any *orf* coded protein has significant homology to the functionally characterized proteins it is also given a functional name (Table 3. 3). While describing ORFs coded by plasmid pPDL2, they are divided into functional modules such as Replication and partition module, Mobilization module, Integration module, Degradation module and mobile genetic elements. Each functional module is independently described to facilitate easy description and understanding of plasmid pPDL2 sequence.

3.7. Replication and partition module

In general, replication module includes a well defined *oriV*, replication initiator protein, RepA, proteins involved in partitioning (Par) and plasmid maintenance (toxin-antitoxin modules).

3.7.1. Replicative origin (oriV)

The *oriV* generally contains sequence motifs (*cis*-elements) that interact with the replication initiator protein, RepA and other accessory proteins. In plasmids replicated through *theta* mode (Bramhill and Kornberg, 1988).They include (i) AT-rich region containing sequence repeats, often found to be located adjacent to RepA binding sites. At this AT-rich region of *oriV* the host initiation factors assemble immediately after its conversion into an open complex, and (ii) the next important *cis*-element found at origins of *theta*-replicating plasmids is DnaA binding box (Bramhill and Kornberg, 1988; Kornberg and Baker, 1992). Generally one or more *dnaA* boxes are found at the replicative origin of plasmids. Interaction of host encoded DnaA initiator protein is an essential event in initiation of plasmid replication process (Bramhill and Kornberg, 1988; Kornberg Kornberg Kornberg Kornberg kerter is an essential event in initiation of plasmid replication process (Bramhill and Kornberg, 1988; Kornberg and Kornberg, 1988; Kornberg and Kornberg, 1988; Kornberg kerter in Kornberg, 1988; Kornberg kerter in kerter i

Baker, 1992). In pPDL2, two ORFs designated as *orf20* (18125-19168) and *orf21* (19995-20933) have shown very high homology (96%) to the RepA-like protein coding sequences of *Sphingobium japonicum* UT26S (Fig. 3.8). These two RepA sequences designated as

A)	pPDL UT26	MKPRIEPDRQRNPELPLAVNETPNGAEGRPPLLPVRYPDPDLFICDVLDAIPKDDMASME MKPRIEPDRQRNPELPLAVNETPNGAEGRPPLLPVRYPDPDLFICDVLDAIPKDDMASME ************************************	60 60
	pPDL UT26	HPIFSLATKPDRRVFRYEHNGNKLEIVPSVKGLATIHDKDILIYCISQLIGKMNQGERPS HPIFSLATKPDRRVFRYEHNGNKLEIVPSVKGLATIHDKDILIYCISQLIGKMNQGERPS ************************************	120 120
	pPDL UT26	RTLHLTARDLLVWTNRQTDGDGYDRLRSAFERLSGTRITTNIKADGEEITEGFGLINEWR RTLHLTARDLLVWTNRQTDGDGYDRLRSAFERLSGTRITTNIKADGEEITEGFGLINEWR ************************************	180 180
	pPDL UT26	IVRQTRSGQMSEIKVTLSDWLFKMVEGRSVLTLHRDYFRLRKPLERRIYELARKHCGAQE IVRQTRSGQMSEIKVTLSDWLFKMVEGRSVLTLHRDYFRLRKPLERRIYELARKHCGAQE ************************************	240 240
	pPDL UT26	KWSISVETLQKKTGASSHLRVFRSMLRDLVAHDHLPDYAVEMNGDTVTFRNREALDTVEA KWSISVETLQKKTGASSHLRVFRSMLRDLVAHDHLPDYAVEMNGDTVTFRNREALDTVEA *********	300 300
	pPDL UT26	IEAEPERPYIDPESFHDAQSVAPGYDVYALYDQWVSWVGSTAGG IEAEPERPYIDPEGFHDAKSVAPGYDVYALYDQWVSWWIDSGRPELKSPRAAFIGFCRNK ************************************	344 360
	pPDL UT26	RET 347 HKTAPLR 367 ::*	
B)	pPDL2 pUT1	AACAAAAAAGCGTGCCGGCGAACCCGGCTCATCATGGGGGATGCCGGGTGGGAGGATCGCT AACAAAAAGCGTGCCGGCGAAGCCGGCTCATCATGGGGGGATGCCGGGTGGGAGGATCGCA ******** ****************************	60 60
	pPDL2 pUT1	TTAGCGATCCGGGGCGGCCGAAGGCCGCGAGCCGGGGGGGG	120 119
	pPDL2 pUT1	CGCTTTTCTTCCTTCTGCCTGTGCCTGAAGCGCGGCGCCAGTGACTTGCGCTGCCTCTGT CGCTTTTCTTCCCTCTGACCGTGCTTCAAGCACTGCGCCAGTGAGTCGCGCCGCGCCTCTGT ********** **** * **** * **** * *******	180 179
	pPDL2 pUT1	CCCGATTTTCGGGACAAGCTGTCCGATCTGGCGGGACGCTGGTGGGTG	240 239
	pPDL2 pUT1	GGCAAAAGTTATCCACAGGTCGGTCTAGTGTTAATATATGGGTTAAAGAGTCGTGTTACG GGCAAAAGTTATCCACAGGGCGGCCTAGTGTTAATATATAT	300 299
	pPDL2 pUT1	GGATTTTGGCGGTTCCGTAAGTTACTGAAAATAGGTATAGAATCGGGCGTTTTTGGGCCT GGATTTTGGCGTCTCCGTAAGATACTGAATATAATAGTGAAATCGGCCATTTTTTGGCCT ********** ******* ******* *** * ******	360 359
	pPDL2 pUT1	TTGGCGTCAACGGAACCCCGAATCTGGTGACTCCAGAACCCCCGAATCTGCGTCAACGAAA TGGGCGTCAACGGAACCCCGAATCCGGTGACTCCAGAACCCCCGAATCTGCGTCAACGAAA * *********************************	420 419
	pPDL2 pUT1	CCCCGAATCGTGGGCAGGCGTCAATGAAACCCCCGAACTTTTCCGTTGCGTCAATGAAACC CCCCGAATCGTCGGCGAGCGTCAATGAAACCCCCGAACTTTTTCGTTGCGTCGAATGAAACC ************ *** *****************	480 479

Fig. 3. 8. Pairwise alignment of A) RepAa of pPDL2 of *Flavobacterium* sp. ATCC 27551 with RepA of pUT1 of *Sphingobium japonicum* UT26S and B) alignment of *oriV* sequences of pPDL2 and pUT1 of *Sphingobium japonicum* UT26S. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

Chapter-1

RepAa and RepAb share 100% similarity. Though the reason for presence of two identical *repA* coding genes are unknown, considering its homology with well characterized RepAa protein of pUT1 of *Sphingobium japonicum* UT26S, the possible role of these two proteins in replication of plasmid pPDL2 is quite apparent. Since existence of two RepA proteins appeared unusual, a complete literature search was undertaken to gain more insights into this unusual phenomenon. As revealed by literature search, existence of more than one RepA is not uncommon. In an 184 kb indigenous catabolic plasmid pNL1 of *Sphingomonas aromaticivorans* F199 more than one *repA* genes were identified (Romine et al, 1999). However, no homology was seen between RepA of plasmid pPDL2 and RepA of pNL1 of *S. aromaticivorans*. When the upstream region of *repA* sequence was analyzed to indentify existence of promoter elements, a σ 70 promoter was seen upstream of each *repA* gene, suggesting existence of two functional *repA* genes on plasmid pPDL2.

In order to assign incompatibility group to plasmid pPDL2, a two way approach was followed. Initially, the RepAa sequence was blasted to know its homologues from well characterized plasmids. The second approach was to identify similarity between the *oriV* sequence of pPDL2 and well characterized plasmid replicative origins available in the database. The RepAa sequence of pPDL2 has shown 96% identity to the RepA sequence of *Sphingobium japonicum* UT26S plasmid, pUT1 (BAI99177). Further, it has also shown about 85% identity to the plasmid, pAPA01-030 coded RepA of *Acetobacter pasteurians* IFO3283-01 and 62% identity with RepA of *Nitrospira multiformis* ATCC25196 (Fig. 3.9). As seen in phylogenetic tree constructed using blast output, no significant homology was found between RepA of pPDL2 to other bacterial RepA proteins (Fig. 3.9). However, the

plasmids of Sphingobium sp. to which repA of pPDL2 has shown strong identity are yet to

be assigned with a distinct incompatibility group (AP010806).

Fig. 3. 9. Phylogenetic analysis of RepAa of pPDL2 of *Flavobacterium* sp. ATCC 27551.

3.7.2. Origin of replication (oriV)

A 776 bp long putative *oriV* like sequence was seen immediately upstream of *repAa, spanning from sequence position* 17238 to 18114. In general the replicative origin is predicted based on the GC-skew analysis as described in materials and methods section (Grigoriev, 1998). As RepA protein present on plasmid pUT1 of *Spingobium japonicum* was 96 % identical with RepA protein of pPDL2, a thorough search was done to find out a sequence that has similarity with the replicative origin of plasmid pUT1 of *Sphingobium japonicum* UT26S. As shown in Fig. 3.8B considerable similarity was found between *oriV* sequences of pPDL2 and pUT1. Only very minor differences were noticed

Chapter-1

between these two oriV sequences. The oriV predicted in pPDL2 has two imperfect tandem repeats. The first tandem repeat consists of 24bp sequence designated as A-24 and A'-27bp. There is a gap of 107 bp sequence between A-24 and A'27. The second tandem repeat is C-48 (48 bp) and C'-54 (54 bp) in size and are separated by a gap of 26 bp. In between these two tandem repeats a 17bp long palindromic sequence was identified (Fig. 3.10B). Interestingly, sequence found downstream of palindromic sequence is AT rich, while the upstream region is highly GC rich. In the upstream region of the palindromic sequence four typical DnaA binding boxes were identified with a consensus sequence of 5'-TTN4ACA-3' (Fig. 3.10C). The replicative origins of plasmids are shown to have configuration conservation (spatial arrangement of repeats) rather than showing strict sequence conservation (Gloria del Solar et al, 1988). When searched to find such configuration, homologues to oriV of plasmid pPDL2 the oriV of plasmid pSC01 isolated from *Pseudomonas* has revealed to have similar spatial arrangements of repeats and palindromic sequences (Fig. 3.10D). However, neither plasmid pUT1 nor pSC01 are assigned any compatibility group. Therefore, with the present data no clear incompatibility group can be assigned to the plasmid pPDL2. As shown in Fig. 3. 10A, the other important proteins that contribute for plasmid replication and maintenance are RepB, ParA and RelB. The orf40 has shown 83% homology to replication initiator protein, RepB of *Gluconobacter diazotrophicus* PA15 (Fig. 3. 11A). RepB proteins are only seen in plasmids that replicate through rolling circle (RC) mode. The RC mode of DNA replication

Fig. 3.10.Panel A shows physical map of plasmid pPDL2 DNA region showing the organization of ORFs coding for proteins involved in plasmid replication (*repA*, *repB*), partition (*parA*) and maintenance (*relB*). Panel B shows structural configuration of *oriV* found upstream of *repAa* in pPDL2 of *Flavobacterium* sp. ATCC 27551. In Panel B, the organization of tandem repeats A and A' found upstream of palindromic sequence (shown in green) also designated as operator sequence. The second tandem repeat sequence, C and C' found downstream of operator sequence is shown with maroon coloured arrows. The *repAa* is shown in green. Panel C. represents the alignment of predicted *dnaA* boxes found in the replicative origin *oriV* of plasmid pPDL2. The consensus *dnaA* box is shown separately. The configuration of *oriV* of pPS10 isolated from *Pseudomonas savastanoi* that show similarity to *oriV* of pPDL2 is shown in panel D

is generally seen in small plasmids (less than 10kb). The second place where such origin of replication is seen during conjugation process. In such plasmids, the replication initiators sequences are designated as the Mob class of initiators (Ilyina and Koonin, 1992).

A)

pPDL	MNHATSPVNGGKAKVALDGDTALTLAQKGRGNPFDPANYGEIVKPGELVDIVELSPLTLA	60
GPAl	MNFG	4

SPC1	MRVAAALQAKGGDEFAKPGSIVEVKFVKGQSLSLTASRLLALMILTAG	48
PPDL GPA1 SPC1	DRRIYNLLIANAWERIGEPVIHRIPKSALKGTHQGNERIESSLLRLMGTIAIVTIRKG-G YAGGNERIEASLLRLMGTIAIVTIRKD-G GDAWEDRPHKMRKADIRRGHKGNERISDMLEELHRTLFAVDDKSWRG * *****. * .* *: * :. *	119 39 95
PPDL GPA1 SPC1	KSFKRRVQLLGPSDESLEKDGFLHYRIPEELIEILRNSEVYARLKTQVMYCFESK KSYKRRVQLLGPSDESLEKDGFLHYRIPEELIEILQNSEVYARLKTQVMYCFESK KKATLRFSLISSSREEAEDEEGADAGWIEWEFTPEARKLIQESETYAVLNRQAVLGFRST ***:* **: *:::::**.** *: *.:*	174 94 155
PPDL GPA1 SPC1	YALCLYEMIERRIGLEYKQSEEFTIAELRGLLNVPEGKLERFADFNKYCLKVAQEEINKL YTLCLYEMTERRIGLEYKQTEEFTIEELRGLLNVPDGKLERFADLNKYCLKVATEEINKL YALKLYEIGALRLHRRQ-SLWKGDMTALRALLGIAPDVYKDFAQLRRKVLEKAKAEIDQL *:* ***: *: : : **.**.: *: ** **::*	234 154 214
PPDL GPA1 SPC1	CPFWVEFTPIKKGRKVERVSMMWLPKTMSGRRDAQNLIDQHSIVRRAKLRGDIPEMPVLV CPFYVDFSPIKKGRKVERIAFHWFPKTSSGKRDAQILIDQHRIVRRAKLRGLAAELPLLL AHFRVEWREIRQGRTVTEIEFRFEPKDAPAQIATVDEIGRHSAGRKARREDEVETVAVEA . * *:: *::**.* .: : : **: : *.:* *::*	294 214 274
pPDL GPAl SPCl	DFSAPAAQRDFGTEPPEK	303 223 334

B)

Fig. 3.11. Panel A shows multiple alignment of RepB of pPDL2 of *Flavobacterium* sp. ATCC 27551 with RepB of *Gluconacetobacter diazotrophicus* and *Sphingobium chlorophenolicum*. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols. Panel B shows Secondary structure of putative rolling circle replication origin found in upstream of *repB* sequence of pPDL2. The hair-pin and stem loop structures found to be typical structural features of rolling circle replication origin are highlighted with red colour.

Chapter-1

In general, the plasmids replicating through rolling circle replication usually have two origins, the double stranded origin of replication and a single stranded origin of replication with a potential to form a cruciform and a hair-pin like structures respectively (del Solar et al, 1998). In well characterized streptococcal rolling circle replication (RCR) plasmid pMV158, the RepB is a homo hexamer and usually binds to a region in the origin known as 'Bind region' which is characterized by presence of direct repeats (de la Campa et al, 1990; Ruiz-Maso' et al, 2004). In pPDL2, a sequence that shows strong structural similarity to the consensus RC replication origin was identified immediately upstream of RepB. Like in typical RC replication origin this region contains 4 direct repeats each measuring a length of 22 bp with a consensus sequence of 5'-ACCCCAACACTCACCGGACTCG-3' and a sequence with a potential to form a secondary structure (Fig. 3.11B). Its typical structural features and strategic location upstream of RepB suggest a role in replication of plasmid pPDL2. RC mode of replication is only seen in small plasmids (del Solar et al, 1998). In the background of such reports, further experimentation is required to validate its involvement in replication pPDL2. RC mode of replication is also seen during horizontal mobility of plasmids through conjugation (Lanka and Wilkins, 1995). Therefore, its involvement along with RepB in generating a relaxosome required during conjugation process cannot be ruled out. Mobilizable nature of plasmid pPDL2 (described in chapter-2) adds strength to such proposal.

3.7.3. ParA locus

In addition to the replication initiator proteins, pPDL2 has an ORF designated as *orf*22 (21246-21893c) immediately downstream of *repAb* gene. The 215 amino acids long protein coded by *orf*22 has shown 99% homology to the partitioning protein ParA of

Sphingobium japonicum UT26S (BAI99179) (Fig. 3.12). Therefore, *orf22* is henceforth designated as *parA* gene. In the light of such high degree homology with the well characterized ParA protein it appears to involve in partitioning of pPDL2 soon after its replication. Interestingly, there exists another *parA* homologue, *parAa* immediately upstream of *repB*. However, it has also shown 58% identity with cobyrinic acid acdiamide synthase of *Thauera* sp. M21T (ACK55109) and 57% identity to ParA of *Laribacter hongkongensis* (ABC70161). With the existing information it is not possible to assign a confirmed role of this gene in the maintenance of pPDL2.

pPDL SJUT	MKVLAILSQKGGVGKRAPGTTLATCLAVAAEQAGKVAAIIDLDPQATASFWKDVRQLDTP MKVLAILSQKGGVGKTTLATCLAVAAEQAGKVAAIIDLDPQATASFWKDVRQLDTP *************	60 56
pPDL	AVASIQPVRLPAMLKACEDAGTDLVVIDGAAVARDVAYEAARQADFILIPTKTAVFDTMS	120
SJUT	AVASIQPVRLPAMLKACEDAGTDLVVIDGAAVARDVAYEAARQADFILIPTKTAVFDTMS	116
pPDL	MTHTLDVVRQLDRAFAVVLTFVPPQGQETGDAIQAVAELGATVCPVTIGNRKAFFRAQAA	180
SJUT	MTHTLDVVRQLDRAFAVVLTFVPPQGQETGDAIQAVAELGATVCPVTIGNRKAFFRAQAA	176
pPDL	GQAVQEFEPHGPAADEIHRLYEYTTIRLYNEAEAA 215	
SJUT	GQAVQEFEPHGPAADEIHRLYEYTTIRLYNEAEAA 211 ***********************************	

Fig. 3.12 .Pairwise alignment of ParA of pPDL2 of *Flavobacterium* sp. ATCC 27551 (pPDL) with ParA of *Sphingomonas japonicum* UT26S (SJUT). Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

3.7.4. Toxin antitoxin module

Toxin-antitoxin systems (TA systems) increase the plasmid prevalence (number of plasmid containing cells/total number of cells) in growing bacteria populations by selectively eliminating daughter cells that did not inherit a plasmid copy during the process of cell division (Gerdes et al, 1986; Jaffe et al, 1985). This post-segregational killing mechanism relies on the differential stability of the toxin and antitoxin. Usually the toxin is stable which is rendered inactive by an unstable anti-toxin (Tsuchimoto et al,

1992; Van Melderen et al, 1994). In daughter bacteria devoid of a plasmid copy, because TA proteins are not replenished, the antitoxin pool rapidly decreases, freeing the stable toxin. These plasmid-free bacteria will eventually be killed by the deleterious activity of the toxin. Plasmid-encoded TA systems are also called addiction modules (Yarmolinsky, 1995) since this property renders the cell addicted to antitoxin production and therefore to the TA genes.

RelE and RelB is a toxin and antitoxin pair coded by the *relBE* toxin-antitoxin gene family which are discovered in *Escherichia coli* (Gotfredsen and Gerdes, 1998). The *relE* gene encodes a small (11-kDa) protein that is extremely toxic to bacterial cells, and the *relB* gene encodes an antitoxin of similar size that counteracts the cell killing activity of the RelE toxin (Gotfredsen and Gerdes, 1998; Grøndlund and Gerdes, 1999). Many *relBE* homologues have been identified in a broad range of both gram-negative and grampositive bacteria and in archaea (Gotfredsen and Gerdes, 1998; Grøndlund and Gerdes, 1998; Grøndlund and Gerdes, 1999).

3.7.5. RelB of plasmid pPDL2

Upstream of the *parA* gene, an ORF designated as *pilT* (33297-33722c) is identified. This ORF codes for a protein having 141 amino acid long PilT domain. The pilT domain of Orf38 shows 59% homology to PilT domain containing protein of *Sphingomonas wittichi* RW1. Monomers of PilT domain containing proteins have the ability to polymerise while forming Pilus fibre (Wall and Kaiser, 1999). Similarly, the PilT protein in its hexameric conformation is required for ATP-dependent retraction of the type IV pilus in gram-negative bacteria (Aukema et al, 2005). Retraction of type IV pili mediates intimate attachment and signalling to the host cells, surface motility, biofilm

formation (Chiang and Burrows, 2003; O'Toole and Kolter, 1998), natural transformation (Wolfgang et al, 1998; Whitchurch et al, 1994), and phage sensitivity. In the hexameric state, the ATPase activity of PilT, could actively promote dissociation of pilin monomers from the base of the pilus filament and thus has been shown to contribute to the pilin monomers pool observed within the cytoplasmic membrane (Morand et al, 2004). PilT could remove or inactivate a capping protein that prevents an energetically favourable retraction reaction. Alternatively, PilT could reverse the direction of the PilB motor, whose ATPase activity is required in vivo for the assembly of pilus filaments from pilin monomers (Turner et al, 1993). The exact function of the PilT domain in some proteins is unknown but this domain is present in some toxin proteins involved in bacterial plasmid stability such as the VapC (Francuski and Saenger, 2009; Robson et al, 2009). The exact nature of PilT domain containing protein of pPDL2 is not clear. However, in plasmid pPDL2, two ORFs, orf20 (23492-23922) and orf30 (26316-26582) encode for an antitoxin protein which shows 96% similarity to RelB, anti-toxin of Sphingobium japonicum UT26S. In the toxin - anti-toxin pair on pPDL2, absence of the toxin and the presence of pilT domain containing protein in plasmid pPDL2 suggests possible role of PilT domain containing protein as a toxin.

3.8. Mobilization module

3.8.1. Origin of Transfer

In Plasmid pPDL2, genes responsible for mating pair formation are not noticed. However on careful examination, genes responsible for initiation of its mobilization are identified on the plasmid. The initiation of transfer occurs through formation of relaxosome involving *oriT* and relaxase. The relaxase creates a nick at the *oriT*. In the

Fig. 3.13. Secondary structure of predicted *oriT* present in the intergeneic region of *repAa* and *repAb* in plasmid pPDL2.

3.9. Integrase module

An interesting observation in the entire sequence of pPDL2 is organization of integrase module. Integrase module contains two units, each consisting of *copG*, *int* and *pgm* genes. These units designated as CIP-I and CIP-II stretches from nucleotide position 26837 to 33015. Out of these three genes, both *copG* and *int* appears to be co-transcribed. The *copG* of CIP-I unit starts from 29962 nucleotide with a start codon ATG and ends with the presence of a stop codon present between nucleotide position 29564-29567. The stop codon of *copG* overlaps with the start codon of integrase. Integrase of CIP-I module is a 328 amino acid long protein and shows strong homology (86%) to phage integrase protein of *Sphingobium japonicum* UT26 and 70% homology to *Pseudomonas syringae* DC 3000 (Fig. 3.14).To gain further insights into the function of integrase, the protein coded by integrase

Int1 UT26 SRW1 Bps Psyr	MNELAPLPPPPSSSALALPALVASADEAARLRFLEFFAVTIRNPHTRRAYMRAAGEFLAW MNQLAPLPSPALVLPALIAAADERARLRFLEFFAVTIRNPHTRRAYARAAGDFLAW MNQIVRSSSATMPALVTAAGERAGVRFLEFFASAIRNPHTRRAYARAAEDFFAW MRFLEFFTANIRNPNTRRAYARAATQEFLTW :******: ****:**** **: :*:*	60 56 40 54 30
Tnt1 UT26	CEARGVASLAGVQPLHVAAWIEAQGGELAPPSVKQQLAGVRSLFDWLVMGQVVPANPAAS CEARGVASLAGVOPLHVAAWVEALGRELAAPSVKOOLAGVRHLFDWLVTGHIVPVNPAGS	120 116
SRW1	CEARGVASLAGVOPLHVAAWVEALGRELAAPSVKOOLAGVRHLFDWLVTGHIVPVNPAGS	100
Bps	CANMGVTSIVAVOPLHVAAWVELOTOTLSAPTVKORLAAIRHLFDWLVTGOVVPVNPAAS	114
Psyr	CQVVGVPSLTEVSPLHVATWIELQMQTLAAPSVKQRLAAIRHLFDWLVVGQVVPHNPAAS * **.*:. *.*****:*: *::****:** *::********	90
Int1	VRGPAYSQRRGKTPVLVPDEARHLLDTIDVATHAGLRDRALIGLMVYSFARIGAALAMRV	180
UT26	VRGPAHSQRRGKTPVLAPDEARRLLDSIDVITHAGLRDRALIGLMVYSFARIGAALAMRV	176
SRW1	VRGPAHSQRRGKTPVLAPDEARRLLDTIDVTTPAGLRDRALIGLMVYSFARIGAALAMRV	160
Bps	VRGPSHSSKVGKTPVLDATEARHLLDAIDVSTPAGLRDRALIALMVFSFARIGAALAMRV	174
Psyr	VRGPSHTSRTGKTPVLEPLEARQLLDSIDICTPAGLRDRALIALMVFSFARIGAALAMKV ****::::: ****** . ***:**:**: * ********	150
Int1	EDVFMQNRRLWVRLHEKGGKRHEMPCHHNLEDYLTAYIDGAACARIARGPLFRTIARGTG	240
UT26	EDVFMQNRRLWVRLHEKGGKRHEMPCHHNLEDYLSAYIDGCELREDRKGPLFRTIARGTK	236
SRW1	EDVFVQNRRLWVRLHEKGGKRHEMPCHHNLEHYLAEYLDGCELREDRKGPLFRTIARGTK	220
Bps	DDVYVQNRRLWVRLREKGGKRHEMPCHHTLEAYLHAYLDGTGLANESKGPLFRTIARGTG	234
Psyr	EDVYIQNQRLWVRLKEKGGKQHVMPCQHSLEAYLHAYLVETGIDNDPKGPLFRTIGRGTE :**::**:**:*****:*****:**************	210
Int1	QLSETPLPKPMLSRCAFAMVRRRAAAAGIGTAIGNHSFRATGITTYLKNGGTLETAATMA	300

UT26	RLSETPLPQANAFAMVRRRAGAAEIGTAIGNHSFRATGITTYLKNGGTLETAATMA 29)2
SRW1	RLSDTPLPQANAFAMVRRRAGAAEIGTAIGNHSFRATGITTYLKNGGTLETAATMA 27	6
Bps	QLSTTPLPQANAYAMVRRRAAAAGIATKIGNHTFRATGITAYLKNGGTIENAAAMA 29)0
Psyr	QLSVNALPQANAHAMVRRRALAAGIKTSIGNHTFRATGITAYLKNGGTLENAAAMA 26	6
	·** · ** · * · * * * * * * * * * * * *	
Intl	NHSSTRTTQLYDRRPDDVTLDEVERVLIAPSQCPSRWCGGARRRPRSARRSAITVSARPG 36	50
UT26	NHSSTRTTQLYDRRPDDVTLDEVERVLI32	20
SRW1	NHSSTRTTQLYDRRPDDVTLDEVERVLI30)4
Bps	NHASTRTTQLYDRRRDDISLDEVERIRV 31	. 8
Psyr	NHASTRTTQLYDRRRDEISLDEVERIRLDR29)6
	** ******** * * *****	

Fig. 3.14. Comparison of integrase1 of CIP-I module with the integrases present in NCBI database. Integrase of pPDL2 (Int1) is compared with integrases of *Sphingobium japonicum* UT26S (UT26), *Sphingomonas wittichi* (SRW1), *Burkholderia pseudomallei* (Bps) and *Pseudomonas syrigyae* (Psyr). Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

gene of CIP-I module was aligned with similar sequences found in databases. Though the integrase has shown similarity to the entire stretch of tyrosine integrases, the C-terminus of the protein was found to be highly conserved than the central and N-terminal region (Fig. 3.15).

Prevotella	ISEHTLRHSFATELLKGGADLRAIQEMLGHESIGTTEIYTHIDISTLREEILNHHPRNIM 305
Alistipes	ISHTFRHSFATHLLEGGASIRQVQEMLGHESILTTEIYTHLEGDHLRDTVEKYLPL 298
Paenibacillus	ITEHTLRHSFAVHMLEGGADLRSVQEMLGHADLSTTQVYAQTARRNMKEVYEKHHPHGGN 307
Moorella	ITEHTLRHS FATHLLENGADLRSVOELLGHADIGTTOIYTHLTRKKIREIYDHTHPRA 295
Desulfococcus	TKENTLENS FASHLLEGGA DLESVOTMIGHSDISTTOLYTHYTYRHLKDAHEKEHPR 297
Lawsonia	ISPHTFRHTFATHLLEGGADLRSVOLLIGHVDMSATELYTHVOSDRLKYTHSMEHPRSNY 299
Chlonobium	IS DUTED IT FATURE I FOCA DI DAVORMI CUSSISTICATIVATI DESEMPTIVATI FUDDO - 304
Childred wolling	TSHITTATITATITATICS DI DUTAN VERIGASISTITATI DASI VERIALI PERG- 304
Rhodopireilula	ISHISLRISTATILLAGGADLROVOEMLGHASIQIIQIIINVERSKLORVIKDINPKA 325
Bacillus	ISHNVLRHTFATHLLDAGADLRAVQELLGHASLRSTQIYTHTTRERLLQVYLHAHPRA 304
Brevibacillus	VSHHTFRHTFATHMLNGGADLRTVQELLGHVNVSTTQVYTHVTKERLRHVYDTAHPRANP 304
Candidatus	VSHHTFRHSFATHLLDNGADLRAVQEFLGHSSLSTTQIYTHVTTERLKQVYDKTHPRA 298
Olsenella	ITHHAMRHTYATELLSGGADLRSVQELLGHSSLSTTQIYTHLSVDRLKAAARQAHPRGE- 308
Atopobium	LSEHAMRHTYATELLGGGADLRIVQELLGHESLSTTQVYTHLSVDRLKEAAKAAHPRSK- 305
Mycobacterium	IGEHGLRHSAATHLLEGGADLRIVQELLGHSTLATTQLYTHVTVARLRAVHDQAHPRA 300
Alkalilimnicola	VHEHMLRHSFASHLLESSGDLRAVQELLGHADIATTQVYTHLDFQHLARVYDQAHPRARK 298
Congregibacter	VHEHMLRHSFASHLLESSGDLRAVQELLGHSDISTTQIYTHLDFQHLAKVYDGSHPRARK 305
Conexibacter	VSEHALRHSFATHLLENGADLRSIQELLGHASISTTQVYTRVESARLRSAYANSHPRA 313
IntP of pPDL2	IGNHSFRATGITTYLKNGGTLETAATMANHSSTRTTQLYDRRPDDVTLDEVERVLI 328
Azoarcus	IGNHSFRATGITEYLRNGGKLEIA OOMANHESARTTGLYDRRNDOLTLDEVER IVV 328
Polaromonas	MGEHALRATAATNALEHOADIAKVOEWLGHASISTTRVYDRRGSRPEDSPTFKVAY 331
Pseudomonas	LGVHGLRATAATNA
Desulfobacterium	IT THE SAPATETTOALENNO PLEAVORTUGHAOLKTTOMY DEPTAKYPE SASEAVRY 301
Frankla	I SCH SL DAT SUTLI L DAGA SL DDA ODHAD HADDD TTDAY DDAD GSL DDAGTYOL VAVL DA 31.0
transland.	ISTISTICT AND

Fig. 3.15. Multiple alignment of C terminal region of integrase of pPDL2 with other integrases. The conserved motif H-X-X-R is boxed. Identical residues and gaps are

shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

Considering the similarity of integrase coded by pPDL2 and its near identity at the Cterminus especially in the region containing the H-X-X-R domain (Fig. 3.15), a proposal is made in this study to assign the status of integration mobilizable element (IME) to plasmid pPDL2. Existence of *oriT* like sequence and *repB*, involved in site-specific single stranded nick at *oriT* adds strength to this proposition.

The CopG/MetJ/Arc family regulatory protein (further referred as CopG) coded by pPDL2 shows highest similarity to the CopG regulatory protein coded by plasmid pUT1 of *Sphingobium japonicum* UT26S. The 131 amino acid long protein shows homology to a number of other proteins belonging to CopG/MetJ/Arc family of transcriptional regulators. The proteins of this family act both as transcriptional repressors and activators (del Solar and Espinosa, 1992; del Solar et al, 1995). In a well characterized streptococcal plasmid, pMV185, the CopG is shown to act as a repressor by regulating the expression of *repB* by binding to a pseudosymmetirc region present overlapping the - 35 hexameric sequence of σ 70 dependent promoter. Such binding is shown to prevent transcription from the *copG* promoter of the *copG* –*repB* genes which are co-transcribed in plasmid pMV158 (Farris et al, 2008).

In addition to these two transcriptionally coupled integrase and *copG* an additional *orf* that codes for a protein showing homology (98%) to *Sphingobium japonicum* UT26S phosphoglycerate mutase is identified in each unit of the integrase modules. The phosphoglycerate mutase gene in ICP-I module is found 1.1 kb away from the stop codon of integrase. This 216 amino acid long protein shows high homology (98%) to phosphoglycerate mutase present in *Sphingomonas japonicum* UT26S. When
the sequence of phosphoglycerate mutase was analysed, it has shown existence of histidine phosphatase phosphoglycerate like domain (HP-PGM like domain) at the N-terminus of the protein. When examined the domain region has shown identity with similar a domain found in alpha-ribazole phosphatase (Fig. 3.16). Similarly, it has also shown similarity with the HP domain found in *Acinetobacter*.

PD1 pUT1	-RGIRIDDAHAGPYSSATAKAPGNAGVPCHDLGAIELTELGQEQAREVAASWIEAPALIV MRAIFIRHGQSTGNAGVPCDDLGAIELTELGQEQAREVAASWTQAPALIV *.* *:: .***************************	59 50
PD1 pUT1	TSPYTRTQQTAAPTIARFPGVPVEVWPIEEFTYLQPARWNGTRSAERMPHLERYWSAADP TSPYTRTRQTAAPTIARFPGVPVEVWPIEEFTYLQPARWNGTRSAERMPHLERYWSAADP ******::*****************************	119 110
PD1 pUT1	DYCDGEGAESFATLLRRCEAALARLAAMPVASPVYVFGHGQFIQAARAIVADAHMDDRAK DYCDGEGAESFATLLRRCEAALARLAAMPAASLVYVFGHGQFIQAARAIVADAHLDERAK ************************************	179 170
PD1 pUT1	MRAFWRKGEPPAIANAQRVGFHWEGGPLVLCAGAGGVMSAAPLIPTEDEIREHQAWDEFA MRAFWRKGEPPAIANAQRVGFHWEGGRWSCAP	239 202
PD1 pUT1	GGRPGAPRKGKIPLCDSPPPPQCGVVHLGAKDRWGAVGGKAE 281 ALAGTA- 208 *:.*.*	

Fig. 3.16. Shows alignment of Phosphoglycerate mutase (PGM) coded by plasmid pPDL2 (PD1) and PGM (pUT1) coded by plasmid pUT1 of *Sphingobium japonicum* UT26S.

Phosphoglycerate mutases (PGMs) are very well characterized group of enzymes. Their existence is seen both in prokaryotes and eukaryotes. PGMs are basically transferases and are involved in transfer of phosphate group (Parkinson and Kofoid, 1992). Transfer of phosphates from 3rd position to 2nd position converting glyceraldehyde 3-phosphate to glyceraldehyde 2-phosphate is the classical biochemical reaction catalyzed by this group of enzymes. However, the PGMs containing HP-PGM like domain are also known to involve in signal transduction process (Matsubara and Mizuno, 2000). The histidine present in the catalytic site of this group of enzymes undergoes phosphorylation during the signal relay process (Parkinson and Kofoid, 1992). Strong link between PGM and CopG and integrase genes suggests functional relevance among these proteins. Such organization is also seen in pCHQ1 (NC014007) and pUT1 (NC014005) of *Sphingobium japonicum* UT26S and pSWIT01 A)

B)

Fig. 3.17. Organization of Integrase modules in plasmid pPDL2. Panel A. The CIP units, CIPI and CIP-II are shown with dotted lines. The predicted regulatory region between CIP-I and CIP-II is boxed. The putative promoter elements identified upstream of *copGI* and *copGII* are highlighted with green and yellow colours respectively. The putative CopG

Chapter-1

binding sites are shown with inverted arrows. Closed arrows indicate direction of transcription. Panel B shows comparison of the organization of *cop*, *int* and *pgm* genes found in plasmids pPDL2, pCHQ1, pSWIT01 and pUTI.

of *Sphingomonas wittichi* RW1 (Fig. 3.17-B). Linkage of these three genes in plasmids isolated from different bacterial strains points towards having a functional relevance behind this conserved genetic organization. Further, studies are required to elicit the role of PGM in regulation of CopG-integrase operon expression.

As shown in Fig. 3.17-A, the integrase module contains a second copy of *copG*, *int* and *pgm*. We designate this region as CIP-II. This region also codes CopG, integrase and phosphoglycerate mutase as in CIP-I. As shown in unit-1, the *copG* and *int* are shown to be organized as one transcriptional unit. The stop codon of *copG* overlaps with the start codon of *int* gene. Such strong translational coupling suggests co-transcription of *copG* and *int* genes. CopG coded by CIP-II appears to have alternate start codon, ATC. Interestingly, the *copG* present in plasmid pCHQ1 of *Sphingobium japonicum* UT26S to which *copG* of pPDL2 shows high homology is also having an alternate start codon, ATC (AP010805). Like other proteins of plasmid pPDL2, CopG shows high homology to CopG coded by plasmids pCHQ1 and pUT1 of *Sphingobium japonicum* UT26S. CopGs coded by CIP-II and CIP-II are similar except that the CopG coded by CIP-II unit is using an alternate start codon, ATC (Fig. 3.18).

1.CopG1	MHKDDDTAFADNYAER 16
2.CopG2	IWRRSRPPTPTHGAIATRCTTFGCGIAAILPRAFKRAGDPRPKGSPMTDDELPDDNPAER 60 ** ** ***
1.CopG1	DQARALREQARTGGLRFEAYLPGDMADWLLAQVEQGHFVDPSEAVFAIVKNFIEMEPHRD 76
2.CopG2	AQAKALREQARAGGLRFEAYLPGSMADWLLAQIERGRFADPSEAVFLIVQNFIEMEPHRD 120
1.CopG1	LRDELLRRILDASVVRGLEDVKAGRVRPAEEVFDELRRKMAEPRPEPARWAKIAR 131
2.CopG2	LQDELLRRILQAR-IDDPRPGIPHDEACARIDRLLAEPRPDPARWEKIAR 169

Fig. 3.18. Alignment of CopG1 and CopG2 sequences of integrase module of plasmid pPDL2. Pairwise alignment CopG1 and CopG2 coded by CIP-I and CIP-II units of integrase module are shown. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

After analysing the ORFs of integrase module, the proteins coded by CIP-I were aligned to similar proteins coded by CIP-II. This comparison is done mainly to know if CIP-I is duplicated to give rise to CIP-II. If CIP-II has evolved through an event of gene duplication, the CopG, Int and PGM coded by CIP-I should have 100% sequence identity with their counterparts found in CIP-II. When CopG1 encoded by unit CIP-I is compared with CopG2 coded by CIP-II sequence, significant differences were noticed with respect to the primary sequence (Fig. 3.18). There exists only 67% identity between these two proteins. The N-terminal region of CopG2 encoded by CIP-II unit was found to be much longer (Fig. 3.18). Similarly, the C-terminus was not highly conserved. However, the central region of CopG1 and CopG2 proteins were found to be almost identical. Such diversity in the primary sequence indicates divergent origin of the CopG1 and CopG2 sequences. Similar situation was seen when *int1* and *pgm1* were aligned with *int2* and *pgm2*. Between *int1* and *int2* only 80% identity was seen (Fig. 3.19). However, the identity continued throughout the sequence. Interestingly,

1.Int-1_pPDL2 60	MNELAPLPPPPSSSALALPALVASADEAARLRFLEFFAVTIRNPHTRRAYMRAAGEFLAW
2.Int-2_pPDL2 58	MNQLAPLPSPASSPALPALIAAADDDTRRRFLEFFAVTIRNPHTRRAYARAAGDFLAW
	** ***** * ** *************************
1.Int-1_pPDL2 120	CEARGVASLAGVQPLHVAAWIEAQGGELAPPSVKQQLAGVRSLFDWLVMGQVVPANPAAS
2.Int-2_pPDL2 118	CEARGVASLAGVQPLHVAAWVEALGRELAAPSVKQQLAGVRHLFDWLVTGHIVPVNPAGS

1.Int-1_pPDL2 180	VRGPAYSQRRGKTPVLVPDEARHLLDTIDVATHAGLRDRALIGLMVYSFARIGAALAMRV
2.Int-2_pPDL2 178	VRGPAHSQRRGKTPVLAPDEARRLLDSIDVTTHAGLRDRALIGLMVYSFARIGAALSMRV
	***** *********************************

1.Int-1_pPDL2 240	EDVFMQNRRLWVRLHEKGGKRHEMPCHHNLEDYLTAYIDGAACARIARGPLFRTIARGTG
2.Int-2_pPDL2 238	EDVFVQNRRLWVRLHEKGGKRHEMPCHHNLEHYLVEYIDGCGLREDRKGPLFRTIARGTK
	**** **********************************
1.Int-1_pPDL2 300	QLSETPLPKPMLSRCAFAMVRRRAAAAGIGTAIGNHSFRATGITTYLKNGGTLETAATMA
2.Int-2_pPDL2 281	RLSDTPPAPSQCPSRWCGGARRRPRSARRSAITVSARPGSPPI
	·**·** · · · · · · · · · · · · · · · ·
1.Int-1_pPDL2 2.Int-2_pPDL2	NHSSTRTTQLYDRRPDDVTLDEVERVLI 328

Fig. 3.19. Comparison of integrases coded by *int*-I and *int*-II genes of plasmid pPDL2. Pairwise alignment integrase-I of CIP-I and integrase-II of CIP-II modules is shown. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

the percent identity between PGM1 and PGM2 is rather high. About 91% sequence identity was seen between these two proteins. The difference is only seen at C-terminus and N-terminus regions. About 10 amino acids gap was seen in PGM1 and PGM2 at both the N and C-terminal regions. PGM2 was found to be shorter by 21 amino acids due to existence of a 10 and 11 amino acids long gap at the N terminus and extreme C-terminus regions (Fig. 3.20). Considering the diversity in the primary sequence of the protein coded by CIP-I and CIP-II of the integrase module, the plasmid pPDL2 is proposed to have acquired the CIP-I and CIP-II integrase modules by independent sources possibly through unique recombination process.

1PGM1 2PGM2	-RGIRIDDAHAGPYSSATAKAPGNAGVPCHDLGAIELTELGQEQAREVAASWIEAPALIV 59 MRAIFIRHGESTGNAGVPCHDLATIELTERGQEQARAVAASWTEAPALIV 50
1PGM1 119	TSPYTRTQQTAAPTIARFPGVPVEVWPIEEFTYLQPARWNGTRSAERMPHLERYWSAADP
2PGM2 110	TSPYTRTRQTAAPTIARFPGVPVETWPIEEFTYLQPSRWNGTRSAERMPHLERYWSAADP
	****** ********************************
1PGM1 179	DYCDGEGAESFATLLRRCEAALARLAAMPVASPVYVFGHGQFIQAARAIVADAHMDDRAK
2PGM2 170	DYCDGEGAESFGTLLRRCEAALARLAAMPADSLAYVFGHGQFIQAARAIVADAHMDDRAK
	********* *****************************
1PGM1	MRAFWRKGEPPAIANAQRVGFHWEGGRWSCAPALAA 215

Fig. 3.20. Pairwise alignment phosphoglycerate mutase -I and phosphoglycerate mutases-II coded by of CIP-I and CIP-II units of integrase module. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

The transcriptional organization of copG and int genes of CIP-I and CIP-II have revealed an interesting observation. As indicated before, in both CIP-I and CIP-II, these two genes are found to be co-transcriptional. In fact, in both the cases the translational stop codon overlaps of CopG with translational start codon of integrase. As shown in Fig. 3.17, copG1 and int1 of CIP-I and copG2 and int2 of CIP-II have opposite transcription orientation. Between these two transcriptional units there is a gap of 713 bp. When this gap region was analysed for identification of promoter and other *cis*-elements involved in regulation of gene expression, quite a few interesting features were noticed. As shown in Fig. 3.17 the gap region contained two independent putative promoter elements. The promoter element proposed to be involved in transcription of *copG1* and *Int1* operons has shown sufficient similarity to the consensus σ 70 dependent promoter (Fig. 3.17 promoters are highlighted in green). Similarly, the promoter element predicted to be involved in transcription of copG2 and int2 operon was found to be similar to the consensus σ 70 dependent promoter. There was an overlap of 5 bp between these putative *copG1* and *copG2* promoters. As indicated in earlier section CopG1 proteins are shown to be transcription repressors. As copG and int genes are co-trancriptional, the intergenic region found between the copG1 and copG2 operons were further analyzed to identify *cis*-elements that can serve as target sites for binding CopG proteins. In studies conducted by del Solar and his associates, CopG is shown to bind to a pseudosymmetric

cis-element present overlapping -35 region (del Solar et al, 2002). Inverted repeats are also shown to be putative binding sites of CopG in *Sulfolobus neozealandicus* (Greve et al, 2004). Interestingly, in CIP-I unit, a typical CopG binding site was predicted 276 bp upsteam of start codon of *copG1* (Fig. 3.17). Likewise in CIP-II an inverted repeat that can act as a potential CopG binding site was observed 45 bp upstream of translational start codon of *copG2* (Fig. 3.17). Existence of such CopG binding sites, if seen together with the CopG role as transcription repressor, the organization seen in integrase module of pPDL2 appears to be tailor made for regulation of integrase expression in *Flavobacterium* sp. ATCC 27551. Further work has to be done to gain better insights into the regulation of integrase expression.

3.9.1. The attachment (attP/attB) sites

Integrase is known to mediate integration of site-specific recombination between two conserved specific sites. In well studied bacteriophages λ , the phage integrase mediates site specific recombination between phage specific P site (*attP*) and bacterial chromosome specific B site (*attB*). These sites are called attachment sites. Conventionally, they are named as *attP* (P-phage) and *attB* (B-bacteria) sites. The site specific recombinase encoded by plasmid pPDL2 has high homology to tyrosine recombinases (Fig. 3.14 and 3.15). Tyrosine recombinases integrate target sequence at a specific site (*attB*), usually present at the 3' end of t-RNA genes (Williams, 2002). In the background of this information, the pPDL2 sequence was thoroughly analyzed to identify *attP* homologs. The bioinformatic searches have predicted existence of two such sites in plasmid pPDL2 and were designated as *attP*-I and *attP*-II. The *attP*-I is located between nucleotide position 15197 to 15186 and *attP*-II is found between nucleotide positions

37889 to 37878. The predicted *att* sites are of 12 bp long. When these two sites were aligned there was absolute identity between last 6bp of *attP*-I and first 6 bp of *attP*-II (Fig. 3.21). After identifying putative *attP* sites an attempt was made to identity *attB* sites. In order to identify *attB* in *Flavobacterium* sp. ATCC 27551 from where pPDL2 was isolated it is required to know complete genome sequence of the host organism. However, such information is not available for *Flavobacterium* sp. ATCC 27551. *Flavobacterium* sp. ATCC 27551 has recently been reclassified as *Sphingobium fuliginis* (Kawahara et al, 2010). A number of *Sphingobium* total genome sequences are available in the public domain as reported in the earlier sections. Plasmid pPDL2 has been shown to have considerable homology to plasmid pUT1 isolated from *Sphingobium japonicum* UT26S. The total genome sequence of *Sphingobium japonicum* UT26S is available in the public domain (www.ncbi.nlm.nih.gov/). The total genome sequence was used as input to identify putative *attB* sites that have homology to *attP* sites predicted in plasmid pPDL2.

Fig. 3.21. Organization of *attP* sites on pPDL2 of *Flavobacterium* sp. ATCC 27551. Panel A shows the positions of *attP* sites on plasmid pPDL2. In Panel B the putative *attB* site on the tRNA-serine gene is outlined.

Interestingly, identical sequences were identified in the t-RNA gene sequences of *Sphingobium japonicum* UT26S (Fig. 3.21). If existence of *attP* site is taken together with the *attB* sequence in the *Sphingobium* genome, there exists an ample scope for plasmid pPDL2 to integrate into the genome.

3.10. Degradative module

As mentioned in aforementioned section, plasmid pPDL2 is associated with degradation of organophosphorus compounds. A well conserved parathion hydrolase coding *opd* gene has been shown as part of transposon-like element (Siddavattam et al, 2003). The sequence determined in this study agreed in total with sequence information reported from our laboratory. As indicated before the *opd* sequence is given a generic name as *orf11* (Table 3.3). A fine diagrammatic representation indicating the gene involved in degradation of organophosphorus compounds is made (Fig. 3.22). The degradation module includes parathion hydrolase or organophosphorus hydrolase coded by the *opd* gene, *meta* fission product hydrolase (*mfhA*), protocatechuate hydrolase (*pcaH*) and β -ketoadipate enol lactone hydrolase. Ample literature is available on catalytic properties, substrate range and membrane targeting of organophosphorus hydrolase (Karpouzas and Singh, 2006, Gorla et al, 2009).

Fig. 3.22. Organization of degradative module in pPDL2. Transposases and resolvases are shown in red colour. Degradative genes are shown in blue coloured arrows. The

repeats of Tn3 and IS21 element are shown as black arrows and blue arrows respectively. Degradative reactions catalyzed by OPH, MfhA, P45O, b-keto adipate lactonase are shown using methyl parathion as model compound.

In our previous studies, we have we have reported existence of a *meta*-fission product hydrolase gene, *mfhA*, immediately downstream of *opd* gene (Khajamohiddin et al, 2006). The *mfhA* gene is also shown to be transcriptionally linked to the *tnpA* coding gene of transposon Tn3 (Siddavattam et al, 2003). In this study, two more important genes that contribute to mineralization of organophosphorus compounds have been identified. Previous studies conducted by our lab has identified IS element belonging to IS21 class upstream of *opd* gene (Siddavattam et al, 2003). When the complete sequence of pPDL2 was analyzed upstream of the IS element IS*Flsp1*, two more ORFs designated as *orf2* and *orf3* have been identified. These two ORFs were shown to code proteins that have significant homology to β - subunit of Protocatechuate 4, 5 dioxygenase and β ketoadipate enol lactonase. Therefore these two ORFs were designated as *pca1* and *pca2*.

Organophosphorus hydrolase has been shown to hydrolase a variety of well known insecticides that are found to have aromatic moieties are linked to central phosphoric acid residue through an ester-linkage (Karpouzas and Singh, 2006). Upon OPH mediated hydrolytic cleavage most of OP-insecticides release aromatic compounds like 4-nitrophenol, 3-methyl 4-nitrophenol. These aromatic compounds are found to be much more toxic to the microbes than the parent OP compounds (Crbella et al, 2001). As shown in figure. 3. 22, existence of protocatechuate 4, 5 dioxygenase, β-ketoadipate enol lactonase in the upstream region of *opd* gene, flanked by transposase y4qE and transposase of Tn*3* suggests evolution of a well conserved degradation module to

mineralize OP insecticides. The dimethyl thiophosphoric acid generated from OP insecticides like methyl parathion, paraxon and parathion can be quickly utilized as source of carbon and sulphur. However, the aromatic compounds thus generated through OPH activity, require dioxygenase, β -ketoadipate enol lactonase and *meta* fission product hydrolase, to convert them as an intermediates of TCA cycle. Existence of β -ketoadipate enol lactonase and *meta*-fission product hydrolase and a dioxygenase coding region might contribute for such conversion. Though experimental evidence has been shown on the functions of *opd* gene and *mfhA* (Mulbry and Karns, 1989; Khajamohiddin et al, 2006), the role of these two genes *pca1* and *pca2* in mineralization of aromatic compounds need to be established by further experimentation. However, if degradation module is carefully examined, evolution of degradation traits in the form of a mobilizable element is very apparent.

3.10.1. Protocatechuate 4, 5 dioxygenase (P45O)

The *pca* designated with a generic name as *orf27* is present between the nucleotide positions 1185 to2067. The 277 amino acids long protein coded by *pca* has a domain belonging to extradiol dioxygenase 3B-like super-family and the complete sequence shows 79% identity to the Protocatechuate 4,5 dioxygenase identified in *Xanthomonas campestris* pv. *campestris*. Therefore, the *pca1* encoded protein is designated with a functional name as Protocatechuate 4,5 dioxygenase (P45O). The Protocatechuate 4,5 dioxygenase is the key enzyme in the benzoate degradation pathway (hydroxylation pathway) and 2,4 dichlorobenzoate degradation (Adriaens et al, 1989;). In addition to these two compounds the P45O has been shown to cleave many aromatic compounds (Fig. 3.23).

Fig. 3.23. Channelling of aromatic compounds into the TCA cycle through the Protocatechuate degradation pathway (Providenti et al, 2001).

Existence of such ring cleavage enzyme might contribute for conversion of 4-nitrophenol into intermediates of TCA cycle through a well known pathway known as protocatechuate degradation pathway. Degradation of aromatic compounds *via* protocatechuate pathway generates ring cleavage products with lactone ring. These lactones are further channelled into the TCA cycle through β-ketoadipate pathway (Khajamohiddin et al, 2008).The β-ketoadipate enol lactone hydrolase and Mfha coding *meta* fission product hydrolase contribute for such channelization. In degradation module along with OPH and P45O these two ORFs are present. The *orf311* coding protein shows 43% homology to the 3-oxo-adipate enol lactonase of *Xanthomonas campestris*. Its existence in the degradation module is yet another evidence to claim plasmid pPDL2 has evolved to mineralize OP compounds used as insecticides.

3.10.2. Major facilitator super-family protein

In the degradation module the next prominent ORF is *orf5* (3433-4887), designated as *orf484* encodes for a protein of 484 amino acids. The sequence of Orf484 shows homology to many of the aromatic acid transporters (Fig. 3.24). It shows 42% similarity with vanillate transporter of *Xanthomonas campesteris* pv. *campesteris*. Vanillate is shown to metabolize via protocatechuate degradation pathway (Fig. 3.23). As shown in Fig. 3.24 the transporter found immediately downstream of protocatechuate dioxygenase, is highly similar to number of aromatic acid transporters. Presence of similar transporters in close association of other genes that contribute for mineralization of organophosphates provides *prima facie* evidence to show existence of complete information on plasmid pPDL2 for mineralization of OP insecticides.

In Pseudomonads and in many Gram negative strains, genes are usually organized into operons and are co-ordinately regulated. Such organization is also seen in genes coding for enzymatic machinery involved in degradation of a number of aromatic compounds (Harayama and Rekik, 1990; Harwood and Parales, 1996; Yen and Serdar, 1988).

Fig. 3.24. Phylogenetic tree of Major Facilitator Superfamily (MFS) proteins. MFS of pPDL2 is seen in a clade that shows similarity with vanillate and other aromatic compounds

In the degradation module found in pPDL2 is compared with similar modules found in TOL and NAH plasmids the degradative genes on pPDL2 are dispersed. This kind of organization might be due to presence of transposons and recombinases causing rearrangement of genes. *Flavobacterium* sp. ATCC 27551 was reclassified as *Sphingobium fuliginis* based on chemotaxonomic and phylogenetic evidences (Kawahara, 2010). Dispersed organization of otherwise clustered genes is a common feature in Sphingomonads. Especially the genes coding for catabolic pathway enzymes in *Sphingomonas* strains are often found localized away from one another creating an unusual organization, where having a co-ordinately regulated operons are seen as a rare phenomenon (Basta, 2004). This has been described for the genes involved in the degradation of y-hexachlorocyclohexane (lindane) by *S. paucimobilis* UT26 (Miyauchi et

al, 1998; Nagata, 1999), pentachlorophenol by *S. chlorophenolica* (Cai and Xun, 2002), protocatechuate by *S. paucimobilis* SYK-6 (Masai, 1999), naphthalene, biphenyl, and toluene by *S. yanoikuyae* B1 and *S. aromaticivorans* F199 (Romine et al, 1999; Zylstra and Kim, 1997), and dibenzo-*p*-dioxin by *S. wittichii* RW1 (Armengaud et al, 1998). Such dispersed organization, as seen in *opd* element of pPDL2 (Fig. 3.22.), may be a typical characteristic feature in Sphingomonads in which *Flavobacterium* sp. ATCC 27551 is placed according to the new classification (Kawahara et al, 2010).

3.11. Mobile genetic elements

In total 1 IS element and 3 transposons are present in the sequence of pPDL2. Existence of an IS element that shows homology to IS21 class of Insertion elements is reported in our previous studies (Siddavattam et al, 2003) and this IS element, designated as ISFIsp1 and was deposited in the IS database (http://www-is.biotoul.fr). This IS element is present in the upstream region of *opd* gene, spanning the nucleotide positions from 6941 to 9300. This IS element consists of two ORFs designated as *istA* and *istB* which encode for proteins of 507 and 279 amino acids, respectively. The stop codon of *istA* overlaps with start codon of *istB* which imply that the two genes, *istA* and *istB* are translationally coupled. The 507 amino acid protein designated as IstA, shows 59% identity with transposase ISMdi7 (IS21 family) of *Methylobacterium extorquens* DM4 (YP_003065654) and 55% identity with IS21 family transposase of *Agrobacterium tumefaciens* str. C58 (NP_355800) (Fig. 3. 26).

Fig. 3.25. Organization of mobile genetic elements on pPDL2. Transposases and resolvases are shown in red colour. Degradative genes are shown in blue coloured arrows. The repeats of Tn3 and IS21 element are shown with black and blue arrows respectively.

PD Auma Meex	MKSVEIYAKVRRAVLVEGMTRREAARYFGVHRNTITKMLQYAEPPGYRRAVPRVSEKLAP MFAVEVYAAVRHFVLIERNSQREAARVFGLSRETVSKMCRFSLPPGYTRVKPVARPKLGA MFVVEVYAAVRQFVFIEGQSRREAARVFGLSRETIAKMCRFSLPPGYTRSKPVEKPKLGP * **:** **: *::* ::***** **: *:*:**** **	60 60 60
PD Auma Meex	FETLIDEILRSDKGAPPKQRHTCKRIYERLRTEHGYTGGLTILSDYVRSQRLRSREVFIP LLPVIDWILEADGTAPVKQQHTAKRIFERLRDEHGYGGGLTVVKDYVRIARGRLRETFVP LLPVIAAILEADRTAPLKQRHTAKRIFERLRDEHGYAGGYTVVKDHVRICRARGQETFVP : .:* **.:* ** **:**.******************	120 120 120
PD Auma Meex	LSHRPGHAQVDFGEADAIIAGKRVRLHYFCMDLPQSDGCFVKAYPAEVAEAFCDGHVSAF LAHSPGHAQVDFGEAIGVIGGVRQKIHFFCMDVPQSDAPFVKAYPRETTEAFLDGHVSAF LAHPPGHAQVDFGEAVATIAGVRRKIHFFCMDLPHSDACFVKAYPRETTEAFLDGHVAAF *:* **********************************	180 180 180
PD Auma Meex	AFFGGVPTRILYDNTRLAVARILGDGRRERSRMFAGLQSHYLFDDRFGRPGKGNDKGKVE DFFGKVPLSILYDNTTIAVARICGDGRRERTRAFTELQSHYLFADRFGRPGKGNDKGKVE AFFGGVPLSILYDNTKIAVAKICGDGQRERTRAFTELVSHCLFRDRFGRPGRGNDKGKVE *** ** ****** :***:* ***:***:* *: ******	240 240 240
PD Auma Meex	GLVGYVRRNFMVPIPAAASIEELNARFADQCRRRGAAVLRGQSQSITARMEADSAAFMPL GLVKYARSNFMTPIPQAASFDDLNAMLAERCRQRQGEVAGRHSETIGERLVADLEAFKDL GLVKFARSHFMTPAPEAASFEALNADLERRCRARQNECAGRHPESIGTRLMADRVVLRAL *** :.* :**.* * ***:: *** : :** * :::* *: ** :: *** : :**	300 300 300
PD Auma Meex	PEVAFDPCHIDSGCASSMALVRYRTNDYSVPTAFAHQQVVIKGYVDRVDIVCRGTCIASH PATPLEPCEKRAARVSSTALVRYRCNDYSVPTSFGFRDVLVKGFVDEVVILCAGEEIARH PAVPLEPCEKRAGRVSSTALVRYRGNDYSVPTTYGFRDVLVKGFVEEVVILCAGVEIARH *:**. :** ****** ******::.::*::*::*:*:*	360 360 360
PD Auma Meex	VRRYEREDFIANPLHYLALLEHKPGALDQAAPLDGWHLSEPVHRLRRLMEARSGKEGRRA RRSYATGTFVFDPLHYLMLLEMKPNALDQAAPLQGWDLPETFQHLRHLLEARMGNRGKRE PRSYGSGVFVAEPLHYLALIETKPNALDQAAALQGWDLPEAFQHLRHLLEARMGNRGKRE * * *: :***** *:* **.******************	420 420 420
PD Auma Meex	FIQVLRLCEHYEQSLVEWAVARALELGAISFDAVKMILLARLEHRPARLDMSLYPYLPRA FIQVLRLMEAMPMGIVAAAVTEAIRLGAIGFDAVKLIALSRIERRPLRLDLSRYPHLPKM FIQVLRLMEAMPKDLVAWAVTEAIRLGAIGFDAVKLIALARLERRPPRLDLSAYPHLPRP ******* * .:* **:.*:****	480 480 480
PD Auma Meex	NVGVTDTRAYLGLIPDAHRVTMKGASA 507 DVRTTAAADYAVLVPGKAA 499 AVRATMAADYTVLVPEVAA 499 * .* : * *:*	

Fig. 3.26. Multiple alignment of IstA of pPDL2 of *Flavobacterium* sp. ATCC 27551 (PD) with similar proteins present in *Aurantimonas manganoxydans SI85-9A1*(Auma) and *Methylobacterium extorquens* DM4 (Meex). Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

Similarly IstB, shows 71% identity with resolvase IstB of *Mesorhizobium* sp. F28 (ABY59054) and *Sphingomonas wittichii* RW1 (YP 001260016). The IS21 family transposons have a length of 2 kb to 2.5 kb and are found to be among the largest bacterial IS elements. They carry related terminal IRs whose lengths may vary between 11 to 50 bp generally terminating with a dinucleotide 5'-CA-3' (Mahillon and Chandler, 1998). The *istA* and *istB* of pPDL2 are flanked IR sequences of 15 bp present 100 bp upstream of *istA* (IRL) and 150 bp downstream of *istB* (IRR).

3.11.1. Tn3 transposon

The sequence of pPDL2 found immediately downstream of *mfhA* gene showed existence of two copies of Tn3 elements separated by an open reading frame coding for a hypothetical protein. These two copies of Tn3 elements are designated as Tn3-I and Tn3-II (Fig. 3.25). These two Tn3 like elements span from nucleotide position 11424 to 16077. The transposon Tn3 *is a* well characterized mobile genetic element found in a number of taxonomic groups. The Tn3 transposon contains two genes, *tnpA* and *tnpR* and a 38-bp terminal inverted repeat at the left (IRL) and right terminus (IRR) (Heffron et al, 1979). The *tnpA* and *tnpR* code for transposase and resolvase. Transposition event takes place in two steps (Heffron et al, 1979; Shapiro, 1979; Grindley, 1983). The first step is formation

Fig. 3.27. Organization of transposon Tn3 copies in plasmid pPDL2. The transpoase, resolvase coded by Tn3-I and Tn3-II are designated as *tnpa*-I *tnpA*-II, *tnpR*-I and *tnpR*-II respectively.

of cointegrate by the transposase, TnpA and the second step is resolution of the cointegrate into two separate replicons (Heffron et al, 1979; Gill et al, 1979; McCormick, et al, 1981). The resolvase catalyzes a site-specific recombination at the internal resolution site (IRS or *res*).

During the resolution process the cointegrate molecule is resolved to give recipient and donor replicons (McCormick, et al, 1981; Reed and Griendly, 1981). The TnpR protein is also a repressor that inhibits synthesis of both transposase and itself at the level of transcription (Gill et al, 1979; Chou et al, 1979).

3.11.1.1. Transposon Tn3-/

The Tn3-I spanning from nucleotide position 11424 to 138885 contains two oppositely transcribed open reading frames showing high homology to Tn3 family of transpoase (TnpA) and resolvase (TnpR) Therefore these two *orfs* are designated as *tnpA1* and *tnpR1*, which code for 583 amino acid long protein, TnpA1 and 189 amino acid long protein, TnpR1 respectively. TnpA1 of pPDL2 shows high similarity with TnpAs present in *Sphingomonas* and *Sphingobium*, especially to the TnpA sequence of (BAF03245) of *Sphingomonas* sp. KA1 (Fig. 3.27). Usually, full-length TnpAs coded by transposon Tn3 are 985 amino acids. On comparison of TnpA1 of pPDL2 with that of the full-length transposases, a deletion of more than 400 amino acids is seen in the central region. The portion from amino acid 162 to 644 are found missing in TnpA-1 of pPDL2 (Fig. 3.27). The Tn3 family transposases have a conserved domain which are typically seen in Transposase 7 super-family and is conserved in transposases coded by Tn21, Tn1721, Tn2501, Tn3926 transposons. The domain contains an invariant triad, Asp689, Asp765, Glu895 (numbering as in Tn3) also reffered as D-D35-E motif implicated in the catalysis of

transposition reactions by numerous transposases. Though there is deletion of more than 400 amino acids, the catalytic motif (D-D-35-E) is undisturbed as it is present at the C-terminus of Tn3 transposase coded by *tnpA*-I of pPDL2 (Fig. 3.27). As substantial portion of TnpA is deleted, its functional status, despite of existing catalytic domain remains to be examined. In chapter-II, where transposition event is described an attempt is made to establish the functionality of TnpA.

TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	MTKRKHQLLTESERDQILAIPTDRDHLARLYTFEPSDIEIIGARRERRNQLGVALQLALL MLAEHFDPSLDEREIARHFTLTRDDLELIASRRGDATRLGYAMLLLYL MARRRLVSLEIWAGHYDAPLDEREIARHYTLTSDDLEIVGRRRGDATRLGFAMLLLTM MARRRLVSAEIWAGHYGAPLDEREIARHYTLTGDDLEIVGRRRGDATRLGYAMLLLYM . *:** :*: .*:** :*: .** .:** .:**
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	RHPGITLAQLIQDRGAIPHDLAAFVAEQLGLHVTELANYAARDQTMTDHVRELAARLGLR RWPGRVLEAGEAPPMPILAFVARQLNVSPAAWRDYARRDETRRTHLADLSRRFGHG RWPGRALEAGEVPPAPVLGYVARQLGVAPDAFADYARRDQTRREHLVEIRRSHGFR RWPGRALEAGEVPPAPVLAYVAQQLGVAPEAFADYAHRDQTRREHLVEIRRSHGFR * * .: :: . * : .:**.**.: :** **:* *: :: *
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	GPTRADIPFMVEAAARTAWATDKGMTIAMGVVTALREARILLPS AFGRADFHTLVAFAMPIAQTVTQPSRLAGIIMDEMRRRRLLLPPVTIIEAIVRRARQQAG IFDRDAFREVVAFSIPIAQTIIHPGQMAGVIVDELRRQILLPSSSILEAVLRRARQQAE IFDRKAFHEVVAFSIPIAQTIVHPGQMAGVIVDELRRQILLPSSSVLEAVLRRARQQAE * : :* : * : : :* :: :**.
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	DMIHDVLAGDLGEPERTRLDALLSRRDDKSATWLSWLRNPPLSPAPRNILRLIERLDHVR QLTYEVLTNGLRPDTLQDLDDLLARRTGQAATWLSWLRNASQSPAARNILRLIERLAYVR QLTYEVLTNGLRPDTLQGLDDLLARRTGQAATWLSWLRNAPQSPAARNILRLIERLTHIR
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	-IGIEPP
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	TMMDKFLGSMMRRAENRTKEKAIGTIRSLQAQLRLITGSCRTLLDARARGVDSLAAIGSI TMFDKLLGSMVRRAENRTRDKALKTVRELQGHLRTLTGSCRILIDARTNGVDSLAQIEAL TMFDKLLGSMSRRAENRTRDKALKTVRELQGHLRTLTGSCRILIEARTNGVDSLAQIEAL
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	DWERLGTAVVNAELLIAPETIDRTAELIERQRSLRSVIGPFLNAFEFRGAGAVQGLLDAA DWQRFAVSVEQAEVLSRPETVDRTAELIERHRTVKLFAGAFLNTFEFRGAGAVQGLLSAL DWQRFAVAVARAEVLGRPETVDRTAELIERHRTVKLFAGAFLNTFEFRGAGAVQGLLSAL
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	LPLAARPSIFR RLVADIYRTGRRRFPDKPPLRFVPPSWRPFVLRDGEVVRAAYELCVLTQLRDRLRGGDIW AIIAELYRTGKRRLPDRVPLRFVPSAWRPFILRDGIVDRAAYELCALSQLRERLRAGDIW TIIAELYRTGKRRLPDRVPLRFVPSAWRPFVLRDGIVDRAAYELCALSQLRERLRAGDIW ** *. :*
TnpA1_PD TnpA_KA1 TnpA_UT TnpA_LB1	VAESRQYRAFDSYLLPPATFEAMRARGPLPLAIETDFDKFIAGRRASLDTALERVTILAR VAGSRQFRDFDSYLIPPATYAALREKGPLPLAIETDFERHIEERRTRLDTAIEQVTVLAR VSGSRQFRDFDSYLIPPATFDALREKGPLPLAIETDFDRHIEERRARLDTAIEQVTVLAR
TnpA1_PD TnpA_KA1 TnpA_UT	QGELPQVRLDGNGLVISPLKAITPPDAEDMRRVAYDRLPRVKITDLLLEVDSWTGFSECF QGELPQVRLDENGLIISPLKAATPPATEIARRAAYDRLPRVKITDLLLEVDAWTGFSECF

TnpA_LB1	QGELPQVRLDESG	LIISPLKAATPPAT <mark>E</mark> IA	RRAAYDRLPRVKITDLLLEVDAWTGFSECF
		:: : * *	
TnpA1_PD	KRS	SVVLLK	ALYGEAL
TnpA KA1	THRRSGRVADDRN	ALLTVILADGINLGLTF	MAETCQGATLRQLAHLHDWHISEAAYGEAL
TnpA UT	IHRRSGREADDRN	ALLTVILADGINLGLTF	MAETCRGASLRQLAHLHDWHISEAAYGEAL
TnpA LB1	IHRRSGREADDRN	ALLTVILADGINLGLTF	MAETCRGASLROLAHLHDWHISEAAYGEAL
	• * *	• * • *	* *** * * * *****
	•	• • •	• •
<u>прр</u> ад 1 рр			ACCRCA A TODINA PNONE DOUG EVELUS DO
INPAL_FD	GREIDVHRIVFES/	ALWGDGI I SSSDGQLF	
Thpa_kai	GRLIDVHRTVPLS	ALWGDGTTSSSDGQLFF	ISGGRGASIGDINARNGNEPGVSFITHVSDQ
TnpA_UT	GRLINAHRTMPLA	ALWGDGTTSSSDGQQFF	IAGGRGAAIGDINARSGNEPGVAFYTHVSDR
TnpA_LB1	GRLIDAHRAMPLA	ALWGDGTTSSSDGQQFH	AGGRGAAIGDINARSGNEPGVAFYTHVSDR
	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
TnpA1_PD	YDPF'ASRV1AA'I'A	GEAPYVLDGLLYHA'I'GI	SIEEHYTDTGGASDHVFGLMPFFGYRFAPR
TnpA_KAl	YDPFASRVIAATA	GEAPYVLDGLLYHATGI	SIEEHYTDTGGASDHVFGLMPFFGYRFAPR
TnpA_UT	YDPFASRVIAATA	GEAPYVLDGLLYHQTGM	ITIEEHYTDTGGASDHVFGLMPFFGYRFAPR
TnpA LB1	YDPFATRVIAATA	G <mark>EAPYVLD</mark> GLLYQQTGI	TIEEHYTDTGGASDHVFGLMPFFGYRFAPR
	*************	* * * * * * * * * * * * * * *	*********
TnpA1_PD	LRDLKDRRLHLLP	GQEAGPLLAGMTGDPVA	IGHVAAHWNELLRLTTSIRSGTTTASAMLR
TnpA KA1	LRDLKDRRLHLLP	GQEAGPLLAGMTGDAVA	IGHVADHWDELLRLTTSIRSGTTTASAILR
TnpA UT	LRDIKERRLHLLP	GOESGPLLAGMTTEPIA	LGHVAAHWDELLRFATSIRTGTVTASAMLR
TnpA LB1	I.RDTKORRI,HI,I.P	GOEAGPLLAGMTAEPTA	LGHVAAHWDELLRFATSIRTGTATASAMLR
1 <u> </u>	**********	*** *******	***** ** **** *** *** ***
TnpA1 PD	RLSAYPRONGLAL	ALREVGRIERSIFMLDW	ILRDLDLRRRTOAGLNKGEARNALARALFFN
TnnA KA1	RI.SAYPRONGLAL	ALREVGRVERSTEMLDW	ILRDI.DI.RRRTOAGI.NKGEARNAI.ARAI.FFN
Thpa IIT	RI.SCYPRONCI.AL.	ALRELORLERSTEMI.DW	U.R.DIDLERETOACI.NKCEARNALARALEEN
THPA_01	PI SAVERONCI AL		
INPA_LBI	*** *********	* • * * • * * • * * * * * * * * * * *	
	•	• • •	•
TnpA1 PD	OLGELEDREPCGE	HDATWIT.PASGPLEPVE	TPNDEVAHENOLGELEDBREENOTYRASGI
Tnna Kal	OLGELEDER		FENOAYRASCI.
			F ENQUINADOL
INPA_UI	QLGELRDRR		ENOTYPA CO
TUDA_TRI	QLGELKDKK		FENQTIKASGL
ΠηρΑί Ρη	NT.T.VAATTT.WNTTR	YLERAVGALA TPDDVAF	HTAPLGWEHTSLTGDYRWNVESRPDPCOLR
Thphi _ 1 D		VI FOAVCEL STDONTAE	
TUDA IM		TTENNI VETTOTEGNIAL	MUADI CHEUT CI ECDVOUNVEDODDDDATD
TnpA_UT	NLLVAAIILWNTR	YLEMALADIGTPDEIAF	(HVAPLGWEHISLTGDYSWNVEDRPDPDALR
'l'npA_LB1	NLLVAAIILWNTR	YLEVALADIGTPDEIAF	HVAPLGWEHISLTGDYSWNVEDRPDPDVLR
	* * * * * * * * * * * * * * * * *	*** *** *** ******	***************************************
INPAL_PD	PLKTPSSLLAA		
'I'npA_KAI	PLRTPSSLLAA		
'I'npA_UT	PLRAVSSLLAA		
TnpA_LB1	PLRAISSLLAA		
	*** ******		

Fig. 3.27. Multiple alignment TnpA1 of pDPL2 of *Flavobacterium* with TnpAs reported from *Sphingomonas* (TnpA KA1, TnpA LB1) and *Sphingobium japonicum* UT26S (TnpA UT1). Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols. The D-D-35-E motif is highlighted in yellow.

3.11.1.2. TnpR-I

Unlike TnpA-I the TnpR-I encoded by first copy of Tn3 (Tn3-1) shows high homology (99%) to resolvase of *Sphingomonas japonicum* UT26S (Fig. 3.29). Both these resolvases of Tn3 show conserved features of the serine recombinase family such as the C-terminal DNA binding HTH motif and a conserved N-terminal catalytic domain having a serine residue in its active site (Fig. 3.30). As mentioned

Chapter-1

before, resolvases are involved in resolution of co-integrates formed during transposition. However, in TnpA-I substantial portion is deleted formation of such co-integrate is questionable. In such a scenario the role of TnpR in transposition of *opd* cluster remains to be established.

3.11.2. Transposon Tn3-II

3.11.2.1. TnpA-II

As shown in figure the second copy to Tn3 transposon starts at nucleotide position 15639 and ends at 16973nt. In between these two transposons, Tn3-1 and Tn3-2 a sequence that codes for an open reading frame of 315 amino acids is identified. The sequence of Orf315 has shown no homology to any other protein found in database. The TnpA coded by transposon copy II is designated as TnpA-II which has an opposite transcription orientation when compared to TnpR-II. Translated sequence of *tnpAII* when compared with full-length Tn3 transposase has shown large deletions in the central region. The conserved catalytic motif having catalytic triad (D-D-E) is also not seen in TnpA-II. Therefore, the second transposase of Tn3 family, TnpAII, present in pPDL2 is assumed as an inactive transposase (Fig. 3.28).

TnpRII (*orf16*) present in the second copy of Tn3 spanning nucleotide postions14744 to 15325 is designated as *tnpR*-2 as it shows high homology (99%) to resolvase of *Sphingomonas japonicum* UT26S (Fig. 3.29). The resolvase designated as TnpR-II of Tn3 show conserved features of the serine recombinase family such as the C-terminal DNA binding HTH motif and a conserved N-terminal catalytic domain having a serine residue in its active site (Fig. 3.30). Further, the sequence of TnpR-I and TnpR-II have shown high similarity to TnpR sequence found in transposon Tn3 elements

identified in Sphingobium japonicum UT26S. Considering the extensive homology found

throughout the protein and

Tn3S_KA1	MLAEHFDPSLDEREIARHFTLTRDDLELIASRRGDATRLGYAMLLLYLRWPGRVLEAGEA 6	0
Tn3PD2	MLLLYMRWPGRALEAGEV 1 *****:*****.****.	8
Tn3S_KA1 Tn3PD2	PPMPILAFVARQLNVSPAAWRDYARRDETRRTHLADLSRRFGHGAFGRADFHTLVAFAMP 1 PPAPVLAYVAQQLGVAPEAFADYAHRDQTRREHLVEIRRSHGFRIFDRKAFHEVVAFSIP 7 ** *:**:**:**.**: *: ***:*** **.:: * .*. *.* ** :***:**	20 8
Tn3S_KA1 Tn3PD2	IAQTVTQPSRLAGIIMDEMRRRRLLLPPVTIIEAIVRRARQQAGDMIHDVLAGDLGEPER 1 IAQTIVHPGQMAGVIVDELRRRQILLPSSSVLEAVLRRARQQAEQLTYEVLTNGLR 1 ****:.:*.:**:**:**:***:***. :::*********	80 34
Tn3S_KA1 Tn3PD2	TRLDALLSRRDDKSATWLSWLRNPPLSPAPRNILRLIERLDHVRTLGIAASRAATIPQAA 2	40
Tn3S_KA1 Tn3PD2	FDRIADEAARITPQHLAELPDKRRHAILAAAGIRLEESLTDAVLTMMDKFLGSMMRRAEN 3	00
Tn3S_KA1 Tn3PD2	RTKEKAIGTIRSLQAQLRLITGSCRTLLDARARGVDSLAAIGSIDWERLGTAVVNAELLI 3	60
Tn3S_KA1 Tn3PD2	APETIDRTAELIERQRSLRSVIGPFLNAFEFRGAGAVQGLLDAARLVADIYRTGRRRFPD 4	20
Tn3S_KA1 Tn3PD2	KPPLRFVPPSWRPFVLRDGEVVRAAYELCVLTQLRDRLRGGDIWVAESRQYRAFDSYLLP 4	80
Tn3S_KA1 Tn3PD2	PATFEAMRARGPLPLAIETDFDKFIAGRRASLDTALERVTILARQGELPQVRLDGNGLVI 5 PDTLQACKLQG 1 * *::* : :*	40 45
Tn3S_KA1 Tn3PD2	SPLKAITPPDAEDMRRVAYDRLPRVKITDLLLEVDSWTGFSECFTHRRSGRVADDRNALL 6	00
Tn3S_KA1 Tn3PD2	TVILADGINLGLTRMAETCQGATLRQLAHLHDWHISEAAYGEALGRLIDVHRTVPLSALW 6	60
Tn3S_KA1 Tn3PD2	GDGTTSSSDGQLFHSGGRGASIGDINARNGNEPGVSFYTHVSDQYDPFASRVIAATAGEA 7 	20
Tn3S_KA1 Tn3PD2	PYVLDGLLYHATGLSIEEHYTDTGGASDHVFGLMPFFGYRFAPRLRDLKDRRLHLLPGQE 7 MPFFGYRFAPRLRDIKQRRLHLLPGQE 1 ************************************	80 72
Tn3S_KA1 Tn3PD2	AGPLLAGMTGDAVAIGHVADHWDELLRLTTSIRSGTTTASAILRRLSAYPRQNGLALALR 8 AGPLLAGMTAEPIALGHVAAHWDELLRFATSIRTGTATASAMLRRLSAYPRQNGLALAMR 2 ************************************	40 32
Tn3S_KA1 Tn3PD2	EVGRVERSIFMLDWLRDLDLRRRTQAGLNKGEARNALARALFFNQLGELRDRRFENQAYR 9 ELGRLERSIFMLDWLRDIDLRRRTQAGLNKGEARNALARALFFNQLGELRDRRFENQTYR 2 *:**:********************************	00 92
Tn3S_KA1 Tn3PD2	ASGLNLLVAAIILWNTRYLEQAVGTLSIPGNIARHIAPLGWEHISLTGDYRWNVESRPDP 9 ASGLNLLVAAIILWNTRYLEVALADIGTPDEIARHVAPLGWEHISLTGDYSWNVEDRPDP 3 ************************************	60 52
Tn3S_KA1 Tn3PD2	GKLRPLRTPSSLLAA 975 GCPAATARHQFVARRVTFTIRSRLACGCVTF 383 * * * * * * *	

Fig. 3.28. Pairwise alignment of Transposase TnpA-2of pPDL2 of *Flavobacterium* sp. ATCC 27551 is aligned with similar ssequences coded by *Sphingomonas* sp. _KA1. Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

important catalytic site residues (Fig 3.29 and 3.30), the TnpR sequences coded by these two copies of Tn3 elements can certainly be considered functional. However, in the absence of functional transposases, their presence in plasmid pPDL2 makes no functional significance. However, if transposition event occurs due to existence of a functional TnpA coding Tn3 element located either in the chromosome or another indigenous plasmid, the resolvases found on plasmid pPDL2 can act to resolve the generated cointegrate.

TnpR2 TnpR_Sj_UT TnpR1	MWRSAMRASRRQTKKALTPARRAERGPGATRIFDDHASGAKADRPGLAEALAYLRSGD 58 -MALIGYARVSTADQKLSLQLDALNAAGCDRIFDDHASGAKADRPGLAEALAYLRSGD 57 MGGILGYARVSTGDQDVAGQTMRLENAGAIKVFTDVISGKSMERPGLAELIAYARKGD 58 . *.* : . :*. ::* * ** . :****** :** *.**
TnpR2 TnpR_Sj_UT TnpR1	TLVVWKLDRLGRSMSHLIEKVGELATRGIGFRSLTENIDTTTSGGMLVFNIFGSLAQFER 118 TLVVWKLDRLGRSMSHLIEKVGELATRGIGFRSLTENIDTTTSGGMLVFNIFGSLAQFER 117 TLAVVRLDRLGRSLTELLATVETLRSQGIALLSLEEKIDTSSAAGELIFHVFGAIAHFER 118 **.* :*******:* * ::*** *:***********
TnpR2 TnpR_Sj_UT TnpR1	DLIRERTHAGLKAARERGRPGGRRPVVTPDKLRKAREHIASGLTVREAAARLKIGKTALY 178 DLIRERTHAGLKAARERGRPGGRRPVVTPDKLRKAREHIASGLTVREAAARLKIGKTALY 177 RLISERTRDGIAAARAKGKQPGRQPLDMS-KVDAAIKLVEARISPTEAARQLGIGRSTIY 177 ** ***: *: *** :*: *: *: *: *: *: *: *:
TnpR2 TnpR_Sj_UT TnpR1	KALEATEKNTKSQRSRSVRSRADK 202 KALEATEKNTKSQRSRSVRS 197 REMRRLGVERPA 189

Fig. 3.29. Multiple alignments of resolvases of Tn3 transposon. The resolvase of TnpRI and TnpRII of plasmid pPDL2 of *Flavobacterium* sp. ATCC 27551 are compared with TnpR found in *Sphingobium japonicum* UT26S (TnpR Sj UT). Identical residues and gaps are shown with an (*) and (-) respectively. Similar residues are shown with (:) and (.) symbols.

Fig. 3.30. Resolvases of pPDL2 showing N-terminal catalytic domain and C-terminal DNA binding HTH motif.

3.11.3. Transposon Tn3 specific terminal repeats

In pPDL2, two direct repeats containing characteristic features of Tn3 family of transposons are present at positions 11354-1138 and 37419-37453. As mentioned earlier, transposon Tn3 is present in many strains of the *Sphingomonas* sps. Analysis of their terminal repeats has showed minor variation in their length (Fig. 3.31). In plasmid

pPDL2RT 35	GGGGTCACTACACGAAAGTGCATTTTACGTACGCT
pPDL2LT 35	GGGGTCACTACACGAAAGTGCATTTTACGTACGCT
pCAR3 35	GGGGTCACTACACGAAAGTGCATTTTACGTACGCT
PCAR3.2 26	ACACGAAAGTGCATTTTACGTACGCTACACGAAAGTGCATTTTACGTACGCT
pSY3 35	GGGGT-CACTACACGAAAGTGCATTTTACGTACGCT
Ibu-2 33	GGGGT-CACTACACGAAAGTGCATTTTACGTACG
UT26s 20	GGGGT-CACTACACGAAAGTGGGGGT-CACTACACGAAAGTG
pCHQ1 20	GGGGT-CACTACACGAAAGTGGGGGT-CACTACACGAAAGTG
	** ** * *** *

Fig._3.31. Terminal repeats of Tn3 transposon found on plasmid pPDL2 (pPDL2RT and pPDL2LT) of *Flavobacterium* sp. ATCC 27551, plasmid of *Sphingomonas* sp KA1 (pCAR3), *Sphingomonas chungbukense* strain DJ77 (pSY3), *Sphingomonas* sp. Ibu-2 and *Sphingobium japonicum* chromosome UT26S (UT26S) and plasmid (pCHQ1).

isolated form *Sphingomonas chengbukense, a* 35bp terminal repeat was seen with 4 mismatches. The Tn3 is also present both on the chromosome and plasmid pLB1 of *Sphingobium japonicum* UT26S. These are only 20 bp long. Terminal repeats in the Tn3 element found in *Sphingomonas* sp., and *Sphingobium japonicum* UT26Ss suggesting that the first twenty base pairs of the repeats are enough for successful transposition of transposon Tn3.

3.11.4. The y4qE element

The ORF42 present at the region spanning the nucleotide positions 37745 to nucleotide position 38847 is designated as *y4qE* as it codes for a 374 amino acid long protein that shows 59% identity with the putative transposase y4qE (EFO28627) of *Roseibium* sp. *TrichSKD4* and 57% identity with IS116/IS110/IS902 family protein (ABS70259) of *Xanthobacter autotrophicus*. The IS110 family elements are usually flanked by 51 bp terminal repeats (García-Trigueros et al, 2007). However, no repeats of 51 bp are noticed in the flanking region of y4qE transposase. In the absence of such terminal repeats the functional status of y4qE element is questionable. If the mobile elements found on pPDL2 are considered, Tn3 alone appears to have TnpA with proper catalytic domain. The terminal repeats that are specific to Tn3 are only seen flanking the degradative module. Experimentlly the transposition event needs to be determined to assess its status in transposition.

3.12. Discussion

The sequence of plasmid pPDL2 contains both features of a typical plasmid and Integration Mobilizable Element (IME). Existence of a double stranded replication origin (*oriV*) and a well defined *par* locus that is involved in maintenance of a plasmid together with a toxin anti-toxin domain perfectly justify assigning pPDL2 the status of a well defined plasmid. Historically pPDL2 was isolated as part of investigation aimed at understanding the molecular basis for degradation of organophosphate insecticides used in modern agricultural practices. Subsequent studies conducted on this plasmid have shown organophosphate degrading (*opd*) gene as part of a complex transposon-like element (Siddavattam et al, 2003). The present study is designed to understand horizontal mobility of *opd* gene, which is considered to be all most certain due to

existence of identical opd genes in bacterial strains isolated from bacterial strains belonging to diverse taxonomic groups. The complete sequence has indeed added an interesting dimension to genetics and biology of organophosphate degradation. In addition to the well defined replication and maintenance modules, the plasmid pPDL2 contained a well defined degradative module with a typical features of a complex transposon. The degradative module included organophosphate degrading (opd) gene, dioxygenase gene, and a *meta* fission product hydrolase gene and a β -ketoadipate hydrolase coding sequence. As shown in figure 3.25 transposon Tn3 element and y4qE element are found flanking this degradative module. The perfect IR sequences that serve as target sites to the Tn3 coded transposase have identified at the extreme ends. If the arrangement is seen it clearly indicates that opd gene is part of a well structured mobile element designed to contribute for the lateral transfer of *opd* information among soil bacteria. If the plasmid maintenance and degradative modules are alone taken into consideration it clearly assigns pPDL2 the status of a typical bacterial plasmid. However, it also contains a well defined integration module, which includes an integrase, CopG and phosphoglycerate mutase. The transcriptional arrangement of these genes and presence of *attP* site that show similarity to the chromosomally located *attB* site found at the 3' end of serine tRNA gene perfectly justifies the capability of pPDL2 to integrate into and excise from the chromosome. If these features are seen together with existence of oriT, the pPDL2 should be given a status of an integrative mobilizable element (IME). Before presenting the structural status of pPDL2 a brief discussion is given on the Integrative Conjugative Elements (ICEs) so that a structural comparison can be made between ICEs and plasmid pPDL2.

The conjugation systems encoded by chromosome-borne mobile genetic elements (MGEs) were recently identified. Such elements are often referred to as integrative and conjugative elements (ICEs)(Burrus et al, 2002; Wozniak and Waldor, 2010). ICEs are self-transmissible MGEs that encode for conjugation machinery as well as intricate regulatory systems to control their excision from the chromosome and their conjugative transfer (Salyers et al, 1995; Osborn and Boltner, 2002; Burrus and Waldor, 2004). The ICEs encompass all self-transmissible integrative and conjugative mobile elements regardless of their mechanisms of integration or conjugation (Wozniak and Waldor, 2010). These include elements that are commonly characterized as conjugative transposons, which often integrate into the host chromosome with minimal sequence specificity and, consequently, are capable of both intracellular and intercellular transfer (Burrus and Waldor, 2004). The Tn916 of Enterococcus faecalis (Velikonja et al, 1994) and CTnDOT in Bacteriodes thetaiotaomicron are the first known MGEs with ICE-like properties (Shoemaker et al, 2001). Certain chromosomal elements which are previously classified as genomic islands also have properties of ICEs. Xenobiotic island, ICE*clc*^{B13} of Pseudomonas knackmussii sp. strain B13 and symbiotic island (Ravatn et al, 1998), ICEMISym^{R7A} of Mesorhizobium loti are examples of genomic islands which have ICE properties (Ramsay et al, 2006).

3.12.1. Structure and Function of ICEs

Integrative and conjugative elements (ICEs) typically have modular structures in which genes with related functions are clustered together (Mohd-Zain et al, 2004; Juhas et al, 2007; Roberts and Mullany, 2009; Wozniak and Waldor, 2009). All ICEs have three

simple, distinct functional modules designated as i) maintenance, ii) dissemination and iii) regulation modules.

i) Maintenance modules

All ICEs encode an integrase (Int) that enables their integration into the host chromosome. The process of integration requires integrase and no additional factors are required. But for excision to occur, additional factors, known as recombination directional factors are required along with integrase. Integrases determine the site and frequency of ICE excision. Moreover, regulation of *int* expression is one of the key means of controlling ICE transmission. Most of the known ICE integrases are members of the tyrosine recombinase family (Argos et al, 1986). The best studied recombinase of this family is the Int encoded by phage λ . The phage Integrase uses a topoisomerase I-like mechanism to promote site-specific recombination between identical or near identical sequences in the host chromosome (referred to as *attB* sites) and the phage chromosome (the *attP* site). The strand exchange reactions catalysed by Integrase do not require a high-energy cofactor such as ATP, and no sequence duplication or deletion results from recombination. Integration of ICEs usually occurs into specific sites known as primary sites of integration (Table 3. 3). However, integration may also occur at secondary sites in absence of the primary sites (Burrus and Waldor, 2003; Lee et al, 2007).

Table 3. 4. ICEs of various sources	and their sites of insertion
-------------------------------------	------------------------------

ICE	Host	Size (kb)	Site of insertion	Phenotype	Reference
SXT	Vibrio cholera	99.5	prfC	Cm ^R , Sm ^R , SXT ^R	Beaber et al, 2002

rettgeri2002ICEBs1Bacillus subtilis20tRNA ^{Leu} geneNone KnownBurrus et al, 2002PAPI-1Pseudomonas aeruginosa108tRNA ^{Lys} geneVirulence factors and regulation of biofilm formationICEclc ^{B13} Pseudomonas 105105tRNA ^{Gly} gene3-Ravatn et al,
ICEBs1Bacillus subtilis20tRNA ^{Leu} geneNone KnownBurrus et al, 2002PAPI-1Pseudomonas aeruginosa108tRNA ^{Lys} geneVirulence factorsVirulence factorsand regulationof biofilm formationICEclc ^{B13} Pseudomonas105tRNA ^{Gly} gene3-Ravatn et al,
PAPI-1Pseudomonas aeruginosa108tRNA ^{Lys} geneVirulence factors and regulation formation2002ICEclc ^{B13} Pseudomonas105tRNA ^{Gly} gene3-Ravatn et al,
PAPI-1Pseudomonas aeruginosa108tRNA ^{Lys} geneVirulence factorsand regulationICEclc ^{B13} Pseudomonas105tRNA ^{Gly} gene3-Ravatn et al,
aeruginosafactorsandregulationofbiofilmformationICEclc ^{B13} Pseudomonas105tRNA ^{Gly} gene3-Ravatn et al,
ICEclc ^{B13} Pseudomonas 105 tRNA ^{Gly} gene 3- Ravatn et al,
ICEclc ^{B13} Pseudomonas105tRNA ^{Gly} gene3-Ravatn et al,
ICE <i>clc^{B13} Pseudomonas</i> 105 tRNA ^{Gly} gene 3- Ravatn et al,
knackmussii chlorobenzoic 1998
acid
ICE <i>MISym^{K/A} Mesorizobium</i> 502 tRNA ^{Prie} gene Symbiosis with Sullivan et
involving
nodulation and
nitrogen
fixation
ICE <i>Hin1056 Haemophilus</i> 49.4 tRNA ^{Leu} gene Tet ^R , Cm ^R , Mohd-Zain
influenza Amp ^ĸ et al, 2004
pSAM2 Streptomyces 10.9 tRNA ^{Pro} gene None Known Pernodet et
ambofaciens al,1984
Tn916Enterococcus18AT-rich regionsTet RClewell et al,
faecalis 1995
CtnDoT Bacteroides 65 GTANNTTTTGC Tet ^R , Erm ^R Cheng et al,
<i>spp.</i> 2000
TnGBS2Streptococcus33.5IntergenicNone knownBrochetet
agalactiae regions al, 2009
RNA
polymerase
sigma A
promoters

Tn <i>4371</i>	Ralstonia sp.	55	TTTTTCAT	Biphenyl	Toussaint et
	A5			degradation	al, 2003
Tn <i>5397</i>	Clostridium	21	Single site	Tc ^R	Wang et al,
	difficile				2000
Tn5252	Lactococcus	70	TTTTTG	Sucrose	Vijayakumar
	lactis			utilization and	et al <i>,</i> 1993
				nisin synthesis	
pRS01/sex	Lactococcus	48.4	Single site	Tellurium	Gasson et al,
factor	lactis			resistance	1995
Tn5801	Staphlyococcus	25.8	3' end of a gene	Tc ^R	Kuroda et al,
	aureus		encoding		2001
			GMP synthase		

ii) Dissemination modules

Like conjugative plasmids, ICEs disseminate *via* conjugation. ICEs contain the genes that specify the synthesis of the 'mating machinery' that enables intimate contact between donor and recipient cells and that delivers DNA to the recipient cell. The dissemination modules of ICEs are also diverse. In most described cases, ICEs are thought to transfer as single-stranded DNA with few exceptions (pSAM2 from *Streptomyces mbofaciens*) (Grohmann et al, 2003). In some cases, such as in the *V. cholerae*-derived ICE SXT, the transfer genes bear similarity to those found in well-characterized conjugative plasmids such as the F plasmid (Beaber et al, 2003). In other cases, such as in Tn*1549* from *Enterococcus* spp., ICE transfer genes appear to be distantly related to those found in Gram-positive conjugative plasmids (Garnier et al, 2000). Finally, the genes required for the transfer of some ICEs, such as the Bacteroides-derived CTnDOT, are for the most part unrelated to previously characterized transfer genes (Bonheyo, 2001).

Chapter-1

iii) Regulation modules

The genes and the mechanisms that regulate ICE transfer are just beginning to be defined; however, it is already apparent that ICE regulation modules are very diverse (Wozniak and Waldor, 2010). Transfer of both Tn916 and CTnDOT is induced by subinhibitory concentrations of tetracycline (Slayers et al, 1995). The expression of the int gene of the *clc* element from *Pseudomonas* sp. was recently found to be stimulated by growing the bacterium on 3-chlorobenzoate-containing medium, but not by high cell density, heat shock, osmotic shock, UV irradiation or ethanol stress (Sentchilo et al, 2003). Interestingly, aromatic chlorinated compounds, such as 3-chlorobenzoate, are substrates for the degradation pathway encoded by clc. It was hypothesized that a metabolite of 3-chlorobenzoate modulates interactions of a putative activator and repressor with the integrase-encoding gene promoter (Sentchilo et al, 2003). Thus for three ICEs, Tn916, CTnDOT and clc, specific compounds in the environment seem to trigger their dissemination thereby conferring upon new hosts the ability to resist to or metabolize these compound. V. cholerae derived ICE, SXT encodes SetR, an orthologue of the phage lambda repressor CI and transfer of this ICE is regulated by the SOS response.

Integrative mobilizable elements (IMEs) are non-self-transmissible elements which can excise from chromosome, and transferred to a new host with the help of conjugative functions provided in *trans* by other elements, through the formation of a covalent closed circular molecule and integrate into the chromosome of the host. IMEs are reported from *Salmonella* and *Bacteroides* species (Doublet et al, 2005; Shoemaker et al, 1996). In *Salmonella*, the genomic island, SGI1 is not self-transmissible but can be transferred from a donor strain of *Salmonella* enteric to non-SGI1 containing S. *enteric*

Chapter-1

and *Escherichia coli* recipient strains (Doublet et al, 2005). The functions necessary for transfer are provided in *trans* by the donor strains having the conjugative *IncC* plasmid R55 (Doublet et al, 2005). *Bacteroides* species have mobilizable insertion elements known as non-replicative Bacteroides units (NBUs). Four members of the NBU element family (NBU1, NBU2, NBU3, and Tn4555) are shown to be mobilizable *via* a covalently closed circle intermediate (Li et al, 1993, Li et al, 1995). This circle does not replicate but can be transferred by conjugation, starting from an internal transfer origin (*oriT*). NBUs possess *mob* gene but are not self-transmissible, nor can they excise on their own. Both excision and mobilization of NBUs require transacting functions provided by a Bacteroides conjugative transposon (CT) (Shoemaker and Slayers, 1988; Steven et al, 1990; Stevens et al, 1992).

As mentioned in earlier sections all modules required for maintenance and distribution of pPDL2 as an ICE are present in its primary sequence. However, the genes responsible for the formation of mating pair are not present. Instead, genes responsible for its mobilization and integration are present along with the *attP* site required to mediate site specific recombination. The replication initiator, RepB found on pPDL2 can initiate the replication process in rolling circle mode. In addition to *repB* two potential *oriT* sites needed to generate relaxed pPDL2 required to mediate mobilization process are identified on plasmid pPDL2.

The plasmid, pPDL2 of *Flavobacterium* sp. ATCC 27551 has an Integrase coding sequence which can perform its integration and excision into and out of the chromosome. As typically seen in ICE/IMEs,a a putative regulator *copG* is found translationally linked to integrase coding sequence. Further, the Integration Host Factor

(IHF) binding sites have been identified in the upstream region of *copG*, the protein shown to play a major role in excision of the integrative elements (Nash and Robertson, 1981; Bushman et al, 1985). Presence of such *cis*-element in fact strengthens the proposal of existence of an integration and excision event between chromosome and pPDL2. Further, *copG*, *int* and *pgm* genes are found clustered in pPDL2. Existence of linkage between *copG*, *int* and *pgm* genes, which are named in the present study as CIP unit suggests functional relevance (Fig. 3.17). In pPDL2 there exists, two sets of CIP units, without having an absolute identity. The PGM is shown to have a HP-PEM domain involved in dephosphorylation of histidine phosphates. Presence of such domain indicated regulation of integration /excision event through means of signal transduction. However, further studies are needed to prove existence of such regulation. It is not yet known if growth of *Flavobacterium* sp. ATCC 27551 in presence of OP compounds or its intermediates stimulates the transfer of pPDL2.

What is pPDL2?

After examining the complete sequence of plasmid pPDL2 and looking at the various modules present in the sequence an attempt is made to give a correct name to pPDL2. Historically, it's identified as a plasmid containing organophosphate degrading (*opd*) gene. The replication origin and well conserved replication initiation proteins RepA, maintenance module containing toxin and anti-toxin protein coding sequences justify calling it as a typical bacterial plasmid. However, it also contains a number of features that justify grouping it under Integrative Mobilizable Element. Existence of an integration module (Fig. 3.17 and 3.21), attachment site *attP* and a module that contribute for the mobilization of pPDL2 are typical features of an IME (Juhas et at, 2009). In the light of

these facts how should pPDL2 be called? A plasmid or an IME? It reminds mythological situation, a Chimera and Ganesha..... though considered powerful Gods, for a common man, they neither have complete human nor animal features. Most of the simplest things are hard to explain.

3.13. Conclusions

- Flavobacterium sp. ATCC 27551 contains four indigenous plasmids designated as pPDL1, pPDL2, pPDL3 and pPDL4.
- The indigenous pPDL2 alone contains *opd* gene and it is rescue cloned into *E.coli pir*-116 cells.
- Plasmid library was constructed by cloning *Eco*RI and *PstI* fragments of pPDL2 in pBluescript KS II.
- 4. Complete sequence was determined for the 39.75 kb pPDL2.
- 5. The GC content of pPDL2 (61.76%) is found to be very close to the GC content of plasmids pSWIT02 and pUT2 of *Sphingomonas wittichi* RW1 and *Sphingobium japonicum* UT26S respectively.
- Nucleotide sequence of plasmid pPDL2 of *Flavobacterium* sp. ATCC 27551 showed maximum homology to the indigenous plasmids pUT1, pCHQ1 of *Sphingobium japonicum* UT26S and pSWIT01of *Sphingomonas* sp.
- Sequence analysis of pPDL2 has revealed presence of 42 ORFs out of which only 18 are hypothetical and the remaining 24 ORFs have shown strong homology to the well characterized proteins found in NCBI database

 Open reading frames present on pPDL2 are organized into modules, such as (i) the replication and partition module, (ii) mobilization module, (iii) integrase module, (iv) degradation module and (v) mobile genetic elements.

Table 3.3 Open reading frames present on plasmid pPDL2						
Generic Name	Position	Conventional Name	Putative function	Homologous protein	Amino acid identity (%)	GenBank accession no.
ORF1	954-1682	orf242	Unknown	Hypothetical protein	31	ZP_01623203
ORF2	1185-2067 C	orf294	P45O	β- component of Protocatechuate dioxygenase of <i>Xanthomonas axonopodis</i> pv. citri str. 306	78	gb AAM35766.1
ORF3	2527-2880	orf117	Hydrolase	alpha-beta hydrolase fold protein of Commamonas testosteroni S44		gb EFF44050.1
ORF4	2915-3460	orf181	Hydrolase	Hydrolase of <i>Xanthomonas fuscans</i> subsp. aurantifolii str. ICPB		
ORF5	34334887	orf484	Transporter	MFS of Asticcacaulis excentricus CB 48	72	gb ADU14055.1
ORF6	50755956	orf293	Antibiotic resistance	Beta-lactamase domain protein of Methylobacterium nodulans ORS 2060	48	gb ACL58162.1
ORF7	5986-6786	orf266	Unknown	Hypothetical protein Swit_1907 Sphingomonas wittichii RW1	41	gb ABQ68267.1
ORF8	6941-8464	orf507	Transposase(<i>istA</i>)	Transposase <i>Aurantimonas manganoxydans</i> SI85-9A1	59	gb EAS49905
ORF9	8407-8988 C	orf193	Acetyl transferase	dihydrolipoamide acetyltransferase Legionella pneumophila str. Paris	22	emb CAH12611.1
ORF10	8461-9300	orf279	Resolvase (<i>istB</i>)	IstB domain protein ATP-binding protein Nitrosomonas sp. AL212	78	gb EET30478
ORF11	9567-10664	orf365	OP Hydrolase (<i>opd</i>)	Parathion hydrolase of P. diminuta	99	gb AAA24930
ORF12	10696-11613	orf305	Aromatic hydrolase	Putative aromatic hydrolase		
--------	---------------	------------	-----------------------------	---	-------------	----------------
		orf583				
ORF13	11424-13175 C		Transpoase (<i>tnpA</i>)	TnpA transposase Sphingomonas sp. KA1	86	dbi BAF03245
ORF14	13316-13885	orf189	Resolvase (<i>tnpR</i>)	Resolvaseof Sphingomonas sp. KA1	96	dbj BAE75870
				Hypothetical protein SphchDRAFT_3708		
ORF15	1388614833	orf315	Unknown	Sphingobium chlorophenolicum L-1	85	gb EFN09107
ORF16	14812-15186	orf124	Recombinase (tnpR)	Putative site-specific recombinase	63	gb ACJ63562
		64.45				
ORF17	15640-16077	orf145	Transposase (tnpA)	Tn3 family transposase of plasmid pLB1	98	YP_740316
		62.4.4		Hypothetical protein of Acinetobacter		
ORF18	15958-16902C	orf314	Unknown	baumannii AYE	40	emb CAM88370
ORF19	16255-16974	orf239	Transposase (tnpA)	Tn3 family transposase of plasmid pLB1	98	YP_740316
0.0500			Plasmid replication		96	
ORF20	16878-17534	orf218	initiation (<i>repAa</i>)	RepA of Sphingobium Japonicum		dbj BAI99177
0.0504		a uf 2 4 7	Plasmid replication			
ORF21	18125-19168	orf347	initiation (<i>repAb</i>)	RepA of Sphingobium Japonicum	97	dbj BAI99177
00533	24246 24002 0	orf215				U. 10 A1004 70
ORF22	21246-21893 C		Partitioning (parA)	ParA of Sphinogobium Japonicum	99	dbj BA199179
00533	22007 22507	af20C		Hypothetical protein of Sphingomonas wittichi	25	
ORF23	22887-23507	0rj206	Hypothetical protein	RW1	35	gb ABQ66545
00524	22404 22022	orf147		DelD entites in effective et inneries		
ORF24	23494-23922	01/142	Plasmid stability (relb)	Reib antitoxin of Sphingobium Japonicum		db] BA198982
ODESE	22010 24050 C	0rj82	t to be even			
ORF25	23810-24058 C		Unknown	Hypothetical protein		00] BA199186
00526	25546 26166	orf206	Unknown	Unatherical protain	05	
UKF20	20040-20100	013200	UNKNOWN	nypothetical protein	25	UNI RAIAAT80
00527	26460 26717 6	orfol			NO	
UKFZ/	20409-20/1/C	01302	Hypothetical protein	nypotheltical protein XAUC 31650	significant	

					homology	
		(245	Enzyme of glycolytic			
ORF28	26836-27483	orf215	pathway (<i>pgm</i>)	Phosphoglycerate mutase family protein	95	dbj BAI99186
		orf135				
ORF29	27679-28086 C		Unknown	Hypothetical protein	70	dbj BAI99187
ORF 30	26153-26581	orf142	Antitoxin (<i>relB</i>)	RelB antitoxin of S. japonicum UT 26	96	dbj BAI98982
			Invertase/ recombinase	Phage integrase family protein of		
ORF31	28583-29569 C	orf328	like protein (<i>int</i>)	Sphingomonas wittichi RW1	86	dbj BAI98979
		orf131	Transcriptional factor			
ORF32	29566-29961 C		(copG)	CopG/MetJ/Arc family protein	65	gb ABQ71225
		orf125				
ORF33	30013-30390 C		Unknown	Hypotehtical protein	-	-
			Transcriptional factor			
ORF34	30675-31184	orf169	(copG)	CopG/MetJ/Arc family protein	65	gb ABQ71225
			Invertase/recombinase	Phage integrase family protein of		
ORF35	31181-32027	orf282	like protein (<i>int</i>)	Sphingomonas wittichi RW1	94	dbi BAI98979
			Enzyme of glycolysis			
ORF36	32426-33014	orf196	(pam)	Phosphoglycerate mutase family protein	92	dbilBAI99186
		,				
				Conserved hypothetical protein of		
ORF37	33023-33305	orf94	Unknown	Methylosinus trichosporium OB3b	73	gb EFH01001
			Signal transduction	PilT domain containg protein of		
ORF38	33296-33721	orf141	protein (<i>pilT</i>)	Sphingomonas wittichi RW1	59	gb1ABO68989
		,		hypothetical protein SIA P1-00320		
ORE39	34228-34863	orf211	Unknown	Sphinaobium japonicu UT26	91	dbilBAI99180
000	0.11000	- ,	Catalyzed conversion of		01	
			cobyrinic acid to	Cobyrinic acid ac-diamide synthase Thouera		
ORF40	34944-35579	orf211	cobyrinic acid diamide	sn M71T	58	ghlACK55109
		orf303				0-11.0.00100
ORF41	35944-36854 C	5,500	Replication (<i>renB</i>)	RepB of Gluconobacter diazotrophicus PA15	83	gh1ACI53275
	55544 50054 C			Putative transposase v/gE of Roseihium sp		0~1/0/022/0
OBE42	377/15-288/17	orf367	Transnosase (w/aE)	TrichSKDA	59	ghl FEO 28627
UNF4Z	5//45-5004/	01307	Transposase (y4yE)		55	BUILFUZOUZ/

The complete sequence information of plasmid pPDL2 is presented in chapter-I. In the sequence of pPDL2, *oriT* and *repB* that contribute for horizontal mobility of plasmid pPDL2 were identified. Further, the literature available on the structure and organization of *opd* genes coding organophosphate hydrolase clearly suggest existence of horizontal transfer of *opd* genes among soil bacteria (Siddavattam et al, 2003; Horne et al, 2003; Wei et al, 2009). However no experimental evidence is available to support the hypothesis. This chapter describes horizontal mobility of *opd* genes through experimental design described in materials and methods section. The well characterized *opd* plasmids pPDL2 of *Flavobacterium* sp. ATCC 27551 and pCMS1 of *Brevundimonas diminuta* were taken as experimental tools while gaining the experimental evidence on horizontal gene transfer (HGT) of *opd* gene.

4.1. Horizontal mobility of pPDL2 of *Flavobacterium* sp. ATCC 27551

Horizontal transfer of genes among bacterial strains is a well defined subject. In order to accomplish HGT among bacterial strains plasmids should have genes that code for mating-pair formation (MPF) between the donor and the recipient cells. In addition to the mating pair formation module, an *oriT* sequence and a *mob* gene coding for a relaxase is required to achieve successful transfer of plasmid DNA (Holmes and Jobling, 1996; Russi et al, 2008). In plasmid pPDL2 no MPF machinery is present. However, existence of *oriT* like structures and a replicase, RepB, the rolling circle replication initiator suggests mobilizable nature of pPDL2. In order to know the mobilizable nature of pPDL2, biparental and triparental mating experiments were performed as described in materials and methods section. While performing biparental mating experiments, the pPDL2 derivative, pPDL2::Tn5<R6Kyori-Kan-2> containing *E. coli pir*-116 was used as donor. Usage of pPDL2 derivative generated by inserting mini-transposon, EZ-Tn5<R6Kyori-Kan-

2>, confirms kanamycin resistance on pPDL2:: Tn5<R6Kγori-Kan-2>. Usage of an *E. coli* cell having pPDL2::Tn5<R6Kγori-Kan-2> as donor facilitates easy monitoring of pPDL2 mobility by selecting on a kanamycin antibiotic resistance plate. In an experiment conducted using *E. coli pir*-116 (pPDL2::Tn5<R6Kγori-Kan-2>) as donor and *Acinetobacter* sp. DS002 as recipient no exconjugants of *Acinetobacter* sp. DS002 were identified on a selective plate having kanamycin and benzoate (Fig. 4. 1). Logically on a minimal agar plates supplemented with 5mM benzoate and kanamycin colonies should appear if pPDL2 is a self transmissible plasmid. *Acinetobacter* sp. DS002 strains are kanamycin sensitive and grow on benzoate using as sole source of carbon. If pPDL2::Tn5<R6Kγori-Kan-2> is mobilized into recipient strain colonies of *Acinetobacter* sp. DS002 exconjugants would have grown on benzoate + kanamycin plates. However, no exconjugants were observed on the selection plates, which are also in agreement of the sequence information of pPDL2 (Fig. 4. 1).

Fig. 4.1. Biparental mating using *E. coli pir*-116 (pPDL2::<R6Kyori-Kan-2>) and *Acinetobacter* sp. DS002 as donor and recipients. Panel A represents selection plate spread with *E. coli pir*-116 (pPDL2<R6Kyori-Kan>), B represents selection plate spread with conjugation mixture having *E. coli pir*-116 (pPDL2<R6Kyori-Kan>) (donor) and *Acinetobacter* sp. DS002 (recipient). Panel C represents selection plate with *Acinetobacter* sp. DS002 (recipient). No exconjugants were seen in selection plates having mating mixture.

4.1.1. Triparental mating

The above experiment clearly rules out the possibility of pPDL2 as a selftransmissible plasmid. However, if sequence information taken as basis to assess lateral transfer of pPDL2 it clearly suggests that it can only be mobilized if donor strain can supplement genetic machinery to code for a MPF. Therefore, such situation is created by performing triparental mating experiments, where the helper *E. coli* HB101 harbouring plasmid pRK2013 (Figurski and Helinski, 1979), *E.coli pir*-116 harbouring pPDL2::Tn5<R6Kyori-Kan-2> and *Acinetobacter* sp. DS002 strains served as helper, donor

Fig. 4. 2. Triparental mating using *E. coli pir*-116 (pPDL2<R6Kyori-Kan>), *E. coli* HB101 (pRK2013) and *Acinetobacter* sp. DS002. Panel A represents selection plate spread with *E. coli pir*-116 (pPDL2<R6Kyori-Kan>), B represents selection plate spread with mating mixture having *E. coli pir*-116 (pPDL2<R6Kyori-Kan>) (donor), *E. coli* HB101 (pRK2013) (helper) and *Acinetobacter* sp. DS002 (recipient). Panel C represents selection plate with *Acinetobacter* sp. DS002. Appearance of exconjugants is seen in panel B.

and recipients respectively. The helper plasmid pRK2013 provides the genetic machinery for formation of mating pair formation and mobilization (Figurski and Helinski, 1979). Exconjugants appeared on the selection plates indicating the mobilization of plasmid pPDL2::Tn5<R6Kyori-Kan-2> into *Acinetobacter* sp. DS002 (Fig. 4.2). In the previous chapter, based on sequence information, a well conserved *oriT* was identified along with

RC replication origin and *repB* gene. The experiment described above has shown existence of functional mobilization module plasmid pPDL2.

4.1.2. Characterization of exconjugants

4.1.2.1. Detection of opd gene

After mobilization of plasmid pPDL2::Tn<R6Kyori-Kan-2> from *E.coli pir*-116 into *Acinetobacter* sp. DS002 through the helper strain *E.coli* HB101 (pRK2013), the presence of plasmid in the recipient strain was analyzed by performing PCR using the plasmid borne *opd* specific primers. When PCR was performed using *opd* domain specific primers, a specific amplicon of 500 bp was seen only in PCR mix having a colony of exconjugant and donor. No such amplicon was seen in recipient cells (Fig. 4.3).

Fig. 4. 3. Confirmation of pPDL2 mobilization into *Acinetobacter* sp. DS002 by colony PCR using *opd* specific primers. Lane 1 represents 1 kb DNA ladder. Lanes 2-3 represent amplicons obtained from exconjugant and donor colony containing PCR mix. The PCR mix of recipient is shown in lane 4.

4.1.1.2. OPH assay

After establishing stable maintenance of plasmid pPDL2::Tn5<R6Kγori/Kan-2> in *Acinetobacter* sp. DS002, experiments were conducted to test their ability to degrade OP compound, paraoxon. Our lab has recently shown presence of OPH in the inner

membrane of *B. diminuta* and its dependence on Twin Arginine Transport (Tat) pathway for membrane targeting (Gorla et al, 2009). Therefore, the *Acinetobacter* cells harboring plasmid pPDL2::Tn5<R6Kyori/KAN-2>were fractionated in to cytoplasmic and membrane fractions and were assayed for OPH activity as described in methods. Most of the OPH activity was found in membrane fraction and very little activity was seen in cytoplasmic fraction (Fig. 4. 4). This result clearly suggests expression of active OPH from plasmid pPDL2::Tn5<R6Kyori/KAN-2>.

Fig. 4.4. Assay of organophosphorus hydrolase activity in cytoplasmic and membrane fractions of A) exconjugant (*Acinetobacter* sp. DS002 having plasmid pPDL2::Tn5<R6Kγ/Kan-2>) and B) wild type *Acinetobacter* sp. DS002.

4.2. In vivo transposition assay

As shown in Fig. 3.22 and described in chapter-1 the *opd* gene cluster of pPDL2 has shown a transposon-like module. Transposon Tn3 and y4qE flank all the degradative traits that code for enzymatic machinery with a possible involvement of mineralizing OP insecticides like methyl parathion and fenitrothion. The organophosphorus hydrolase is a well characterized triesterase involved in hydrolysis of tri-ester linkages present in diverse group of OP compounds (Benning et al, 1994; Cho et al, 2004). Similarly, the

mfhA gene present immediately downstream of *opd* is a *meta* fission product hydrolase. Downstream of *mfhA* and *opd*, transposon Tn3 consisting of *tnpA* and *tnpR* which codes for transposase

Fig. 3.22 of Chapter 1. Organization of degradative genes and mobile elements on pPDL2. Transposases and resolvases are shown in red colour. Degradative genes are shown in blue coloured arrows. The repeats of Tn3 and IS21 element are shown as black arrows and blue arrows respectively.

and resolvase was identified. In the upstream region of *opd* gene an IS element designated as IS*Flsp1* was identified (Siddavattam et al, 2003). In the sequence information generated in the present study two more open reading frames designated as ORF2 and ORF3 are identified upstream of IS*Flsp1*. One of them codes for β -sub-unit of protocatechuate 4,5 dioxygenase and the second ORF has homology to β -ketoadipate lactonase. Existence of another transposable element y4qE downstream of these genes indicates transposition of *opd* cluster. Existence of Tn*3* transposase specific inverted repeats flanking downstream of y4qE and upstream of transposase Tn*3* supports possible transposition event of *opd* element found in plasmid pPDL2.

In order to gain experimental evidence for such transposition event an *in vivo* transposition assay was performed by following procedures described in materials and methods section. The *in vivo* transposition assay was performed using three independent compatible plasmids. The plasmid pTras::*tet* contains the entire pPDL2 cluster cloned in

pUC18 vector. Its construction is described in one of the earlier reports published from our laboratory (Siddavattam et al, 2003). This plasmid serves as donor of *opd* cluster. The second plasmid, pJQ210SK (Quandt and Hynes, 1993) contains *sacB* gene. Presence of *sacB* gene is lethal for gram negative bacteria in presence of sucrose. The third plasmid is pMMBTnpA, derivative of pMMB206 generated by cloning *tnpA* under the control of inducible promoter. All the three plasmids were transformed into *E. coli* (pTrans::tet + pJQ210 + pMMB-TnpA) and were induced for expression of transposase by adding low concentrations of IPTG. After induction the cells were then plated on LB plates containing sucrose + gentamycin +tetracycline. A schematic representation is given in Fig. 4.5 to explain the functioning of the *in vivo* transposition assay.

+ gentamycin + tetracyclin + chloramphenicol

Fig. 4.5. Schematic representation of In vivo transposition assay

E.coli cells having either pTrans::*tet* (donor of *opd* cluster) or reporter plasmid (pJQ210SK) served as negative control. As shown in Fig. 4.6 a number of colonies are

found in selection plates containing sucrose + gentamycin + tetracycline + chloramphenicol. Such appearance of colonies on sucrose plates is only possible in the event of disruption of *sacB* gene due to transposition.

Fig. 4.6. *In vivo* transposition assay for demonstrating transposition of *opd* gene cluster.Panel A and B represent LB + 5% sucrose (Kanamycin + gentamycin + tetracycline) plates spread with *E.coli* having (pTrans::*tet* + pJQ210 + pMMB206) and *E.coli* having (pTrans::*tet* + pJQ210 + pMMB-TnpA). Sucrose resistant colonies are only seen in cells expressing TnpA.

4.2.1. Analysis of sucrose resistant colonies

In order to gain further insights into the nature of DNA fragment causing disruption of *sacB* gene, the pJQ210 derivatives were isolated from sucrose resistant colonies. The plasmids prepared from the resistant colonies were used as templates for performing PCR using *sacB* specific primers. PCR amplification using these primers gave 1.2 kb *sacB* amplicon, if it is not disrupted. However, if *sacB* is disrupted due to insertion of *opd* element found on the donor plasmid pTrasn::*tet*, there will be increase in size of the amplicon. Figure 4.7 shows that amplicons obtained from a number of colonies have

a size greater than the *sacB* gene. Colony PCR performed using *opd* specific primers from

these colonies gave

Fig. 4.7. Screening of plasmids isolated from sucrose resistant colonies using *sacB* specific primers. Increase in size indicates disruption of sacB gene due to transposition. Lane 1 represents 1kb DNA Ladder. Lanes 2 -10 represent amplicons from sucrose resistant colonies. Lane 11 and 12 represent positive control (pJQ210SK) and negative control (pTrans::*tet*, donor plasmid).

Fig. 4.8. Screening of sucrose resistant colonies using *opd* specific primers. Lane 1 represents 1kb DNA Ladder. Lanes 2 -6 represent amplicons of *opd* from sucrose resistant colonies. Lane 7represent positive control (pTrans::*tet*).

amplicons corresponding to the size of *opd* gene (Fig. 4.8). These two experiments provide a clear evidence to claim the transposable nature of the *opd* element found on plasmid pPDL2. However, these pJQ210 derivatives containing *opd* element insertion in

sacB gene needed to be sequenced to identify boarder sequences of the *opd* element. Due to paucity of time such experiments were not conducted in this study. However, our laboratory is undertaking such studies to identify precise junctions of *sacB* and *opd* element to determine *opd* specific sequences.

The studies described in chapter-2 document horizontal nature of *opd* genes found on pPDL2 of *Flavobacterium* sp. ATCC 27551 and clarify to large extent for the reasons behind the existence of identical *opd* elements on dissimilar plasmids and chromosomes of soil bacteria isolated from diverse geographical regions.

4.3. Horizontal transfer of plasmid pCMS1

Brevundimonas diminuta is one of the first microorganisms reported to have the capability to degrade organophosphorus pesticides (Serdar et al, 1982). It was further demonstrated that the OP compound degradation capability of *Brevundimonas diminuta* was due to existence of a large indigenous plasmid, pCMS1 (Mulbry et al, 1986; McDaniel and Wild, 1988). The comparison of restriction profile of pCMS1 and pPDL2 revealed existence of sequence similarity only in 5.1 kb DNA region containing *opd* gene. As described before plasmid pPDL2 is clearly a mobilizable plasmid. It can constantly contribute for HGT of *opd* gene under certain conditions, especially when it gains access to mating pair formation coded by another plasmids/ Integrative conjugative element.

4.3.1. Random sequencing of pCMS1

Unlike in pPDL2, no sequence information is available for pCMS1. In order to test the HGT of pCMS1 two things need to be generated. Initially the plasmid pCMS1 need to be tagged with an antibiotic marker so that its mobility can be monitored by performing a typical conjugation experiment. Secondly the plasmid pCMS1 need to be sequenced to

identify genetic modules coding for mating pair formation (MPF) and *oriT* and *mob* genes. In order to obtain quick information on the sequence of pCMS1 two fosmid clones having entire pCMS1 DNA were taken and *in vitro* transposon tagging experiments were performed to insert mini-transposon EZ-Tn5<R6Kyori-Kan-2> randomly into fosmid clones of pCMSA and pCMSB. After *in vitro* transposon tagging experiments, the kanamycin resistant *E. coli pir*-116 cells were taken and the fosmids having mini-transposon insertions were independently sequenced using transposon specific primers. Such sequence stretches were then analyzed to identify presence of *tra* genes that contribute for mating pair formation (MPF). The sequence information has shown the presence of *tra* genes on plasmid pCMS1 providing *prima face* evidence for horizontal mobility of plasmid pCMS1 (Table 4.1). As

S. No.	Name of the recombinant fosmid.	Name of the Tra protein deduced from nucleotide sequence & % homology	Role in horizontal gene transfer (HGT)	<i>Reference strain/</i> GeneBank Accession No.
1	pCMSB314	Tral ; 54	DNA relaxase	Comamonas sp. CNB-1 /
				ABM06255
2	pCMSB32R	TraE ; 72	DNA topoisomerase	Achromobacter xyloxidans sub- sp. denitrificans / AAS49467
3	pCMSB32F	TraE ; 64	DNA topoisomerase	Achromobacter xyloxidans sub- sp. denitrificans / AAS49467
4	pCMSB31R	TraE ; 70	DNA topoisomerase	Achromobacter xyloxidans sub- sp. denitrificans / AAS49467
5	pCMSB31F	TraM ; 56	Conjugal transfer protein	Achromobacter xyloxidans sub- sp. denitrificans /AAS49476

Table 4.1. List of *tra* genes identified in plasmid pCMS1.

shown in Table 4. 1, *tral, traE* and *traM* genes were identified on plasmid pCMS1. All the *tra* sequences share considerable similarity (54-72%) with *tra* genes present on plasmid

pEST4011 of Achromobacter xyloxidans sub-sps. denitrificans. The Tral is a relaxase which performs strand scission at the transfer origin (*oriT*) and TraM acts a topoisomerase which enhances Tral activity. TraE is one of the proteins present in the pilus assembly (Karl et al, 2003). As existence of the *tra* genes was apparent on pCMS1, further experiments were done to obtain experimental evidence on its horizontal mobility.

As no markers are available to track mobility of pCMS1, the *B.diminuta* strains having its pCMS1: *tet* generated previously by replacing the *opd* with *opd::tet* (Gorla et al, 2009) was used as donor strain. In a typical conjugation experiment, performed by using *B. diminuta* (pCMS1::*tet*) and *P. putida* KT2440 as donor and recipient, respectively, plasmid pCMS1::*tet* was successfully transferred with a frequency of 0.72 x 10^{-6} . This result clearly suggests that plasmid pCMS1 is a self transmissible plasmid and supports the sequence information that gave clear indication about the presence of *tra* genes.

Fig. 4.9. Panel A, B and C indicate LB (Km+Cm) plates spread with donor (*B.diminuta* with pCMS1::*tet*), mating mixture and recipient strains (*Pseudomonas putida* KT2240). Colonies were only seen on plates spread with mating mixture.

4.3.2. Analysis of exconjugants

The exconjugants generated in this study were analyzed to see presence of *pCMS1::tet*. Initially, the presence of the plasmid was detected in exconjugant and donor by isolating plasmids following protocol described in materials and methods section

(Currier and Nester, 1976). As shown in figure 4.10-A a clear plasmid band was seen in exconjugant and donor. No such plasmid band appeared in recipient cells. The plasmid preparations were then analyzed for presence e of *opd*::*tet* by performing PCR using *opd* specific primers. Agarose gel analysis of PCR samples has shown amplification of *opd*::*tet* from an exconjugant. The *tet* gene has an internal *BamHI* site. The amplicon when digested with *BamHI* generated two fragments of 1.1 kb and 0.8 kb respectively, confirming existence of *opd*::*tet* in plasmid preparations made from exconjugant (Fig. 4.10).

Fig. 4.10 Panel A. Agarose gel electrophoresis showing existence of pCMS1::*tet* in donor (lane1) and exconjugant cells (lane 2). No plasmid was seen in *Pseudomonas putida* KT4220 used as recipient (lane 3). Panel B. Agarose gel showing PCR amplification of *opd::tet* from exconjugants of *B. diminuta*. Lane 1, kb ladder, lane 2 PCR amplification of *opd::tet* from exconjugants. Lane 3 shows digestion of *opd::tet* with *Bam*HI, an unique site found in *tet* gene. Lane 4 represents amplification of 1.2 kb *opd* gene from wild type *B. diminuta* cells.

4.4. Discussion

The work presented in this chapter clearly suggests possible Horizontal Gene Transfer (HGT) of the *opd* gene among soil bacteria, in the light of these results a thorough literature search was done to have an understanding of the origin, evolution and degradation of organophosphorus degrading traits. The organophosphorus hydrolyzing enzymes were originally named as phosphotriesterases due to their ability to hydrolyze tri-ester linkage found in organophosphates and nerve agents. The triesterases found in prokaryotes can be divided into three independent groups. There exists no sequence identity among these three groups. They are organophosphorus hydrolases encoded by opd gene identified in Flavobacterium sp. ATCC 27551 and Brevundimonas diminuta. The second group belongs to methyl parathion hydrolases (MPH) group. These are mainly isolated from Chinese agricultural soils. The third group belongs to organophosphorus acid anhydrolase (OPAA) group. A The OPAAs were later identified as prolidases, the dipeptidases found in variety of bacterial strains. The structural similarity between natural substrate, dipeptide and nerve agent strain is shown to be responsible for the triesterase activity (Cheng and DeFrank, 2000). Therefore, in the subsequent sections, a brief description is given only on the structure and function of opd and *mpd* genes, which are considered to be evolved from lactonases and β -lactams respectively. In the preceding sections a detailed description is given on organization and HGT of *opd* elements found on plasmid pPDL2 and pCMS1. Therefore further description on opd elements are avoided and a brief mention is made in the following sections on structural organization of other phosphotriesterase sequences found in taxonomically diverse group of organisms.

4.4.1. The TnopdA element

The *opd* homologue of *Agrobacterium radiobacter* P230 is *opdA* (Horne et al, 2002). The chromosomally located *opdA* gene was later shown to be part of a

transposable element, which contained three further ORFs in addition to *opdA* along with inverted repeats typically seen in transposon Tn610 of *Mycobacterium fortuitum* (Horne et al, 2003). The transposase TnpA is identical with the TnpA sequence of Tn610. The other two ORFs found between *tnpA* and *opdA* were predicted to code for a truncated transposase (*orfA*) and an ATP binding protein (*orfB*). Transposition was successfully shown in *E. coli* confirming the horizontal mobility of *opdA* sequences among soil bacteria (Horne et al, 2003).

4.4.2. The mpd elements

All methyl parathion-degrading (*mpd*) genes reported to date have been isolated from Chinese agricultural soils or from the activated sludge collected from a Chinese pesticide manufacturing unit. The first *mpd* gene was cloned from a *Plesiomonas* sp. strain M6 (Zhongli et al, 2001). This chromosomally located *mpd* gene surprisingly has shown no homology to any of the known *pte* genes. Following this discovery, a number of *mpd* sequences were cloned from Chinese agricultural soils (Liu et al, 2005; Zhang et al, 2006). However, the horizontal mobility of *mpd* genes among soil microbes gained acceptance only with the discovery of plasmid-borne *mpd* gene in *Pseudomonas* sp. strain WBC-3. In this soil isolate an indigenous plasmid of 70 kb designated pZWL0 contained both a *mpd* gene and genes responsible for degradation of *p*-nitrophenol. This strain uses methyl parathion and its degradation product *p*-nitrophenol as sole source of carbon, nitrogen and energy (Liu et al, 2005). Further investigations into the genetics of methyl parathion degradation revealed that the organization of the *mpd* gene in this

4.4.2.1. The Tnmpd element is a typical class I Transposon

Chapter-2

Sequence analysis of the *mpd* region of pZWLO of *Pseudomonas* sp. strain WBC-3 revealed the existence of a functional *mpd* element. When the 6.5 kb *KpnI-BamHI* fragment was sequenced, it revealed existence of the IS*6100* class of IS elements that flanking the *mpd* gene (Fig. 4.11). Further studies conducted by Wei et al (2009) have elegantly demonstrated the transposition event of the *mpd* gene in *Pseudomonas* sp. strain WBC-3 (Wei et al, 2009). This is the first functional transposable element with a *mpd* gene and the second one in the entire *pte* family of genes that codes for a phosphotriesterase.

4.4.2.2. Distribution of mpd elements

After establishing the existence of a functional *mpd* element, Tn*mph*, in *Pseudomonas* sp. strain WBC-3, Zhang et al, have isolated seven bacterial strains capable of degrading methyl parathion from different locations of Chinese soils with a history of using methyl parathion (Zhang et al, 2006). In all of them a *mpd* gene containing a 4.7 Kb region is highly conserved. In this conserved DNA region a total of five ORFs were identified. One of them shows similarity to the TnpA-coding sequence of an IS element, IS*6100*, and contains a perfect 14 base pair inverted repeat in its flanking sequences. The second ORF, designated as *orf463*, found immediately downstream of the IS element codes for a protein that shows considerable homology to a house-keeping sigma factor. Significance of its existence as part of *mpd* element is unclear. However, presence of other ORFs as part of the *mpd* cluster appears to have a strong functional relevance. The ORFs found upstream of *mpd* sequences, *orf232* and *orf259*, code for a permease of an ABC-transport system and an ExeB found to be the part of general protein secretion pathway. Although there is no experimental evidence to support, due to the presence of

these two ORFs in association with the *mpd* gene, which codes for a MPH precursor with a 35 amino acid-long signal peptide, it is proposed that these two proteins are involved transport and maturation (Zhang et al, 2006). Of the seven *mph* sequences known, two of them are identical, whereas and the rest of the five sequences code for MPH proteins with amino acid substitutions at 9 positions. Nevertheless, these variations have been shown to have positive effect on the catalytic properties of the MPH (Dong et al, 2005). The existence of such highly conserved *mpd* clusters in seven different bacterial strains that show a weak taxonomic relationship strongly supports horizontal mobility among *mpd* genes in soil microbes. The presence of IS*6100* in all these clusters adds strength to this proposal.

Fig. 4.11. Physical maps showing organization of the *opd* clusters of pPDL2 from *Flavobacterium* sp. ATCC 27551 (A) and pCMS1 from *Brevundimonas diminuta* (B), *opdA* of *Agrobacterium radiobacter* P230 (C), *mpd* of *Pseudomonas* sp. WBC-3 (D) and *Plesiomonas* (W). Arrows indicate the direction of transcription.

4.4.3. The opaA genes

After purification of organophosphate acid anhydrolase (OPAA) enzymes from various halophilic and *Alteromonas* species (DeFrank et al, 1993) and demonstration of their ability to degrade G-class nerve agents (Cheng et al, 1999), the *opaA* gene was cloned from the *Alteromonas* sp. strain JD6.5. The *opaA* gene product has more than 50% amino acid similarity to *E. coli* PepQ. Further investigations into the physiological role of OpaA have established that it has prolidase activity. There are no indications that the gene is organized as a mobile genetic element or of its presence on plasmid. The *opaA* gene does not appear to have evolved to code for a phosphotriesterase. The activity of these enzymes due to structural similarity of their substrates (Merone et al, 2005).

4.5. Evolutionary link between phosphotriesterases and lactonases

Promiscuous activities play a key role in the evolution of enzymes. They actually serve as starting point for acquiring a new function through gene duplication (Kolalowski et al, 1997; Lai et al, 1995; Rastogi et al, 1997; Benning et al 1994; Harper et al, 1988). In fact, these promiscuous activities are considered to be the vestiges of the function of their ancestral protein (Kolalowski et al, 1997; Lai et al, 1995). The phophotriesterases have been shown to have promiscuous phosphodiesterase, carboxyl esterase, and lactonase activities (McDaniel et al, 1988; DeFrank et al, 1993; Cheng et al, 1997). In general, the family members that have presumably diverged from a common ancestor often share promiscuous activities (Poelarends et al, 2005, Roodveltdt et al, 2005, Yew et al, 2005, Elias et al, 2008). Afriat et al have elegantly shown the existence of reciprocal promiscuities between lactonases and triesterases (Afriat et al, 2006). Based on the

structural differences, especially in the loops 1, 7 and 8 that comprise substrate binding sites, they have classified OPH homologues into three groups (Fig. 4.12). In the first group, designated as phosphotriesterases, with more than 86% identity to bd-OPH, they have shown existence of promiscuous lactonase. The ec-OPH is kept in the second group of OPH homologues, as it contained relatively shorter substrate binding loops. The third group of enzymes have only loop 7 (Fig. 4.12). These proteins annotated in the database as putative parathion hydrolases including AhIA from R. erythropolis, PPH from Mycobacterium tuberculosis and SsoPox of Sulfolobus solfataricus and are all re-classified as phophotriesterase like lactonases (PLLs). All of them proficiently hydrolyzed lactone with distictively low Km (10 -230uM) values and a very weak phosphotristerase activity (102 to 106 fold). The arylesterase activity was shown only by SsoxPox but not by any of the other PLLs. In principle, the promiscuous activity shown by a family member is not seen with other members of the family. If activity is shown by all the members, it is considered to be indicative of native function (Khersonsky et al, 2006). If this analogy is taken into consideration the PLLs are primarily lactonases with promiscuous phophotriesterase activity and probably the phophotriesterases are evolved from PLLs in the recent past. The substrate-binding loops contribute the main structural difference between PTEs and PLLS.

Indeed insertions, deletions and loop-swapping are believed to be a primary mechanism for creating enzyme diversity (Twafik, 2006, Park et al, 2006, Soskine and Tawfik, 2010). A number of studies have used PLLs as templates for directed evolution and succeeded in either enhancing the substrate range, catalytic efficiency (Chow et al, 2009) or converting PLLs to catalyze altogether new reactions (Mandrich and Manco,

2009). Among the proposed PLLs the archaeal triesterase alone is shown to have arylesterase activity (Afriat et al, 2009). As *ec*-OPH has also shown arylestrase activity the PLL, SsoxPox, due to the existence of similar activity and structural similarities, is proposed to be a "generalist" molecule that served as a template for evolution of phosphotriesterases found in mesophilic organisms (Afriat et al, 2006, Merone et al, 2008). In fact, the recent discovery of phosphotriesterase-like carboxyesterase, (*MloPLC*) from *Mesorhizobium loti* and its transformation into a diesterase through *in vitro* evolution supports the proposed hypothesis by Afriat et al, 2006 (Mandrich and Manco, 2009).

Fig. 4.12. Multiple Alignment of Phosphotriesterases of *B.diminuta* (PTE), *Sulfolobus sulfatricus* (SsoPox), *R. erythropolis* (AhIA), *Mycobacterium tuberculosis* (PPH) are shown using T-Coffee program.

4.6. MPH Scenario

The scenario with the evolution of methyl parathion hydrolases appears to be in no way different from the evolution of the OPHs. They appear to have evolved from ßlactamases with which they share considerable structural homology. The N-acyl-Lhomoserine lactone (AHL) lactonases are members of the metallo-ß-lactamase superfamily and contain two zinc ions in their catalytic center (Aravind, 1999; Daiyasu et al, 2001; Crowder et al, 2006). The recently solved crystal structure of *Bacillus thuringiensis* AHL lactonase (Liu et al, 2008) has shown striking similarity with the crystal structure of MPH (Dong et al, 2005) (Fig. 4.13). The MPH is also shown to have promiscuous lactonase activity (Afriat et al, 2006). If these findings are seen with the aforementioned experimental evidence gathered to show the structural relationship between lactonases and phosphotriesterases, the proposal that metallo ß-lactamases were the progenitors of MPH is worthy of consideration.

Fig. 4.13. Ribbon diagram of Metallo- β Lactamase and methyl parathion hydrolase showing similarities in their structure

Evolution of such new traits coding for biodegradation of recalcitrant xenobiotics and recalcitrant aromatic compounds is not uncommon and has been reported frequently in

the literature (Betsy et al, 1987; Dick et al, 2005). A number of studies conducted on dehalogenases (Mariel and Dick, 2002; Dick et al, 2005) have indicated that the evolution of dehalogenases. Information available on these catabolic enzymes serves as an illustration of many key concepts in enzymology including parallel evolution, convergent evolution, gene transfer, determination of reaction mechanisms and structure-activity relationships (Reviewed in Allpress and Gowland, 2010 and references therein). Considering the ample evidence available on the possible evolution of the phosphotriesterases from quorum 'quenching' hydrolases and the existence of these traits on transposable elements suggests their recent 'evolution' is a consequence of OP-induced gain-of-function. The increased presence of these OP compounds in agricultural soils due to repeated and excessive use would have created the necessary positive selection pressure to distribute the newly acquired functionality among microbial populations. The existence of such traits on self-transmissible plasmids like pCMS1 would greatly facilitate lateral gene transfer.

Conclusions

- 1. Plasmid pCMS1 of *B.diminuta* is self transmissible and showed horizontal mobility into *Pseudomonas putida*.
- 2. The *tra* genes were identified in pCMS1 in support of its self-transmissibility.
- 3. Plasmid pPDL2 is only a mobilizable plasmid. It can only be horizontal transferred into other bacterial strains in presence of helper plasmids.
- 4. The transposase of *Tn3* causes transposition of *opd* gene cluster present on plasmid pPDL2 of *Flavobacterium* sp. ATCC 27551.

Organophosphates, as stated in the introduction chapter, are widely used as insecticides to control various insect pests that affect economically important crops. The organophosphorus hydrolase (OPH) encoded by plasmid pPDL2 borne organophosphate (*opd*) gene hydrolyses triester linkage found in variety of OP insecticides (Mulbry and Karns, 1989; Dumas et al, 1989). This hydrolytic step inactivates OP compounds and thus reduces their toxicity towards mammals and other non-target organisms having well developed nervous system. However, this hydrolytic cleavage generates a number of aromatic compounds, especially nitrophenols (Fig. 5.1), which are highly toxic to soil microflora and are shown to adversely influence soil ecosystem (Camper et al, 1991). Complete mineralization of OP compounds means not only OPH mediated hydrolysis, the products

Fig. 5.1. Generation of nitrophenols through OPH mediated hydrolytic cleavage of certain OP_compounds.

generated through hydrolytic cleavage must be mineralized. In a very few cases the microbes are shown to possess genetic capability to mineralize OP compounds, due to existence of *opd* gene along with genes coding for enzymatic machinery needed for

degradation of aromatic compounds (Ou and Sharma, 1989; Rani and Lalithakumari, 1994; Keprasertsup et al, 2001). The alternative strategy is to mobilize opd containing native plasmids into native isolates having innate ability to mineralized aromatics and nirophenols. In our attempt to search for such native soil bacterial strain our laboratory has isolated an Acinetobacter sp. DS002 from a methyl parathion contaminated soil. When tested no opd gene was found in Acinetobacter sp. DS002. However, it has grown on a variety of aromatic compounds. Biodegradation of aromatic compounds is a wellstudied aspect of biocatalysis. The degradation pathways operational in both grampositive and gram-negative bacteria are well known (Harwood and Parales, 1996). Understanding of aromatic compound degradation pathway operational in Acinetobacter sp. DS002 is expected to generate basic information required for its manipulation towards achieving the mineralization of phenolic and nitrophenolic compounds. On careful examination, the isolate was shown to use a number of aromatic compounds and dicarboxylic acids as sources of carbon. Through comparative growth studies, the benzoate has been shown to serve as a better carbon source for Acinetobacter sp. DS002. Therefore aromatic degradation pathway found in Acinetobacter sp. DS002 was elucidated by growing it using benzoate as sole source of carbon. A combinatorial approach involving both metabolomic and proteomic tools were followed while elucidating the degradation pathway. Before actually analyzing the degradation pathways, the growth conditions were optimized and the cells grown in a physiological condition where the pathway enzymes were maximally induced.

5.1 Growth behavior of Acinetobacter sp. DS002 in benzoate

Initially, the optimal benzoate concentration for optimal growth of *Acinetobacter* sp. DS002 was determined. Growth was observed in all concentrations ranging from

5mM to 100mM benzoate. However, in high benzoate concentrations growth was seen only after 20 hours. A typical growth curve with lag, log and stationary phases were observed when grown in 5mM benzoate (Fig. 5.2). At higher concentrations of benzoate (50 mM) a typical diauxic growth curve with two exponential phases was observed. About 97% decrease in concentration of sodium benzoate was seen by the end of the logarithmic phase (Fig. 5.3).

Fig. 5.2. Growth curve of Acinetobacter sp. DS002 in benzoate

When spent medium collected after eight hours of growth was analyzed on HPLC there was drastic reduction in benzoate peak with a concomitant appearance of additional peaks with retention times less than 4.4 min. The metabolites associated with these two new peaks were identified using LC/MS.

5.2 LC/MS analysis of catabolites

In order to identify the catabolic intermediates of benzoate, the spent medium collected from *Acinetobacter* sp. DS002 culture was extracted at different time intervals

following the procedures described in materials and methods section. When these extracts were separated on HPLC, three major peaks with retention times of (Fig. 5. 4) 1, 2.1 min (Fig. 5.5) and 3.9 min1.6 min (Fig. 5. 6) were observed. Though there were considerable differences in the individual peak intensities, they were constantly found from the extracts

Fig. 5.3. HPLC analysis of catabolites at a) 0 hrs and b) 8 hrs. Peak with a retention time of 4.4 min represents benzoate.

prepared both at 8 h and 16 h time periods. These base peaks were then used for doing MS/MS in the negative mode to obtain molecular ion [M-] m/z values. The retention

times and molecular ions [M-] having the m/z values 141, 109 and 121 matched with m/z values of *cis, cis* -muconate, catechol and benzoate. As evidenced in the peak intensities, the concentration of the catabolic intermediates in the spent medium varied with time due to utilization of these compounds by *Acinetobacter* sp. DS002. The catabolite *cis,cis* muconate is the product formed from catechol by the action of catechol 1,2 dioxygenase, the first enzyme in the *ortho* cleavage pathway of catechol (Stanier et al, 1970).

Fig. 5.4. LC-MS analysis of metabolites collected at 0 hrs time. Panels a, b and c represent LC profile, MS pattern and MS/MS pattern of a compound with retention time 3.9 min.

The initial step in the aerobic biodegradation of benzoate is incorporation of molecular oxygen into the aromatic nucleus by the enzyme benzoate 1, 2 dioxygenase to form a non-aromatic *cis-diol*, 2-hydro-1, 2-dihydroxybenzoate (DHB) which is further converted to catechol by the action of DHB dehydrogenase (Fig. 5)(Reiner, 1972; Reiner and

Hegeman, 1971). Catechol is cleaved either through the ortho pathway or meta pathway

by the

Fig. 5.5. LC-MS analysis of metabolites collected at 8 hrs time. Panels a, b, c and d represent LC profile, enlarged LC profile, MS pattern and MS/MS pattern of a compound with retention time 2.0 min.

Fig 5.6. LC-MS analysis of metabolites collected at 8 hrs time. Panels a, b, c and d represent LC profile, enlarged LC profile, MS pattern and MS/MS pattern of a compound with retention time 1.6 min.

enzymes catechol 1,2 dioxygenase or catechol 2,3 dioxygenase leading to the formation of *cis-cis* muconate respectively and 2-hydroxymuconic semialdehyde (HMSA) respectively (Fig. 5. 7) (Loh and Chua, 2002). In the *ortho* pathway of catechol degradation, intradiol cleavage occurs leading to the formation of *cis,cis*- muconic acid (Fig. 5. 6) which is converted to β-ketoadipate-enol-lactone and finally to acetyl-CoA and succinyl-CoA. In the *meta* cleavage pathway, extradiol cleavage of catechol occurs yielding 2-hydroxymuconic semialdehyde (HMSA) which is further converted to pyruvate and acetyl-CoA. Therefore, the existence of *cis, cis* –muconate and absence of HMSA in the metabolites indicate that degradation of benzoate in *Acinetobacter* sp. DS002 occurs through the *ortho* pathway.

Fig. 5. 7. Schematic representation of ortho and meta degradation pathways of benzoate.

The metabolites generated in this study provide a clear understanding on pathway operational for aromatic compounds degradation in *Acinetobacter* sp. DS002.

5.3 Proteome analysis of Acinetobacter sp. DS002

In order to substantiate the data generated through identification metabolites parallel experiments were done to identify corresponding enzymes and to know their

Chapter-3

regulation. Here in this study a proteomics approach was followed to gain information pertaining to i) upregulation of enzymes involved in degradation of benzoate ii) generate genome-wide expression profiling in response to shift in carbon source. In order to identify differently and differentially expressed proteins, initially the cells were grown in succinate where the enzymes involved in benzoate degradation are in highly repressed state. In this repressed state the proteins were extracted and basic proteome map was established by performing 2D electrophoresis as described in materials and methods section (Fig. 5. 8). The basic proteome map thus established was then compared with similar maps generated for the soluble proteins extracted from benzoate (5 and 50 mM) grown cultures (Fig.5.9, 5.10). Image analysis was performed using ImageMaster2D platinum software for normalization, spot detection, spot quantification, comparison of gels and for identification of differently and differentially expressed proteins due to shift in carbon source. Upon comparison of the proteome profiles, nearly 75 protein spots were found to be common both in benzoate (5 mM and 50mM) and succinate grown cultures (Fig. 5. 11). Further, the proteome profiles of Acinetobacter sp. DS002 grown in 5 mM and 50mM were almost identical matching more than 98.5%, except that the concentration dependent increase was seen in certain spots (Table. 5.1). Further, the protein spots that were showing significant intensities were picked for MALDI-TOF analysis. The 13 proteins that have shown significant score and sequence coverage with the proteins found in database were presented in table (Table 5. 1). Most of the proteins identified through MALDI-MS were essentially involved in degradation of benzoate via ortho pathway. Identification of electron transport component of benzoate 1,2 dioxygenase (spot 4344) and catechol 1,2 dioxygenase (spot 4364) through MS/MS, provided primary evidence to show that benzoate is degraded through ortho pathway in

Acinetobacter sp. DS002. Studies pertaining to benzoate degradation occasionally

resulted

Fig. 5.8. 2D Proteome map generated for soluble proteins of *Acinetobacter* sp. DS002 grown in 10mM succinate

Fig. 5.9. 2D Proteome map generated for soluble proteins of *Acinetobacter* sp. DS002 grown in 5 mM benzoate

Fig. 5.10 2D Proteome map generated for soluble proteins of *Acinetobacter* sp. DS002 grown in 50 mM benzoate. Differently and differentially expressed spots that were subjected to MALDI-TOF were shown with an open circle. The number adjacent to the spot indicate the spot ID

Fig. 5.11. Comparison of 2D proteome profiles of succinate (10 mM) and benzoate (50 mM) grown cultures of *Acinetobacter* sp. DS002. Differently and differentially expressed spots that were subjected to MALDI-TOF were shown with an open circle. The number adjacent to the spot indicate the spot ID.

in identification of isoforms of catechol 1,2 dioxygenase (Nakai et al, 1990). When searches were made at different pl points in the molecular mass range of 34kD no protein spots matched with mass fingerprint pattern of catechol 1,2 dioxygenase suggesting absence of its isoforms in *Acinetobacter* sp. DS002. Usually, benzoate and catechol degrading genes are organized as operons. Expression of these operons is strictly dependent on transcriptional regulator proteins such as BenM and CatM which belong to LysR family of transcriptional regulators (Collier et al, 1998; Romero-Arroyo et al, 1995). Interestingly the MS data of spot 4412 showed considerable similarity to LysR protein suggesting transcriptional regulation of benzoate degrading genes in *Acinetobacter* sp. DS002. Further, spots 4386 and 4428 have shown significant homology to ABC transport related proteins involved in unidirectional movement of a solute across the membranes (Saurin et al, 1999). Benzoate dependent induction of ABC transporters is rather unusual. The involvement of such transporters in unidirectional transport of aromatic compounds such as phenols is well established (Kurbatov et al, 2006). Instead involvement of novel porin like proteins in benzoate transport is reported (Clark et al, 2002). Significant increase in the concentrations of ABC transporters only in benzoate grown cultures suggests existence of novel transport mechanism in *Acinetobacter* sp. DS002. However, further studies are required to validate this observation.

In addition to the aforementioned protein spots that are directly involved in catabolism of benzoate we have also seen a number of other protein spots in benzoate grown cultures that have no obvious link to benzoate catabolism. One of them is catalase (4294) and its induction very well correlates with the reports of catechol induced oxidative stress in microbes involved in biodegradation of aromatic compounds (Benndorf et al, 2001). The other two protein spots whose identity was established are

Spat No	Histogram	50 m mol L-1 Denzoate	5m molL-1 Denzoate	10 m mol L-1 succinate	Protein ID	Mowse Score	% Sequence coverage*	Accession No
4294		-	100		Catalase Acinetobacter baumannii ACICU	76	20	gi 184157746
4329				4. a	Dihydrolipoamide dehydrogenase Acinetobacter baumannii	48	18	gi 169794948
4334			+		Hypothetical protein R2601_23970 Roseovarius sp. HTCC2601	77	23	gi 114766962
4344		-	*	-	Benzoate 1,2-dioxygenase electron transfer component Acinstobacier baumannii AYE	50	20	gi 169796581
4364	1.	•	+		Catechol 1,2-dioxygenase Acinstobactsr baumannii	89	36	<u>gi 90018513</u>
4386			-	theme -	ABC transporter related Anaeromyxobacter sp. Fw109-5	61	42	gi 153004317
4409	1.		4.		Putative adenylate/guanylate cyclase Silicibaciersp. TM1040	61	14	g 99082352
4412				1.519	Transcriptional regulator, LysR family protein Burkholderia mallei PRL-20	44	BO	<u>gi 167004065</u>
4423		10		•	Alkyl hydroperoxide reductase, C22 subunit, Actnetobacter sp.	83	48	gi 169633181
4428			-		ABC transporter related [Burkholderia phymatum STM815]	62	17	gi 186471060
4429			-		Major outermembrane protein P44-4 Anaplasma phagocytophilum	62	48	gi 19223945
4455		•	•	*	Hydroxylase for synthesis of 2-methylthio-cis-ribozeatin in tRNA Klebsiella pneumonias	57	18	gi 152973133

* Percentage of protein sequence covered by the matching peptides

Table 5. 1. Magnified regions of 2D gel images with their histogram are represented in panel A. In the histogram the 1st, 2nd and 3rd bars represent protein intensities of a spot in 50 mM benzoate, 5 mM benzoate and 10 mM succinate grown cultures respectively. Panel B represent the hits obtained from MALDI TOF analyses and their accession numbers.

adenylate/guanylate cyclase (4409) and dihydrolipoamide dehydrogenase (4329). The role of cAMP in signaling mechanism is well known. In fact, it is part of the global switch that turns on several operons involved in metabolism of alternate carbon sources (Harman, 2001). Induction of adenylate/guanylate cyclase signifies synthesis of elevated cAMP/cGMP which might be needed for inducing genes required for benzoate catabolism. Dihydrolipoamide dehydrogenase (4329) and hydroxylase (4455) both are needed for operation of TCA cyles. One of them, dihydrolipoamide dehydrogenase plays a key role in formation of succinyl co-A (Kornfeld et al, 1977) and the enzyme hydroxylase has shown high homology to the product of *miaE* involved in conversion of of 2-methylthio-N-6 isopentenyl adenosine (ms2i6A) in to 2-methylthio-N-6 (cis-hydroxyl) isopentenyl adenosine ms2io6A). The ms2io6A is a modified base found adjacent to the anticodon of tRNAs that read codons beginning with "U". In *Salmonella typhimurium* presence of ms2io6A is a prerequisite to facilitate growth on TCA cycle intermediates such as succinate, fumerate or

Spot No	MW of Peptides	Sequence	Protein	Accession No.
4344	1044.494	FPWFEYR	Benzoate 1, 2- dioxygenase electron transfer component	gi 12664126 1
4344	2011.007	RSPGSGGLFSLAVNPYTCK	Flavodoxin/ Ferredoxin Oxidoreductase domain protein	gi 12199687 6
4364	1934.2730	RTIEGPLYVAGAPESVGFARM	Catechol 1,2 dioxygenase	Q43984
4364	2012.3720	KVEVWHANSLGNYSFFDKS	Catechol 1,2 dioxygenase	Q43984
4364	2081.3300	RHGNRPSHVHYFVSAPGYR.K	Catechol 1,2 dioxygenase	Q43984
4364	2780.7030	RKLTTQFNIEGDEYLWDDFAFATRD	Catechol 1,2 dioxygenase	Q43984

Table 5. 2. MS/MS hits obtained for protein spots 4344 and 4364. Sequence and MW of peptides that matched with either benzoate 1,2 dioxygenase or catechol 1,2 dioxygenase are provided.

Chapter-3

malate (Persson et al, 1998). Upregulation of MaiE homologue in benzoate grown culture points towards enhanced biosynthesis of tRNA molecules having ms2io6A at 37th position. As end product of benzoate catabolism is a TCA intermediate, induction of MaiE during benzoate catabolism might be to enhance tRNA population with ms2io6A at 37th position which might be required for optimal operation of TCA cycle in *Acinetobacter* sp. DS002.

5.4 Cloning of cat operon

Organization of genes responsible for conversion of catechol to TCA intermediates was reported in several microbes (Harwood and Parales, 1996). A reverse genetic approach was employed in order to identify genes responsible for catechol degradation. As mentioned earlier, peptide mass fingerprint (PMF) of protein spot 4364 has shown significant similarity to catechol 1, 2 dioxygenase. The PMF hits were further confirmed by MS/MS analysis. The PMF of protein spot 4364 and its MS/MS data matched with catechol 1, 2 dioxygenase of Acinetobacter sp. (Q43984). A blast analysis was performed taking the de novo sequence of the protein spot 4364 and the catechol 1, 2 dioxygenase sequences of Acinetobacter genus found in the database. The alignment has shown high degree of sequence conservation throughout the length protein; except that the per cent homology was found to be little lower at the C-terminus of these proteins (Fig. 5. 12). Among these conserved regions two blocks that showed absolute sequence identity were identified. These two conserved sequence blocks (TPRTIEGPLYVAGA and DDFAFATRD) were taken to generate degenerate primers COF2 (5'-ACNCCNMGNACNATHGARGG-3') and COR1 (5'-CKNG TNGCRAANGCRAARTCRTC -3') for amplification of catechol 1, 2 dioxygenase gene from Acinetobacter sp. DS002 (Fig. 5. 12). When a typical PCR reaction was performed using genomic DNA of Acinetobacter sp. DS002 as template and COF2 and COR1 as primers an

172

Fig 5. 12. Multiple alignment of various catechol 1,2 dioxygenases of the genus *Acinetobacter*. Conserved blocks of amino acids marked with red boxes were used to design degenerate primers.

amplicon of 500 bp was generated (Fig. 5. 13A). No amplicon was observed in the control reactions where genomic DNA of *E. coli* DH5α was used as template. Finally the identity of the 500 bp amplicon was confirmed by generating complete sequence. The sequence showed 98% identity with catechol 1,2 dioxygenase of *Acinetobacter baumannii* ATCC 17978 (Fig. 5. 14). The partial *catA* gene was then used as a probe to identify a fosmid clone containing complete *cat* / *ben* operons. When colony hybridization was performed five independent clones have given positive signals (Fig. 5.13B). Among these five positives, clone 912 was selected for further studies. In order to identify a fragment having the catechol 1,2 dioxygenase gene, a restriction profile of 912 clone was generated by digesting with restriction enzymes *Bam*HI, *Eco*RI, *Hind*III and *Sal*I. These fragments were again hybridized with partial *catA* gene to identify the profile that gives *cat* operon as a single restriction fragment. An 8kb *Sal*I fragment has been shown to have *cat* operon and was then

Fig. 5. 13. A) Amplification of *catA* gene using degenerate primers. Lane 1 represents 1 kb DNA ladder and lanes 2 and 3 represent amplicons obtained using genomic DNA of *Acinetobacter* sp. DS002 and *E.coli*. B) Identification of *catA* containing genomic clones by colony hybridization. The positive control is shown with an arrow mark.

> <mark></mark>	<u>CP000521.</u> =3976747	1] D Acinetobacter baumannii ATCC 17978, complete genome						
Features in this part of subject sequence: <u>CatA3</u>								
Score Ident Stran	= 789 b ities = 4 d=Plus/Pl	its (427), Expect = 0.0 55/469 (98%), Gaps = 0/469 (0%) us						
Query	71	TACGCCGCGGACGATCGAGGGTCCACTTTATGTTGCTGGCGCACCTGAATCAGTTGGCTT	130					
Sbjct	2147156	TACACCACGTACTATCGAAGGTCCACTTTATGTTGCTGGCGCACCTGAATCAGTTGGCTT	2147215					
Query	131	TGCACGTATGGATGACGGAACCGAGACTGGCAAAATCGATACCTTAATTATTGAAGGTAC	190					
Sbjct	2147216	TGCACGTATGGATGACGGAACTGAGACTGGCAAAATCGATACCTTAATTATTGAAGGTAC	2147275					
Query	191	GGTAACCGACACTGATGGCAATATTATTGAAAATGCCAAAGTTGAAGTATGGCATGCCAA	250					
Sbjct	2147276	GGTAACCGACACTAATGGCAATATTATTGAAAATGCCAAAGTTGAAGTATGGCATGCCAA	2147335					
Query	251	${\tt Cagtttaggtaactattcattctttgataagtcacaatctgactttaacttacgccgtac}$	310					
Sbjct	2147336	CAGTTTAGGTAACTATTCATTCTTTGATAAGTCACAATCTGACTTTAACTTACGTCGTAC	2147395					
Query	311	${\tt CATTTTCACTGATGCAGATGGTAAATATGTAGCGTTAACCACTATGCCAGTTGGTTATGG}$	370					
Sbjct	2147396	CATTTTCACTGATGCAGATGGTAAATATGTAGCGTTAACCACTATGCCAGTTGGTTATGG	2147455					
Query	371	TTGCCCTCCTGAAGGTACAACACAGGCTCTTCTTAACAAGTTAGGCCGTCATGGTAACCG	430					
Sbjct	2147456	ATGCCCTCCTGAAGGTACAACACAGGCTCTTCTTAACAAGTTAGGCCGTCATGGTAACCG	2147515					
Query	431	${\tt TCCATCTCACGTTCACTACTTTGTATCTGCACCGGGTTACCGCAAGCTGACTACTCAATT}$	490					
Sbjct	2147516	TCCATCTCACGTTCACTACTTTGTATCTGCACCAGGTTACCGCAAGCTGACTACTCAATT	2147575					
Query	491	CAACATTGAGGGTGATGAGTATTTATGGGACGACTTTGCGTTCGCAACT 539						
Sbjct	2147576	CAACATTGAGGGTGATGAGTACTTATGGGATGACTTTGCCTTCGCTACT 2147624						

Fig. 5. 14. BLASTN analysis of *catA* of *Acinetobacter* sp. DS002. Pairwise alignment of *catA* of *Acinetobacter* sp. DS002 with *catA3* of *Acinetobacter baumannii* 17978 is shown.

used for further studies by sub-cloning it in pBluescript vector (Fig. 5.15). Sequencing of the 8kb *Sal*I fragment of the clone 912 showed presence of genes which code for catechol 1, 2 dioxygenase, 3-oxo-acid-CoA transferase and β -ketoadipate thiolase (Fig. 5. 16).

Fig. 5. 15. Sub-cloning of *catA* containing fragment into pBluescript II KS vector.Lane 1. represents 1kb DNA ladder. Lane 2 represents recombinant pBluescript plasmid having catA gene as a *Sal*I fragment. Lane 3 represents uncut recombinant plasmid.

Based on the identification of catabolic intermediates, PMF and MS/MS data and sequence information a pathway has been constructed for degradation of benzoate through the ortho pathway (Fig. 5. 16)

5.6 Purification of Catechol 1,2 dioxygenase

Catechol and substituted catechols occupy central position in biodegradation of aromatic compounds. Degradation of catechols further proceeds through either *ortho* or *meta* cleavage pathways depending on the availability of microbial dioxygenases. Catechol 1,2 dioxygenase, responsible for the intradiol cleavage of catechol, channels catechol degradation through ortho pathway, whereas catechol 2,3 dioxygenase diverts it towards *meta* cleavage pathway. The catachol 1, 2 dioxygenase is therefore a key enzyme in

Fig 5. 16. Degradation pathway of benzoate in Acinetobacter sp. DS002

mineralization of catachols and substituted catechols. Phenolic and nirophenolic compounds generated during biodegradation of OP compounds will be converted to either catechols or nitrocatechols through the action of *p*-nitrophenol monoxygenase (Spain et al., 1979; Spain, 1994; Spain and Gibson, 1991; Zeyer and Kocher,1988). The nitrocatechol generated will be converted to benzentriol which is then serves as substrate for ring fission oxygneases (Hanne et al, 1993; Jain et al, 1994; Kadiyala and Spain, 1998; Chauhan et al, 2000). Alternatively, in certain cases the *p*-nitrophenol is converted to benzene triol *via* generation of hydroquinone. A detailed figure showing details of 4-nitrophenol degradation is given for quick reference (Fig. 5. 18). If fair assessment has to be made for further

Fig. 5. 18. Degradation pathways of *p*-nitrophenol via 1,24 benzenetriol and benzoquinone

manipulation of *Acinetobacter* sp. DS002 it is necessary to assess the substrate specificity of catechol 1,2 dioxygenase using the intermediates of PNP degradation pathway as substrates. While attempting to do such experiments under *in vitro* conditions pure enzyme is necessary. Therefore an attempt was made to purify catechol 1,2 dioxygenase to electrophoretic homogeneity by following conventional protein purification techniques described in materials and methods section. The purification procedure gave 1 mg of protein from 20 g of cell pellet. Fractions containing more than 50% catechol 1,2 dioxygenase was taken at each stage of purification and the specific activity and fold purification was determined. Though the fold purification has increased with every stage of

purification, the gel permeation chromatography has given virtually homogenous catechol 1, 2 dioxygenase (Fig. 5. 19). Further, the protein fraction having activity showed a native mass of 66 kDa. The very same protein when analyzed on SDS-PAGE showed a molecular mass of 34 kDa (Fig. 5. 19d). Most of the C12Os with few exceptions are dimmers of identical or non-identical subunits (Aoki et al, 1984; Nakai et al, 1990). Gel permeation results indicate that C12O of *Acinetobacter* sp. DS002 is a homodimer with a molecular mass of 66 kDa.

Fig. 5. 19. Purification of catechol 1, 2 dioxygenase of *Acinetobacter* sp. DS002. Panel a) represents ammonium sulphate fractionation. Lane 1 represents protein molecular weight marker. Lane 2 represents cytoplasmic fraction. Lanes 3-5 represent proteins obtained through 0-20% (Lane 3), 20-40% (Lane 4) and 40-60% (lane 5) saturation of ammonium sulphate. Panels b, c, d represent C12O purified using anion exchange (b), hydrophobic interaction (c) and gel permeation chromatography, respectively. In all panels lane 1 represents molecular weight markers, Lane 2 represents C12O. The C12O purified to electrophoretic homogeneity is seen in panel d.

5.7 Catechol 1, 2 dioxygenase assay

Substrate specificity was determined for C12O of *Acinetobacter* sp. DS002 using catechol and substituted catechols generated during OPH mediate hydrolysis of methyl parathion/ parathion degradation pathway by following procedures described in methods

section. In general the C12Os have showed relaxed specificity for catechols and methyl catechols but they have not shown any activity on nitro-catechols (Patel et al, 1976). However, C12O of *Acinetobacter* sp. DS002 has shown considerable activity when 1, 2, 4-benzenetriol and 4-nitrocatechol were used as substrate (Fig. 5. 20). Existence of C12Os with relaxed substrate specificity is not uncommon in literature. C12Os showing activity on methyl and halocatechols were seen in *Rhodococcus, Ralstonia* and *Pseudomonas arvilla* (Cha, 2006; Patel et al, 1997; Briganti et al, 1976; Briganti et al, 2000; Wang et al, 2006). The substituted phenols like 4-nitrophenol, 4-nitrocatechol and 1,2,4 benzenetriol are degradation products of methyl parathion and parathion (Pakala et al, 2007; Chauhan et al, 2000; Jain et al, 1994; Kadiyala and Spain, 1998). As benzenetriol and 4-nitrocatechol served

Fig. 5. 20. Activity of catechol 1,2 dioxygenase on catechol, 4-nitrocatechol and 1,2,4benzenetriol respectively.

as substrate for C12O of *Acinetobacter* sp. DS002 channeling of these PNP intermediates appears to be possible through the *ortho* pathway.

5.8 Manipulation of Acinetobacter sp. DS002

Though *Acinetobacter* sp. DS002 was isolated from OP-polluted soils existence of *opd* gene, which codes for organophosphate hydrolase (OPH) involved hydrolytic cleavage of structurally diverse group of OP compounds was not apparent. The *Acinetobacter* strains were not tested positive for OPH activity. In agreement of this observation no amplification was seen when PCR was performed using *opd* specific primers. If the relaxed substrate specificity of C12O has to be exploited for complete mineralization of OP-compounds, expression of *opd* gene in *Acinetobacter* sp. DS002 is inevitable (Cha, 2006; Patel et al, 1997; Briganti et al, 1976; Briganti et al, 2000; Wang et al, 2006). The OPH activity alone can generate nitrophenols from OP-compounds, which serve as substrate for C12O. Therefore in the present study an attempt was made to mobilize a derivative of organophosphate degrading (*opd*) plasmid, pPDL2 of *Flavobacterium* sp. ATCC 27551 into *Acinetobacter* sp. DS002.

5.9 Mobilization of pPDL2 Tn5<R6Kyori/KAN-2>into Acinetobacter sp. DS002

As described in the previous chapter plasmid pPDL2 is a mobilizable plasmid. The derivative of pPDL2 generated by inserting mini-transposon Tn5<R6Kyori/KAN-2> was shown to be mobilizable. Therefore a triparental mating experiment was performed to transfer pPDL2:: Tn5<R6Kyori/KAN-2> into the aromatic compound degrading *Acinetobacter* sp. DS002. After mobilization of pPDL2- Tn5<R6Kyori/KAN-2> into *Acinetobacter* sp. DS002, its stability was frequently tested by monitoring the presence of PCR using *opd* specific primers (Fig. 5. 21). Interestingly plasmid pPDL2::Tn5<R6Kyori/Kan2> was found to be highly stable. Even in the absence of selection on kanamycin the plasmid was found to be highly stable. In consistence of its presence high amounts of OPH activity was found in all

180

Acinetobacter sp. DS002 (pPDL2::Tn5<R6Kyori/KAN-2>) clones (Fig. 5. 22).After establishing

stable maintenance of plasmid pPDL2::Tn5<R6Kγori/Kan2> in Acinetobacter sp. DS002,

Fig. 5. 21. Confirmation of pPDL2 mobilization into *Acinetobacter* sp. DS002 by colony PCR using *opd* specific primers.Lane 1 represents 1 kb DNA ladder. Lanes 2-3 represent amplicons obtained from pPDL2::Tn5<R6Kyori/Kan2> harbouring *Acinetobacter* sp. DS002 and *E.coli pir*116 respectively. Lane 4 represents *E.coli pir*-116.

Fig. 5. 22. Assay of Phosphotriesterase activity in cytoplasmic and membrane fractions of A) *Acinetobacter* sp. DS002 having plasmid pPDL2::Tn5<R6Kγ/Kan2> and B) wild type *Acinetobacter* sp. DS002.

experiments were conducted to test their ability to degrade OP compound, paraoxon. Our lab has recently shown presence of OPH in the inner membrane of *B. diminuta* and its dependence on Twin Arginine Transport (Tat) pathway for membrane targeting (Gorla et al, 2009). Therefore the *Acinetobacter* cells harboring plasmid pPDL2:: Tn5<R6Kyori/KAN-2>were fractionated to cytoplasmic and particulate fractions and were assayed for OPH activity as described in methods. Most of the OPH activity was found in membrane fraction and very little activity was seen cytoplasmic fraction, (Fig. 5. 22).

5.10 Degradation of methyl parathion

After establishing the stability and expression of OPH in Acinetobacter sp. DS002 (pPDL2:: Tn5<R6Kyori/KAN-2>), the manipulated strain was tested for its ability to degrade organophosphates like methyl parathion and parathion and their catabolic intermediates such as 4-nitrocatechol and 1, 2, 4-benzenetriol generated during their biodegradation. Immediately after adding parathion to the culture medium containing Acinetobacter sp. DS002 (pPDL2:: Tn5<R6Kyori/KAN-2>), it quickly turned into yellow colour indicating OPH mediated hydrolysis of methyl parathion. Such change of colour was not observed in control cultures having wild type strains of Acinetobacter sp. DS002. Subsequently the yellow colour of the medium generated due to the formation of *p*-nitrophenol from methyl parathion got slowly disappeared from the culture medium. When the culture medium was extracted for identification of *p*-nitrophenol metabolites both 4-nitrocatechol and 1,2,4-benzenetriol were identified indicating that the *p*-nitrophenol generated due to OPH mediated hydrolytic cleavage is further metabolized to generate nitrocatechol and 1,2,4-benzenetriol. As shown in the aforementioned sections benzenetriol has served as one of the substrates for the ring cleavage enzyme C12O purified from Acinetobacter sp. DS002. Such observation supports channelization of benzenetriol into TCA cycle indicating the possibility of *p*-nitrophenol serving as carbon source in Acinetobacter sp. DS002 (pPDL2:: Tn5<R6Kyori/KAN-2>). As shown in figure 5.18 PNP monooxygenase plays a critical role in conversion of PNP into 4-

182

nitrocatechol / 1, 2, 4-benzenetriol. The total sequence of pPDL2 presented in the first chapter gave no indication of PNP monooxygenase. As formation of nitrocatechol and 1, 2, 4-benzenetriol were found in the culture medium of *Acinetobacter* sp. DS002 (pPDL2:: Tn5<R6Kyori/KAN-2>) it suggests existence of such monooxygenases on the chromosome of *Acinetobacter* DS002. *Acinetobacter* sp. DS002 is a soil isolate and shown to grow on number of aromatic compounds. Though PNP at higher concentrations is shown to be toxic to *Acinetobacter* sp. DS002, it has supported for the growth of the strain at low concentrations. In the light of these observations degradation of PNP generated from OP-compounds is an understandable consequence. A schematic degradation pathway found to be operational in *Acinetobacter* sp. DS002 has been presented in Fig. 5. 23.

Fig. 5. 23. Schematic representation of methyl parathion and benzoate degradation pathways in *Acinetobacter* sp. DS002 (pPDL2:: Tn5<R6Kyori/KAN-2>)

Conclusions

- 1. Acinetobacter sp. DS002 utilizes benzoate as sole source of carbon. The optimum concentration of benzoate for growth is 5 mM.
- 2. Catechol and *cis,cis*-muconic acid were identified as intermediates of benzoate catabolism in *Acinetobacter* sp. DS002.
- Basic proteome maps of soluble proteins of *Acinetobacter* sp. DS002 grown in 10 mM succinate, 5 mM and 50 mM benzoate were generated.
- 4. Proteome maps of 5 mM and 50 mM benzoate grown cultures were identical whereas the proteome map of benzoate grown cultures sowed significant differences with the proteome map of succinate grown cultures.
- 5. Benzoate 1,2 dioxygenase and catechol 1,2 dioxygenase, key enzymes of benzoate degradation were identified through MALDI-TOF and MS/MS analysis.
- 6. Degenerate primers were designed for *catA* gene and *catA* gene amplified from *Acinetobacter* sp. DS002 showed 98% identity with *catA* gene of *Acinetobacter baumannii* 17978.
- Genomic library clones of *Acinetobacter* sp. DS002 with *cat* operon were identified.
 The *cat* operon was sub-cloned and sequenced.
- 8. Catechol 1,2 dioxygenase (C12O) of *Acinetobacter* sp. DS002 was purified to electrophoretic homogeneity. C12O shows significant enzyme activity towards PNP intermediates 4-nitrocatechol and 1, 2, 4- benzenetriol.
- Plasmid pPDL2:: Tn5<R6Kyori/KAN-2> was successfully mobilized into Acinetobacter sp. DS002. Acinetobacter (pPDL2::Tn5<R6Kyori/KAN-2>) has successfully degraded OP compounds Paraoxon and methyl parathion.